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A new small-gain theorem is presented for general non-linear control systems and can be viewed as
unification of previously developed non-linear small-gain theorems for systems described by ordinary
differential equations, retarded functional differential equations and hybrid models. The novelty of this
research work is that vector Lyapunov functions and functionals are utilized to derive various input-to-
output stability and input-to-state stability results. It is shown that the proposed approach is extendible
to several important classes of control systems such as large-scale complex systems, non-linear sampled-
data systems and non-linear time-delay systems. An application to a biochemical circuit model illustrates
the generality and power of the proposed vector small-gain theorem.
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1. Introduction

The small-gain theorem has been widely recognized as an important tool for robustness analysis and
robust controller design within the control systems community. For instance, classical small-gain the-
orems, Desoer & Vidyasagar (1975) and Zames (1966) have played a crucial role for linear robust
control of uncertain systems subject to dynamic uncertainties (Zhou et al., 1996). As introduced in the
framework of classical small-gain, an essential condition for input–output stability of a feedback sys-
tem is that the loop gain is less than one. This condition relying upon on the concept of linear finite
gain was first relaxed by Hill (1991) and then Mareels & Hill (1992) using the notions of monotone
gain and non-linear operators. Quickly after the birth of the notion of input-to-state stability (ISS) orig-
inally introduced by Sontag (1989), a non-linear, generalized small-gain theorem was developed in
Jiang et al. (1994). This non-linear ISS small-gain theorem differs from classical small-gain theorems
and the non-linear small-gain theorem of Hill (1991) and Mareels & Hill (1992) in several aspects.
One of them is that both internal and external stability properties are discussed in a single framework,
while only input–output stability is addressed in previous small-gain theorems. As demonstrated in
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310 I. KARAFYLLIS AND Z.-P. JIANG

Jiang et al. (1994) and the subsequent work of many others, non-linear small-gain has led to new so-
lutions to several challenging problems in robust non-linear control, such as stabilization by partial-
state and output feedback, robust adaptive tracking and non-linear observers. More interestingly, this
perspective of non-linear small gain can find useful applications in monotone systems, an important
class of systems in mathematical biology (see Angeli et al., 2004; Angeli & Astolfi, 2007; Enciso &
Sontag, 2006). Further extensions of this tool to the cases of non-uniform in time stability, discrete-
time systems and Lyapunov characterizations are pursued by several authors independently; see, for
instance, Grune (2002), Ito & Jiang (2009), Jiang et al. (1996, 2004), Jiang & Mareels (1997), Karafyl-
lis & Tsinias (2004), Karafyllis (2004), Karafyllis & Jiang (2007), Sontag & Ingalls (2002) and Teel
(1996).

This paper takes a step further to broaden the applicability and generality of non-linear small gain
results by removing essential restrictions in previous small-gain theorems. To better position the nov-
elty and contributions of our present work with respect to numerous variants of non-linear small-gain
theorems, some highlights are given below.

• A common feature of the earlier non-linear small-gain theorems is that the semi-group property is
required implicitly or explicitly for the solutions of the feedback system in question, whether the
feedback system is described by ordinary differential equations (ODEs) or takes the form of hybrid
and switched systems. We will adopt a weak semi-group property which is much more relaxed than
the semi-group property (see Karafyllis, 2007a,b). As shown in our recent work (Karafyllis & Jiang,
2007), the weak semi-group property allows studying a wide class of non-linear feedback systems
such as hybrid and switched systems. As compared with Karafyllis & Jiang (2007) where only two
interconnected systems are considered, here we will develop a unifying framework which allows
us to study large-scale systems composed of multiple interacting subsystems. To address this goal,
additional novel tools will be proposed.

• The new small-gain theorem obtained in this paper, i.e. Theorem 3.1 in Section 3, is a generaliza-
tion of several previously developed non-linear small-gain theorems. In particular, through exam-
ples and detailed analysis, we show that Theorem 3.1 can recover as special cases several newly
introduced small-gain theorems for large-scale complex systems (Dashkovskiy et al., 2007, 2010;
Jiang & Wang, 2008; Karafyllis et al., 2008a; Teel, 2005). In addition, it is shown that uniform and
non-uniform input-to-output stability (IOS) and ISS stability properties can be studied for various
important classes of non-linear dynamical controlled systems. Furthermore, explicit formulae are
provided for the gain function of the composite system.

• A nice feature of the new small-gain theorem is that we allow non-zero diagonal gains for each
interacting system, while all previous non-linear small-gain theorems assume zero diagonal gain
(with the exception of Sontag & Ingalls, 2002, which is a scalar small-gain theorem). This generality
is important for studying non-linear uncertain and time-delay systems. Indeed, this is one of the
cornerstones for our unified framework in considering both delay-free systems and time-delay non-
linear systems.

• The new theorem leads to vector Lyapunov function (or functional) characterizations for various
stability properties (Theorems 4.1, 4.4 and 4.8). Because of that we coin our new small-gain theo-
rem presented in this paper ‘vector small gain’. The advantage of vector Lyapunov function versus
single Lyapunov function in non-linear stability analysis has been well documented in past literature
(Lakshmikantham et al., 1991; Michel & Miller, 1977). Recent work in Karafyllis et al. (2008a)
and Karafyllis & Kravaris (2009) provides further evidence on the usefulness of vector Lyapunov
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A VECTOR SMALL-GAIN THEOREM 311

functions for the case of ISS stability. Another feature, which is not frequently recognised, is that
vector Lyapunov functions can handle large-scale systems more easily than single Lyapunov func-
tions. Indeed, this feature is illustrated by many examples in the paper. For example, Examples 5.1
and 5.2 deal with large-scale time-delay systems. One cannot exclude the possibility of finding an
appropriate Lyapunov–Krasovskii functional or a Razumikhin function that can be used for the proof
of stability in Examples 5.1 and 5.2. However, the reader can see how easily stability conditions are
obtained in both examples by using very simple functions.

The rest of the paper is organized as follows. In Section 2, we provide certain useful results on
monotone discrete-time systems. The results contained in this section are used extensively in subse-
quent sections. Section 3 of the paper provides a brief review of the system-theoretic framework in-
troduced in Karafyllis (2007a,b) and Karafyllis & Jiang (2007), and states the main result (Theorem
3.1). In Section 4, sufficient Lyapunov-like conditions for the verification of the hypotheses of Theorem
3.1 are presented for three types of systems: (i) Systems described by ODEs, (ii) Systems described
by retarded functional differential equations (RFDEs) and (iii) sampled-data systems. The results con-
tained in Section 4 are exploited in Section 5, where examples and applications of the vector small-gain
methodology are given. The proofs of the main results of Section 4 are given in Section 6. Finally, the
conclusions of the paper are provided in Section 7. The proofs of Proposition 2.7 and Theorem 3.1 are
given in the Appendix.

Notations. Throughout this paper, we adopt the following notations:

• We denote by K + the class of positive, continuous functions defined on �+ := {x ∈ �: x � 0}. We
say that a function ρ: �+ → �+ is positive definite if ρ(0) = 0 and ρ(s) > 0 for all s > 0. By
K , we denote the set of positive definite, increasing and continuous functions. We say that a positive
definite, increasing and continuous function ρ: �+ → �+ is of class K∞ if lims→+∞ ρ(s) = +∞.
By K L , we denote the set of all continuous functions σ = σ(s, t): �+ × �+ → �+ with the
properties: (i) for each t � 0 the mapping σ(·, t) is of class K ; (ii) for each s � 0, the mapping
σ(s, ·) is non-increasing with limt→+∞ σ(s, t) = 0.

• By ‖‖X , we denote the norm of the normed linear space X . By ||, we denote the Euclidean norm
of �n . Let U ⊆ X with 0 ∈ U . By BU [0, r ] := {u ∈ U ; ‖u‖X � r}, we denote the intersection of
U ⊆ X with the closed ball of radius r � 0, centered at 0 ∈ U . If U ⊆ �n then int(U ) denotes the
interior of the set U ⊆ �n .

• x ′ denotes the transpose of x .

• �n+ := (�+)n = {(x1, . . . , xn)′ ∈ �n : x1 � 0, . . . , xn � 0}.{ei }n
i=1 denotes the standard basis of

�n . Z+ denotes the set of non-negative integers.

• Let x, y ∈ �n . We say that x � y if and only if (y − x) ∈ �n+. We say that a function ρ: �n+ → �+
is of class Nn , if ρ is continuous with ρ(0) = 0 and such that ρ(x) � ρ(y) for all x, y ∈ �n+ with
x � y.

• For t � t0 � 0, let [t0, t] � τ → V (τ ) = (V1(τ ), . . . , Vn(τ ))′ ∈ �n be a bounded map. We de-
fine [V ][t0,t] := (

supτ∈[t0,t] V1(τ ), . . . , supτ∈[t0,t] Vn(τ )
)
. For a measurable and essentially bounded

function, x : [a, b] → �n, ess supt∈[a,b] |x(t)| denotes the essential supremum of |x(·)|.
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312 I. KARAFYLLIS AND Z.-P. JIANG

• We say that Γ : �n+ → �m+ is non-decreasing if Γ (x) � Γ (y) for all x, y ∈ �n+ with x � y. For an
integer k � 1, we define Γ (k)(x) = Γ ◦ Γ ◦ . . . ◦ Γ︸ ︷︷ ︸

k times

(x), when m = n.

• We define 1 = (1, 1, . . . , 1)′ ∈ �n . If u, v ∈ � and u � v then 1u � 1v .

• Let U be a subset of a normed linear space U , with 0 ∈ U . ByM(U ), we denote the set of all locally
bounded functions u: �+ → U . By 0 ∈ M(U ), we denote the identically zero input. If U ⊆ �n

then MU denotes the space of measurable, locally bounded functions u: �+ → U .

• Let A ⊆ X , B ⊆ Y , where X and Y are normed linear spaces. We denote by C0(A; B) the class
of continuous mappings f : A. For x ∈ C0([−r, 0]; �n), we define ‖x‖r := maxθ∈[−r,0] |x(θ)|.
We will use the convention C0([0, 0]; �n) = �n and if x ∈ C0([0, 0]; �n) = �n we have
‖x‖r = |x |.

2. Global asymptotic stability for monotone discrete-time systems

The purpose of this section is to introduce some preliminary, technical results which will play an instru-
mental role in the development of our main results in next sections. Some of these basic results are not
new, as compared with Dashkovskiy et al. (2007, 2006, 2010), Teel (2005) and Ruffer (2007, 2010)
and are reproduced here to make our work self-contained.

Consider the discrete-time system

xk+1 = Γ (xk), xk ∈ �n+, (2.1)

where Γ : �n+ → �n+ is a non-decreasing map with Γ (0) = 0. For the study of the above system, we
adopt the standard stability notions for discrete-time systems (see, for instance, Jiang & Wang, 2002,
2001, and references therein). More specifically, we say that 0 ∈ �n+ is a globally asymptotically stable
(GAS) equilibrium point for (2.1) if limk→∞ Γ (k)(x) = 0 for all x ∈ �n+ and for every ε > 0 there
exists δ > 0 such that |x | � δ, x ∈ �n+ implies |Γ (k)(x)| � ε for all k � 1. Next a necessary condition
for the global asymptotic stability property and a technical result that guarantees convergence to zero
are provided. The following results are closely related to Corollary 2.1.2 and Lemma 2.2.4 in Ruffer
(2007) and, for completeness, are reproduced below.

PROPOSITION 2.1 If 0 ∈ �n is GAS, then the following implication holds:

Γ (x) � x ⇒ x = 0. (2.2)

LEMMA 2.2 Let Γ : �n+ → �n+ be a continuous, non-decreasing map satisfying (2.2) with Γ (0) = 0. If
the inequality Γ (x) � x holds for some x ∈ �n+, then limk→∞ Γ (k)(y) = 0 for all y ∈ �n+ with y � x .

We now present an algebraic operator on �n that turns out to be useful for the study of discrete
monotone systems.

DEFINITION 2.3. Let x = (x1, . . . , xn)′ ∈ �n and y = (y1, . . . , yn)′ ∈ �n . We define z = MAX{x, y},
where z = (z1, . . . , zn)

′ ∈ �n satisfies zi = max{xi , yi } for i = 1, . . . , n. Similarly, for u1, . . . , um ∈
�n , z = MAX{u1, . . . , um} is a vector z = (z1, . . . , zn)′ ∈ �n with zi = max{u1i , . . . , umi }, i =
1, . . . , n.
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A VECTOR SMALL-GAIN THEOREM 313

REMARK 2.4. The MAX operator possesses some interesting properties. For example, if x � y,
then y = MAX{x, y}. If z � MAX{x, y} and y � MAX{w, v}, then z � MAX{x, w, v}. Also
MAX{x, y, w} = MAX{x, MAX{y, w}}. If x � z and y � z, then MAX{x, y} � z. In general,
we have Γ (MAX{x, y}) � MAX{Γ (x), Γ (y)} for any non-decreasing map Γ : �n+ → �n+ and for
every x, y ∈ �n+.

The MAX operator becomes a very useful tool for the study of the following special class of
monotone vector fields.

DEFINITION 2.5. We say that Γ : �n+ → �n+ is MAX-preserving if Γ : �n+ → �n+ is non-decreasing
and for every x, y ∈ �n+, the following equality holds:

Γ (MAX{x, y}) = MAX{Γ (x), Γ (y)} (2.3)

The above defined MAX-preserving maps enjoy the following important property.

PROPOSITION 2.6 Γ : �n+ → �n+ with Γ (x) = (Γ1(x), . . . , Γn(x))′ is MAX-preserving if and only if
there exist non-decreasing functions γi, j : �+ → �+, i, j = 1, . . . , n with Γi (x) = max j=1,...,n γi, j (x j )
for all x ∈ �n+, i = 1, . . . , n.

Proof. Define γi, j (s) := Γi (se j ) for all s � 0. Let x ∈ �n+, i.e., x = x1e1 + · · · + xnen with xi � 0,
i = 1, . . . , n. Note that x = MAX{x1e1, . . . , xnen} and consequently Γ (x) = MAX{Γ (x1e1), . . . ,
Γ (xnen)}. Therefore, Γi (x) = max{Γi (x1e1), . . . , Γi (xnen)} = max j=1,...,n γi, j (x j ). The converse
statement is a direct consequence of the definition Γi (x) = max j=1,...,n γi, j (x j ). �

Next, necessary and sufficient conditions are provided for GAS of (2.1) for the case of a continuous
MAX-preserving map.

PROPOSITION 2.7 Suppose that Γ : �n+ → �n+ with Γ (x) = (Γ1(x), . . . , Γn(x))′ is MAX-preserving
and there exist functions γi, j ∈ N1, i, j = 1, . . . , n with Γi (x) = max j=1,...,n γi, j (x j ), i = 1, . . . , n.
The following statements are equivalent:

(i) 0 ∈ �n is GAS for (2.1).

(ii) The following cyclic small-gain conditions hold:

γi,i (s) < s ∀ s > 0, i = 1, . . . , n (2.4a)

and if n > 1 then for each r = 2, . . . , n it holds that

(γi1,i2 ◦ γi2,i3 ◦ . . . ◦ γir ,i1)(s) < s ∀ s > 0 (2.4b)

for all i j ∈ {1, . . . , n}, i j �= ik if j �= k.

(iii) The following implication holds: Γ (x) � x ⇒ x = 0.

(iv) (iii) holds and for each k � 1 and x ∈ �n+ it holds that Γ (k)(x) � Q(x) = MAX{x, Γ (x),
Γ (2)(x), . . . , Γ (n−1)(x)}.

