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A new small-gain theorem is presented for general non-linear control systems and can be viewed as
unification of previously developed non-linear small-gain theorems for systems described by ordinary
differential equations, retarded functional differential equations and hybrid models. The novelty of this
research work is that vector Lyapunov functions and functionals are utilized to derive various input-to-
output stability and input-to-state stability results. It is shown that the proposed approach is extendible
to several important classes of control systems such as large-scale complex systems, non-linear sampled-
data systems and non-linear time-delay systems. An application to a biochemical circuit model illustrates
the generality and power of the proposed vector small-gain theorem.
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1. Introduction

The small-gain theorem has been widely recognized as an important tool for robustness analysis and
robust controller design within the control systems community. For instance, classical small-gain the-
orems, Desoer & Vidyasagar (1975) and Zames (1966) have played a crucial role for linear robust
control of uncertain systems subject to dynamic uncertainties (Zhou et al., 1996). Asintroduced in the
framework of classical small-gain, an essential condition for input—output stability of a feedback sys-
tem is that the loop gain is less than one. This condition relying upon on the concept of linear finite
gain was first relaxed by Hill (1991) and then Mareels & Hill (1992) using the notions of monotone
gain and non-linear operators. Quickly after the birth of the notion of input-to-state stability (1SS) orig-
inally introduced by Sontag (1989), a non-linear, generalized small-gain theorem was developed in
Jiang et al. (1994). This non-linear 1SS small-gain theorem differs from classical small-gain theorems
and the non-linear small-gain theorem of Hill (1991) and Mareels & Hill (1992) in severa aspects.
One of them is that both internal and external stability properties are discussed in a single framework,
while only input—output stability is addressed in previous small-gain theorems. As demonstrated in
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Jiang et al. (1994) and the subsequent work of many others, non-linear small-gain has led to new so-
lutions to several challenging problems in robust non-linear control, such as stabilization by partial-
state and output feedback, robust adaptive tracking and non-linear observers. More interestingly, this
perspective of non-linear small gain can find useful applications in monotone systems, an important
class of systems in mathematical biology (see Angeli et al., 2004; Angeli & Astolfi, 2007; Enciso &
Sontag, 2006). Further extensions of this tool to the cases of non-uniform in time stability, discrete-
time systems and Lyapunov characterizations are pursued by several authors independently; see, for
instance, Grune (2002), Ito & Jiang (2009), Jiang et al. (1996, 2004), Jiang & Mareels (1997), Karafyl-
lis & Tsinias (2004), Karafyllis (2004), Karafyllis & Jiang (2007), Sontag & Ingalls (2002) and Teel
(1996).

This paper takes a step further to broaden the applicability and generality of non-linear small gain
results by removing essential restrictions in previous small-gain theorems. To better position the nov-
elty and contributions of our present work with respect to numerous variants of non-linear small-gain
theorems, some highlights are given below.

e A common feature of the earlier non-linear small-gain theorems is that the semi-group property is
required implicitly or explicitly for the solutions of the feedback system in question, whether the
feedback system is described by ordinary differential equations (ODES) or takes the form of hybrid
and switched systems. We will adopt a weak semi-group property which is much more relaxed than
the semi-group property (see Karafyllis, 2007a,b). As shown in our recent work (Karafyllis & Jiang,
2007), the weak semi-group property allows studying a wide class of non-linear feedback systems
such as hybrid and switched systems. As compared with Karafyllis & Jiang (2007) where only two
interconnected systems are considered, here we will develop a unifying framework which allows
us to study large-scale systems composed of multiple interacting subsystems. To address this goal,
additional novel toolswill be proposed.

e The new small-gain theorem obtained in this paper, i.e. Theorem 3.1 in Section 3, is a generaliza-
tion of several previously developed non-linear small-gain theorems. In particular, through exam-
ples and detailed analysis, we show that Theorem 3.1 can recover as special cases severa newly
introduced small-gain theorems for large-scale complex systems (Dashkovskiy et al., 2007, 2010;
Jiang & Wang, 2008; Karafylliset al., 2008a; Teel, 2005). In addition, it is shown that uniform and
non-uniform input-to-output stability (10S) and 1SS stability properties can be studied for various
important classes of non-linear dynamical controlled systems. Furthermore, explicit formulae are
provided for the gain function of the composite system.

e A nice feature of the new small-gain theorem is that we allow non-zero diagona gains for each
interacting system, while all previous non-linear small-gain theorems assume zero diagonal gain
(with the exception of Sontag & Ingalls, 2002, which isascalar small-gain theorem). This generality
is important for studying non-linear uncertain and time-delay systems. Indeed, this is one of the
cornerstones for our unified framework in considering both delay-free systems and time-delay non-
linear systems.

e The new theorem leads to vector Lyapunov function (or functional) characterizations for various
stability properties (Theorems 4.1, 4.4 and 4.8). Because of that we coin our new small-gain theo-
rem presented in this paper ‘vector small gain’. The advantage of vector Lyapunov function versus
single Lyapunov function in non-linear stability analysis has been well documented in past literature
(Lakshmikantham et al., 1991; Michel & Miller, 1977). Recent work in Karafyllis et al. (2008a)
and Karafyllis & Kravaris (2009) provides further evidence on the usefulness of vector Lyapunov
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functions for the case of 1SS stability. Another feature, which is not frequently recognised, is that
vector Lyapunov functions can handle large-scale systems more easily than single Lyapunov func-
tions. Indeed, this feature isillustrated by many examples in the paper. For example, Examples 5.1
and 5.2 deal with large-scale time-delay systems. One cannot exclude the possibility of finding an
appropriate Lyapunov—Krasovskii functional or a Razumikhin function that can be used for the proof
of stability in Examples 5.1 and 5.2. However, the reader can see how easily stability conditions are
obtained in both examples by using very simple functions.

The rest of the paper is organized as follows. In Section 2, we provide certain useful results on
monotone discrete-time systems. The results contained in this section are used extensively in subse-
guent sections. Section 3 of the paper provides a brief review of the system-theoretic framework in-
troduced in Karafyllis (2007a,b) and Karafyllis & Jiang (2007), and states the main result (Theorem
3.1). In Section 4, sufficient Lyapunov-like conditions for the verification of the hypotheses of Theorem
3.1 are presented for three types of systems: (i) Systems described by ODEs, (ii) Systems described
by retarded functional differential equations (RFDES) and (iii) sampled-data systems. The results con-
tained in Section 4 are exploited in Section 5, where examples and applications of the vector small-gain
methodology are given. The proofs of the main results of Section 4 are given in Section 6. Finaly, the
conclusions of the paper are provided in Section 7. The proofs of Proposition 2.7 and Theorem 3.1 are
given in the Appendix.

Notations. Throughout this paper, we adopt the following notations:

e Wedenoteby K the class of positive, continuous functions defined on %, := {x € R: x > 0}. We
say that a function p: Ry — R, is positive definite if p(0) = Oand p(s) > Oforals > 0. By
K, we denote the set of positive definite, increasing and continuous functions. We say that a positive
definite, increasing and continuous function p: R — Ry isof class Ky if liMs_, 100 p(S) = +00.
By KL, we denote the set of al continuous functions ¢ = o (s, t): R x Kt — RT with the
properties: (i) for eacht > 0 the mapping o (-, t) is of class K; (ii) for each s > 0, the mapping
o (s, -) isnon-increasing with limy, 40 0 (S, t) = 0.

e By |||lx, we denote the norm of the normed linear space X'. By ||, we denote the Euclidean norm
of R". Let U C X with0 e U. By By[0,r] := {u € U; |ju||x < r}, we denote the intersection of
U C X with the closed ball of radiusr > 0, centeredat 0 € U. If U C R" then int(U) denotes the
interior of theset U C R".

e X’ denotes the transpose of x.

o RN = RY" = {(X1,...,%n) € R":x1 >0,...,xn > 0}.{ej}{_, denotes the standard basis of
R". Z, denotes the set of non-negative integers.

o Letx,y e R".Wesaythatx < yifandonlyif (y —x) € ®'.. Wesay that afunction p: R, — R+
is of class Ny, if p is continuous with p(0) = 0 and such that p(x) < p(y) for al x,y € R with
x<Yy.

o Fort >ty >0,letftg,t] 37 = V(r) = (Vi(2), ..., Va(r)) € R" be a bounded map. We de-
fine [V, == (sup,e[toyt] Va(7), ..., SUP [ty 1] Vn(r)). For a measurable and essentially bounded
function, x : [a, b] — K", €SSSUP;c[a ] |X (t)] denotes the essential supremum of [x(-)].
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e Wesaythat I': R} — R isnon-decreasing if I"(x) < I'(y) foral x, y € R, withx <y. For an
integer k > 1, we define F(k)(x) =Tolo...olX),whenm=n.
—_—
k times

o Wedefinel=(1,1...,1) eR".Ifu,o e Randu < o then1u < lo.

e LetU beasubset of anormed linear spacel/, with0 € U. By M(U), we denote the set of all locally
bounded functionsu: %, — U. By 0 € M(U), we denote the identically zero input. If U C R"
then My denotes the space of measurable, locally bounded functionsu: %, — U.

e Let AC X, B C Y, where X and Y are normed linear spaces. We denote by C°(A; B) the class
of continuous mappings f: A. For x e CO([—r, 0]; k"), we define [Ix|ly = maXge[—r.o IX(O)].
We will use the convention CO([0,0]; ®") = K" and if x € CO9(0,0]; %K") = K" we have
Ixllr = IX].

2. Global asymptotic stability for monotone discrete-time systems

The purpose of this section isto introduce some preliminary, technical results which will play an instru-
mental role in the development of our main results in next sections. Some of these basic results are not
new, as compared with Dashkovskiy et al. (2007, 2006, 2010), Teel (2005) and Ruffer (2007, 2010)
and are reproduced here to make our work self-contained.

Consider the discrete-time system

Xkl = I'(Xk), Xk € R, (21)

where I": R — R} is anon-decreasing map with 7"(0) = 0. For the study of the above system, we
adopt the standard stability notions for discrete-time systems (see, for instance, Jiang & Wang, 2002,
2001, and references therein). More specifically, we say that 0 € R} isaglobally asymptotically stable
(GAS) equilibrium point for (2.1) if limk_ e I7®(x) = Ofor al x € %R} and for every ¢ > 0O there
exists J > Osuch that x| < 6, x € R} implies |77® (x)| < & for al k > 1. Next anecessary condition
for the global asymptotic stability property and a technical result that guarantees convergence to zero
are provided. The following results are closely related to Corollary 2.1.2 and Lemma 2.2.4 in Ruffer
(2007) and, for completeness, are reproduced below.

PROPOSITION 2.1 If 0 € R" is GAS, then the following implication holds:
rx)yzx=x=0. (2.2

LEMMA 2.2 Let I': R} — R}, be acontinuous, non-decreasing map satisfying (2.2) with 77(0) = 0. If
the inequality 7"(x) < x holdsfor somex € R, then limy_, o0 7"® (y) = Oforal y e R} withy < x.

We now present an algebraic operator on R" that turns out to be useful for the study of discrete
monotone systems.

DEFINITION 2.3. LetXx = (X1,...,Xn) e R"andy = (y1,..., ¥n) € R". Wedefinez = MAX{x, y},
wherez = (zq,...,2n) € R" sdtisfieszi = max{x;, yj} fori = 1,...,n. Similarly, foruy,...,um €
R", z = MAX{U1,..., Uy} isavector z = (z1,...,2zp) € R" with z; = max{uyj,...,Uni}, i =
1,...,n.
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REMARK 2.4. The MAX operator possesses some interesting properties. For example, if x < v,
theny = MAX{x,y}. If z < MAX{x,y} and y < MAX{w, v}, then z < MAX{X, w,v}. Also
MAX{Xx,y, w} = MAX{x, MAX{y,w}}. If x < zandy < z, then MAX{X,y} < z. In generd,
we have I'(MAX{x, y}) > MAX{I'(x), I'(y)} for any non-decreasing map I": ®} — R and for
every x,y € Ri}.

The MAX operator becomes a very useful tool for the study of the following special class of
monotone vector fields.