It should be noted that the equivalence between statements (i), (ii) and (iii) of Proposition 2.7 is
implied by Lemma 2.3.14 and Theorem 2.2.8 in Ruffer (2007) or Theorem 6.4 in Ruffer (2010). Here,
the new result is the equivalence of statement (iv) with the statements (i), (ii) and (iii). The proof of
Proposition 2.7 is provided in the Appendix.
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REMARK 2.8. Note that Q: �n+ → �n+ is a continuous, MAX-preserving map with Q(0) = 0 and
Q(a) � a for all a ∈ �n+. Moreover, Γ (Q(x)) � Q(x) for all x ∈ �n+. Indeed, in order to prove
Γ (Q(x)) � Q(x) for all x ∈ �n+, note that since Γ : �n+ → �n+ is MAX-preserving, we get Γ (Q(x)) =
MAX{Γ (x), Γ (2)(x), . . . , Γ (n−1)(x), Γ (n)(x)}. Since Γ (k)(x) � Q(x) holds for all integers k � 1, we
obtain Γ (Q(x)) � Q(x).

The next proposition is a novel useful technical result, which will be used in the following section.

PROPOSITION 2.9 Suppose that Γ : �n+ → �n+ with Γ (x) = (Γ1(x), . . . , Γn(x))′ is MAX-preserving
and there exist functions γi, j ∈ N1, i, j = 1, . . . , n with Γi (x) = max j=1,...,n γi, j (x j ), i = 1, . . . , n.
Moreover, suppose that the small-gain conditions (2.4a,b) hold and that x � MAX{a, Γ (x)} for certain
x, a ∈ �n+. Then x � Q(a), where Q(a) = MAX{a, Γ (a), Γ (2)(a), . . . , Γ (n−1)(a)}.
Proof. Suppose that x � MAX{a, Γ (x)}. Then Γ (x) � MAX{Γ (a), Γ (2)(x)} and x � MAX{a, Γ (a),
Γ (2)(x)}. By an induction argument x � MAX{a, Γ (a), . . . , Γ (k)(a), Γ (k+1)(x)} for all k � 1. It
follows from statement (iv) of Proposition 2.7 that x � MAX{Q(a), Γ (k+1)(x)} for all k � 1. Since
limk→∞ Γ (k)(x) = 0, we obtain x � Q(a). �

3. A vector small-gain theorem for a wide class of systems

3.1 Review of the system-theoretic framework

To make our work self-contained, we first introduce some basic notions keyed to the system-theoretic
framework presented in Karafyllis (2007a,b) and Karafyllis & Jiang (2007). As shown previously, this
system-theoretic framework allows us to study a wide class of dynamic systems described by ODEs,
RFDEs, and hybrid or impulsive equations.

The notion of a control system-definition 2.1 in Karafyllis & Jiang (2007): A control system Σ :=
(X ,Y, MU , MD, φ, π, H) with outputs consists of

(i) a set U (control set) which is a subset of a normed linear space U with 0 ∈ U and a set
MU ⊆ M(U ) (allowable control inputs) which contains at least the identically zero input
0 ∈M(U ),

(ii) a set D(disturbance set) and a set MD ⊆ M(D), which is called the ‘set of allowable distur-
bances’,

(iii) a pair of normed linear spacesX ,Y called the ‘state space’ and the ‘output space’, respectively,

(iv) a continuous map H : �+ ×X × U → Y that maps bounded sets of �+ ×X ×U into bounded
sets of Y , called the ‘output map’,

(v) a set-valued map �+ × X × MU × MD � (t0, x0, u, d) → π(t0, x0, u, d) ⊆ [t0, +∞), with
t0 ∈ π(t0, x0, u, d) for all (t0, x0, u, d) ∈ �+ × X × MU × MD, called the set of ‘sampling
times’

(vi) and the map φ: Aφ → X where Aφ ⊆ �+ ×�+ ×X × MU × MD, called the ‘transition map’,
which has the following properties:

(1) Existence: For each (t0, x0, u, d) ∈ �+ ×X × MU × MD, there exists t > t0 such that [t0, t] ×
{(t0, x0, u, d)} ⊆ Aφ.

(2) Identity property: For each (t0, x0, u, d) ∈ �+ × X × MU × MD, it holds that φ(t0, t0, x0,
u, d) = x0.
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A VECTOR SMALL-GAIN THEOREM 315

(3) Causality: For each (t, t0, x0, u, d) ∈ Aφ with t > t0 and for each (ũ, d̃) ∈ MU × MD

with (ũ(τ ), d̃(τ )) = (u(τ ), d(τ )) for all τ ∈ [t0, t], it holds that (t, t0, x0, ũ, d̃) ∈ Aφ with
φ(t, t0, x0, u, d) = φ(t, t0, x0, ũ, d̃).

(4) Weak semi-group property: There exists a constant r > 0, such that for each t � t0 with
(t, t0, x0, u, d) ∈ Aφ :

(a) (τ, t0, x0, u, d) ∈ Aφ for all τ ∈ [t0, t],

(b) φ(t, τ, φ(τ, t0, x0, u, d), u, d) = φ(t, t0, x0, u, d) for all τ ∈ [t0, t] ∩ π(t0, x0, u, d),

(c) if (t + r, t0, x0, u, d) ∈ Aφ , then it holds that π(t0, x0, u, d) ∩ [t, t + r ] �= ∅.

(d) for all τ ∈ π(t0, x0, u, d) with (τ, t0, x0, u, d) ∈ Aφ we have π(τ, φ(τ, t0, x0, u, d), u, d) =
π(t0, x0, u, d) ∩ [τ, +∞).

The BIC and RFC properties-definition 2.4 in Karafyllis & Jiang (2007): Consider a control system
Σ := (X ,Y, MU , MD , φ, π, H) with outputs. We say that system Σ

(i) has the ‘boundedness-implies-continuation’ (BIC) property if for each (t0, x0, u, d) ∈ �+ ×X ×
MU × MD, there exists a maximal existence time, i.e., there exists tmax := tmax(t0, x0, u, d) ∈
(t0, +∞], such that Aφ = ∪(t0,x0,u,d)∈�+×X×MU ×MD [t0, tmax) × {(t0, x0, u, d)}. In addition, if
tmax < +∞, then for every M > 0 there exists t ∈ [t0, tmax) with ‖φ(t, t0, x0, u, d)‖X > M .

(ii) is robustly forward complete (RFC) from the input u ∈ MU if it has the BIC property and for
every r � 0, T � 0, it holds that

sup{‖φ(t0 + s, t0, x0, u, d)‖X ; u ∈ M(BU [0, r ]) ∩ MU , s ∈ [0, T ], ‖x0‖X � r, t0 ∈ [0, T ], d ∈
MD} < +∞.

The notion of a robust equilibrium point-definition 2.5 in Karafyllis & Jiang (2007): Consider a
control system Σ := (X ,Y, MU , MD, φ, π, H) and suppose that H(t, 0, 0) = 0 for all t � 0. We say
that 0 ∈ X is a robust equilibrium point from the input u ∈ MU for Σ if

(i) for every (t, t0, d) ∈ �+ × �+ × MD with t � t0 it holds that φ(t, t0, 0, 0, d) = 0.

(ii) for every ε > 0, T, h ∈ �+ there exists δ := δ(ε, T, h) > 0 such that for all (t0, x, u) ∈ [0, T ]×
X × MU , τ ∈ [t0, t0 + h] with ‖x‖X + supt�0 ‖u(t)‖U < δ it holds that (τ, t0, x, u, d) ∈ Aφ

for all d ∈ MD and

sup{‖φ(τ, t0, x, u, d)‖X ; d ∈ MD, τ ∈ [t0, t0 + h], t0 ∈ [0, T ]} < ε.

Next, we present the IOS property for the class of systems described previously (see also Jiang et al.,
1994; Sontag & Wang, 1995, 1996, 1999, for finite-dimensional, time-invariant dynamic systems).

The notions of IOS, UIOS, ISS and UISS-definition 2.14 in Karafyllis & Jiang (2007): Consider
a control system Σ := (X ,Y, MU , MD, φ, π, H) with outputs and the BIC property and for which
0 ∈ X is a robust equilibrium point from the input u ∈ MU . Suppose that Σ is RFC from the input
u ∈ MU . If there exist functions σ ∈ K L , β ∈ K +, γ ∈ N1 such that the following estimate holds for
all u ∈ MU , (t0, x0, d) ∈ �+ × X × MD and t � t0:

‖H(t, φ(t, t0, x0, u, d), u(t))‖Y � σ(β(t0)‖x0‖X , t − t0) + sup
t0�τ�t

γ (‖u(τ )‖U ),

then we say that Σ satisfies the IOS property from the input u ∈ MU with gain γ ∈ N . Moreover, if
β ∈ K + may be chosen as β(t) ≡ 1, then we say that Σ satisfies the uniform input-to-output stability
((U)IOS) property from the input u ∈ MU with gain γ ∈ N1.
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For the special case of the identity output mapping, i.e., H(t, x, u) := x, the UIOS property from the
input u ∈ MU is called (uniform) input-to-state stability ((U) ISS) property from the input u ∈ MU .
When U = {0} (the no-input case) and Σ satisfies the (U)IOS property, then we say that Σ satisfies
the (uniform) robust global asymptotic output stability (RGAOS) property. When U = {0} (the no-input
case) and Σ satisfies the (Uniform) ISS property, then we say that Σ satisfies the (Uniform) robust
global asymptotic stability (RGAS) property.

Other equivalent definitions of the ISS property, originally introduced by Sontag (1989), are available
in the literature (see Grune, 2002; Praly & Wang, 1996).

3.2 A new small-gain theorem

We consider an abstract control system Σ := (X ,Y, MU , MD, φ, π, H) with the BIC property for
which 0 ∈ X is a robust equilibrium point from the input u ∈ MU . Suppose that there exist mappings
Vi : �+ × X × U → �+ (i = 1, . . . , n), L: �+ × X → �+ with L(t, 0) = 0, Vi (t, 0, 0) = 0 for all
t � 0(i = 1, . . . , n) and a MAX-preserving continuous map Γ : �n+ → �n+ with Γ (0) = 0 such that
the following hypotheses hold:

Hypothesis (H1) (the ‘IOS-like’ inequalities): There exist functions σ ∈ K L , ν, c ∈ K +, ζ, a, pu ∈
N1, p ∈ Nn, such that for every (t0, x0, u, d) ∈ �+ × X × MU × MD the mappings t → L(t) =
L(t, φ(t, t0, x0, u, d)) and t → V (t) = (

V1(t, φ(t, t0, x0, u, d), u(t)), . . . , Vn
(
t, φ(t, t0, x0, u, d),

u(t)
))′

are locally bounded on [t0, tmax) and the following estimates hold for all t ∈ [t0, tmax) :

V (t) � MAX
{
1σ(L(t0), t − t0), Γ ([V ][t0,t]), 1ζ([‖u(τ )‖U ][t0,t])

}
, (3.1)

L(t) � max{ν(t − t0), c(t0), a(‖x0‖X ), p([V ][t0,t]), pu([‖u(τ )‖U ][t0,t])}, (3.2)

where tmax is the maximal existence time of the transition map of Σ.

Hypothesis (H2) (the small-gain conditions): The small-gain conditions (2.4a,b) hold.

Hypothesis (H3) (Bounds for the norm of the state): There exist functions b ∈ N1, g ∈ Nn, μ, β, κ ∈
K + such that the following inequalities hold for all (t, x, u) ∈ �+ × X × U :

μ(t)‖x‖X � b(L(t, x) + g(V (t, x, u)) + κ(t)) and L(t, x) � b(β(t)‖x‖X ), (3.3)

where V (t, x, u) = (V1(t, x, u), . . . , Vn(t, x, u))′.

Discussion of Hypotheses (H1), (H2) and (H3): In general, the functional L: �+ ×X → �+, that ap-
pears at the right-hand side of inequality (3.1), is related to ‖x‖X . This is achieved by means of Hypoth-
esis (H3). Hypothesis (H1) is the hypothesis made in every small-gain result: it deals with the ‘IOS-like’
inequalities, which are to be used and be combined in order to prove the desired estimates. Note that
since we are using a family of n functionals, the ‘IOS-like’ inequalities are given for each functional
separately: this is why (3.1) expresses n ‘IOS-like’ inequalities (in vector notation). Inequality (3.2)
guarantees (in conjunction with Hypothesis (H3)) that the norm of the state remains bounded in bounded
time intervals as long as the values of the n functionals Vi (t, φ(t, t0, x0, u, d), u(t)) (i = 1, . . . , n) re-
main bounded. The need for two types of inequalities in order to prove the IOS property by means of
small-gain arguments was first shown in Sontag & Ingalls (2002).
For future reference, V (t, x, u) = (V1(t, x, u), . . . , Vn(t, x, u))′ is called the vector Lyapunov function
for the system Σ := (X ,Y, MU , MD, φ, π, H). Now, we are ready to state our new small-gain theorem
for a general dynamic system described in Section 3.1.
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THEOREM 3.1 Consider system Σ := (X ,Y, MU , MD, φ, π, H) with the BIC property for which
0 ∈ X is a robust equilibrium point from the input u ∈ MU and suppose that there exist maps
Vi : �+ × X × U → �+, with Vi (t, 0, 0) = 0 for all t � 0(i = 1, . . . , n) and a MAX-preserving
continuous map Γ : �n+ → �n+ with Γ (0) = 0 such that Hypotheses (H1–H3) hold. Then system
Σ := (X ,Y, MU , MD, φ, π, H) is RFC from the input u ∈ MU and there exist functions σ̃ ∈ K L and
β̃ ∈ K + such that for every (t0, x0, u, d) ∈ �+ × X × MU × MD the following estimate holds for all
t � t0 :

V (t) � 1σ̃ (β̃(t0)‖x0‖X , t − t0) + G([‖u(τ )‖U ][t0,t]), (3.4)

where

G(s) = MAX{Q(1σ(pu(s), 0)), Q(1σ(p(Q(1ζ(s))), 0)), Q(1ζ(s))} (3.5)

and Q(x) = MAX{x, Γ (x), Γ (2)(x), . . . , Γ (n−1)(x)}. Moreover, if β, c ∈ K + are bounded then β̃ ∈
K + is bounded. Finally, if in addition to (H1–H3), the following hypothesis holds:

Hypothesis (H4) (bound for the norm of the output): There exists q ∈ Nn such that the following
inequality holds for all (t, x, u) ∈ �+ × X × U :

‖H(t, x, u)‖Y � q(V (t, x, u)), (3.6)

where V (t, x, u) = (V1(t, x, u), . . . , Vn(t, x, u))′.

then system Σ satisfies the IOS property from the input u ∈ MU with gain γ (s) := q(G(s)). Moreover,
if β, c ∈ K + are bounded, then system Σ satisfies the UIOS property from the input u ∈ MU with gain
γ (s) := q(G(s)).

REMARK 3.2. Note that for the control input-free case, i.e., u ≡ 0, Theorem 3.1 implies (Uniform)
RGAOS for the corresponding system. Moreover, if there exists M � 1 such that σ(s, 0) = Ms for all
s � 0, then the functions Gi ∈ N1 (i = 1, . . . , n) with G(s) = (G1(s), . . . , Gn(s))′ are given by

Gi (s) := ϕi (max{Mpu(s), Mp(ϕ1(ζ(s)), . . . , ϕn(ζ(s))), ζ(s)}), i = 1, . . . , n,

where

ϕi (s) = max{s, max
k=1,...,n−1

max{(γi, j1 ◦ γ j1, j2 . . . ◦ γ jk−1, jk )(s) : ( j1, . . . , jk) ∈ {1, . . . , n}k}},

i = 1, . . . , n

and γi, j ∈ N1, i, j = 1, . . . , n are the functions with Γi (x) = max j=1,...,n γi, j (x j ), i = 1, . . . , n and
Γ (x) = (Γ1(x), . . . , Γn(x))′. The reader should note that if Hypothesis (ii) of Proposition 2.7 holds
for the functions γi, j ∈ N1, i, j = 1, . . . , n, then for each i = 1, . . . , n, we have either ϕi (s) = s
or there exists an index set (i, j1, . . . , jk) ∈ {1, . . . , n}k+1 with no repeated index such that ϕi (s) =
(γi, j1 ◦ γ j1, j2 . . . ◦ γ jk−1, jk )(s).

The following elementary example demonstrates that Theorem 3.1 can be applied to the time-varying
case of non-uniform in time stability.

EXAMPLE 3.3. Consider the large-scale system described by the following time-varying ODEs:

ẋi (t) = −i xi (t) + di (t) exp(t)xi+1(t), i = 1, . . . , n − 1,

ẋn(t) = −nxn(t) + dn(t) exp(−nt)x1(t) + v(t), (3.7)
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318 I. KARAFYLLIS AND Z.-P. JIANG

where xi (t) ∈ �(i = 1, . . . , n), v: �+ → � is measurable and locally essentially bounded, di :
�+ → [−ai , ai ] (i = 1, . . . , n) are measurable functions and ai � 0 (i = 1, . . . , n) are constants.
Using the variations of constants formula for each one of the states of (3.7), we obtain for the solution
x(t) = (x1(t), . . . , xn(t))′ ∈ �n with initial condition x(t0) = (x1(t0), . . . , xn(t0))′ ∈ �n corresponding
to arbitrary measurable and locally essentially bounded input v: �+ → � and arbitrary measurable
functions di : �+ → [−ai , ai ] (i = 1, . . . , n):

xi (t) = xi (t0) exp(−i(t − t0)) +
∫ t

t0
exp(−i(t − τ))di (τ ) exp(τ )xi+1(τ )dτ , i = 1, . . . , n − 1, (3.8)

xn(t) = xn(t0) exp(−n(t − t0)) +
∫ t

t0
exp(−n(t − τ))dn(τ ) exp(−(n − 1)τ )x1(τ )dτ

+
∫ t

t0
exp(−n(t − τ))v(τ)dτ (3.9)

for all t � t0. Defining Vi (t, x) := exp((i − 1)t)|xi | (i = 1, . . . , n) and u(t) := exp((n − 1)t)v(t), we
obtain from (3.8) and (3.9) for all t � t0 and ε > 0:

Vi (t)�max

{
(1 + ε)Vi (t0) exp(−(t − t0)), ai (1 + ε−1) sup

t0�τ�t
Vi+1(τ )

}
, i = 1, . . . , n − 1, (3.10)

Vn(t)�max

{
2(1 + ε)Vn(t0) exp(−(t − t0)), an(1 + ε−1) sup

t0�τ�t
V1(τ ),

× 2(1 + ε) sup
t0�τ�t

|u(τ )|
}

. (3.11)

Define L(t, x) := maxi=1,...,n Vi (t, x). Using (3.10) and (3.11), it can be directly shown that Hypothesis
(H1) holds with σ(s, t) := 2(1+ε)s exp(−t), pu(s) = ζ(s) := 2(1+ε)s, Γ : �n+ → �n+ with Γi (x) :=
ai (1 + ε−1)xi+1 for i = 1, . . . , n − 1 and Γn(x) := an(1 + ε−1)x1, p ∈ Nn with p(x1, . . . , xn) :=
(1 + ε−1) max{an x1, maxi=1,...,n−1(ai xi+1)}, ν(t) ≡ 1, c(t) := 2(1 + ε) exp(2(n − 1)t) and a(s) := s2.
Hypothesis (H3) holds as well with μ(t) = κ(t) ≡ 1, g ≡ 0, b(s) := s

√
n and β(t) := exp((n − 1)t).

Finally, Hypothesis (H2) holds if and only if

n∏
i=1

ai < 1. (3.12)

Indeed, the only possible cycle that can be formed by the gain functions is the cycle (γ1,2 ◦ γ2,3
◦ . . . ◦ γn,1)(s), In this case, the small-gain condition gives (1 + ε−1)n ∏n

i=1 ai < 1. Consequently,
if (3.12) holds then there exists ε > 0 such that inequality (1 + ε−1)n ∏n

i=1 ai < 1 holds.
It follows from Theorem 3.1 and Remark 3.2 that under Hypothesis (3.12), for every ε > 0 with
(1 + ε−1)n ∏n

i=1 ai < 1, there exist functions σ̃ ∈ K L and β̃ ∈ K + such that for every x(t0) =
(x1(t0), . . . , xn(t0))′ ∈ �n and for every measurable and locally essentially bounded functions di : �+ →
[−ai , ai ] (i = 1, . . . , n), v: �+ → �, the solution x(t) = (x1(t), . . . , xn(t))′ ∈ �n with initial
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condition x(t0) = (x1(t0), . . . , xn(t0))′ ∈ �n corresponding to v: �+ → � and di : �+ → [−ai , ai ]
(i = 1, . . . , n) satisfies for all t � t0:

exp((i − 1)t)|xi (t)|� σ̃ (β̃(t0)|x(t0)|, t − t0) + Gi sup
t0�τ�t

(exp((n − 1)τ )|v(τ)|),

i = 1, . . . , n − 1, (3.13)

where

Gi : = 4(1 + ε)2 R max

⎧⎨
⎩1, max

k=1,...,n−1
(1 + ε−1)k

k−1∏
j=0

ai+ j

⎫⎬
⎭ ,

R : = max

⎧⎨
⎩1, (1 + ε−1) max

l=1,...,n

⎛
⎝al max

⎧⎨
⎩1, max

k=1,...,n−1
(1 + ε−1)k

k−1∏
j=0

al+1+ j

⎫⎬
⎭
⎞
⎠
⎫⎬
⎭ .

In the above formulas, we have used the convention an+i = ai for i = 1, . . . , n. Note that inequalities
(3.13) can be used for further analysis (for example, if system (3.7) is interconnected with another
system). Finally, borrowing the terminology from Karafyllis & Jiang (2007), inequalities (3.13) imply
that system (3.7) satisfies the weighted ISS property, as defined in Karafyllis & Jiang (2007).

We finish this section with an important remark.

REMARK 3.4. At this point, the reader may form the intuitive notion that (at least for the ISS case where
H(t, x, u) ≡ x ∈ X ) each functional Vi : �+ × X × U → �+ (i = 1, . . . , n) is some kind of measure
of a portion of state xi ∈ Xi (i = 1, . . . , n), where x = (x1, . . . , xn) ∈ X := X1 × . . .×Xn . While this
is certainly true for many interesting cases (see Example 3.3 above and Examples 5.1 and 5.2 below), it
is not true in general. The following examples show that

• it may be necessary to consider functionals, which are mappings of the state (see Example 3.5
below),

• it may be necessary to consider more than one functionals as measures of a portion of state (see
Example 3.6 below).

EXAMPLE 3.5. Consider the input-free linear planar system described by ODEs:

ẋ1 = x2; ẋ2 = −b2x1 − 2bx2,

x = (x1, x2) ∈ �2,
(3.14)

where b > 0. It is very difficult to prove global asymptotic stability of 0 ∈ �2 for (3.14) by means
of small-gain arguments (using Theorem 3.1 or any other small-gain result in the literature) and using
functions V1(x1) and V2(x2) each one depending on only one component of the state vector. This hap-
pens because the x1-subsystem, i.e., ẋ1 = x2 does not satisfy the ISS property with respect to the input
x2 ∈ �. On the other hand, by using the functions V1(x1) := x2

1 and V2(x1, x2) := (x2 + bx1)
2, one

can show that the hypotheses of Corollary 4.2 below hold (and consequently the hypotheses of Theorem
3.1; see the proof of Corollary 4.2) and that 0 ∈ �2 is uniformly GAS. The example shows that it may
be necessary to consider functions Vi : �+ × X × U → �+ (i = 1, . . . , n), which are mappings of the
state.

 at T
echnical U

niversity of C
rete on S

eptem
ber 27, 2011

im
am

ci.oxfordjournals.org
D

ow
nloaded from

 

http://imamci.oxfordjournals.org/


320 I. KARAFYLLIS AND Z.-P. JIANG

EXAMPLE 3.6. Consider the input-free planar system described by ODEs:

ẋ1 = −ax1 + max(0, x2),

ẋ2 = x1 − max(r1x2, r2x2), (3.15)

x = (x1, x2) ∈ �2,

where a, r1, r2 > 0. If the functions Vi (xi ) := x2
i , i = 1, 2 are used, then we can show that 0 ∈ �2 for

(3.15) is uniformly GAS provided that

1 < a min(r1, r2).

The proof can be achieved by means of Corollary 4.2 below. One the other hand, if the functions
V1(x1) := x2

1 , V2(x2) := (max(0, x2))
2, V3(x2) := (min(0, x2))

2 are used, then we can show that
0 ∈ �2 for (3.15) is uniformly GAS provided that

1 < a max(r1, r2).

Again, the proof can be achieved by means of Corollary 4.2 below. The example shows that it may be
necessary to consider more than one functionals as measures of one component of the state.

4. Vector Lyapunov functions and functionals

In this section, we provide sufficient Lyapunov-like conditions for the verification of Theorem 3.1 for
three types of systems: (i) systems described by ODEs, (ii) systems described by RFDEs and (iii)
sampled-data systems. Note that since families of Lyapunov functions (or functionals) are employed,
the obtained results constitute conditions for vector Lyapunov functions (or functionals) for the (U)IOS
property.

4.1 Systems of ODEs

We consider systems described by ODEs of the form:

ẋ = f (t, x, u, d), Y = H(t, x),

x ∈ �n, Y ∈ �N , u ∈ U, d ∈ D, t � 0, (4.1)

where D ⊆ �l , U ⊆ �m with 0 ∈ U and f : �+ × �n × U × D → �n , H : �+ × �n → �N

are continuous mappings with H(t, 0) = 0, f (t, 0, 0, d) = 0 for all (t, d) ∈ �+ × D that satisfy the
following hypotheses:

(A1) There exists a symmetric positive-definite matrix P ∈ �n×n such that for every bounded I ⊆ �+
and for every bounded S ⊂ �n × U , there exists a constant L � 0 satisfying the following
inequality:

(x − y)′ P( f (t, x, u, d) − f (t, y, u, d)) � L|x − y|2

∀t ∈ I, ∀ (x, u, y, u) ∈ S × S , ∀d ∈ D.
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(A2) There exist a ∈ K∞, γ ∈ K + such that | f (t, x, u, d)| � γ (t)a(|x | + |u|) for all (t, x, u, d) ∈
�+ × �n × U × D.

(A3) There exist functions Vi ∈ C1(�+ × �n ; �+)(i = 1, . . . , k), W ∈ C1(�+ × �n ; �+), a1, a2,
a3, a4 ∈ K∞ μ, β, κ ∈ K +, ζ ∈ N1, g ∈ Nk ,γi, j ∈ N1, pi ∈ N1, i, j = 1, . . . , k, a family of
positive-definite functions ρi ∈ C0(�+; �+)(i = 1, . . . , k) and a constant λ ∈ (0, 1) such that
the following inequalities hold for all (t, x, u) ∈ �+ × �n × U :

a1(|H(t, x)|) � max
i=1,...,k

Vi (t, x) � a2(β(t)|x |), (4.2)

a3(μ(t)|x |) − g(V1(t, x), . . . , Vk(t, x)) − κ(t) � W (t, x) � a4(β(t)|x |) (4.3)

sup

{
∂W

∂t
(t, x) + ∂W

∂x
(t, x) f (t, x, u, d): d ∈ D

}
� −W (t, x)

+ λ max{ζ(|u|), max j=1,...,k p j (Vj (t, x))} (4.4)

and for every i = 1, . . . , k and (t, x, u) ∈ �+ × �n × U the following implication holds:

‘If max

{
ζ(|u|), max

j=1,...,k
γi, j (Vj (t, x))

}
� Vi (t, x) then

∂Vi

∂t
(t, x) + sup

d∈D

∂Vi

∂x
(t, x) f (t, x, u, d)

�−ρi (Vi (t, x))’. (4.5)

Our main result concerning systems of the form (4.1) is the following result which provides sufficient
conditions for Theorem 3.1 to hold.

THEOREM 4.1 (VECTOR LYAPUNOV FUNCTION CHARACTERIZATION OF THE IOS PROPERTY).
Consider system (4.1) under Hypotheses (A1–A3). If the small-gain conditions (2.4a,b) hold, then sys-
tem (4.1) satisfies the IOS property with gain γ = a−1

1 ◦ θ ∈ N1 from the input u ∈ MU , where

θ(s) : = max
i=1,...,k

ϕi

(
max

{
max

l=1,...,k
max

j=1,...,k
γl, j

(
ϕ j (ζ(s))

)
, max

j=1,...,k
p j

(
ϕ j (ζ(s))

)
, ζ(s)

})
(4.6)

and

ϕi (s) : = max

{
s, max

l=1,...,k−1
max{(γi, j1 ◦ γ j1, j2 . . . ◦ γ jl−1, jl )(s) : ( j1, . . . , jl) ∈ {1, . . . , n}l}

}
,

i = 1, . . . , k (4.7)

Moreover, if β ∈ K + is bounded, then system (4.1) with output Y = H(t, x) satisfies the UIOS property
with gain γ = a−1

1 ◦ θ ∈ N1 from the input u ∈ MU .

Remark on Theorem 4.1: The proof of Theorem 4.1 (see Section 6) shows that inequalities (4.2) and
(4.5) are used for the derivation of inequalities (3.1) and (3.6), while inequalities (4.3) and (4.4) are used
for the derivation of inequalities (3.2) and (3.3). Hypotheses (A1) and (A2) are regularity hypotheses
that guarantee uniqueness of solutions and continuity of the solutions with respect to initial data for
system (4.1).
For the ISS case where H(t, x) = x , one can set W (t, x) ≡ 0 in Theorem 4.1 to arrive at a corollary on
the vector Lyapunov function characterization of the ISS property.
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COROLLARY 4.2 (VECTOR LYAPUNOV FUNCTION CHARACTERIZATION OF THE ISS PROPERTY).
Consider system (4.1) under hypotheses (A1) and (A2) and suppose that there exists a family of func-
tions Vi ∈ C1(�+ × �n ; �+)(i = 1, . . . , k), functions a1, a2 ∈ K∞, β ∈ K +, ζ ∈ N1, γi, j ∈
N1, i, j = 1, . . . , k and a family of positive-definite functions ρi ∈ C0(�+; �+)(i = 1, . . . , k),
such that

a1(|x |) � max
i=1,...,k

Vi (t, x) � a2(β(t)|x |), ∀(t, x) ∈ �+ × �n (4.8)

and implication (4.5) holds for every i = 1, . . . , k and (t, x, u) ∈ �+ × �n × U . If, additionally, the
small-gain conditions (2.4a,b) hold, then system (4.1) satisfies the ISS property with gain γ = a−1

1 ◦θ ∈
N1 from the input u ∈ MU , where θ ∈ N1 is defined by (4.6) and (4.7). Moreover, if β ∈ K + is
bounded, then system (4.1) satisfies the UISS property with gain γ = a−1

1 ◦ θ ∈ N1 from the input
u ∈ MU .