DEFINITION 2.5. Wesay that I': R, — R is MAX-preserving if I': R, — R is non-decreasing
and for every x, y € R, the following equality holds:

I'(MAX{X, y}) = MAX{I'(x), I"(y)} (2.3

The above defined MA X -preserving maps enjoy the following important property.

PROPOSITION 2.6 I": R} — R} with I'(x) = (/1(X), ..., In(x))’ isMAX-preserving if and only if

there exist non-decreasing functions yj j: Ry — Ry, 0, j =1, ..., nwith I (X) = maxj_1,._n yi,j(Xj)

foralxeR,i=1,...,n.

Proof. Define y; j(s) := Ii(sej) forals > 0.Letx € R}, i.e, X = X181+ - - + Xnen With x; > 0,

i =1,...,n. Notethat x = MAX{x1€1, ..., Xpen} and consequently 7"(x) = MAX{I"(x1e1),...,

I'(xnen)}. Therefore, I3 (x) = max{/j(X1€1), ..., [i(Xn€n)} = mMaxj—y, _n7ij(Xj). The converse

statement is adirect consequence of the definition 75 (x) = maxj—1, _n 7i,j(Xj)- O
Next, necessary and sufficient conditions are provided for GAS of (2.1) for the case of a continuous

MAX-preserving map.

PROPOSITION 2.7 Supposethat I: R, — R with I'(x) = (I1(x), ..., Ih(x))" is MAX-preserving

and there exist functions yj j € Ny, i, j = 1,...,nwith I (x) = maxj_y,__nyijXj),i =1,...,n.

The following statements are equivalent:

(i) 0 e R"isGASfor (2.1).
(if) Thefollowing cyclic small-gain conditions hold:

7ii(s) <s Vs >0, i=1...,n (2.49)
andif n > 1thenforeachr = 2, ..., n it holdsthat
(Pig,iz © Vigig ©--- 0 Virip)(8) <s Vs >0 (2.4b)
foralije{l,...,n},ij #ikif j #k.
(iii) Thefollowing implication holds: 7" (x) > x = x =0.
(iv) (iii) holds and for each k > 1 and x € R, it holds that r'®x) < Q(x) = MAX({x, I'(x),
IO, ..., r™x)y).

It should be noted that the equivalence between statements (i), (ii) and (iii) of Proposition 2.7 is
implied by Lemma 2.3.14 and Theorem 2.2.8 in Ruffer (2007) or Theorem 6.4 in Ruffer (2010). Here,
the new result is the equivalence of statement (iv) with the statements (i), (i) and (iii). The proof of
Proposition 2.7 is provided in the Appendix.

1102 ‘22 Jaquiaidas uo 81319 Jo ANSIaAUN [eda1uyda ] Je B10’s[eulnolpiojxo’iowew| Wwoly papeojumoq


http://imamci.oxfordjournals.org/

314 I. KARAFYLLISAND Z.-P. JANG

REMARK 2.8. Note that Q: R} — R is a continuous, MAX-preserving map with Q(0) = 0 and
Q(a) > aforall a e ®R.. Moreover, I'(Q(x)) < Q(x) for al x € K. Indeed, in order to prove
I'(Q(x)) < Q(x)foral x € R, notethat since I": R, — R’ isMAX-preserving, weget 7'(Q(x)) =
MAX{I(x), I D(x), ..., I Dx), r'™(x)}. Since I'® (x) < Q(x) holdsfor al integersk > 1, we
obtain 7"(Q(x)) < Q(X).

The next proposition isanovel useful technical result, which will be used in the following section.

PROPOSITION 2.9 Supposethat 1": R — RT with I'(x) = (J1(x), ..., In(x))" isMAX-preserving
and there exist functions yj j € Ny, i, j = 1,...,nwith Ij(x) = maxj_y,__ nyij(Xj),i =1,...,n.
Moreover, suppose that the small-gain conditions (2.4a,b) hold and that x < MAX{a, I"(x)} for certain
x,a € R0 Thenx < Q(a), where Q(a) = MAX{a, I'(a), I'P(@), ..., I V())}.

Proof. Supposethat x < MAX{a, I"(x)}. Then I'(x) < MAX{I"(a), '@ (x)} andx < MAX{a, I"(a),
I'@(x)}. By an induction argument x < MAX{a, I'@), ..., I'®(@), r*tDx)} for al k > 1. It
follows from statement (iv) of Proposition 2.7 that x < MAX{Q(a), I"®*D(x)} for al k > 1. Since
limk— 00 I"® (x) = 0, we obtain x < Q(a). O

3. A vector small-gain theorem for a wide class of systems
3.1 Review of the system-theoretic framework

To make our work self-contained, we first introduce some basic notions keyed to the system-theoretic
framework presented in Karafyllis (2007a,b) and Karafyllis & Jiang (2007). As shown previously, this
system-theoretic framework allows us to study a wide class of dynamic systems described by ODEs,
RFDEs, and hybrid or impulsive equations.

The notion of a control system-definition 2.1 in Karafyllis & Jiang (2007): A control system X :=
(X,Y, My, Mp, ¢, =, H) with outputs consists of

(i) a set U (control set) which is a subset of a normed linear space ¢/ with 0 € U and a set
My C M(U) (allowable control inputs) which contains at least the identically zero input
0e M),

(ii) a set D(disturbance set) and a set Mp C M(D), which is called the “set of allowable distur-
bances’,

(iii) apair of normed linear spaces X', ) called the ‘state space’ and the ‘output space’, respectively,

(iv) acontinuousmap H: R4 x X x U — Y that maps bounded sets of % x X x U/ into bounded
sets of ), called the ‘output map’,

(v) a set-valued map R x X x My x Mp > (to, Xo, U,d) — = (to, Xo, U, d) C [to, +00), with
to € 7z (to, X0, U, d) for all (tp, Xg, U, d) € Ry x X x My x Mp, called the set of ‘sampling
times’

(vi) andthe map ¢: Ay — X where Ay C Ry x Ry x X x My x Mp, called the “transition map’,
which has the following properties:

(1) Existence: For each (tg, Xo, U, d) € R4 x X x My x Mp, there exists t > tg such that [tg, t] x
{(to, X0, u,d)} C Ay.

(2) Identity property: For each (g, X, u,d) € R. x X x My x Mp, it holds that ¢ (to, to, Xo,
u, d) = X0.
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(3) Causality: For each (t,to, Xo,u,d) € Ay with t > to and for each (d,d) € My x Mp
with ((i(z), d(r)) = (u(r),d(r)) for all = e [to, t], it holds that (t, to, X0, G, d) € Ay with
o (t, to, X0, U, d) = ¢(t, to, X0, G, d).

(4) Weak semi-group property: There exists a constant r > 0, such that for each t > to with
(t,to, Xo, u,d) € Ay

@ (z,to, %o, u,d) € Ay for all z € [to, t],

(b) o(t, 7, ¢(z, to, X0, U, d), u,d) = ¢(t, to, Xo, U, d) for all z € [tg, t] Nz (to, X0, U, d),

(c) if (t4r,to, %o, u,d) e Ay, then it holds that z (to, Xo, u, d) N [t,t +r] # @.

(d) for all = € = (to, X0, U, d) with (z, to, X0, u, d) € Ay we have z(z, ¢(r, to, Xo, U, d), u,d) =
7 (tg, Xo, U, d) N[z, +00).

TheBIC and RFC properties-definition 2.4 in Karafyllis& Jiang (2007): Consider a control system
2 = (X,)Y, My, Mp, ¢, =, H) with outputs. We say that system X

(i) has the ‘boundedness-implies-continuation’ (BIC) property if for each (tg, Xo, U, d) € R4 x X' x
My x Mp, there exists a maximal existence time, i.e., there exists tmax := tmax(to, Xo, U, d) €
(to, +o<], such that Ay = Ulto,Xo,U,d)eR4 x X x My xMp [t0, tmax) % {(to, Xg, u, d)}. In addition, if
tmax < 400, then for every M > 0 there exists t € [to, tmax) With ||¢(t, to, X0, U, d) || x > M.

(ii) is robustly forward complete (RFC) from the input u € My if it has the BIC property and for
everyr > 0, T > 0, it holds that

sup{[¢(to + s, to, Xo, U, d) | x;u € M(Buy[O,r]) N My,s € [0,T], IIxollx < r,to € [0,T],d e
Mp} < +oo0.

The notion of a robust equilibrium point-definition 2.5 in Karafyllis & Jiang (2007): Consider a
control system X := (X, Y, My, Mp, ¢, =, H) and suppose that H(t,0,0) = O for all t > 0. We say
that O € X is a robust equilibrium point from the input u € My for X' if

(i) forevery (t,tg,d) € Ry x Ry x Mp witht > tg it holds that ¢(t, tp, 0,0,d) = 0.

(ii) foreverye > 0, T,h € Ry thereexists § := d(e, T, h) > Osuch that for all (tp, x, u) € [0, T] x
X x My, 7 € [to, to + h] with |IX[lx + SUp;>o [lU()llzy < J it holds that (¢, to, X, u,d) € Ay
foralld € Mp and

sup{ll¢(z, to, x,u,d)||x;d € Mp, 7 € [to,to+h], 1o € [0, T]} <e.

Next, we present the 10S property for the class of systems described previously (see also Jiang et al.,
1994; Sontag & Wang, 1995, 1996, 1999, for finite-dimensional, time-invariant dynamic systems).

The notions of 10S, UIOS, ISS and UISS-definition 2.14 in Karafyllis & Jiang (2007): Consider
a control system 2 := (X, Y, My, Mp, ¢, =, H) with outputs and the BIC property and for which
0 € X is a robust equilibrium point from the input u € My. Suppose that 2 is RFC from the input
u € My. If there exist functions ¢ € KL, 8 € K*, y e N1 such that the following estimate holds for
allu e My, (to, X0, d) € R4 x X x Mp and t > to:
[H(t, ¢, to, X0, u, d), ut)lly < ao(Bto)lxollx,t—to)+ iUI0< y (@) llzo),
oSt

then we say that X satisfies the 10S property from the input u € My with gain y € A/. Moreover, if
B € KT may be chosen as f(t) = 1, then we say that X satisfies the uniform input-to-output stability
((V)IOS) property from the input u € My with gain y € Nj.
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For the special case of the identity output mapping, i.e., H(t, x, u) := x, the UIOS property from the
input u € My is called (uniform) input-to-state stability ((U) ISS) property from the input u € My.
When U = {0} (the no-input case) and X satisfies the (U)IOS property, then we say that 2 satisfies
the (uniform) robust global asymptotic output stability (RGAQOS) property. When U = {0} (the no-input
case) and X satisfies the (Uniform) ISS property, then we say that 2 satisfies the (Uniform) robust
global asymptotic stability (RGAS) property.

Other equivalent definitions of the ISS property, originally introduced by Sontag (1989), are available
in the literature (see Grune, 2002; Praly & Wang, 1996).

3.2 A new small-gain theorem

We consider an abstract control system 2 = (X, ), My, Mp, ¢, =, H) with the BIC property for
which 0 € X isarobust equilibrium point from the input u € My . Suppose that there exist mappings
Viie x X xU >R, (i=1...,n),L: Ry x X > Ry withL(t,0) =0, V;(t,0,0) = Ofor all
t > 0(i =1,...,n) and aMAX-preserving continuous map 7": R — R with 7/(0) = 0 such that
the following hypotheses hold:

Hypothesis (H1) (the ‘|OS-like inequalities): There exist functions ¢ € KL,v,c e K, 7, a, p¥ €
N1, p € My, such that for every (o, Xg, U, d) € Ry x X x My x Mp the mappingst — L(t) =
L(t,¢(t, to, X0, u,d)) and t — V(t) = (Vi(t, ¢(t, to, X0, u,d), u(t)), ..., Va(t, ¢(t, to, xo, u, d),
u(t)))' are locally bounded on [tg, tmax) and the following estimates hold for all t € [tg, tmax) :

V(1) < MAX {1o (L(to), t = to), I"([V]{to,1)> L (U (@) llealfto, )} » (3.1
L(t) < max{v(t — to), c(to), allXollx), PUV]fto,1)> P ([IIu(D)llzdlfto, 1)} 32

where tmax is the maximal existence time of the transition map of 2.
Hypothesis (H2) (the small-gain conditions): The small-gain conditions (2.4a,b) hold.