Comparison of Theorem 4.1 and Corollary 4.2 with existing results: The reader should compare
the result of Corollary 4.2 with Theorem 3.4 in Karafyllis et al. (2008a). It is clear that Theorem 3.4 in
Karafyllis et al. (2008a) is a special case of Corollary 4.2 with γi, j (s) = a(s) for all i, j = 1, . . . , k,
where a ∈ N1 with a(s) < s for s > 0. Alternative vector Lyapunov characterizations are based
on the main result in Dashkovskiy et al. (2007) (e.g., Theorem 3.6 in Karafyllis et al., 2008a) or on
the cyclic small-gain condition in Teel (2005) (see for example Theorem 2 in Jiang & Wang, 2008).
In order to demonstrate the applicability of our results to large-scale interconnected systems, consider
the case

ẋi = fi (d, x, u), i = 1, . . . , k,

x = (x ′
1, . . . , x ′

k)
′ ∈ �N , d ∈ D, u ∈ U,

where xi ∈ �ni , i = 1, . . . , k, N = n1 + · · · + nk , D ⊂ �l is a non-empty compact set, U ⊆ �m

is a non-empty set with 0 ∈ U , fi : D × �N × U → �, i = 1, . . . , k are locally Lipschitz map-
pings with fi (d, 0, 0) = 0 for all d ∈ D, i = 1, . . . , k. We assume that the UISS property holds
for each subsystem ẋi = fi (d, x, u) with input (u, x1, . . . , xi−1, xi+1, . . . , xk) (i = 1, . . . , k). Let
Vi ∈ C1(�+ × �ni ; �+)(i = 1, . . . , k) be ISS-Lyapunov functions for each of the subsystems,
i.e. positive definite and radially unbounded functions for which the following inequalities hold for
i = 1, . . . , k:

sup
d∈D

{
∇Vi (xi ) fi (d, x, u): u ∈ U, x = (x ′

1, . . . , x ′
k)

′ ∈ �N ,

× max

{
ζ(|u|), max

j=1,...,k
γi, j (Vj (x j ))

}
� Vi (xi )

}
� −ρi (Vi (xi )) ∀ xi �= 0

for certain functions ζ ∈ N1,γi, j ∈ N1, i, j = 1, . . . , k and certain positive-definite functions ρi ∈
C0(�+; �+) (i = 1, . . . , k). Working with the Lyapunov-like functions Vi ∈ C1(�+ × �ni ; �+)
(i = 1, . . . , k) and exploiting Corollary 4.2, we can guarantee that the UISS property holds for the above
system if the small-gain conditions (2.4a,b) hold. It should be clear that the functions γi, j ∈ N1,
i, j = 1, . . . , k are the actual gain functions, i.e., the following inequalities hold for all i = 1, . . . , k,
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t � 0, x(0) ∈ �N and u ∈ MU :

Vi (xi (t)) � max

{
σi (Vi (xi (0)), t), ζ

(
sup

0�τ�t
|u(τ )|

)
, max

j=1,...,k
γi, j

(
sup

0�τ�t
V j (x j (τ ))

)}

for certain σi ∈ K L (i = 1, . . . , k). Since γi,i (s) ≡ 0 for i = 1, . . . , k, then the above inequalities
are nothing else but the inequalities of the max-formulation of the UISS property for each subsystem
ẋi = fi (d, x, u) with input (u, x1, . . . , xi−1, xi+1, . . . , xk) (i = 1, . . . , k) and Vi (xi ) replacing |xi | for
i = 1, . . . , k.

4.2 Systems described by RFDEs

Let D ⊆ �l be a non-empty set, U ⊆ �m a non-empty set with 0 ∈ U and Y a normed linear space.
We denote by x(t) the unique solution of the initial-value problem:

ẋ(t) = f (t, Tr (t)x, u(t), d(t)),

Y (t) = H(t, Tr (t)x),

x(t) ∈ �n, Y (t) ∈ Y, d(t) ∈ D, u(t) ∈ U

(4.9)

with initial condition Tr (t0)x = x0 ∈ C0([−r, 0]; �n), where r > 0 is a constant, Tr (t)x :=
x(t + θ); θ ∈ [−r, 0] and the mappings f : �+ × C0([−r, 0]; �n) × U × D → �n , H : �+ ×
C0([−r, 0]; �n) → Y satisfy f (t, 0, 0, d) = 0, H(t, 0) = 0 for all (t, d) ∈ �+ × D.

The following hypotheses will be imposed on systems of the form (4.9):

(S1) The mapping (x, u, d) → f (t, x, u, d) is continuous for each fixed t � 0 and there exists a
symmetric positive-definite matrix P ∈ �n×n with the property that for every bounded I ⊆ �+
and for every bounded S ⊂ C0([−r, 0]; �n) × U , there exists a constant L � 0 such that

(x(0) − y(0))′ P( f (t, x, u, d) − f (t, y, u, d)) � L maxτ∈[−r,0] |x(τ ) − y(τ )|2 = L‖x − y‖2
r

∀ t ∈ I, ∀ (x, u, y, u) ∈ S × S, ∀d ∈ D.

(S2) There exist a ∈ K∞, γ ∈ K + such that | f (t, x, u, d)| � γ (t)a(‖x‖r + |u|) for all (t, x, u, d) ∈
�+ × C0([−r, 0]; �n) × U × D.

(S3) There exists a countable set A ⊂ �+, which is either finite or A = {tk ; k = 1, . . . , ∞} with
tk+1 > tk > 0 for all k = 1, 2, . . . , and lim tk = +∞, such that the mapping (t, x, u, d) ∈
(�+\A) × C0([−r, 0]; �n) × U × D → f (t, x, u, d) is continuous. Moreover, for each fixed
(t0, x, u, d) ∈ �+ × C0([−r, 0]; �n) × U × D, we have limt→t+0

f (t, x, u, d) = f (t0, x, u, d).

(S4) The mapping H : �+ × C0([−r, 0]; �n) → Y is continuous.

Hypotheses (S1–S3) are regularity hypotheses, which guarantee uniqueness of solutions and continuity
of the solutions with respect to initial data for system (4.9). Hypothesis (S4) is a standard technical
hypothesis for control systems described by RFDEs.

The class of functionals which are ‘almost Lipschitz on bounded sets’ was introduced in Karafyllis
et al. (2008b,c) and is used extensively in the present work. For the sake of completeness, we recall here
the definition in Karafyllis et al. (2008b,c).
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DEFINITION 4.3. We say that a continuous functional V : [−a, +∞) × C0([−r, 0]; �n) → �+, r > 0,
a � 0 is ‘almost Lipschitz on bounded sets’, if there exist non-decreasing functions M : �+ → �+,
P: �+ → �+, G: �+ → [1, +∞) such that for all R � 0, the following properties hold:

(P1) For every x, y ∈ {x ∈ C0([−r, 0]; �n); ‖x‖r � R}, it holds that

|V (t, y) − V (t, x)| � M(R)‖y − x‖r ∀ t ∈ [−a, R].

(P2) For every absolutely continuous function x : [−r, 0] → �n with ‖x‖r � R and essentially
bounded derivative, it holds that

|V (t + h, x) − V (t, x)| � h P(R)
(
1 + ess sup−r�τ�0|ẋ(τ )|) for all t ∈ [−a, R] and

0 � h � 1

G
(
R + ess sup−r�τ�0 |ẋ(τ )|) .

For the case r = 0, we say that a continuous functional V : [−a, +∞) × C0([−r, 0]; �n) → �+, is
‘almost Lipschitz on bounded sets’, if V : [−a, +∞) × �n → �+ is locally Lipschitz (note that by
convention C0([−r, 0]; �n) = �n), i.e. for every compact S ⊂ [−a, +∞) × �n , there exists L � 0
such that |V (t, x) − V (τ, y)| � L|t − τ | + L|x − y| for all (t, x) ∈ S, (τ, y) ∈ S.

If the continuous functional V : [−a, +∞) × C0([−r, 0]; �n) → �+, is ‘almost Lipschitz on
bounded sets’, then we can define the derivative V 0(t, x ; v) in the following way (see also Karafyllis
et al., 2008b,c) for (t, x, v) ∈ �+ × C0([−r, 0]; �n) × �n :

V 0(t, x ; v) := lim sup
h→0+

V (t + h, Eh(x ; v)) − V (t, x)

h
,

where Eh(x ; v) with 0 � h < r denotes the following operator:

Eh(x ; v) :=
{

x(0) + (θ + h)v for −h < θ � 0,

x(θ + h) for −r � θ � −h.
(4.10a)

Particularly, for the case r = 0, we define

Eh(x ; v) := x(0) + hv. (4.10b)

The following theorem provides sufficient Lyapunov-like conditions for the (U)IOS property. The gain
functions of the IOS property can be determined ‘explicitly’ in terms of the functions involved in the
assumptions of the theorem.

THEOREM 4.4 Consider system (4.9) under hypotheses (S1–S4) and suppose that there exist almost
Lipschitz on bounded sets functionals Qi : [−r + ri , +∞) × C0([−ri , 0]; �n) → �+ with 0 �
ri � r(i = 1, . . . , k), Q0: [−r + r0, +∞) × C0([−r0, 0]; �n) → �+ with 0 � r0 � r , func-
tions a1, a2, a3, a4 ∈ K∞, μ, β, κ ∈ K +, ζ ∈ N1, g ∈ Nk, γi, j ∈ N1, pi ∈ N1, i, j = 1, . . . , k,
positive-definite functions ρi ∈ C0(�+; �+)(i = 1, . . . , k) and a constant λ ∈ (0, 1) such that for all
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(t, x, u) ∈ �+ × C0([−r, 0]; �n) × U , the following inequalities hold:

a1(‖H(t, x)‖Y ) � max
i=1,...,k

Vi (t, x) � a2(β(t)‖x‖r ), (4.11)

a3(μ(t)‖x‖r ) − g(V1(t, x), . . . , Vk(t, x)) − κ(t) � W (t, x) � a4(β(t)‖x‖r ), (4.12)

sup
d∈D

Q0
0(t, Tr0(0)x ; f (t, x, u, d)) � −Q0(t, Tr0(0)x) + λ max

{
ζ(|u|), max

j=1,...,k
p j (Vj (t, x))

}
, (4.13)

where

Vi (t, x) := sup
θ∈[−r+ri ,0]

Qi (t + θ, Tri (θ)x), i = 1, . . . , k,

W (t, x) := sup
θ∈[−r+r0,0]

Q0(t + θ, Tr0(θ)x) (4.14)

and for every i = 1, . . . , k and (t, x, u) ∈ �+ × C0([−r, 0]; �n) × U , the following implication holds:

‘If max

{
ζ(|u|), max

j=1,...,k
γi, j (Vj (t, x))

}
� Qi (t, Tri (0)x) then sup

d∈D
Q0

i (t, Tri (0)x ; f (t, x, u, d))

�−ρi (Qi (t, Tri (0)x))’ (4.15)

Finally, suppose that the small-gain conditions (2.4a,b) hold.
Then system (4.9) satisfies the IOS property with gain γ = a−1

1 ◦ θ ∈ N1 from the input u ∈ MU ,
where θ ∈ N1 is defined by (4.6) and (4.7). Moreover, if β ∈ K + is bounded, then system (4.9) satisfies
the UIOS property with gain γ = a−1

1 ◦ θ ∈ N1 from the input u ∈ MU .

When H(t, x) = x , setting Q0(t, x) ≡ 0 in Theorem 4.4 leads to a result on the ISS of system (4.9).

COROLLARY 4.5 Consider system (4.9) under hypotheses (S1–S4) and suppose that there exists a
family of almost Lipschitz on bounded sets functionals Qi : [−r + ri , +∞) × C0([−ri , 0]; �n) → �+
with 0 � ri � r(i = 1, . . . , k), functions a1, a2 ∈ K∞, β ∈ K +, ζ ∈ N1, γi, j ∈ N1, i, j = 1, . . . , k,
and a family of positive-definite functions ρi ∈ C0(�+; �+)(i = 1, . . . , k), such that for all (t, x, u) ∈
�+ × C0([−r, 0]; �n) × U , the following inequality holds:

a1(‖x‖r ) � max
i=1,...,k

Vi (t, x) � a2(β(t)‖x‖r ), (4.16)

where

Vi (t, x) := sup
θ∈[−r+ri ,0]

Qi (t + θ, Tri (θ)x), i = 1, . . . , k (4.17)

and implication (4.15) holds for every i = 1, . . . , k and (t, x, u) ∈ �+ × C0([−r, 0]; �n) × U . If,
additionally, the small-gain conditions (2.4a,b) hold, then system (4.9) satisfies the ISS property with
gain γ = a−1

1 ◦ θ ∈ N1 from the input u ∈ MU , where θ ∈ N1 is defined by (4.6) and (4.7). Moreover,
if β ∈ K + is bounded, then system (4.9) satisfies the UISS property with gain γ = a−1

1 ◦ θ ∈ N1 from
the input u ∈ MU .
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REMARK 4.6. It is of interest to note that some of the functionals Qi : [−r + ri , +∞) × C0([−ri , 0];
�n) → �+ in Theorem 4.4 and Corollary 4.5 are allowed to be functions (case of ri = 0). This reminds
the case of Razumikhin functions, which are used frequently for the proof of stability properties of
systems described by RFDEs (see Karafyllis et al., 2008c; Mazenc & Niculescu, 2001; Niculescu, 2001;
Teel, 1998). Consequently, Theorem 4.4 and Corollary 4.5 allow the flexibility of using Lyapunov-like
functionals with Razumikhin-like functions in order to prove desired stability properties.

REMARK 4.7. It should be clear that the convention C0([0, 0]; �n) = �n allows Theorem 4.4 and
Corollary 4.5 to be used in the case of systems described by ODEs (case of r = 0). In this case, Theorem
4.4 and Corollary 4.5 are generalizations of Theorem 4.1 and Corollary 4.2: the use of locally Lipschitz
functions is allowed and discontinuities of the right-hand side of the differential equations with respect
to time are allowed. Moreover, in the time-delay case (case of r > 0), the diagonal gain functions γi,i

for i = 1, . . . , k play a significant role (see Example 5.1 below) if Razumikhin-like functions are used.

4.3 Sampled-data systems

We consider switched systems, described in the following way: given a pair of sets D ⊆ �l , U ⊆ �m

with 0 ∈ U , a positive function h: �n × U → (0, r ], which is bounded by a certain constant r > 0 and
a pair of vector fields f : �n ×�n × D ×U ×U → �n , H : �n → �k , we consider the switched system
that produces for each (t0, x0) ∈ �+ ×�n and for each triplet of measurable and locally bounded inputs
d: �+ → D, d̃: �+ → �+, u: �+ → U , the piecewise absolutely continuous function t → x(t) ∈ �n ,
via the following algorithm:

Step i :

(1) Given τi and x(τi ), calculate τi+1 using the equation τi+1 = τi + exp(−d̃(τi ))h(x(τi ), u(τi )),

(2) Compute the state trajectory x(t), t ∈ [τi , τi+1) as the solution of the differential equation ẋ(t) =
f (x(t), x(τi ), d(t), u(t), u(τi )),

(3) Calculate x(τi+1) using the equation x(τi+1) = limt→τ−
i+1

x(t).

For i = 0, we take τ0 = t0 and x(τ0) = x0 (initial condition). Schematically, we write

ẋ(t) = f (x(t), x(τi ), d(t), u(t), u(τi )), t ∈ [τi , τi+1),

τ0 = t0, τi+1 = τi + exp(−d̃(τi ))h(x(τi ), u(τi )), i = 0, 1, . . . ,

Y (t) = H(x(t))

(4.18)

with initial condition x(t0) = x0. Switched systems of the form (4.18) are called ‘sampled-data’ systems
(see also Nesic, et al., 2009; Tabuada, 2007, for the case of state-dependent sampling period).

In the present work, we study systems of the form (4.18) under the following hypotheses:

(R1) f (x, x0, d, u, u0) is continuous with respect to (x, d, u) ∈ �n × D × U and such that for every
bounded S ⊂ �n × �n × U × U there exists constant L � 0 such that

(x − y)′( f (x, x0, d, u, u0) − f (y, x0, d, u, u0)) � L|x − y|2
∀(x, x0, u, u0, d) ∈ S × D, ∀ (y, x0, u, u0, d) ∈ S × D.

(R2) There exists a function a ∈ K∞ such that

| f (x, x0, d, u, u0)| � a(|x | + |x0| + |u| + |u0|), ∀(u, u0, d, x, x0) ∈ U × U × D × �n × �n
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(R3) H : �n → �k is a continuous map with H(0) = 0.

(R4) The function h: �n × U → (0, r ] is a positive, continuous and bounded function.

The following theorem provides sufficient Lyapunov-like conditions for the (U)IOS property. The gain
functions of the IOS property can be determined explicitly in terms of the functions involved in the
assumptions of the theorem.

THEOREM 4.8 (VECTOR LYAPUNOV FUNCTION CHARACTERIZATION OF UIOS). Consider system
(4.18) under Hypotheses (R1–R4) and suppose that there exist non-negative functions Vi ∈ C1(�n ;
�+)(i = 1, . . . , k), Q ∈ C1(�n ; �+), a1, a2, a3, a4 ∈ K∞, ζ ∈ N1, g ∈ Nk, γi, j ∈ N1, pi ∈
N1, i, j = 1, . . . , k, constants μ, κ � 0, λ ∈ (0, 1) and positive-definite functions ρi ∈ C0(�+; �+)
(i = 1, . . . , k), such that the following inequalities hold for all (x, x0, u, u0) ∈ �n × �n × U × U :

a1(|H(x)|) � max
i=1,...,k

Vi (x) � a2(|x |), (4.19)

a3(|x |) − g(V1(x), . . . , Vk(x)) − κ � Q(x) � a4(|x |) (4.20)

sup
d∈D

∇Q(x) f (x, x0, d, u, u0) � μQ(x) + λ max

{
ζ(|u|), ζ(|u0|), max

j=1,...,k
p j (Vj (x)),

max
j=1,...,k

p j
(
Vj (x0)

)}
(4.21)

and for every i = 1, . . . , k and (x, u, u0) ∈ �n × U × U the following implication holds:

‘If max

{
ζ(|u|), ζ(|u0|), max

j=1,...,k
γi, j (Vj (x))

}
� Vi (x) and x0 ∈ Ai (h(x0, u0), x)then

sup
d∈D

∇Vi (x) f (x, x0, d, u, u0) � −ρi (Vi (x))’, (4.22)

where the family of set-valued maps �+ × �n � (T, x) → Ai (T, x) ⊆ �n(i = 1, . . . , k) is defined by

Ai (T, x) = ∪
0�s�T

⎧⎪⎪⎨
⎪⎪⎩

x0 ∈ �n : ∃(d, u) ∈ MD × MU wi th φ(s, x0; d, u) = x,

ζ(|u(t)|) � Vi (x), γi, j (Vj (φ(t, x0; d, u))) � Vi (x)

for all t ∈ [0, s] and j = 1, . . . , k

⎫⎪⎪⎬
⎪⎪⎭ (4.23)

and φ(t, x0; d, u) denotes the solution of ẋ(t) = f (x(t), x0, d(t), u(t), u(0)) with initial condition
x(0) = x0 corresponding to (d, u) ∈ MD × MU .

Furthermore, if the small-gain conditions (2.4a,b) hold, then system (4.18) satisfies the UIOS prop-
erty with gain γ = a−1

1 ◦ θ ∈ N1 from the input u ∈ MU and zero gain from the input d̃ ∈ M�+ , where
θ ∈ N1 is defined by (4.6) and (4.7).

For the ISS case where H(t, x) = x , one can set Q(x) ≡ 0 in Theorem 4.8 and obtain a result on
the vector Lyapunov characterization of UISS.

COROLLARY 4.9 (VECTOR LYAPUNOV FUNCTION CHARACTERIZATION OF UISS:) Consider
system (4.18) under Hypotheses (R1–R4) and suppose that there exists a family of functions Vi ∈
C1(�n ; �+)(i = 1, . . . , k), functions a1, a2 ∈ K∞, ζ ∈ N1, γi, j ∈ N1, i, j = 1, . . . , k, and a family
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of positive-definite functions ρi ∈ C0(�+; �+)(i = 1, . . . , k), such that the following inequality holds
for all x ∈ �n :

a1(|x |) � max
i=1,...,k

Vi (x) � a2(|x |) (4.24)

and implication (4.22) holds for every i = 1, . . . , k and (x, u, u0) ∈ �n × U × U , where the family
of set-valued maps �+ × �n � (T, x) → Ai (T, x) ⊆ �n(i = 1, . . . , k) is defined by (4.23) and
φ(t, x0; d, u) denotes the solution of ẋ(t) = f (x(t), x0, d(t), u(t), u(0)) with initial condition x(0) =
x0 corresponding to (d, u) ∈ MD × MU .

Under the small-gain conditions (2.4a,b), system (4.18) satisfies the UISS property with gain γ =
a−1

1 ◦ θ ∈ N1 from the input u ∈ MU and zero gain from the input d̃ ∈ M�+ , where θ ∈ N1 is defined
by (4.6) and (4.7).

REMARK 4.10. It is worth noting that Theorem 4.1 and Corollary 4.3 in Karafyllis & Kravaris (2009)
can be easily derived from Theorem 4.8 and Corollary 4.9 with γi, j (s) = a(s) for all i, j = 1, . . . , k
and Q(x) ≡ 0, where a ∈ N1 with a(s) < s for s > 0. Moreover, it is assumed in Karafyllis & Kravaris
(2009) that there exist a constant R � 0 and a function p ∈ K∞ such that |x | � R + p(|H(x)|). In the
present work, such a hypothesis is not needed.

The interpretation of the family of set-valued maps �+ × �n � (T, x) → Ai (T, x) ⊆ �n

(i = 1, . . . , k), defined in (4.23) is the following (the same with Karafyllis & Kravaris, 2009): each
Ai (T, x) ⊆ �n is the set of all states x0 ∈ �n so that the solution of ẋ(t) = f (x(t), x0, d(t), u(t), u(0))
with initial condition x(0) = x0 can be controlled to x ∈ �n in time s less or equal than T by means of
appropriate inputs (d, u) ∈ MD × MU that satisfy ζ(supt∈[0,s] |u(t)|) � Vi (x) and such that the trajec-
tory of the solution satisfies the constraint max j=1,...,k supt∈[0,s] γi, j (Vj (x(t))) � Vi (x). In general, it is
very difficult to obtain an accurate description of the set-valued maps �+ ×�n � (T, x) → Ai (T, x) ⊆
�n defined by (4.23). However, for every g ∈ C1(�n ; �), we have

Ai (T, x) ⊆ Bg
i (T, x) = {x0 ∈ �n : |g(x0) − g(x)| � T bg

i (x)} ∀ (T, x) ∈ �+ × �n,

where

bg
i (x) := max

{
|∇g(ξ) f (ξ, x0, d, u, u0)| : d ∈ D, ζ(max{|u|, |u0|}) � Vi (x),

max
j=1,...,k

γi, j (max{Vj (ξ), Vj (x0)}) � Vi (x)

}
< +∞

and Vi ∈ C1(�n ; �+)(i = 1, . . . , k) are the functions involved in hypotheses of Theorem 4.8.

5. Examples and applications

EXAMPLE 5.1. Consider the time-delay system:

ẋi (t) = −ai xi (t) + gi (d(t), Tr (t)x), i = 1, . . . , n, (5.1)

where d(t) ∈ D ⊆ �m , ai > 0 (i = 1, . . . , n) and gi : D × C0([−r, 0]; �n) → � (i = 1, . . . , n) are
continuous mappings with

sup
d∈D

|gi (d, x)| � max
j=1,...,n

ci, j‖x j‖r (5.2)
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and

sup
d∈D

[(xi (0) − yi (0))(gi (d, x) − gi (d, y))] � L‖x − y‖2
r , i = 1, . . . , n

for certain constants L � 0, ci, j � 0 (i, j = 1, . . . , n) and for all x, y ∈ C0([−r, 0]; �n). We next show
that 0 ∈ C0([−r, 0]; �n) is RGAS for (5.1) if ci,i < ai for all i = 1, . . . , n and the following small-gain
conditions hold for each r = 2, . . . , n:

ci1,i2ci2,i3 . . . cir ,i1 < ai1ai2 . . . air (5.3)

for all i j ∈ {1, . . . , n}, i j �= ik if j �= k.
First, we note that Hypotheses (S1–S4) hold for system (5.1) under Hypothesis (5.2) with out-

put H(t, x) := x ∈ C0([−r, 0]; �n). Define the family of functions Qi (x) = 1
2 x2

i (0) and Vi (x) :=
supθ∈[−r,0] Qi (x(θ)) = 1

2‖xi‖2
r (i = 1, . . . , n) for x ∈ C0([−r, 0]; �n). These mappings satisfy in-

equality (4.16) and definition (4.17) with a1(s) := 1
2n s2, a2(s) := 1

2 s2, β(t) ≡ 1 and ri := 0,

i = 1, . . . , n. Let λ ∈ (0, 1) and note that implication (4.15) holds with γi, j (s) := c2
i, j

λ2a2
i

s and ρi (s) :=
2(1 − λ)ai s. Condition (5.3) and the fact that ci,i < ai for all i = 1, . . . , n implies that the small-gain
conditions (2.4a,b) hold for λ ∈ (0, 1) sufficiently close to 1. We conclude from Corollary 4.5 that
0 ∈ C0([−r, 0]; �n) is RGAS for (5.1).

It is important to note that the conditions on the diagonal terms cannot be avoided in general if
Razumikhin-like functions are used. Such a situation occurs, for example when

ẋ1(t) = −a1x1(t) + c1,1d1(t)x1(t − r) + c1,2d2(t)x2(t − r),

ẋ2(t) = −a2x2(t) + c2,1d3(t)x1(t),

di (t) ∈ [−1, 1], i = 1, 2, 3,

with c1,1 > 0, c1,2 � 0 and c2,1 � 0. In this case, 0 ∈ C0([−r, 0]; �2) is RGAS for the above system if
c1,1 < a1 and c1,2c2,1 < a1a2.

Another thing that should be noted is that system (5.1) includes the case of a system described
by ODEs, i.e., the case gi (d(t), Tr (t)x) = gi (d(t), x1(t), . . . , xn(t)) for i = 1, . . . , n. In order to
illustrate the superiority of the results of the present paper compared to the results in Karafyllis et al.
(2008a), we note that the results in Karafyllis et al. (2008a) can show robust global asymptotic stability
of 0 ∈ �n for the system (5.1) under Hypothesis (5.2) with gi (d(t), Tr (t)x) = gi (d(t), x1(t), . . . , xn(t))
for i = 1, . . . , n, provided that the inequalities

ci, j < ai for i, j = 1, . . . , n

hold. The above inequalities imply directly inequalities (5.3). In order to understand how conservative
the results in Karafyllis et al. (2008a) are compared to the results of the present paper, we note that the
case c1,1 = c2,2 = c3,3 = c2,1 = 0, a1 = a2 = a3 = c1,3 = c3,2 = 1, c2,3 = c3,1 = 1/2 and c1,2 = 2
satisfies inequalities (5.3) and does not satisfy the above inequalities.

EXAMPLE 5.2. Consider the following biochemical control circuit model:

Ẋ1(t) = g(Xn(t − τn)) − a1 X1(t),

Ẋi (t) = Xi−1(t − τi−1) − ai Xi (t), i = 2, . . . , n,

X (t) = (X1(t), . . . , Xn(t))′ ∈ �n+,

(5.4)
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where ai > 0, τi � 0 (i = 1, . . . , n) are constants and g ∈ C1(�+; �+) is a function with g(X) > 0
for all X > 0. This model has been studied in Smith (1994) (see pp. 58–60 and 93–94). In this book,
it is further assumed that g ∈ C1(�+; �+) is bounded and strictly increasing (a typical choice for
g ∈ C1(�+; �+) is g(X) = X p

1+X p with p being a positive integer or g(X) = μX
c+X with μ, c > 0).

It is shown that if there is one equilibrium point for (5.4), then it attracts all solutions. If there are
two equilibrium points, then all solutions are attracted to these points. Here, we study (5.4) under the
following assumption:

(H) There exist X∗
n > 0, K > 0 and λ ∈ (0, 1) with aX∗

n = g(X∗
n) and such that

K + X∗
n

K + X
X � a−1g(X) � X∗

n + λ|X − X∗
n |, for all X � 0, (5.5)

where a = ∏n
j=1 a j .

The reader should noted that Hypothesis (H) is automatically satisfied for the case of Monod kinet-
ics, i.e., g(X) = μX

c+X with c > 0 and μ > ac. Indeed, in this case, inequality (5.5) holds with K = c

and λ = c
X∗

n+c , where X∗
n = μ−ac

a . The case of Monod kinetics is typical for biochemical models (see,
for example Smith & Waltman, 1995).

Using small-gain analysis, we are in a position to prove
‘Consider system (5.4) under Hypothesis (H) and let r := maxi=1,...,n τi . Then for every X0 ∈

C0([−r, 0]; int (�n+)) the solution of (5.4) with initial condition Tr (0)X = X0 satisfies limt→+∞ X (t) =
X∗, where X∗ = (X∗

1, . . . , X∗
n)′ ∈ int (�n+) with

(∏i
j=1 a j

)
X∗

i = g(X∗
n), for i = 1, . . . , n − 1’.

It should be clear that in contrast to the analysis performed in Smith (1994) for (5.4) (based on the
monotone dynamical system theory), we do not assume that g ∈ C1(�+; �+) is bounded or strictly
increasing, Moreover, even if there are two equilibrium points note that (5.5) allows g(0) = 0 and
therefore 0 ∈ �n+ can be an equilibrium point), we prove almost global convergence to the non-trivial
equilibrium.

A typical analysis of the equilibrium points of (5.4) under Hypothesis (H) shows that there exists an
equilibrium point X∗ ∈ int (�n+) satisfying:⎛

⎝ i∏
j=1

a j

⎞
⎠ X∗

i = g(X∗
n), i = 1, . . . , n. (5.6)

In order to be able to study solutions of (5.4) evolving in int(�n+), we consider the following
transformation:

Xi = X∗
i exp(xi ), i = 1, . . . , n. (5.7)

Therefore, system (5.4) under transformation (5.7) is expressed by the following set of differential
equations:

ẋ1 = a1

(
g(X∗

n exp(xn(t − τn)))

g(X∗
n)

exp(−x1(t)) − 1

)
, (5.8a)

ẋi (t) = ai (exp(xi−1(t − τi−1) − xi (t)) − 1), i = 2, . . . , n,

x(t) = (x1(t), . . . , xn(t))′ ∈ �n . (5.8b)
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First, we note that Hypotheses (S1–S4) hold for system (5.8) under Hypothesis (H) with output
H(t, x) := x ∈ C0([−r, 0]; �n) and that 0 ∈ C0([−r, 0]; �n) is an equilibrium point for (5.8). Define
the family of functions Qi (x) = 1

2 x2
i (0) and Vi (x) := supθ∈[−r,0] Qi (x(θ)) = 1

2‖xi‖2
r (i = 1, . . . , n)

for x ∈ C0([−r, 0]; �n). These mappings satisfy inequality (4.16) and definition (4.17) with a1(s) :=
1
2n s2, a2(s) := 1

2 s2, β(t) ≡ 1 and ri := 0, i = 1, . . . , n.