Hypothesis (H3) (Boundsfor the norm of the state): There exist functionsb € N1,9 € My, u, B, x €
K+ such that the following inequalities hold for all (t, x,u) € R4 x X x U:

p®OIIXlle <b(L(E, x) +g(V(t, x,u) +x() and L(t, x) <bBM®IX]x), (3.3
where V (t, X, u) = (V1(t, x, u), ..., Va(t, x, u)).

Discussion of Hypotheses (H1), (H2) and (H3): In general, thefunctional L: R, x X — R, that ap-
pears at the right-hand side of inequality (3.1), isrelated to ||x || x . Thisisachieved by means of Hypoth-
esis (H3). Hypothesis (H1) isthe hypothesis made in every small-gain result: it dealswith the‘ |OS-like
inequalities, which are to be used and be combined in order to prove the desired estimates. Note that
since we are using a family of n functionals, the ‘10S-like’ inequalities are given for each functional
separately: thisis why (3.1) expresses n ‘10S-like’' inequalities (in vector notation). Inequality (3.2)
guarantees (in conjunction with Hypothesis (H3)) that the norm of the state remains bounded in bounded
time intervals as long as the values of the n functionals V; (t, ¢ (t, to, Xo, u,d), u)) (i = 1,...,n) re-
main bounded. The need for two types of inequalities in order to prove the 10S property by means of
small-gain arguments was first shown in Sontag & Ingalls (2002).

For future reference, V (t, x, u) = (V1(t, x, u), ..., Vi(t, X, u))’ is called the vector Lyapunov function
for thesystem 2 := (X, Y, My, Mp, ¢, =, H). Now, we are ready to state our new small-gain theorem
for ageneral dynamic system described in Section 3.1.
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THEOREM 3.1 Consider system X = (X, Y, My, Mp, ¢, =, H) with the BIC property for which
0 € X is arobust equilibrium point from the input u € My and suppose that there exist maps
Vii Ry x X x U = R, with Vj(t,0,0) = Oforalt > 0@ = 1,...,n) and a MAX-preserving
continuous map 7": R — R with 7'(0) = 0 such that Hypotheses (H1-H3) hold. Then system
2 = (X,Y, My, Mp, ¢, =, H) isRFC from theinput u € My and there exist functionsé € KL and
B e K+ such that for every (tg, xo, u,d) € R+ x X x My x Mp the following estimate holds for all
t>1p:

V(1) < 16 (B(to)lIXolla t — to) + G(Iu(D) lleditot) (3.4)
where
G(s) = MAX{Q(1s (p"(s), 0)), Q1o (p(Q(1£(5))), 0)), Q1L (s))} (35

and Q(x) = MAX({x, I'(x), '@ (x), ..., '™ D(x)}. Moreover, if ,¢c € K* are bounded then § ¢
K+ isbounded. Finally, if in addition to (H1-H3), the following hypothesis holds:

Hypothesis (H4) (bound for the norm of the output): There exists q € A, such that the following
inequality holds for all (t,x,u) € R4 x X x U:

IHE, X, wlly < qV(t,x,u)), (3.6)
where V (t, x, u) = (V1(t, X, U), ..., Va(t, x, u)).

then system X' satisfies the 10S property from the input u € My with gain y (s) := q(G(s)). Moreover,
if B, c e KT are bounded, then system X' satisfies the UIOS property from the input u € My with gain
7(8) :=a(G(s)).

REMARK 3.2. Note that for the control input-free case, i.e., u = 0, Theorem 3.1 implies (Uniform)
RGAOS for the corresponding system. Moreover, if there existss M > 1 such that o (s, 0) = Ms for all
s > 0, thenthefunctionsG; e N1 (i = 1,...,n) withG(s) = (G1(s), ..., Gn(s)) aregiven by

Gi(s) := gi(max{Mp"(s), Mp(p1((5)), ..., on(C(5))), ¢(S)}), i=1,...,n,
where
pi(s)=max(s, max max{(yij ©is -0 i3 Qs ) €L i),
i=1...,n
and yi;j € N1, i, j =1,...,narethefunctionswith 75 (x) = maxj—1,..n7ij(j), i =1,...,nand
I'(x) = (I1(x), ..., I'n(x)). The reader should note that if Hypothesis (ii) of Proposition 2.7 holds
for the functions yi,j € N1,i,j = 1,...,n, thenforeachi = 1,...,n, we have either ¢i(s) = s

or there exists an index set (i, j1,..., jk) € {1,..., n}k+1 with no repeated index such that ¢j(s) =
(i,j1 © Vivjz - - - © Vike1, i) (8)-

The following elementary example demonstrates that Theorem 3.1 can be applied to the time-varying
case of non-uniform in time stability.

ExAMPLE 3.3. Consider the large-scale system described by the following time-varying ODEs:
Xj(t) = —ixj(t) + djt) exp(t)xjr2(t), i=1,...,n—=1,
Xn(t) = —nXn(t) + dn(t) exp(=nt)xa(t) + o (), (3.7)
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where xj(t) € R(@{i = 1,...,n), v: Ry — R is measurable and locally essentially bounded, d; :
Ry - [—a&,a] (i = 1,...,n) are measurable functionsand a; > 0 (i = 1,...,n) are constants.
Using the variations of constants formula for each one of the states of (3.7), we obtain for the solution
X(t) = (X1(t), ..., Xp (1)) € K" withinitial condition x (tg) = (X1(to), ..., Xn(tg))’ € R" corresponding
to arbitrary measurable and locally essentially bounded input »: %y — %R and arbitrary measurable
functionsdj: Ry — [—aj,a] (i=1,...,n):

t
Xi (t) = Xi (to) exp(—i (t — to)) +/t exp(—i(t — 7))di(r) exp(z)Xiy1(r)der, i =1,...,n -1, (38
0
t
Xn (t) = Xn (to) exp(—n(t — to)) +/t exp(—n(t — 7))dn () exp(—(n — D7)x1(r)dr
0

t
+/ exp(—n(t — 7))o (r)dr (3.9
to

foralt > tg. Defining Vi (t, x) (= exp((i — D)|xj| (i = 1,...,n)and u(t) := exp((n — Dt)o(t), we
obtain from (3.8) and (3.9) foralt > tpand ¢ > O:

Vi(t) < max{(1+ e)Vi(to) exp(—(t — tp)), ai (1 + g‘l) sup Vi+1(z')} ,i=1...,n=1, (3.10)
to<r <t

Vi (t) < max [2(1 +£)Vn(to) &Xp(—(t —t)), an(1+ &™) sup Vi(r),
o< <t

x 2(1+¢) sup |u(r)|]. (3.11)
o<t <t

Define L(t, x) := maxj=1,.._.n Vi(t, x). Using (3.10) and (3.11), it can be directly shown that Hypothesis
(H1) holdswith o (s, t) := 2(14¢)s exp(—t), p'(s) = ¢(s) := 2(1+¢)s, I': R} — R with [7(x) :=
ai(l+e YHxiprfori =1,...,n—1and IH(x) := an(1+ e Hxy, p € Ny with p(X, ..., Xp) =
(14 &~ max{anxy, maxi—1,._n—1(@iXi+1)}, v(t) = 1, c(t) := 2(1+¢) exp(2(n — 1)t) and a(s) := s>.
Hypothesis (H3) holds aswell with x(t) = x(t) = 1, g = 0, b(s) := si/n and (1) := exp((n — Dt).
Finally, Hypothesis (H2) holdsif and only if

[Ja <1 (3.12)
i=1

Indeed, the only possible cycle that can be formed by the gain functions is the cycle (y1,2 o y2.3
o...0yn1)(s), In this case, the small-gain condition gives (1 4+ ¢ H)"[['_; ai < 1. Consequently,
if (3.12) holds then there exists ¢ > 0 such that inequality (1 + &¢~1)" [1l-;a < 1holds.

It follows from Theorem 3.1 and Remark 3.2 that under Hypothesis (3.12), for every ¢ > 0 with
(14 Hn [Tl-;a < 1, there exist functions 6 € KL and /€ K7 such that for every x(tg) =
(X1(tg), . . ., Xn(tg)) € R" and for every measurable and locally essentially bounded functionsd;: %, —
[—aj,ai] (i=1,...,n), v: Ry = R, the solution x(t) = (X1(t), ..., Xx (1)) € R" with initial
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condition X (tg) = (X1(to), ..., Xn(tg))’ € R" corresponding to v: Ry — R and di: R, — [—a;, ai]
(i=1,...,n) sdisfiesforall t > tp:

exp((i — Dt)|xi (1) <6 (B(to)Ix(to)], t —to) + Gi sup_(exp((n — L))o (2))),

to<r <t

i=1,...,n—1, (3.13)

where

k-1
Gi:=4(1+e)’Rmax{1, max L+ H[lairi!,
=401 +¢) ‘ e (@+e7h 11_10 i+]

k—1
R:= 1, (A+et 1 147 Hk - .
maX‘ L(L+e™h max <a| maX' L max  (L4e7h) Hal+1+j ]) ]
In the above formulas, we have used the convention ap+j = aj fori = 1,..., n. Note that inequalities
(3.13) can be used for further analysis (for example, if system (3.7) is interconnected with another
system). Finally, borrowing the terminology from Karafyllis & Jiang (2007), inequalities (3.13) imply
that system (3.7) satisfies the weighted | SS property, as defined in Karafyllis & Jiang (2007).

We finish this section with an important remark.

REMARK 3.4. At thispoint, the reader may form the intuitive notion that (at least for the I SS case where
H(t, x,u) =x € X) eachfunctional Vi: %y x X x U - R4 (i =1,...,n) issomekind of measure
of aportionof statexj € Xj (i =1,...,n),wherex = (Xg,...,Xp) € X := X1 x ... x Ay. Whilethis
is certainly true for many interesting cases (see Example 3.3 above and Examples 5.1 and 5.2 below), it
is not true in general. The following examples show that

e it may be necessary to consider functionals, which are mappings of the state (see Example 3.5
below),

e it may be necessary to consider more than one functionals as measures of a portion of state (see
Example 3.6 below).

ExAamPLE 3.5. Consider the input-free linear planar system described by ODEs:

2

X1 =X2; Xo= —b X1 — 2bX2,

(3.14)
X = (X1, X2) € R?,

where b > 0. It is very difficult to prove global asymptotic stability of 0 € %2 for (3.14) by means
of small-gain arguments (using Theorem 3.1 or any other small-gain result in the literature) and using
functions V1(x1) and V2(x2) each one depending on only one component of the state vector. This hap-
pens because the x1-subsystem, i.e., X1 = x» does not satisfy the | SS property with respect to the input
x2 € R. On the other hand, by using the functions V1 (x1) := x2 and Va(x1, X2) := (X2 + bx1)?, one
can show that the hypotheses of Corollary 4.2 below hold (and consequently the hypotheses of Theorem
3.1; see the proof of Corollary 4.2) and that 0 € %2 is uniformly GAS. The example shows that it may
be necessary to consider functions Vi: R4 x X x U - Ry (i =1, ..., n), which are mappings of the
state.
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ExAMPLE 3.6. Consider the input-free planar system described by ODEs:
X1 = —ax1 + max(0, X2),
X2 = X1 — max(rixz, rax2), (3.15)
X = (X1, %) € %,

wherea, rq, r> > 0. If the functions V; (xj) := xi2, i = 1, 2 are used, then we can show that 0 € %2 for
(3.15) isuniformly GAS provided that

1 < amin(ry, rp).

The proof can be achieved by means of Corollary 4.2 below. One the other hand, if the functions
Vi(x1) 1= X2, Va(x2) 1= (max(0,x2))2, Va(x2) := (min(0, x2))? are used, then we can show that
0 € %2 for (3.15) is uniformly GAS provided that

1 <amax(ri, o).

Again, the proof can be achieved by means of Corollary 4.2 below. The example shows that it may be
necessary to consider more than one functionals as measures of one component of the state.

4. Vector Lyapunov functions and functionals

In this section, we provide sufficient Lyapunov-like conditions for the verification of Theorem 3.1 for
three types of systems. (i) systems described by ODEs, (ii) systems described by RFDEs and (iii)
sampled-data systems. Note that since families of Lyapunov functions (or functionals) are employed,
the obtained results constitute conditions for vector Lyapunov functions (or functionals) for the (U)IOS

property.

4.1 Systems of ODEs
We consider systems described by ODEs of the form:
x=f@,x,u,d), Y =H({,x),
xeR", YeRN, ueU, deD, t=>0, (4.1)

wheeD C %, U C ™ withO e Uand f: Ry x R" x U x D —» R, H: %y x R —» KN
are continuous mappings with H(t,0) = 0, f(t,0,0,d) = Ofor al (t,d) € R+ x D that satisfy the
following hypotheses:

(A1) Thereexistsasymmetric positive-definitematrix P e R"*" such that for every bounded | C R
and for every bounded S ¢ R" x U, there exists a constant L > 0 satisfying the following
inequality:

(x —y)YP(f(t,x,u,d)— f(t,y,u,d) <Lx—yl?
vtel, V(X,u,y,uyeSxS, vdeD.
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(A2) Thereexista € Koo, y € KT suchthat | f(t, x,u,d)| < y(t)a(x| + |u]) foral (t,x,u,d) e
Ry x R x U x D.

(A3) Thereexist functionsV; € C1(%y x R RN =1,...,k), W € CL%y x R"; Ry, a1, a,
az,as € Koo u, B,k € K¥, 0 e N1, g € Nk.yi,j € N1, pi € N1, i, j =1,...,k, afamily of
positive-definite functions p; € 00(9{+; R4)(i =1,...,k)andaconstant 1 € (0, 1) such that
the following inequalities hold for all (t, x, u) € R4 x K" x U:

ar(|H(t, )] <  max V. (t, x) <ax(B®IxD, (4.2)

.....

ag(u®)IX]) = g(Vilt, x), ..., Vi(t, X)) — x(t) < W(t, x) < as(B(1)Ix]) (4.3
sup[a—(t x)+ (t x)f(t,x,u,d):deD —W (t, x)

+ Amax{¢(Ju]), maxj—1,.. k Pj(Vj(t, X))} (4.4)

andforeveryi=1,...,kand (t,x,u) e Ry x R" x U thefollowing implication holds:

,,,,,

< —pi(Vi(t, X)) (4.5)

Our main result concerning systems of the form (4.1) is the following result which provides sufficient
conditions for Theorem 3.1 to hold.

THEOREM 4.1 (VECTOR LYAPUNOV FUNCTION CHARACTERIZATION OF THE |OS PROPERTY).
Consider system (4.1) under Hypotheses (A1-A3). If the small-gain conditions (2.4a,b) hold, then sys-
tem (4.1) satisfies the |OS property withgainy = al‘1 00 € N7 fromtheinputu e My, where

o6y i =, max, o (max || max max, s (03N max, by (3 cON) )] ) (49

....................

and

i=1....k 4.7)

Moreover, if f € KT isbounded, then system (4.1) with output Y = H (t, x) satisfiesthe UIOS property
withgainy =a;* o6 e N fromtheinputu e My.

Remark on Theorem 4.1: The proof of Theorem 4.1 (see Section 6) shows that inequalities (4.2) and
(4.5) are used for the derivation of inequalities (3.1) and (3.6), while inequalities (4.3) and (4.4) are used
for the derivation of inequalities (3.2) and (3.3). Hypotheses (A1) and (A2) are regularity hypotheses
that guarantee uniqueness of solutions and continuity of the solutions with respect to initial data for
system (4.1).

For the ISS case where H (t, x) = x, onecan set W (t, X) = 0in Theorem 4.1 to arrive at a corollary on
the vector Lyapunov function characterization of the | SS property.
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COROLLARY 4.2 (VECTOR LYAPUNOV FUNCTION CHARACTERIZATION OF THE |SS PROPERTY).
Consider system (4.1) under hypotheses (A1) and (A2) and suppose that there exists a family of func-
tions Vi € CY(R;y x KM R4)(i = 1,...,k), functions az, a2 € Koo, f € KT, 0 € N1,pij €
Ni,i,j = 1,...,k and a family of positive-definite functions pj € CO®Ry; R = 1,...,k),
such that

a(lx) <. max Vit x) < a(fOIxD, V(LX) & Ry x R (4.8)

.....

and implication (4.5) holdsfor every i = 1,...,k and (t, x,u) € Ry x K" x U. If, additionally, the
small-gain conditions (2.4a,b) hold, then system (4.1) satisfiesthe | SS property withgainy = a; Lo e
N from the input u € My, where @ € N is defined by (4.6) and (4.7). Moreover, if 8 € Kt is
bounded, then system (4.1) satisfies the UISS property with gain y = a; 156 e N1 from the input
ue My.

Comparison of Theorem 4.1 and Corollary 4.2 with existing results. The reader should compare
the result of Corollary 4.2 with Theorem 3.4 in Karafyllis et al. (2008a). It is clear that Theorem 3.4 in
Karafyllis et al. (2008a) is a special case of Corollary 4.2 with yi j(s) = a(s) forali, j =1,...,Kk,
wherea € N7 with a(s) < s for s > 0. Alternative vector Lyapunov characterizations are based
on the main result in Dashkovskiy et al. (2007) (e.g., Theorem 3.6 in Karafyllis et al., 2008a) or on
the cyclic small-gain condition in Tedl (2005) (see for example Theorem 2 in Jiang & Wang, 2008).
In order to demonstrate the applicability of our results to large-scale interconnected systems, consider
the case

Xj = fid,x,u), i=1,...,k,

X=(X'l,...,X(()/eSKN, deD,ueU,
wherexj € ®",i =1,....,k, N = ny +--- + ng, D c % isanon-empty compact set, U C ®™
is a non-empty set with0 € U, fi: D x ®N x U — %R,i = 1,...,k are localy Lipschitz map-
pings with fj(d,0,0) = Oforald € D,i = 1,...,k. We assume that the UISS property holds

for each subsystem %; = fj(d, x, u) with input (u, X1, ..., Xj—1, Xi+1,...,Xk) (i = 1,...,k). Let
Vi € C1®y x ®"; R = 1,...,k) be ISS-Lyapunov functions for each of the subsystems,
i.e. positive definite and radially unbounded functions for which the following inequalities hold for
i=1...,k:

sup [Vvi(xi)fi(d,x,u): ueU,x=(g,...,x) e RN,
deD

,,,,,

for certain functions ¢ € N1,yi,j € N1,i, ] = 1,...,k and certain positive-definite functions p; e
COWy; %y (i = 1,...,k). Working with the Lyapunov-like functions V; € CL(%, x R"; %Ry)
(i=1,...,k)andexploiting Corollary 4.2, we can guarantee that the U1 SS property holdsfor the above
system if the small-gain conditions (2.4a,b) hold. It should be clear that the functions y; j € M4,
i,j =1,...,k arethe actua gain functions, i.e., the following inequalities hold for al i = 1,...,Kk,
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t >0,x(0) e %N andu € My:

Vi(xi(1)) < maXIUi(Vi (Xi(O)),t),C( sup IU(T)I), .:anxkyi,j( sup Vj (Xj(T)))}

o<zt =4 o<t

for certainoj € KL (i = 1,...,Kk). Since yji(s) = Ofori = 1,...,k, then the above inequalities
are nothing else but the inequalities of the max-formulation of the UISS property for each subsystem
Xj = fi(d, x, u) withinput (u, X1, ..., Xi—1, Xi+1, ..., Xk) (i = 1,...,Kk) and V;(x;) replacing |x;| for
i=1,...,k.

4.2 Systems described by RFDES

Let D C %' be anon-empty set, U C %™ a non-empty set with 0 € U and )V a normed linear space.
We denote by x (t) the unique solution of the initial-value problem:

X(t) = f(, Tr(t)x, ut), d()),
Y () = H(, T (H)x), (4.9
x(t)eR", Y{t)eY, d)eD, ut)eU

with initiadl condition T, (to)x = xg € CO(—r,0]; R"), wherer > 0 is a constant, T,(t)x =
X(t +0);0 e [-r,0] and the mappings f: Ry x CO([—r,0;R") x U x D — R", H: Ry x
CO(—r, 0]; ®}") —» Y satisfy f(t,0,0,d) =0, H(t,0) = Oforall (t,d) € Ry x D.

The following hypotheses will be imposed on systems of the form (4.9):

(S1) The mapping (x,u,d) — f(t, x,u,d) is continuous for each fixed t > 0 and there exists a
symmetric positive-definite matrix P € R"*" with the property that for every bounded | C R,
and for every bounded S c CO([—r, 0]; ®") x U, there existsa constant L > 0 such that

(x(0) — y(0)'P(f(t,x,u,d) — f(t,y,u,d)) < L MaX,e[—rq [X(z) — y()|> = L||Ix — y||?
Vtel,V(x,u,y,u)eSxS,vd € D.

(S2) Thereexista € Koo, y € KT suchthat | f (t, x,u, d)] <y Oa(lx|lr + |u]) fordl (t, x,u,d)
Ry x CO—r,0; ") x U x D.

(S3) There exists a countable set A C R4, which is either finiteor A = {tx;k = 1,..., co} with
tkyr > tx > Oforal k = 1,2,..., and limty = 400, such that the mapping (t, x,u,d) €
(R4 \A) x CO([—r,0; %" x U x D — f(t,x,u,d) iscontinuous. Moreover, for each fixed
(to, X, u,d) € Ry x CO([—r, 0]; R") x U x D, we havelim,_,i+ f(t, x,u,d) = f(to, x,u, d).

(S4) Themapping H: %, x CO([—r, 0]; ®") — Y is continuous.

Hypotheses (S1-S3) are regularity hypotheses, which guarantee uniqueness of solutions and continuity
of the solutions with respect to initial data for system (4.9). Hypothesis ($4) is a standard technical
hypothesis for control systems described by RFDES.

The class of functionals which are ‘amost Lipschitz on bounded sets’ was introduced in Karafyllis
et al. (2008b,c) and is used extensively in the present work. For the sake of completeness, werecall here
the definition in Karafyllis et al. (2008b,c).
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DEFINITION 4.3. We say that a continuous functional V: [—a, +00) x CO([—r, 0]; ®") = Ry, r > 0,
a > Ois‘'amost Lipschitz on bounded sets', if there exist non-decreasing functions M: R4 — R,
P: Ry > Ry, G: Ry — [1, +00) such that for al R > 0, the following properties hold:

(P1) For every X, y € {x € CO([—r, 0]; ®"); |Ix|lr < R}, it holdsthat
V(t,y) =Vt x| < MR)Ily = x|y Vte[-a,R].

(P2) For every absolutely continuous function x: [—r, 0] — R" with ||x||y < R and essentially
bounded derivative, it holds that

IV(t+h,x)—V(t,x)| <hP(R) (1+esssup_ <, olX(r)]) foralte[-a,R] and

0<h< ! —
G (R + esssup_r <, <o IX(7)])

For the case r = 0, we say that a continuous functional V: [—a, +00) x CO([—r, 0]; ") — %Ry, is
‘almost Lipschitz on bounded sets’, if V: [—a, +00) x R" — %R, islocally Lipschitz (note that by
convention CO([—r, 0]; ®") = %®"), i.e. for every compact S C [—a, +00) x R", there exists L > 0
suchthat |V (t,x) =V (z,y)| < L[t—z|+ L|x —y|fordl (t,x) €S, (z,y) € S.

If the continuous functional V: [—a, +00) x CO([—r,0]; ®") — %R, is ‘amost Lipschitz on
bounded sets, then we can define the derivative VO(t, x; ») in the following way (see also Karafyllis
et al., 2008b,c) for (t, x, v) € Ry x CO([—r, O]; K") x R":

POxs o) o limep (D ERKi0) = V(L)
h—0+ h

where Ep (x; v) with 0 < h < r denotes the following operator:

x(0)+ @ +hypw for —h<6<0,
En(x;v) := (4.109)
X(@ +h) for —r <6 < -h.