We define γ1, j (s) ≡ 0 for j �= n and γ1,n(s) := 1
2 [log(1 + θ(exp(

√
2s) − 1))]2, where θ ∈

(max{ b
b+1 , λ}, 1), λ ∈ (0, 1) being the constant involved in Hypothesis (H) and b := K

X∗
n
. Note that

Q0
1

(
x1(0); a1

(
g(X∗

n exp(xn(−τn)))

g(X∗
n)

exp(−x1(0)) − 1

))

= a1x1(0)

(
g(X∗

n exp(xn(−τn)))

g(X∗
n)

exp(−x1(0)) − 1

)
.

We consider the following cases:

(1) x1(0) < 0. In this case, the left-hand side inequality (5.5) implies that g(X∗
n exp(xn(−τn)))

g(X∗
n ) �

b+1
b+exp(xn(−τn)) exp(xn(−τn)) � b+1

b+exp(−|xn(−τn)|) exp(−|xn(−τn)|), where b := K
X∗

n
. The inequal-

ity γ1,n(Vn(x)) � Q1(x1(0)) implies ln(1 + θ(exp(|xn(−τn)|) − 1)) � −x1(0), which com-
bined with the previous inequalities gives

Q0
1

(
x1(0); a1

(
g(X∗

n exp(xn(−τn)))

g(X∗
n)

exp(−x1(0)) − 1

))

� a1x1(0)
(b + 1 − bθ−1)(exp(−x1(0)) − 1)

b + 1 + bθ−1(exp(−x1(0)) − 1)
. (5.9)

(2) x1(0) � 0. In this case, the right-hand side inequality (5.5) implies that g(X∗
n exp(xn(−τn)))

g(X∗
n ) �

1+λ|exp(xn(−τn)) − 1| � 1+λ(exp(|xn(−τn)|) − 1). The inequality γ1,n(Vn(x)) � Q1(x1(0))
implies ln(1 + θ(exp(|xn(−τn)|) − 1)) � x1(0), which combined with the previous inequalities
gives

Q0
1

(
x1(0); a1

(
g(X∗

n exp(xn(−τn)))

g(X∗
n)

exp(−x1(0)) − 1

))

� a1x1(0)(λθ−1 − 1)(1 − exp(−x1(0))). (5.10)

Combining the two cases, we obtain from (5.9) and (5.10) that the following implication holds:

γ1,n(Vn(x))� Q1(x1(0)) ⇒ Q0
1

(
x1(0); a1

(
g(X∗

n exp(xn(−τn)))

g(X∗
n)

exp(−x1(0)) − 1

))

�−ρ1(Q1(x1(0))) (5.11)

with ρ1(s) := a1
√

2s min

{(
1 − λθ−1

)
(1 − exp(−√

2s)), (b+1−bθ−1)(exp(
√

2s)−1)

b+1+bθ−1(exp(
√

2s)−1)

}
.
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We next define for i = 2, . . . , n, γi, j (s) ≡ 0 for j �= i −1 and γi,i−1(s) := 1
2 [log(1+μ(exp(

√
2s)−

1))]2, where μ > 1 is to be selected. Working in a similar way as above, we obtain for i = 2, . . . , n:

γi,i−1(Vi (x))� Qi (xi (0)) ⇒ Q0
i (xi (0); ai (exp(xi−1(−τi−1) − xi (0)) − 1))

�−ρi (Qi (xi (0))) (5.12)

with ρi (s) := (1 − μ−1)ai
√

2s (1−exp(−√
2s))

1+μ−1(exp(
√

2s)−1)
for i = 2, . . . , n.

Therefore, we conclude from (5.11) and (5.12) that implication (4.15) holds.
Finally, we check the small-gain conditions. Exploiting the previous definitions of the functions

γi, j (s), i, j = 1, . . . , n, we conclude that the small-gain conditions (2.4a,b) hold if and only if (γn,n−1 ◦
γn−1,n−2 ◦ . . . ◦ γ1,n)(s) < s for all s > 0. Since

(γn,n−1 ◦ γn−1,n−2 ◦ . . . ◦ γ1,n)(s) = 1

2
[log(1 + μn−1θ(exp(

√
2s) − 1))]2,

the small-gain conditions (2.4a,b) hold with μ ∈ (
1, θ− 1

n−1
)
. Thus, Corollary 4.5 implies that 0 ∈

C0([−r, 0]; �n) is uniformly GAS for system (5.8). Taking into account transformation (5.7), this im-
plies that for every X0 ∈ C0([−r, 0]; int(�n+)), the solution of (5.4) with initial condition Tr (0)X = X0

satisfies limt→+∞ X (t) = X∗, where X∗ = (X∗
1, . . . , X∗

n)′ ∈ int(�n+) with
(∏i

j=1 a j

)
X∗

i = g(X∗
n),

for i = 1, . . . , n − 1.
Again, we can make a comparison between the results of the present work and the results in

Karafyllis et al. (2008a) for the delay-free case τi = 0, i = 1, . . . , n. In this case, the results in
Karafyllis et al. (2008a) cannot show global asymptotic stability: the gain functions γi,i−1(s) :=
1
2 [log(1 + μ(exp(

√
2s) − 1))]2 for i = 2, . . . , n and μ > 1 do not satisfy γi,i−1(s) < s for s > 0.

6. Proofs of the main results of Section 4

Proof of Theorem 4.1. We want to show that all hypotheses of Theorem 3.1 hold with

L(t, x) := max

{
W (t, x), max

i=1,...,k
Vi (t, x)

}
. (6.1)

Note that Hypothesis (H3) of Theorem 3.1 is a direct consequence of inequalities (4.2), (4.3) and defi-
nition (6.1). Moreover, Hypothesis (H4) of Theorem 3.1 is a direct consequence of inequality (4.2) with
q(x) := a−1

1

(
maxi=1,...,k xi

)
for all x ∈ �n+.

Consider a solution x(t) of (4.1) corresponding to arbitrary (u, d) ∈ MU × MD with arbitrary initial
condition x(t0) = x0 ∈ �n . Clearly, there exists a maximal existence time for the solution denoted by
tmax � +∞. Let Vi (t) = Vi (t, x(t)), i = 1, . . . , k, W (t) = W (t, x(t)) absolutely continuous functions
on [t0, tmax) and let L(t) = L(t, x(t)). Moreover, let I ⊂ [t0, tmax) be the zero Lebesgue measure set
where x(t) is not differentiable or ẋ(t) �= f (t, x(t), u(t), d(t)). By virtue of (4.5), it follows that the
following implication holds for t ∈ [t0, tmax)\I and i = 1, . . . , k:

Vi (t) � max

{
ζ(|u(t)|), max

j=1,...,k
γi, j (Vj (t))

}
⇒ V̇i (t) � −ρi (Vi (t)) (6.2)
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and by virtue of (4.4), we get for t ∈ [t0, tmax)\I :

Ẇ (t) � −W (t) + λ max

{
ζ(|u(t)|), max

j=1,...,k
p j (Vj (t))

}
. (6.3)

Lemma 3.5 in Karafyllis & Kravaris (2009) in conjunction with (6.2) implies that there exists a family
of continuous functions σi (i = 1, . . . , k) of class K L , with σi (s, 0) = s for all s � 0 such that for all
t ∈ [t0, tmax) and i = 1, . . . , k, we have

Vi (t) � max

⎧⎪⎨
⎪⎩

σi (Vi (t0), t − t0); sup
t0�τ�t

σi

(
max

j=1,...,k
γi, j

(
Vj (τ )

)
, t − τ

)
sup

t0�τ�t
σi (ζ(|u(τ )|), t − τ).

⎫⎪⎬
⎪⎭ (6.4)

Moreover, inequality (6.3) directly implies that for all t ∈ [t0, tmax), we have

W (t) � W (t0) + λ max

{
ζ

(
sup

t0�s�t
|u(s)|

)
, max

j=1,...,k
p j

(
sup

t0�s�t
V j (s)

)}
. (6.5)

Let σ(s, t) := maxi=1,...,k σi (s, t), which is a function of class K L that satisfies σ(s, 0) = s for all
s � 0. It follows from (6.4), (6.5) and definition (6.1) that for all t ∈ [t0, tmax) and i = 1, . . . , k, we get

Vi (t) � max

{
Vi (t0), max

j=1,...,k
γi, j

(
sup

t0�s�t
V j (s)

)
, ζ

(
sup

t0�s�t
|u(s)|

)}
, (6.6)

Vi (t) � max

{
σ(L(t0), t − t0), max

j=1,...,k
γi, j

(
sup

t0�s�t
V j (s)

)
, ζ

(
sup

t0�s�t
|u(s)|

)}
, (6.7)

W (t) � max

{
1

1 − λ
W (t0), ζ

(
sup

t0�s�t
|u(s)|

)
, max

i=1,...,k
pi

(
sup

t0�s�t
Vi (s)

)}
. (6.8)

Clearly, inequalities (6.7) show that (3.1) holds with Γ : �k+ → �k+, Γ (x) = (Γ1(x), . . . , Γn(x))′
with Γi (x) = max j=1,...,k γi, j (x j ) for all i = 1, . . . , k and x ∈ �n+. Furthermore, Hypothesis (H2) of
Theorem 3.1 holds as well.
Define

pu(s) := ζ(s), for all s � 0 (6.9)

p(x) := max

{
max

i=1,...,k
max

j=1,...,k
γi, j (x j ), max

j=1,...,k
p j (x j )

}
for all x ∈ �n+. (6.10)

Combining estimates (6.6), (6.8) and exploiting definitions (6.1), (6.9) and (6.10), we get for all t ∈
[t0, tmax):

L(t) � max

{
1

1 − λ
L(t0), p

(
sup

t0�s�t
V1(s), . . . , sup

t0�s�t
Vk(s)

)
, pu

(
sup

t0�s�t
|u(s)|

)}
. (6.11)
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Inequality (3.2) is a direct consequence of (6.11), inequalities (4.2), (4.3) and Corollary 10 in Sontag
(1998) with ν(t) ≡ 1, pu ∈ N1, p ∈ Nn as defined by (6.9), (6.10) and appropriate a ∈ N1 and c ∈ K +.
The reader should note that if β ∈ K + is bounded then c ∈ K + is bounded as well.

Consequently, all hypotheses of Theorem 3.1 hold with σ(s, t) := maxi=1,...,k σi (s, t), which is a
function of class K L that satisfies σ(s, 0) = s for all s � 0. The rest of proof is a consequence of
Remark 3.2 in conjunction with definitions (6.9) and (6.10). The proof is complete.

Proof of Theorem 4.4. We want to show that all hypotheses of Theorem 3.1 hold with L(t, x)
as defined by (6.1). Note that Hypothesis (H3) of Theorem 3.1 is a direct consequence of inequalities
(4.11), (4.12) and definition (6.1). Moreover, Hypothesis (H4) of Theorem 3.1 is a direct consequence
of inequality (4.11) with q(x) := a−1

1 (maxi=1,...,k xi ) for all x ∈ �n+.
We next show that Hypotheses (H1) and (H2) of Theorem 3.1 hold as well. The proof consists of

two steps:

Step 1. We show that Hypotheses (H1), (H2) of Theorem 3.1 hold for arbitrary (t0, u, d) ∈ �+ × MU ×
MD and Tr (t0)x = x0 ∈ C1([−r, 0]; �n).

Step 2. We show that Hypotheses (H1), (H2) of Theorem 3.1 hold for arbitrary (t0, u, d) ∈ �+ × MU ×
MD and Tr (t0)x = x0 ∈ C0([−r, 0]; �n).

Step 1: Consider the solution x(t) of (4.9) corresponding to arbitrary (u, d) ∈ MU × MD with
arbitrary initial condition Tr (t0)x = x0 ∈ C1([−r, 0]; �n). Clearly, there exists a maximal existence
time for the solution denoted by tmax � +∞. By virtue of Lemma A.2 in Karafyllis et al. (2008b), and
Lemma 2.5 in Karafyllis et al. (2008c), we can guarantee that the functions Qi (t) = Qi (t, Tri (t)x),
i = 1, . . . , k, Q0(t) = Q0(t, Tr0(t)x) are absolutely continuous functions on [t0, tmax). Let Vi (t) =
Vi (t, Tr (t)x) = supθ∈[−r+ri ,0] Qi (t + θ), i = 1, . . . , k, W (t) = W (t, Tr (t)x) = supθ∈[−r+r0,0] Q0(t +
θ) and L(t) = L(t, Tr (t)x) be mappings defined on [t0, tmax). Moreover, let I ⊂ [t0, tmax) be the zero
Lebesgue measure set where x(t) or Qi (t)(i = 0, ..., k) is not differentiable or ẋ(t) �= f (t, Tr (t)x,
u(t), d(t)). By virtue of (4.15) and Lemma 2.4 in Karafyllis et al. (2008c), it follows that the following
implication holds for t ∈ [t0, tmax)\I and i = 1, . . . , k:

Qi (t) � max

{
ζ(|u(t)|), max

j=1,...,k
γi, j (Vj (t))

}
⇒ Q̇i (t) � −ρi (Qi (t)) (6.12)

and by virtue of (4.13), we have

Q̇0(t) � −Q0(t) + λ max

{
ζ(|u(t)|), max

j=1,...,k
p j (Vj (t))

}
. (6.13)

Lemma 3.5 in Karafyllis & Kravaris (2009) in conjunction with (6.12) implies that there exists a family
of continuous functions σ̃i (i = 1, . . . , k) of class K L , with σ̃i (s, 0) = s for all s � 0 such that for all
t ∈ [t0, tmax) and i = 1, . . . , k, we have

Qi (t) � max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ̃i (Qi (t0), t − t0); sup
t0�τ�t

σ̃i

(
max

j=1,...,k
γi, j (Vj (τ )), t − τ

)

sup
t0�τ�t

σ̃i (ζ (|u(τ )|) , t − τ)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (6.14)
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Moreover, inequality (6.13) directly implies that for all t ∈ [t0, tmax), we have

Q0(t) � Q0(t0) + λ max

{
ζ

(
sup

t0�s�t
|u(s)|

)
, max

j=1,...,k
p j

(
sup

t0�s�t
V j (s)

)}
. (6.15)

Using the fact that σ̃i (s, 0) = s for all s � 0, we obtain from (6.14) for all t ∈ [t0, tmax) and i = 1, . . . , k:

Qi (t) � max

{
σ̃i (Qi (t0), t − t0), max

j=1,...,k
γi, j

(
sup

t0�s�t
V j (s)

)
, ζ

(
sup

t0�s�t
|u(s)|

)}
. (6.16)

Let σi (i = 1, . . . , k) be functions of class K L , defined by σi (s, t) = s for all s � 0, t ∈ [0, r ]
and σi (s, t) = σ̃i (s, t − r) for all s � 0, t > r . Using the fact that Vi (t) = Vi (t, Tr (t)x) =
supθ∈[−r+ri ,0] Qi (t + θ), i = 1, . . . , k, we obtain from (6.16) for all t ∈ [t0, tmax) and i = 1, . . . , k:

Vi (t) � max

{
σi (Vi (t0), t − t0), max

j=1,...,k
γi, j

(
sup

t0�s�t
V j (s)

)
, ζ

(
sup

t0�s�t
|u(s)|

)}
. (6.17)

Similarly, using (6.15) and the fact that W (t) = W (t, Tr (t)x) = supθ∈[−r+r0,0] Q0(t + θ), we conclude
that (6.8) holds for all t ∈ [t0, tmax). Define σ(s, t) := maxi=1,...,k σi (s, t), which is a function of class
K L that satisfies σ(s, 0) = s for all s � 0. It follows from (6.17) and definition (6.1) that inequalities
(6.6) and (6.7) hold for all t ∈ [t0, tmax) and i = 1, . . . , k. Clearly, inequalities (6.7) show that (3.1)
holds with Γ : �k+ → �k+, Γ (x) = (Γ1(x), . . . , Γn(x))′ with Γi (x) = max j=1,...,k γi, j (x j ) for all
i = 1, . . . , k and x ∈ �n+. Moreover, Hypothesis (H2) of Theorem 3.1 holds as well. Define pu ∈ N1,
p ∈ Nn by (6.9) and (6.10). Combining estimates (6.6), (6.8) and exploiting definitions (6.1), (6.9) and
(6.10), we get inequality (6.11) for all t ∈ [t0, tmax). Inequality (3.2) is a direct consequence of (6.11),
inequalities (4.11), (4.12) and Corollary 10 in Sontag (1998) with ν(t) ≡ 1, pu ∈ N1, p ∈ Nn as
defined by (6.9), (6.10) and appropriate a ∈ N1 and c ∈ K +. The reader should note that if β ∈ K + is
bounded then c ∈ K + is bounded as well.