Particularly, for the caser = 0, we define
Enh(x; v) := x(0) + ho. (4.10b)

The following theorem provides sufficient Lyapunov-like conditions for the (U)IOS property. The gain
functions of the 10S property can be determined ‘explicitly’ in terms of the functions involved in the
assumptions of the theorem.

THEOREM 4.4 Consider system (4.9) under hypotheses (S1-$4) and suppose that there exist almost
Lipschitz on bounded sets functionals Q;: [—r + rj, +00) x CO([—r;,0; ") — %R, with 0 <
ri <r@ =1,...,k), Qo: [-r + ro, +00) x Co(—ro, 0; R") — R4 with0 < rg < r, func-
tionsai, az,as, a4 € Koo, 1, foc € K, 0 € N1,9 € M, 7ij € Ni,pi € Ni,i, j = 1,...,k,
positive-definite functions p; € CO(%4; Ry)(i = 1,..., k) and aconstant A € (0, 1) such that for all
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(t,x,u) € Ry x CO(—r, 0]; ®") x U, the following inequalities hold:
ar(|H(, )[ly) < i_nilanVi (t,x) <ax(B)IxXllr), (4.11)

.....

az(u®Ixlr) = g(Va(t, x), ..., Vk(t, x)) —x (1) < W(t, x) < as(BOIIxIlr), (412

,,,,,

where
Oe[—r+r;,0]
W(t,x):= sup  Qolt +6, Tr,(0)x) (4.14)
Oe[—r+ro,0]

andforeveryi =1,...,kand (t, x,u) € ®; x CO(—r, 0]; R") x U, the following implication holds:

< —pi(Qi(t, T (0)x))’ (4.15)

Finally, suppose that the small-gain conditions (2.4a,b) hold.

Then system (4.9) satisfies the 10S property with gain y = al‘1 06 € N1 fromtheinputu € My,
whered e N7 isdefined by (4.6) and (4.7). Moreover, if 8 € KT isbounded, then system (4.9) satisfies
the UIOS property with gainy = a; > 00 € N; fromtheinput u € My.

When H (t, x) = X, setting Qo(t, X) = 0in Theorem 4.4 leads to aresult on the | SS of system (4.9).

COROLLARY 4.5 Consider system (4.9) under hypotheses (S1-$4) and suppose that there exists a
family of almost Lipschitz on bounded sets functionals Qi: [—r + ri, +00) x CO([—rj, 0]; R") — Ry
with0 <rj <r(i =1,...,k), functionsas, a2 € Koo, f € KT, 0 € N1,7ij € NM,i, j=1,...,k,
and afamily of positive-definite functions p; € CO(%4; %4)(i = 1,...,k), suchthat for al (t, x, u) €
R, x CO(—r, 0]; ®") x U, the following inequality holds:

ar([Ix|lr) < i:rrlwaxkvi (t, x) < ax(B®)Ixlr), (4.16)
where
Vitt,x):=  sup  Qit+6,T,@)x), i=1...,k (4.17)
Ge[—r+ri,0]

and implication (4.15) holds for every i = 1,...,k and (t,x,u) € %y x CO(—r,0]; k") x U. If,
additionally, the small-gain conditions (2.4a,b) hold, then system (4.9) satisfies the |SS property with
gainy = al_1 06 e Ni fromtheinputu € My, where 8 e N isdefined by (4.6) and (4.7). Moreover,
if # € KT isbounded, then system (4.9) satisfies the UISS property with gain y = al_l 08 e N1 from
theinputu € My.
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REMARK 4.6. It isof interest to note that some of the functionals Q;: [—r + rj, +00) x CO([—r;, O];
R") — R in Theorem 4.4 and Corollary 4.5 are allowed to be functions (case of rj = 0). Thisreminds
the case of Razumikhin functions, which are used frequently for the proof of stability properties of
systems described by RFDES (see Karafylliset al., 2008c; Mazenc & Niculescu, 2001; Niculescu, 2001;
Teel, 1998). Consequently, Theorem 4.4 and Corollary 4.5 allow the flexibility of using Lyapunov-like
functionals with Razumikhin-like functionsin order to prove desired stability properties.

REMARK 4.7. It should be clear that the convention CO([0, 0]; ®") = R" allows Theorem 4.4 and
Corollary 4.5 to be used in the case of systems described by ODES (case of r = 0). Inthis case, Theorem
4.4 and Corollary 4.5 are generalizations of Theorem 4.1 and Corollary 4.2: the use of locally Lipschitz
functions is allowed and discontinuities of the right-hand side of the differential equations with respect
to time are allowed. Moreover, in the time-delay case (case of r > 0), the diagonal gain functions y;
fori =1,...,k play asignificant role (see Example 5.1 below) if Razumikhin-like functions are used.

4.3 Sampled-data systems

We consider switched systems, described in the following way: given apair of sets D € %!, U € ®™
with 0 € U, apositive function h: ®" x U — (0, r], which is bounded by a certain constant r > 0 and
apair of vector fields f: R" x K" x Dx U x U — R, H: R" — R¥, we consider the switched system
that produces for each (tg, Xg) € R4 x R" and for each triplet of measurable and locally bounded inputs
d: %y - D,d: %y — R4, u: Ry — U, the piecewise absolutely continuous functiont — x(t) € ®",
viathe following algorithm:

Stepii:

(1) Given 7j and x(zj), calculate 71 using the equation 7j 11 = 7j 4+ exp(—d(zi))h(x(zi), u(zi)),

(2) Computethestatetrgjectory x(t),t € [, zi+1) asthe solution of the differential equation x (t) =

f(x (), x (i), d(t), u(t), u(zi)),
(3) Calculate x(zj41) using the equation X (zj+1) = Iimt_”i:r1 X(t).

Fori = 0, wetake g = tg and x(zg) = X (initial condition). Schematically, we write
X(t) = f(x(), x(zi), d(V), u(t), u(zi)), telz,it),
70 = tO, Ti+1 =T + exp(_d(‘[i))h(x(‘[i)a U(Ti))s I = Oa 15 ey (418)

Y (1) = HX(®)

withinitia condition x (tg) = Xo. Switched systems of the form (4.18) are called ‘ sampled-data’ systems
(see also Nesic, et al., 2009; Tabuada, 2007, for the case of state-dependent sampling period).
In the present work, we study systems of the form (4.18) under the following hypotheses:

(R1) f(x,xo,d,u,up) iscontinuous with respect to (x, d, u) € ®" x D x U and such that for every
bounded S ¢ R" x R" x U x U there exists constant L > 0 such that

(x =)' (f (x, X0, d, U, uo) — (¥, Xo,d, U, Uup)) < LIx —yJ?
V(X, Xo, U, Up,d) € S x D,V (y, Xo, U, Upg,d) € S x D.
(R2) Thereexistsafunctiona € K, such that

[ (X, x0,d, u,ug)| <a(lx| + Ixol + |ul + [uol), V(u,up,d,X,Xp) €U x U x D x R" x R"
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(R3) H: %" — %K isacontinuous map with H (0) = 0.
(R4) Thefunctionh: ®" x U — (0, r] isapositive, continuous and bounded function.

The following theorem provides sufficient Lyapunov-like conditions for the (U)IOS property. The gain
functions of the 10S property can be determined explicitly in terms of the functions involved in the
assumptions of the theorem.

THEOREM 4.8 (VECTOR LYAPUNOV FUNCTION CHARACTERIZATION OF UIOS). Consider system
(4.18) under Hypotheses (R1-R4) and suppose that there exist non-negative functions V; e C1(%i";
R = 1,...,k),Q e CHR"; Ry),a1,82,a3,84 € Koo, & € N, 9 € M,yij € N, pi €
N1 i, j =1,...,k, congtants u,x > 0, 1 e (0, 1) and positive-definite functions p; € CO(%,; R,)
(i =1,...,k),such that the following inequalities hold for all (x, Xp, U, Ug) € R" x R" x U x U :

ar(|HX)]) < max Vi (x) < ax(|x)), (4.19)
az(|x]) — g(Va(x), ..., Vk(x)) —x < Q(x) < ag(Ix|) (4.20)
dsug VQ(x) f (X, X0, d, U, upg) < #Q(X) + 4 max [C(IUI), ¢(Juol), jzrqaxk P (Vj(x)),
[max p; (Vi (Xo))] (4.21)
andforeveryi =1,...,k and (x, u, ug) € R" x U x U thefollowing implication holds:

,,,,,

sup VV;i(x) f(x, X0, d, u, ug) < —pi(Vi(x)), (4.22)
deD

where the family of set-valued maps %R, x R" > (T, x) = A(T,x) CR"([i =1,..., k) isdefined by

X0 € R":3(d, u) € Mp x My with ¢(s, xp; d, u) =X,
AT, x)= U Cu®D < Vix), 7i,j (Vi@ (t, Xo; d, u))) < Vi(x) (4.23)
fordlt e[0,s]and j=1,...,k

and ¢ (t, Xo; d, u) denotes the solution of x(t) = f(x(t), Xp, d(t), u(t), u(0)) with initial condition
x(0) = xp corresponding to (d, u) € Mp x My.

Furthermore, if the small-gain conditions (2.4a,b) hold, then system (4.18) satisfies the UIOS prop-
erty withgainy = al‘1 06 e N1 fromtheinputu € My and zero gain from theinput d € Mg, , where
0 € N1 isdefined by (4.6) and (4.7).

For the ISS case where H (t, x) = x, one can set Q(x) = 0in Theorem 4.8 and obtain a result on
the vector Lyapunov characterization of UISS.

COROLLARY 4.9 (VECTOR LYAPUNOV FUNCTION CHARACTERIZATION OF UISS:) Consider
system (4.18) under Hypotheses (R1-R4) and suppose that there exists a family of functions V; €
Cl®"; %) = 1,...,k), functionsas, az € Koo, ¢ € N1, 7ij € N1,i, j = 1,...,k, and afamily
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of positive-definite functions pj € CO(%R; %4) (i = 1, ..., k), such that the following inequality holds
foral x e ®R":

a(Ixf) < max Vi(x) < az(Ix)) (4.24)
and implication (4.22) holds for every i = 1, ...,k and (x, u, ug) € R" x U x U, where the family
of set-valued maps R+ x R" > (T,x) > Ai(T,x) C R"(i = 1,...,k) is defined by (4.23) and
(1, Xo; d, u) denotes the solution of X (t) = f(x(t), o, d(t), u(t), u(0)) with initial condition x(0) =
Xo corresponding to (d, u) € Mp x My.

Under the small-gain conditions (2.4a,b), system (4.18) satisfies the UISS property with gain y =
1560 e N7 from theinput u € My and zero gain from theinput d € Mg, , whered € N7 is defined
by (4.6) and (4.7).

REMARK 4.10. It isworth noting that Theorem 4.1 and Corollary 4.3 in Karafyllis & Kravaris (2009)
can be easily derived from Theorem 4.8 and Corollary 4.9 with y; j(s) = a(s) fordli, j =1,...,k
and Q(x) = 0, wherea € N7 witha(s) < sfors > 0. Moreover, it isassumed in Karafyllis & Kravaris
(2009) that there exist aconstant R > 0 and afunction p € K, such that |x| < R + p(JH(X)|). Inthe
present work, such a hypothesisis not needed.

The interpretation of the family of set-valued maps %, x ®R" > (T,x) — Aj(T,x) € K"
(i = 1,...,k), defined in (4.23) is the following (the same with Karafyllis & Kravaris, 2009): each
Ai(T, x) C R"isthe set of all states xg € R" so that the solution of X (t) = f (x(t), Xg, d(t), u(t), u(0))
with initial condition x (0) = xg can be controlled to x € R" intimes less or equal than T by means of
appropriate inputs (d, u) € Mp x My that satisfy ¢ (supio,s) lU(t)]) < Vi(x) and such that the tragjec-
tory of the solution satisfies the constraint maxj—z, .. k SUPtc[o,] i, ] (Vj(x(1))) < Vi(x). Ingeneral, itis
very difficult to obtain an accurate description of the set-valued maps R x R" = (T, x) — Ai(T,x) C
R" defined by (4.23). However, for every g € CL(%i"; R), we have

Ai(T,x) C BX(T,x) = {xo € K" : [g(x0) — 9(X)| < ThI(X)} V(T,x) € Ry x K",

where

bl (x) := maX[IVg(é)f(f, Xo,d, u, ug)| : d € D, c(max{|ul, Jupl}) < Vi(x),

,,,,,

and V; € C1@®"; Ry)(i =1, ..., k) arethefunctionsinvolved in hypotheses of Theorem 4.8.

5. Examples and applications

ExAMPLE 5.1. Consider the time-delay system:
Xi () = —aixi () +gid®), Tr(H)x), i=1...,n, (5.1)

whered(t) e D C %M, a > 0(i =1,...,n)and gi: D x CO([—r,0; ®%") —» %R (i =1,...,n) ae
continuous mappings with

dSUp|Q|(d ,X)| < max Cl il (5.2

,,,,,

1102 ‘22 Jaquiaidas uo 81319 Jo ANSIaAUN [eda1uyda ] Je B10’s[eulnolpiojxo’iowew| Wwoly papeojumoq


http://imamci.oxfordjournals.org/

A VECTOR SMALL-GAIN THEOREM 329

and
Jwg[(xi(O) —yi(0)(gi(d,x) —gid,yD] <LIIx —yl3 i=1,...,n

for certainconstants L > 0,¢ij > 0(i, j=1,...,n)andforal x,y e CO([—r, 0]; ®"). We next show
that 0 € CO([—r, 0]; ®") isRGASfor (5.1) if cii <ajforali=1,...,nandthefollowingsmall-gain
conditions hold for eachr =2, ..., n:

Ciy,ioCipig - - - Cip,iy < @jq iy - . . &j; (5.3

foralije{l,...,n},ij #ixif j #Kk.

First, we note that Hypotheses (S1-34) hold for system (5.1) under Hypothesis (5.2) with out-
put H(t,x) := x e CO(—r,0]; R"). Define the family of functions Qi (x) = 3x2(0) and V;(x) =
SUPpep_rg Qi (X (@) = 3Ixill? (i = 1,...,n) for x e CO([—r, 0]; k). These mappings satisfy in-
equality (4.16) and definition (4.17) with ay(s) = 52, ax(s) = 352, A1) = ladr =0,
i=1,...,n. Let 1 € (0, 1) and note that implication (4.15) holds with y; j(s) := %s and pj (s) =
2(1 — 2)ajs. Condition (5.3) and thefact that cij < aj foralli =1,...,n impliestha't the small-gain
conditions (2.4a,b) hold for 4 € (0, 1) sufficiently close to 1. We conclude from Corollary 4.5 that
0 e CO([—r, 0]; ") isRGASfor (5.1).

It is important to note that the conditions on the diagonal terms cannot be avoided in genera if
Razumikhin-like functions are used. Such a situation occurs, for example when

X1(t) = —agxg(t) + cg,1d1(t)xa(t —r) 4 cy2d2(t)x2(t — 1),

X2(t) = —agxa(t) + c2,1d3(t)xa (1),
di)e[-1,1, i=123,

withcy 1 > 0,c12 > Oandcyg > 0. Inthiscase, 0 € CO([—r, 0]; %?) isRGAS for the above system if
Ci1 <a1 and C1,2C2,1 < azap.

Another thing that should be noted is that system (5.1) includes the case of a system described
by ODEs, i.e, the case gi(d(t), Tr(t)x) = gi(d®), xa(t),..., Xy ) fori = 1,...,n. In order to
illustrate the superiority of the results of the present paper compared to the results in Karafyllis et al.
(2008a), we note that the resultsin Karafyllis et al. (2008a) can show robust global asymptotic stability
of 0 € R" for the system (5.1) under Hypothesis (5.2) with g (d(t), T, (H)X) = gi (d(t), Xa(t), ..., Xn(1))
fori =1,...,n, provided that the inequalities

Gi,j<a for i,j=1,...,n

hold. The above inequalities imply directly inequalities (5.3). In order to understand how conservative
the resultsin Karafyllis et al. (2008a) are compared to the results of the present paper, we note that the
casecy 1 =C2=C33=C1=0a=a=a3=C3=C32=10C3=C31=1/2andc;2=2
satisfiesinegualities (5.3) and does not satisfy the above inequalities.

EXAMPLE 5.2. Consider the following biochemical control circuit model:
X1(t) = g(Xn(t — 7)) — arXa(t),
Xi(t) = Xi—1(t — tic) —ai Xi(t), i=2,...,n, (5.4)
X(t) = (X1(t), ..., Xp(t) e R",
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wherea; > 0,7 > 0(i = 1,...,n) areconstantsand g € C1(%; R,) isafunction with g(X) > 0
for all X > 0. This model has been studied in Smith (1994) (see pp. 58-60 and 93-94). In this book,
it is further assumed that g € Cl(%r, R4) is bounded and strictly increasing (a typical choice for
g € CY(%Ry; Ry isgX) = l+xp with p being a positive integer or g(X) = c+X with g, ¢ > 0).
It is shown that if there is one equilibrium point for (5.4), then it attracts all solutions. If there are
two equilibrium points, then all solutions are attracted to these points. Here, we study (5.4) under the
following assumption:

(H) There exist X > 0, K > 0and 4 € (0, 1) with aX; = g(X;;) and such that

K+ Xq
K+ X

X <a~lg(X) < Xj+ A|X = X|,fordl X >0, (5.5)

where a = [}_; aj.

The reader should noted that Hypothesis (H) is automatically satisfied for the case of Monod kinet-
ics, i.e, g(X) = c+X L2 withc > 0and ¢ > ac. Indeed, in this case, inequality (5.5) holdswith K = ¢
and A = X,’;C-i-c' where X = u . The case of Monod kinetics is typical for biochemical models (see,
for example Smith & Waltman, 1995)

Using small-gain analysis, we are in a position to prove

‘Consider system (5.4) under Hypothesis (H) and let r := maxij—=1,.nzi. Then for every Xo €
CO(-r, 0]; int(%})) thesolution of (5.4) withinitial condition T, (0)X = X satisfieslimi_, o0 X (t) =
X*, where X* = (X%, ..., X2) € int(R7) with (H, 1aj) s = g(Xp),fori=1,...,n—1.

It should be clear that in contrast to the analysis performed in Smith (1994) for (5.4) (based on the
monotone dynamical system theory), we do not assume that g € C1(9i,; %y) is bounded or strictly
increasing, Moreover, even if there are two equilibrium points note that (5.5) allows g(0) = 0 and
therefore 0 € R} can be an equilibrium point), we prove almost global convergence to the non-trivial
equilibrium.

A typical analysis of the equilibrium points of (5.4) under Hypothesis (H) shows that there exists an
equilibrium point X* € int(R'}.) satisfying:

(Haj) XF=g(X}),i=1...,n. (5.6)
i=1

In order to be able to study solutions of (5.4) evolving in int(%"}), we consider the following
transformation:

Xi = X{exp(x),i =1,...,n. (5.7)

Therefore, system (5.4) under transformation (5.7) is expressed by the following set of differential
equations:

. g(X; exp(Xn(t — n)))
. ‘al( 9(X3)

Xi(t) =aj(exp(xj—1(t — zi—1) = xi(t)) = 1), i=2,...,n,
X(t) = (X1(1), ..., Xn (1)) € R". (5.8b)

ep(=xa(t)) — 1) , (5.8
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First, we note that Hypotheses (S1-S4) hold for system (5.8) under Hypothesis (H) with output
H(t, x) := x € CO(—r, 0]; ®") and that 0 € CO([—r, O]; %) is an equilibrium point for (5.8). Define
the family of functions Qi (x) = 3x2(0) and Vi (X) 1= Supy[_r.q Qi (X(®)) = 3lIxi[lZ (i = 1,...,n)
for x € CO([—r, 0]; ®"). These mappings satisfy mequallty (4.16) and definition (4.17) with a1(s) :=
%52, a5(s) 1= 232 pt)=1andri :=0,i =1,.

We define y1 j(s) = O for j # n and yl,n(s) = %[Iog(l-i-e(exp(«/Z) —1))]%, where 6§ €
(max{b%l, A}, 1), 4 € (0, 1) being the constant involved in Hypothesis (H) and b := an Note that

Q2 (v oy (LFERRED epy(0) - 1))

g(X5 exp(Xn(=n)))
9(Xp)

= aix1(0) ( exp(—x1(0)) — 1) :

We consider the following cases:

(1) x1(0) < 0. In this case, the left-hand side inequality (5.5) implies that $Xa&PUam))

9(X3)
m@(p(xn( ‘L'n)) > mexp( |Xn( Tn)l) whereb = X*.Thelnequal-

ity 710(Va(x)) < Q1(x1(0)) implies In(1 + &(exp([xn(—n)]) — 1)) < —x1(0), which com-
bined with the previous inequalities gives

Q2 (a0 2y (2552 epy(0) - 1) )

(b + 1 — bo~1)(exp(—x1(0)) — 1)
b+ 1+bo-1(exp(—x1(0)) — 1)

< ax1(0)

(5.9)

(2) x1(0) > 0. In this case, the right-hand side inequality (5.5) implies that W <

1+21exp(Xn(—1n)) — 1| < 1+A(exp(IXn(—1n)]) — 1). Theinequality y1,n(Va (X)) < Q1(x1(0))
implies In(1 + 8(exp(xn(—zn)]) — 1)) < x1(0), which combined with the previous inequalities

gives
Q2 (v 2y (LFERRED epy(0)) - 1) )

< axa(0) (10~ = (1 — exp(—x1(0))). (5.10)

Combining the two cases, we obtain from (5.9) and (5.10) that the following implication holds:

71V (6) < Qu0(0) = QF (0520 (LR EREED o0 - 1) )

< —p1(Q1(x1(0))) (5.11)

—_pp—1 —_
with (9 = a3/ min | (1 2072)1 st~ /2), S e Bon |
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We next definefori = 2,...,n, yi j(s) = Ofor j #i—1and yii_1(s) i= [log@ + u (exp(v/'2s) —
1))]2, where 1 > 1isto be selected. Working in asimilar way as above, we obtainfori =2, ..., n:

yii—1(Vi (x)) < Qi (xi (0)) = Q2(xi (0); & (exp(Xi—1(—7i—1) — Xi (0)) — 1))
< =i (Qi (% (0))) (512

; () — (1 — o —1\a. (1—exp(=+/25)) i —
with pi(s) := (1 — u )a.\/z_slﬂfl(e(p(\/g)_l) fori = 2, oL
Therefore, we conclude from (5.11) and (5.12) that implication (4.15) holds.
Finally, we check the small-gain conditions. Exploiting the previous definitions of the functions
7i,j(8), i, j =1,...,n,weconclude that the small-gain conditions (2.4a,b) hold if and only if (yn.n_10

Yn—1n—20...0y1n)(s) <sforals > 0.Since
1 -
(Fna-107n-1n-20 ... 0 710)(S) = S[l0g(L + 1" 0(exp(v25) — )%,

the small-gain conditions (2.4a,b) hold with x4 € (1,9‘n%1). Thus, Corollary 4.5 implies that 0 e
CO([—r, 0]; ®") is uniformly GAS for system (5.8). Taking into account transformation (5.7), this im-
pliesthat for every X € CO([-r, O]; int(R"})), the solution of (5.4) with initial condition T, (0)X = Xo
satisfies limy_, o0 X (1) = X*, where X* = (X%,..., X%) € int(®") with (H'jzlaj) X* = g(X2),
fori=1,...,n—1.

Again, we can make a comparison between the results of the present work and the results in
Karafyllis et al. (2008a) for the delay-free case rj = 0, i = 1,...,n. In this case, the results in
Karafyllis et al. (20088) cannot show global asymptotic stability: the gain functions yji_1(s) =
%[Iog(1+ u(exp(+/2s) — 1)))2fori =2,...,nand x > 1do not satisfy vii—1(8) <sfors > 0.