Step 2: Let (t0, x0, u, d) ∈ �+ × C1([−r, 0]; �n) × MU × MD . Inequalities (6.7) in conjunction
with Proposition 2.9 imply for the solution x(t) of (4.9) corresponding to (u, d) ∈ MU × MD with initial
condition Tr (t0)x = x0 ∈ C1([−r, 0]; �n) and for all t ∈ [t0, tmax):

V (t) � MAX
{

Q(1σ (L(t0), 0)), Q
(
1ζ

([‖u(τ )‖U
]
[t0,t]

))}
, (6.18)

where Q(x) = MAX{x, Γ (x), Γ (2)(x), . . . , Γ (n−1)(x)}. Using (4.11), (4.12), (6.1), (6.11) and (6.18),
we obtain functions ρ ∈ K +, a ∈ K∞ such that the solution x(t) of (4.9) corresponding to (u, d) ∈
MU × MD with initial condition Tr (t0)x = x0 ∈ C1([−r, 0]; �n) and for all t ∈ [t0, tmax):

‖Tr (t)x‖r � a

(
ρ(t) + ‖x0‖r + sup

t0�s�t
|u(s)|

)
. (6.19)

Lemma 2.6 in Karafyllis et al. (2008c) and (6.19) imply that system (4.9) is RFC from the input u ∈ MU .
We next claim that inequalities (3.1) and (3.2) hold for all (t0, x0, u, d) ∈ �+ × C0([−r, 0]; �n) ×

MU × MD and t � t0. The proof will be made by contradiction. Suppose on the contrary that there exists
(t0, x0, u, d) ∈ �+ × C0([−r, 0]; �n) × MU × MD and t1 > t0 such that the solution x(t) of (4.9) with

 at T
echnical U

niversity of C
rete on S

eptem
ber 27, 2011

im
am

ci.oxfordjournals.org
D

ow
nloaded from

 

http://imamci.oxfordjournals.org/


336 I. KARAFYLLIS AND Z.-P. JIANG

initial condition Tr (t0)x = x0 corresponding to input (u, d) ∈ MU × MD satisfiesβ(t1, t0, x0, d, u) > 0,
where

β(t, t0, x0, d, u) := max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L(t) − max
{
ν(t − t0), c(t0), a (‖x0‖r ) , p

(
[V ][t0,t]

)
pu

(
[‖u(τ )‖U ][t0,t]

)}
maxi=1,...,k

{
Vi (t) − max

{
σ (L(t0), t − t0) , Γi

(
[V ][t0,t]

)
,

ζ
(
[‖u(τ )‖U ][t0,t]

) }}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Using continuity of the mappings x → L(t, x), x → Vi (t, x) (i = 1, . . . , k) and continuity of
the solution of (4.9) with respect to the initial condition, we can guarantee that the mapping x0 →
β(t1, t0, x0, d, u) is continuous. Using density of C1([−r, 0]; �n) in C0([−r, 0]; �n), continuity of the
mapping x0 → β(t1, t0, x0, d, u), we conclude that there exists x̃0 ∈ C1([−r, 0]; �n) such that

|β(t1, t0, x0, d, u) − β(t1, t0, x̃0, d, u)| � 1

2
β(t1, t0, x0, d, u).

Thus, we obtain a contradiction.
Consequently, all hypotheses of Theorem 3.1 hold with σ(s, t) := maxi=1,...,k σi (s, t), which is a

function of class K L that satisfies σ(s, 0) = s for all s � 0. The rest of proof is a consequence of
Remark 3.2 in conjunction with definitions (6.9), (6.10). The proof is complete.

Proof of Theorem 4.8. We want to show that all hypotheses of Theorem 3.1 hold with L(t, x) as
defined by (6.1) and

W (t, x) := exp(−(μ + 1)t)Q(x). (6.20)

Note that definition (6.20) in conjunction with inequalities (4.20) imply the following inequality for all
(t, x) ∈ �+ × �n :

exp(−(μ + 1)t)a3(|x |) − g(V1(x), . . . , Vk(x)) − κ � W (t, x) � a4(|x |).
Using Corollary 10 in Sontag (1998), we can find functions ã ∈ K∞, η ∈ K + such that a−1

3 (s exp((μ+
1)t)) � 1

η(t) ã(s) for all t, s � 0. Consequently, we obtain exp(−(μ + 1)t)a3(s) � ã−1(η(t)s) for all
t, s � 0. Note that Hypothesis (H3) of Theorem 3.1 with β(t) ≡ 1 is a direct consequence of previous
inequalities, (4.19) and definitions (6.1) and (6.20). Moreover, Hypothesis (H4) of Theorem 3.1 is a
direct consequence of inequality (4.19) with q(x) := a−1

1 (maxi=1,...,k xi ) for all x ∈ �n+.
Consider the solution x(t) of (4.18) under Hypotheses (R1–R4) corresponding to arbitrary (u, d, d̃)∈

MU × MD × M�+ with arbitrary initial condition x(t0) = x0 ∈ �n . Note that since system (4.18) is
autonomous (see Karafyllis, 2007a), it suffices to consider the case t0 = 0. By virtue of Proposition 2.5
in Karafyllis (2007a), there exists a maximal existence time for the solution denoted by tmax � +∞. Let
Vi (t) = Vi (x(t)), i = 1, . . . , k, W (t) = W (t, x(t)), L(t) = L(t, x(t)) absolutely continuous functions
on [0, tmax). Moreover, let π := {τ0, τ1, . . .} be the set of sampling times (which may be finite if tmax <
+∞) and p(t) := max{τ ∈ π : τ � t}, q(t) := min{τ ∈ π : τ � t}. Let I ⊂ [0, tmax) be the zero
Lebesgue measure set where x(t) is not differentiable or where ẋ(t) �= f (x(t), x(τi ), d(t), u(t), u(τi )).
Clearly, we have x(t) = φ(t − p(t), x(p(t)); Pt d, Pt u) for all t ∈ [0, tmax), where (Pt u)(s) =
u(p(t) + s), (Pt d)(s) = d(p(t) + s), s � 0. Next, we show that the following implication holds
for t ∈ [0, tmax)\I and i = 1, . . . , k:

Vi (t) � max

{
ζ

(
sup

p(t)�s�t
|u(s)|

)
, max

j=1,...,k
γi, j

(
sup

p(t)�s�t
V j (s)

)}
⇒ V̇i (t) � −ρi (Vi (t)). (6.21)
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In order to prove implication (6.21), let t ∈ [0, tmax)\I , i = 1, . . . , k, τ = p(t) and suppose that Vi (t) �
max

{
ζ
(
supp(t)�s�t |u(s)|) , max j=1,...,k γi, j

(
supp(t)�s�t V j (s)

)}
. By virtue of the semi-group prop-

erty for the previous inequality implies that ζ(|u(τ + s)|) = ζ(|(Pt u)(s)|) � Vi (x(t)), γi, j (Vj (φ
(s, x(τ ); Pt d, Pt u))) � Vi (x(t)) for all s ∈ [0, t − τ ] and j = 1, . . . , k. In this case, by virtue of
definition (4.23) and the fact that t − τ � h(x(τ ), u(τ )), it follows that x(τ ) ∈ Ai (h(x(τ ), u(τ )), x(t)).
Since ẋ(t) = f (x(t), x(τ ), d(t), u(t), u(τ )), we conclude from (4.22) that V̇i (t) � −ρi (Vi (t)).

Lemma 3.5 in Karafyllis & Kravaris (2009) implies that there exists a family of continuous function
σi of class K L(i = 1, . . . , k), with σi (s, 0) = s for all s � 0 such that for all t ∈ [0, tmax) and
i = 1, . . . , k, we have

Vi (t)�max

{
σi (Vi (0), t); max

j=1,...,k
sup

0�τ�t
σi

(
γi, j

(
sup

p(τ )�s�τ
Vj (s)

)
, t − τ

)
;

sup
0�τ�t

σi

(
ζ

(
sup

p(τ )�s�τ
|u(s)|

)
, t − τ

)}
. (6.22)

Let σ(s, t) := maxi=1,...,k σi (s, t), which is a function of class K L that satisfies σ(s, 0) = s for all s �
0. Inequalities (3.1) with Γ : �k+ → �k+, Γ (x) = (Γ1(x), . . . , Γn(x))′ with Γi (x) = max j=1,...,k γi, j (x j )
for all i = 1, . . . , k and x ∈ �n+ are direct consequences of the previous definition, estimates (6.22),
definition (6.1) and the fact that σi (s, 0) = s for all s � 0 and i = 1, . . . , k. Moreover, Hypothesis (H2)
of Theorem 3.1 holds as well.

Exploiting (4.21) and definition (6.20), we get for t ∈ [0, tmax)\I :

Ẇ (t) � −W (t) + λ max

{
ζ

(
sup

p(t)�s�t
|u(s)|

)
, max

j=1,...,k
p j

(
sup

p(t)�s�t
V j (s)

)}
. (6.23)

Inequality (6.23) directly implies that for all t ∈ [0, tmax), we have

W (t) � max

{
1

1 − λ
W (0), ζ

(
sup

0�s�t
|u(s)|

)
, max

i=1,...,k
pi

(
sup

0�s�t
Vi (s)

)}
. (6.24)

Define pu ∈ N1, p ∈ Nn by (6.9) and (6.10). Combining estimates (6.22) and (6.24) and exploiting
definitions (6.9), (6.10) and (6.1), we obtain (6.11) with t0 = 0 for all t ∈ [0, tmax). Inequality (3.2) is a
direct consequence of (6.11) with t0 = 0, inequalities (4.19) and (4.20) with ν(t) = c(t) ≡ 1, pu ∈ N1,
p ∈ Nn as defined by (6.9), (6.10) and appropriate a ∈ N1.

Consequently, all hypotheses of Theorem 3.1 hold with σ(s, t) := maxi=1,...,k σi (s, t), which is a
function of class K L that satisfies σ(s, 0) = s for all s � 0. The rest of proof is a consequence of
Remark 3.2 in conjunction with definitions (6.9) and (6.10). The proof is complete.

7. Conclusions

A novel small-gain theorem is presented, which leads to vector Lyapunov characterizations of the
(uniform and non-uniform) IOS property for various important classes of non-linear control systems.
The results presented in this work generalize many recent small-gain results in the literature and al-
low the explicit computation of the gain function of the overall system. Moreover, since the gain map
Γ : �n+ → �n+ is allowed to contain diagonal terms, the obtained results have direct applications to
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time-delay systems. Examples have demonstrated the effectiveness of the vector small-gain methodol-
ogy to large-scale time-delay systems, such as those encountered in mathematical biology.

Our future work will be directed at applications of the vector small-gain theorem to the non-linear
feedback design issue for various classes of non-linear control systems. Another interesting topic for
future research is to study the internal and external stability properties for coupled systems involving
integral input-to-state stable (iISS, a weaker notion than ISS; see Sontag, 1998) subsystems from a
viewpoint of vector small gain. Some preliminary results are reported upon in Ito & Jiang, 2009 for
interconnected systems consisting of two ISS and/or iISS subsystems.
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Appendix-Proofs of Proposition 2.7 and Theorem 3.1

Proof of Proposition 2.7. We prove implications (iv) ⇒ (i), (iii) ⇒ (ii) and (ii) ⇒ (iv) since the
implication (i) ⇒ (iii) is a consequence of Proposition 2.1.

(iv) ⇒ (i): Clearly, since Γ (k)(x) � Q(x) for all k � 1, x ∈ �n+, we have |Γ (k)(x)| � |Q(x)|
for all k � 1, x ∈ �n+ (note that Γ (k)(x) ∈ �n+). Continuity of the mapping Q(x) = MAX{x, Γ (x),

Γ (2)(x), . . . , Γ (n−1)(x)} (which is a direct consequence of continuity of the mapping Γ (x)) implies
that for every ε > 0 there exists δ > 0 such that |x | � δ, x ∈ �n+ implies |Q(x)| � ε (note that
Q(0) = 0). This implies stability.

Since Γ : �n+ → �n+ is MAX-preserving, we have Γ (Q(x)) = MAX{Γ (x), Γ (2)(x), . . . , Γ (n)(x)}
for all x ∈ �n+. Moreover, since Γ (k)(x) � Q(x) for all k � 1, x ∈ �n+, it follows that Γ (Q(x)) � Q(x)
for all x ∈ �n+. Lemma 2.2 in conjunction with the fact that (iii) holds and x � Q(x) for all x ∈ �n+
implies that limk→∞ Γ (k)(x) = 0 for all x ∈ �n+.

(iii) ⇒ (ii): If there exist s > 0 and some integer i = 1, . . . , n such that γi,i (s) � s, then the
non-zero vector x ∈ �n+ with xi = s and x j = 0 for j �= i will violate (iii). Consequently, γi,i (s) < s,
for all s > 0, i = 1, . . . , n.

Next, suppose that n > 1. Suppose that there exist some s > 0, r ∈ {2, . . . , n}, indices i j ∈
{1, . . . , n}, j = 1, . . . , r with i j �= ik if j �= k such that (γi1,i2 ◦ γi2,i3 ◦ . . . ◦ γir ,i1)(s) � s. Without loss
of generality, we may assume that i j = j , for j = 1, . . . , r and consequently (γ1,2 ◦ γ2,3 ◦ . . . ◦ γr,1)
(s) � s. The non-zero vector x ∈ �n+ with x1 = s, x j = (γ j, j+1 ◦ γ j+1, j+2 ◦ . . . ◦ γr,1)(s) for j =
2, . . . , r and x j = 0 for j > r satisfies Γ (x) � x and consequently Hypothesis (iii) is violated.
Therefore, (ii) must hold.

(ii) ⇒ (iv) The proof of this implication is a direct consequence of the fact that

Γ
(k)

i (x) = max{(γi, j1 ◦ γ j1, j2 . . . ◦ γ jk−1, jk )(x jk ) : ( j1, . . . , jk) ∈ {1, . . . , n}k}

for all k � 1, x ∈ �n+ and i = 1, . . . , n. Using (ii), it may be shown that Γ (n)(x) � Q(x) =
MAX{x, Γ (x), Γ (2)(x), . . . , Γ (n−1)(x)} for all x ∈ �n+. Since Γ : �n+ → �n+ is MAX-preserving,
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we have Γ (Q(x)) = M AX{Γ (x), Γ (2)(x), . . . , Γ (n)(x)} for all x ∈ �n+. As a result, we obtain
Γ (Q(x)) � Q(x) for all x ∈ �n+. By induction, it follows that Γ (k)(Q(x)) � Q(x) for all k � 1,
x ∈ �n+. Since x � Q(x), we obtain Γ (k)(x) � Q(x) for all k � 1, x ∈ �n+.

The fact that implication (iii) holds is shown by contradiction. Suppose that there exists a non-zero
x ∈ �n+ with Γ (x) � x . Consequently, for every i ∈ {1, . . . , n}, there exists p(i) ∈ {1, . . . , n} with
γi,p(i)(x p(i)) � xi . With these inequalities in mind, there is at least one i ∈ {1, . . . , n} with xi > 0,
and a closed cycle (i, j1, . . . , jr , i) such that (γi, j1 ◦ γ j1, j2 ◦ . . . ◦ γ jr ,i )(xi ) � xi , which contradicts (ii).
Therefore, the implication (ii) ⇒ (iv) holds.

The proof is thus completed.

Proof of Theorem 3.1. The proof consists of two steps:

Step 3. We show that Σ is RFC from the input u ∈ MU and that for every (t0, x0, u, d) ∈ �+ × X ×
MU × MD the following inequality holds for all t � t0:

V (t) � MAX
{

Q(1σ(L(t0), 0)), Q(1ζ([‖u(τ )‖U ][t0,t]))
}
. (A.1)

Therefore by virtue of (A.1), (3.3) and definition (3.5), properties P1 and P2 of Lemma 2.16 in
Karafyllis & Jiang (2007) hold for system Σ with V = Vi and γ = Gi (i = 1, . . . , n). Moreover, if
β ∈ K + is bounded then (3.3) implies that properties P1 and P2 of Lemma 2.17 in Karafyllis & Jiang
(2007) hold for system Σ with V = Vi and γ = Gi (i = 1, . . . , n).

Proof of Step 1: Let (t0, x0, u, d) ∈ �+×X×MU ×MD . Inequality (3.1) implies for all t ∈ [t0, tmax)

[V ][t0,t] � MAX
{
1σ(L(t0), 0), Γ ([V ][t0,t]), 1ζ

([‖u(τ )‖U
]
[t0,t]

)}
. (A.2)

Proposition 2.9 in conjunction with (A.2) implies (A.1) for all t ∈ [t0, tmax). It should be emphasized
that the small-gain conditions are exploited at this point: Proposition 2.9 assumes that the cyclic small-
gain conditions (2.4a,b) hold.

We show next that Σ is RFC from the input u ∈ MU by contradiction. Suppose that tmax < +∞.
Then by virtue of the BIC property for every M > 0, there exists t ∈ [t0, tmax) with ‖φ(t, t0, x0, u,
d)‖X > M . On the other hand, estimate (A.1) in conjunction with the hypothesis tmax < +∞ shows that
there exists M1 � 0 such that supt0�τ<tmax

|V (τ )| � M1. The fact that V (t) is bounded in conjunction
with estimate (3.2) implies that there exists M2 � 0 such that supt0�τ<tmax

L(τ ) � M2. It follows from
(3.3) and inequality μ(t)‖φ(t, t0, x0, u, d)‖X � b(L(t) + g(V (t)) + κ(t)) that the transition map of
Σ , i.e., φ(t, t0, x0, u, d), is bounded on [t0, tmax) and this contradicts the requirement that for every
M > 0 there exists t ∈ [t0, tmax) with ‖φ(t, t0, x0, u, d)‖X > M . Hence, we must have tmax = +∞
and consequently, (A.1) holds for all t � t0.

Let arbitrary r � 0, T � 0 and let arbitrary u ∈ M(BU [0, r ]) ∩ MU , ‖x0‖X � r, t0 ∈ [0, T ],
d ∈ MD be given. Estimate (A.1) shows that there exists M1 := M1(r, T ) � 0 such thatsupt0�τ<t0+T
|V (τ )| � M1 < +∞. Consequently, estimate (3.2) implies that there exists M2 := M2(r, T ) � 0 such
that supt0�τ<t0+T L(τ ) � M2 < +∞. It follows from (3.3) and inequality μ(t)‖φ(t, t0, x0, u, d)‖X �
b(L(t) + g(V (t)) + κ(t)) that there exists M3 := M3(r, T ) � 0 such that supt0�τ<t0+T ‖φ(τ, t0, x0, u,
d)‖X � M3 < +∞. Hence, it holds that

sup{‖φ(t0 + s, t0, x0, u, d)‖X ; u ∈ M(BU [0, r ]) ∩ MU , s ∈ [0, T ], ‖x0‖X � r, t0 ∈ [0, T ], d ∈ MD}.
< +∞

Therefore, we conclude that Σ is RFC from the input u ∈ MU .
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Step 4. We prove the following claim.

Claim: For every ε > 0, k ∈ Z+, R, T � 0, there exists τk(ε, R, T ) � 0 such that for every
(t0, x0, u, d) ∈ �+ × X × MU × MD with t0 ∈ [0, T ] and ‖x0‖X � R the following inequality holds:

V (t) � MAX
{

Q(1ε), Γ (k)(Q(1σ(L(t0), 0))), G
(
[‖u(τ )‖U ][t0,t]

)}
for all t � t0 + τk . (A.3)

Moreover, if β, c ∈ K + are bounded then for every ε > 0, k ∈ Z+, R � 0, there exists τk(ε, R) � 0
such that for every (t0, x0, u, d) ∈ �+ × X × MU × MD with ‖x0‖X � R inequality (A.3) holds.

Note that Hypothesis (H2), which is equivalent with statement (i) of Proposition 2.7, and inequality
(3.3) guarantees the existence of k(ε, T, R) ∈ Z+ such that Q(1ε) � Γ (l)(Q(1σ(b(R max0�t�T β(t)),
0))) for all l � k. If β ∈ K + is bounded then k is independent of T . Therefore, by virtue of (A.3),
property P3 of Lemma 2.16 in Karafyllis & Jiang (2007) holds for system Σ with V = Vi and γ = Gi

(i = 1, . . . , n). Moreover, if β, c ∈ K + are bounded then (A.3) implies that property P3 of Lemma 2.17
in Karafyllis & Jiang (2007) hold for system Σ with V = Vi and γ = Gi (i = 1, . . . , n). The proof
of Theorem 3.1 is thus completed with the help of Lemma 2.16 (or Lemma 2.17) in Karafyllis & Jiang
(2007).

Proof of Step 2. The proof of the claim will be made by induction on k ∈ Z+.
First, we show inequality (A.3) for k = 1. Let arbitrary ε > 0, R, T � 0, (t0, x0, u, d) ∈ �+ ×X ×

MU × MD with t0 ∈ [0, T ] and ‖x0‖X � R be given. Inequality (3.1) in conjunction with inequality
(A.1) give for t � t0:

V (t)�MAX
{
1σ(L(t0), t − t0), Γ (Q(1σ(L(t0), 0))), Γ

(
Q
(
1γ

([‖u(τ )‖U
]
[t0,t]

)))
,

1γ
([‖u(τ )‖U

]
[t0,t]

)}
. (A.4)

Since Γ (Q(x)) � Q(x) and Q(x) � x for all x ∈ �n+, inequality (A.4) implies for all t � t0:

V (t) � MAX
{
1σ(L(t0), t − t0), Γ (Q(1σ(L(t0), 0))), Q

(
1ζ

(
[‖u(τ )‖U ][t0,t]

))}
. (A.5)

Similarly inequality (3.2) in conjunction with inequality (A.1) give for t � t0:

L(t)�max
{
ν(t − t0), c(t0), a(‖x0‖X ), p(Q(1σ(L(t0), 0))), p

(
Q
(
1ζ

(
[‖u(τ )‖U ][t0,t]

)))
,

pu
([‖u(τ )‖U

]
[t0,t]

)}
. (A.6)

Note that (3.3) implies L(t0) � b(β(t0)‖x0‖X ) � b(R max0�t�T β(t)). Using the properties of
the KL functions we can guarantee that there exists τ1(ε, R, T ) � 0 such that σ(b(R max0�t�T β(t)),
τ1) � ε. Note that if β ∈ K + is bounded then τ1 � 0 is independent of T . Then it follows from (A.5)
that we have V (t) � MAX{1ε, Γ (Q(1σ(L(t0), 0))), Q(1ζ([‖u(τ )‖U ][t0,t]))} for all t � t0 + τ1. Since
G(s) � Q(1ζ(s)) for all s � 0 (a consequence of (3.5)) and Q(1ε) � 1ε, we conclude that inequality
(A.3) holds for k = 1.

Next, suppose that for every ε > 0, R, T � 0, there exists τk(ε, R, T ) � 0 such that for every
(t0, x0, u, d) ∈ �+ × X × MU × MD with t0 ∈ [0, T ] and ‖x0‖X � R (A.3) holds for some k ∈ Z+.
Let arbitrary ε > 0, R, T � 0, (t0, x0, u, d) ∈ �+ ×X × MU × MD with t0 ∈ [0, T ] and ‖x0‖X � R be

 at T
echnical U

niversity of C
rete on S

eptem
ber 27, 2011

im
am

ci.oxfordjournals.org
D

ow
nloaded from

 

http://imamci.oxfordjournals.org/


A VECTOR SMALL-GAIN THEOREM 343

given. Note that the weak semi-group property implies that π(t0, x0, u, d) ∩ [t0 + τk, t0 + τk + r ] �= ∅.
Let tk ∈ π(t0, x0, u, d) ∩ [t0 + τk, t0 + τk + r ]. Then (3.1) implies

V (t) � MAX
{
1σ(L(tk), t − tk), Γ ([V ][tk ,t]), 1ζ

(
[‖u(τ )‖U ][tk ,t]

)}
, for all t � tk . (A.7)

Moreover, inequality (A.3) gives

[V ][tk ,t] � MAX
{

Q(1ε), Γ (k)(Q(1σ(L(t0), 0))), G
(
[‖u(τ )‖U ][t0,t]

)}
, for all t � tk . (A.8)

Inequality (A.6) also implies:

L(tk)�max
{
ν(tk − t0), c(t0), a(R), p(Q(1σ(L(t0), 0))), p

(
Q
(
1ζ

([‖u(τ )‖U
]
[t0,tk ]

)))
,

× pu
([‖u(τ )‖U

]
[t0,tk ]

)}
. (A.9)

Using (A.8) and the fact that Γ (G(s)) � G(s)for all s � 0 (a direct consequence of definition (3.5) and
the fact that Γ (Q(x)) � Q(x) for all x ∈ �n+), we obtain

Γ ([V ][tk ,t]) � MAX
{

Q(1ε), Γ (k+1)(Q(1σ(L(t0), 0))), G
([‖u(τ )‖U

]
[t0,t]

)}
, for all t � tk .

(A.10)
Inequality (A.10) in conjunction with inequality (A.7), the fact that G(s) � Q(1ζ(s)) � 1ζ(s) for all
s � 0 and the fact that tk � t0 + τk + r implies:

V (t) � MAX
{
1σ(L(tk), t − t0 − τk − r), Q(1ε), Γ (k+1)(Q(1σ(L(t0), 0))), G

(
[‖u(τ )‖U ][t0,t]

)}
,

for all t � t0 + τk + r. (A.11)

Inequality (A.9) in conjunction with the fact that 1σ(pu(s), 0) � G(s), 1σ(p(Q(1ζ(s))), 0) � G(s)
for all s � 0 and the facts that tk � t0 + τk + r , t0 ∈ [0, T ] and ‖x0‖X � R implies that

1σ(L(tk), t − t0 − τk − r) � MAX
{
1σ( f (ε, T, R), t − t0 − τk − r), G

([‖u(τ )‖U
]
[t0,t]

) }
,

for all t � t0 + τk + r, (A.12)

where

f (ε, T, R) := max

{
max

0�t�τk (ε,R,T )+r
ν(t), max

0�t�T
c(t), a(R),

× p

(
Q

(
1σ

(
b

(
R max

0�t�T
β(t)

)
, 0

)))}
. (A.13)

The reader should note that if β, c ∈ K + are bounded and τk is independent of T then f can be
chosen to be independent of T as well. Note that by combining (A.11) and (A.12), we get

V (t) � MAX
{
1σ( f (ε, T, R), t − t0 − τk − r), Q(1ε), Γ (k+1)(Q(1σ(L(t0), 0))),

G
([‖u(τ )‖U

]
[t0,t]

)}
, for all t � t0 + τk + r. (A.14)
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Clearly, there exists τ(ε, R, T ) � 0 such that σ( f (ε, T, R), τ ) � ε. Define

τk+1(ε, R, T ) = τk(ε, R, T ) + r + τ(ε, R, T ) (A.15)

Again, the reader should notice that if f and τk are independent of T then τk+1 is independent of T
as well. Since Q(1ε) � 1ε, we obtain from (A.14):

V (t)�MAX
{

Q(1ε), Γ (k+1)(Q(1σ(L(t0), 0))), G
([‖u(τ )‖U

]
[t0,t]

)}
, for all

t � t0 + τk+1 (A.16)

which shows that (A.3) holds for k + 1.
To finish the proof, we assume that Hypothesis (H4) holds. Let ε > 0, R, T � 0, (t0, x0, u, d) ∈

�+ × X × MU × MD be arbitrary and denote Y (t) = H(t, φ(t, t0, x0, u, d), u(t)) for t � t0. Using
(3.6), (A.1) and the following fact:

Fact: If p ∈ Nn and R: �n+ → �n+ is a non-decreasing mapping, then the following inequality
holds for all s, r ∈ �+: p(MAX{R(1s), R(1r)}) = max(p(R(1s)), p(R(1r))).

we obtain for all t � t0:

‖Y (t)‖Y � max
{

q(Q(1σ(L(t0), 0))), q
(

Q
(
1ζ

([‖u‖U
]
[t0,t]

)))}
. (A.17)

Inequality (A.17) shows that properties P1 and P2 of Lemma 2.16 in Karafyllis & Jiang (2007) hold
for system Σ with V = ‖H(t, x, u)‖Y and γ (s) := q(G(s)). Moreover, if β ∈ K + is bounded, then
(A.17) implies that properties P1 and P2 of Lemma 2.17 in Karafyllis & Jiang (2007) hold for system
Σ with V = ‖H(t, x, u)‖Y and γ (s) := q(G(s)).

Inequality (A.3) in conjunction with Hypothesis (H2), which is equivalent with statement (i) of
Proposition 2.7, and inequality (3.3) guarantees the existence of k := k(ε, T, R) ∈ Z+ such that for
every (t0, x0, u, d) ∈ �+ × X × MU × MD with t0 ∈ [0, T ] and ‖x0‖X � R the following inequality
holds:

V (t) � M AX
{

Q(1ε), G
(
[‖u(τ )‖U ][t0,t]

)}
, for all t � t0 + τk (A.18)

If β, c ∈ K + are bounded then k is independent of T . The above Fact in conjunction with (3.6),
(A.18) and definition (3.5) of G imply that property P3 of Lemma 2.16 in Karafyllis & Jiang (2007)
holds for system Σ with V = ‖H(t, x, u)‖Y and γ (s) := q(G(s)). Moreover, if β, c ∈ K + are
bounded then (A.18) and (3.6) imply that property P3 of Lemma 2.17 in Karafyllis & Jiang (2007) hold
for system Σ with V = ‖H(t, x, u)‖Y and γ (s) := q(G(s)). The proof is complete. �
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