6. Proofs of the main results of Section 4

Proof of Theorem 4.1. We want to show that all hypotheses of Theorem 3.1 hold with

L(t, x) := max [W(t, X), n;axkvi tx)i. (6.2)
1=1,...,
Note that Hypothesis (H3) of Theorem 3.1 is a direct consequence of inequalities (4.2), (4.3) and defi-
nition (6.1). Moreover, Hypothesis (H4) of Theorem 3.1 isadirect consequence of inequality (4.2) with

Consider asol utio,h“i(t) of (4.1) corresponding to arbitrary (u, d) € My x Mp with arbitrary initial
condition x(tg) = xo € R". Clearly, there exists a maximal existence time for the solution denoted by
tmax < +oo. Let Vi(t) = Vi(t, x(t)),i =1,...,k, W(t) = W(t, x(t)) absolutely continuous functions
on [to, tmax) and let L(t) = L(t, x(t)). Moreover, let | C [to, tmax) be the zero Lebesgue measure set
where x (1) is not differentiable or x(t) # f(t, x(t), u(t), d(t)). By virtue of (4.5), it follows that the
following implication holdsfor t € [to, tmax)\l andi =1, ..., k:

Vi(t) > max [C(IU(I)I), J_:”Iaxk?i,j(Vj M) = Vi) < —pi(Vit) (6.2)

.....
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and by virtue of (4.4), we get for t € [to, tmax)\I:

W (t) < —W(t) + 4 max IC(IU('E)I), ;e P (Vj (t))] : (6.3)
Lemma 3.5 in Karafyllis & Kravaris (2009) in conjunction with (6.2) implies that there exists a family
of continuous functionsoj (i = 1,...,k) of classK L, with gi (s, 0) = s for all s > 0 such that for all
t € [to, tmax) andi =1,...,k, wehave

ai(Vi(to), t —to); SUp o (_max i.j (Vj(r)),t—f)
VI (t) < max togtgt J:l ..... k (64)
sup i (¢(lu(o). t = 7).

oSt
Moreover, inequality (6.3) directly impliesthat for al t € [tg, tmax), we have
W(t) < W(to) + /lmaxig“( Sup IU(S)I), max pj ( sup V;j (S))} . (6.5)

to<Cs<t 1=5 to<Cs<t

Let o(s,t) := maXi=1,. k 0i(S,t), which is afunction of class KL that satisfies o (s,0) = s for all
s > 0. It follows from (6.4), (6.5) and definition (6.1) that for al t € [to, tmax) andi = 1, ..., k, we get

Vi(t) <maxyVi(to), max yij{ sup Vj(s)).o sup [u(s)l )¢, (6.6)
j=1..k to<<s<t to<<s<t
Vi(t) <max o (L(to),t —to), max yij{ sup Vj(s)).c| sup [u@Gs) )t (6.7)
j=1..k to<<s<t to<s<t
1
W(t) < maxq——W(to), | sup [u(s)l ), max pi{ sup Vi(s) )¢ - (6.8)
1-1 to<s<t i=1,..k to<s<t

Clearly, inequalities (6.7) show that (3.1) holds with 7": ®X — R, I'(x) = (11(x), ..., [n(X))’
with 75 (x) = maxj—1,..k 7i,j(xj) fordli = 1,..., k and x € R}. Furthermore, Hypothesis (H2) of
Theorem 3.1 holds as well.

Define

pi(s) :=¢(s), forals >0 (6.9)

— . . . R n
p(x) := max {.:”faxk J:rriaxk 7i,i (Xj), J:r‘riaxk pJ(x,)] forall x e R (6.10)
Combining estimates (6.6), (6.8) and exploiting definitions (6.1), (6.9) and (6.10), we get for all t €

L) < max{lTliL(to), p( sup V1(S),..., sup Vk(s)), p”( sup |u(s)|)}. (6.11)

to<s<t to<s<t to<s<t
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Inequality (3.2) is a direct consequence of (6.11), inequalities (4.2), (4.3) and Corollary 10 in Sontag
(1998) withv(t) = 1, p¥ € N1, p € N, asdefined by (6.9), (6.10) and appropriatea € N3 andc € K.
The reader should note that if 5 € K isbounded then c € K+ is bounded as well.

Consequently, all hypotheses of Theorem 3.1 hold with o (s, t) := maxj=1,.._k oi (s, t), whichisa
function of class KL that satisfies a(s,0) = s for al s > 0. The rest of proof is a consequence of
Remark 3.2 in conjunction with definitions (6.9) and (6.10). The proof is complete.

Proof of Theorem 4.4. We want to show that all hypotheses of Theorem 3.1 hold with L(t, x)
as defined by (6.1). Note that Hypothesis (H3) of Theorem 3.1 is a direct consequence of inequalities
(4.11), (4.12) and definition (6.1). Moreover, Hypothesis (H4) of Theorem 3.1 is a direct consequence

We next show that Hypotheses (H1) and (H2) of Theorem 3.1 hold as well. The proof consists of
two steps:

Step 1. We show that Hypotheses (H1), (H2) of Theorem 3.1 hold for arbitrary (tp, u, d) € R4 x My x
Mp and Ty (to)x = xg € C1([—r, O]; R").

Step 2. We show that Hypotheses (H1), (H2) of Theorem 3.1 hold for arbitrary (to, u, d) € Ry x My x
Mp and T, (to)x = xg € CO([—r, O]; R").

Step 1: Consider the solution x(t) of (4.9) corresponding to arbitrary (u,d) € My x Mp with
arbitrary initial condition Ty (to)x = xo € CL([—r, 0]; ®"). Clearly, there exists a maximal existence
time for the solution denoted by tnax < +00. By virtue of LemmaA.2 in Karafyllis et al. (2008b), and
Lemma 2.5 in Karafyllis et al. (2008c), we can guarantee that the functions Q; (t) = Qi (t, Ty, (t)X),
i =1,...,k Qo(t) = Qolt, Try(t)x) are absolutely continuous functions on [tg, tmax). Let Vi(t) =
Vi(t, Tr ()X) = SUPge[rqr,0 Qit +6), 1 =1, ..., K, W(t) = W(t, Tr (1)X) = SUPpe[_r4ry,0 Qolt +
) and L(t) = L(t, Ty (t)x) be mappings defined on [to, tmax). Moreover, let | C [to, tmax) be the zero
L ebesgue measure set where x(t) or Qj(t)(i = O, ..., k) is not differentiable or x(t) # f(t, T (t)x,
u(t), d(t)). By virtue of (4.15) and Lemma 2.4 in Karafyllis et al. (2008c), it follows that the following
implication holdsfor t e [to, tmax)\l andi =1, ..., k:

Qi (t) > max [C(IU(I)I), j:fqaxkyi,j(Vj (t))] = Qi) < —pi(Qi)) (6.12)

.....

Qo(t) < —Qol(t) + A max [C(lu(t)l), J.:rrllax P (Vj (t))} : (6.13)

.....

Lemma3.5in Karafyllis & Kravaris (2009) in conjunction with (6.12) implies that there exists afamily
of continuous functionsa; (i = 1,...,k) of classK L, with i (s, 0) = s for all s > 0 such that for al
t € [to, tmax) @di =1, ..., Kk, we have

6i(Qi(tg),t —tg); SUp gj (__rqaxk)’i,j(vj(f)),t —T)
Qi(t) < max st A= (6.14)
sup Gi (¢ (Ju(@)),t—1)

o<t <t
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Moreover, inequality (6.13) directly impliesthat for al t e [to, tmax), We have

Qo(t) < Qolto) +/1max‘§( sup IU(S)I), e pj( sup V; (S))} : (6.15)

to<Cs<t J=5 to<s<t

Using thefact that i (s, 0) = s foral s > 0, weobtainfrom (6.14) forall t  [to, tmax) andi =1, ..., k:

Qi(t) < maX[ﬁi(Qi(to),t—to),.maX Vi,j( sup Vj(S)),C( sup IU(S)I)]- (6.16)
j=1..k to<<s<t to<s<t

Letoj (i = 1,...,Kk) be functions of class KL, defined by oj(s,t) = sforals > 0,t € [O,r]
and oj(s,t) = gj(s,t —r)forals > 0, t > r. Usng the fact that Vi(t) = Vi, T, (t)x) =
SUPge[—rr;,0 Qit +6),1 =1,....k, weobtain from (6.16) for all t € [to, tma) andi =1,...,k:

Vi(t) < maxjoi(Vi(to),t —tg), max yij{ sup Vj(s)|),¢| sup [u@®)I ). (6.17)
j=1...k to<s<t to<s<t

Similarly, using (6.15) and the fact that W (t) = W (t, Tr (t)X) = SUPpe[—r4ro,0) Qo(t + ), we conclude
that (6.8) holds for all t € [to, tmax). Define o (s, t) 1= maxi=1, . k 0i (S, t), which is afunction of class
KL that satisfieso (s, 0) = s for al s > 0. It follows from (6.17) and definition (6.1) that inequalities
(6.6) and (6.7) hold for @l t € [to, tmax) @nd i = 1,..., k. Clearly, inequalities (6.7) show that (3.1)
i=1,...,kand x € RT.. Moreover, Hypothesis (H2) of Theorem 3.1 holds as well. Define p! € N1,
p € M, by (6.9) and (6.10). Combining estimates (6.6), (6.8) and exploiting definitions (6.1), (6.9) and
(6.10), we get inequality (6.11) for al t € [to, tmax)- Inequality (3.2) is a direct consegquence of (6.11),
inequalities (4.11), (4.12) and Corollary 10 in Sontag (1998) with v(t) = 1, p* € N1, p € N, as
defined by (6.9), (6.10) and appropriatea € N7 and ¢ € K. The reader should note that if # € KT is
bounded then ¢ € K+ is bounded as well.

Step 2: Let (to, Xp, U, d) € Ry x CL([—r, 0]; K") x My x Mp. Inequalities (6.7) in conjunction
with Proposition 2.9 imply for the solution x (t) of (4.9) correspondingto (u, d) € My x Mp withinitial
condition Ty (to)X = X € CL([—r, 0]; ") and for all t € [to, tmax):

V(©) < MAX {Q(7 (L(to). 0). Q (12 ([Iu®u] )} (6.1

where Q(x) = MAX({x, I'(x), I’ @(x), ..., '™V (x)}. Using (4.11), (4.12), (6.1), (6.11) and (6.18),
we obtain functions p € KT, a € Ky such that the solution x(t) of (4.9) corresponding to (u,d) e
My x Mp withinitial condition Ty (tg)x = xg € C1([—r, 0]; %") and for al t € [to, tmax):

ITr Oxlr < a(p(t) + lIXollr + sup IU(S)I). (6.19)
toSs<t

Lemma2.6 in Karafylliset al. (2008c) and (6.19) imply that system (4.9) isRFC fromtheinputu € My .

We next claim that inequalities (3.1) and (3.2) hold for al (to, Xo, u, d) € %4 x CO([—r, 0]; R") x

My x Mp andt > tg. The proof will be made by contradiction. Suppose on the contrary that there exists

(to, X0, U, d) € R4 x CO([—r, 0]; ®™) x My x Mp andt; > to such that the solution x (t) of (4.9) with
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initial condition T (tg)X = X corresponding toinput (u, d) € My x Mp satisfiesf (i1, to, Xo, d, u) > O,
where

L(t) — max {v(t — to), c(to), a (Ixollr) , P ([VIto.t))
P ([u()llultony) }

B(t, to, X0, d, U) := max

¢ (u@lulin) 3}

Using continuity of the mappings x — L(t,x), x — Vit,x) (i = 1,...,k) and continuity of
the solution of (4.9) with respect to the initial condition, we can guarantee that the mapping xo —
B(t1, to, Xo, d, u) is continuous. Using density of C1([—r, 0]; ®") in CO([—r, O]; %"), continuity of the
mapping xo — A(t1, to, Xo, d, u), we conclude that there exists Xg € C1([—r, 0]; ®") such that

~ 1
|5 (t1, to, X0, d, u) — B(t1, to, Ko, d, U)| < Eﬂ(tla to, Xo, d, U).

Thus, we obtain a contradiction.

Consequently, all hypotheses of Theorem 3.1 hold with ¢ (s, t) := maxj=1,.. k gi(s, t), whichisa
function of class KL that satisfies a(s,0) = s for @l s > 0. The rest of proof is a consequence of
Remark 3.2 in conjunction with definitions (6.9), (6.10). The proof is complete.

Proof of Theorem 4.8. We want to show that al hypotheses of Theorem 3.1 hold with L (t, x) as
defined by (6.1) and

W (t, X) i= exp(—(u + D)) Q(X). (6.20)

Note that definition (6.20) in conjunction with inequalities (4.20) imply the following inequality for all
(t,X) € Ry x R":
exp(—(u + Do)az(Ix]) — g(Vi(x), ..., Vk(x)) —x < W(t, x) < as(|x]).

Using Corollary 10 in Sontag (1998), we can find functions & € K, # € KT such that agl(s exp((u +
Dt)) < %é(s) for al t,s > 0. Consequently, we obtain exp(—(u + 1)t)az(s) > a~1(»(t)s) for all
t,s > 0. 7\lote that Hypothesis (H3) of Theorem 3.1 with S(t) = 1 isadirect consequence of previous
inequalities, (4.19) and definitions (6.1) and (6.20). Moreover, Hypothesis (H4) of Theorem 3.1 is a

Consider the solution x (t) of (4.18) under Hypotheses (R1-R4) corresponding to arbitrary (u, d, d) e
My x Mp x Mg, with arbitrary initial condition x(tg) = Xo € ®". Note that since system (4.18) is
autonomous (see Karafyllis, 2007a), it suffices to consider the case to = 0. By virtue of Proposition 2.5
in Karafyllis (2007a), there existsamaximal existence time for the solution denoted by ta < +o0o. Let
Vit) = Vi(x(®)),i=1,...,k, W(t) = W(t, x(t)), L(t) = L(t, x(t)) absolutely continuous functions
on [0, tmax). Moreover, let = := {70, 71, . . .} be the set of sampling times (which may befiniteif tmax <
4+oo) and p(t) := max{r exr : 7t <t},qt) == minfrex :7 >t}. Let | C [0, tnx) be the zero
L ebesgue measure set where x (t) is not differentiable or where X (t) £ f (x(t), x(zj), d(t), u(t), u(zj)).
Clearly, we have x(t) = ¢t — p(t), x(p(t)); Pd, Pru) for al t e [0, tmax), where (Piu)(s) =
u(p) +s), (Pd)(s) = d(p(t) +s), s > 0. Next, we show that the following implication holds
fort e [0, tma)\l andi =1,...,k:

Vi(t) = max{g( sup IU(S)I), ._fankVi,j( sup Vj (S)>} = Vi) < —pi(Vi(t). (6.20)

pt)<s<t J=4es p(t)<s<t
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In order to proveimplication (6.21), lett € [0, tmax)\I,1 = 1, ..., k, ¢ = p(t) and supposethat V; (t) >
max {¢ (SUPp(t)<s<t IUG)]) » MaXj=1,._k 7i.j (SUPpy<s<t Vj(S))}. By virtue of the semi-group prop-
erty for the previous inequality implies that ¢(Ju(z +5s)|) = ¢((Pu)(s)) < Vi(x(1)), 7i,j (Vj(¢
(s, x(7); Ped, Pru))) < Vi(x(t)) forals e [0,t — 7] and j = 1,...,k. In this case, by virtue of
definition (4.23) and thefact that t — ¢ < h(x(z), u(z)), it followsthat x(z) € Aj(h(x(z), u(z)), x(t)).
Sincex(t) = f(x(t), x(z), d(t), u(t), u(r)), we conclude from (4.22) that V; (t) < —pj (Vi (t)).

Lemma3.5in Karafyllis & Kravaris (2009) implies that there exists afamily of continuous function
oj of class KL(i = 1,...,k), with ¢j(s,0) = s for adl s > 0 such that for all t € [0, tnax) and
i=1 ...,k wehave

Vi(t)émaX{ai(Vi(O),t);_maX sup ai(yi,j( sup Vj(S)),t—f);
iz

=L..kogegt p(r)<s<e

Sup oj ((( sup |u(s)|),t — z’)} . (6.22)
0<r<t p(r)<s<e

,,,,,

forali =1,...,kand x € R aredirect consequences of the previous definition, estimates (6.22),
definition (6.1) and thefact that ¢j (s, 0) = s forals > 0andi =1, ..., k. Moreover, Hypothesis (H2)
of Theorem 3.1 holds as well.

Exploiting (4.21) and definition (6.20), we get for t € [0, tmax)\I:

.....

W) <-W@) +imaxic| sup JuE)l), max pj{ sup V@) ). (6.23)
pH<s<t j=L..k pH<s<t
Inequality (6.23) directly impliesthat for al t e [0, tmax), we have
Wt < max | —w©),c sp el ), max p s vio ) 629
1-1 0<s<t i=1,..,k 0<s<t

Define p € N1, p € Ny by (6.9) and (6.10). Combining estimates (6.22) and (6.24) and exploiting
definitions (6.9), (6.10) and (6.1), we obtain (6.11) withtg = Ofor al t € [0, tmax). Inequality (3.2) isa
direct consequence of (6.11) with tg = 0O, inequalities (4.19) and (4.20) withv(t) =c(t) = 1, p¥ € N1,
p € N, asdefined by (6.9), (6.10) and appropriate a € V.

Consequently, all hypotheses of Theorem 3.1 hold with o (s, t) := maxj=1,._k gi(s, t), whichisa
function of class KL that satisfies o (s,0) = s for al s > 0. The rest of proof is a consequence of
Remark 3.2 in conjunction with definitions (6.9) and (6.10). The proof is complete.

7. Conclusions

A novel small-gain theorem is presented, which leads to vector Lyapunov characterizations of the
(uniform and non-uniform) 10S property for various important classes of non-linear control systems.
The results presented in this work generalize many recent small-gain results in the literature and al-
low the explicit computation of the gain function of the overall system. Moreover, since the gain map
I : R — R isalowed to contain diagonal terms, the obtained results have direct applications to
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time-delay systems. Examples have demonstrated the effectiveness of the vector small-gain methodol-
ogy to large-scale time-delay systems, such as those encountered in mathematical biology.

Our future work will be directed at applications of the vector small-gain theorem to the non-linear
feedback design issue for various classes of non-linear control systems. Another interesting topic for
future research is to study the internal and external stability properties for coupled systems involving
integral input-to-state stable (ilSS, a wesaker notion than ISS; see Sontag, 1998) subsystems from a
viewpoint of vector small gain. Some preliminary results are reported upon in Ito & Jiang, 2009 for
interconnected systems consisting of two ISS and/or il SS subsystems.
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Appendix-Proofs of Proposition 2.7 and Theorem 3.1

Proof of Proposition 2.7. We prove implications (iv) = (i), (iii) = (ii) and (ii) = (iv) since the
implication (i) = (iii) is a consequence of Proposition 2.1.

(iv) = (i): Clearly, since I'®(x) < Q(x) foral k > 1, x € R, we have |F®(x)| < [Q(X)|
foral k > 1, x € R (note that r®x) e %1 ). Continuity of the mapping Q(x) = MAX({x, I"(x),
Ir'@x),..., r™D(x)} (which is a direct consequence of continuity of the mapping 7"(x)) implies
that for every ¢ > O there exists 6 > 0 such that x| < J, x € KT} implies |Q(x)| < ¢ (note that
Q(0) = 0). Thisimplies stability.

Since I': R7. — R}, is MAX-preserving, we have I'(Q(x)) = MAX{I'(x), '@ (x), ..., '™ (x)}
foralx e RY. Moreover, since I'® (x) < Q(x) foralk > 1,x € RY, itfollowsthat I"(Q(x)) < Q(x)
for al x e ®'.. Lemma 2.2 in conjunction with the fact that (iii) holdsand x < Q(x) for al x € R’}
impliesthat limy_,o0 7'® (x) = 0for al x e R1.

(iii) = (ii): If there exist s > 0 and some integer i = 1,...,n such that yji(s) > s, then the
non-zero vector x € R withx; = s and xj = Ofor j # i will violate (iii). Consequently, ;i (s) < s,
forals > 0,i=1,...,n.

Next, suppose that n > 1. Suppose that there exist somes > 0, r e {2,...,n}, indicesij e
{1,....n}, j=1,...,rwithij # ik if j % k suchthat (yi, i, 0 Vi,iz © - - - © ¥ir,iy)(8) = S. Without loss
of generality, we may assumethatij = j, for j = 1,...,r and consequently (y120y230...0pr1)
(s) > s. The non-zero vector x € R, withxy = s, Xj = (yj,j+10 Vj+Lj+20...0pr,1)(S) for j =
2,...,rand xj = Ofor j > r satisfies I'(x) > x and consequently Hypothesis (iii) is violated.
Therefore, (ii) must hold.

(i1) = (iv) The proof of thisimplication is adirect consequence of the fact that

Fi(k)(x) = max{(yi,j; © Yivjz - - - © Viker i) Xj) - Urs -5 k) € {1, .., n}k}

foralk > 1, x € R andi = 1,...,n. Using (ii), it may be shown that 7™ (x) < Q(x) =
MAX{X, I'(x), P (x), ..., F"D(x)} for dl x e K. Since I': R} — R, is MAX-preserving,
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we have I'(Q(X)) = MAX{I'(x), @ (x),...,rM(x)} for dl x e K. As a result, we obtain
r'(Q(x)) < Q(x) for al x e RT.. By induction, it follows that r'Qx) < Q) foral k > 1,
x € K. Sincex < Q(x), weobtain I"®(x) < Q(x) foral k > 1, x e R1.

The fact that implication (iii) holds is shown by contradiction. Suppose that there exists a non-zero
x € R with I"(x) > x. Consequently, for every i € {1,...,n}, thereexists p(i) € {1,...,n} with
7i,p)(Xp()) = Xj. With these inequalities in mind, there is at least onei € {1,...,n} with x; > O,
andaclosedcydle (i, ji,..., jr, i) suchthat (yi j, o yj;,j, © - .. © ¥j.i)(Xi) = Xj, which contradicts (ii).
Therefore, theimplication (ii) = (iv) holds.

The proof is thus completed.

Proof of Theorem 3.1. The proof consists of two steps:

Step 3. We show that X' is RFC from the input u € My and that for every (to, X, U,d) € R4 x X x
My x Mp thefollowing inequality holdsfor al t > to:

V() < MAX{Q(Lo (L (to), 0)), QA ([lIu(z) lizalito,1))} - (A.D)

Therefore by virtue of (A.1), (3.3) and definition (3.5), properties P1 and P2 of Lemma 2.16 in
Karafyllis & Jiang (2007) hold for system X withV = Vjandy = G; (i = 1,...,n). Moreover, if
B € K¥ isbounded then (3.3) implies that properties P1 and P2 of Lemma 2.17 in Karafyllis & Jiang
(2007) hold for system > withV =Vjandy =G (i =1,...,n).

Proof of Step 1: Let (tg, Xo, U, d) € R x X' x My x Mp. Inequality (3.1) impliesforal t e [to, tmax)

Vg < MAX [16(L (1), 0), (Vo> 1 ([ e p) |- (A2)

Proposition 2.9 in conjunction with (A.2) implies (A.1) for al t € [to, tmax)- It should be emphasized
that the small-gain conditions are exploited at this point: Proposition 2.9 assumes that the cyclic small-
gain conditions (2.4a,b) hold.

We show next that 2 is RFC from the input u € My by contradiction. Suppose that tmax < +0c0.
Then by virtue of the BIC property for every M > 0, there existst e [to, tmax) With ||4(t, to, Xo, U,
d)||x > M. Ontheother hand, estimate (A.1) in conjunction with the hypothesistma < 400 showsthat
there exists M1 > 0 such that supy <, ¢, IV (z)| < Ma. The fact that V (t) is bounded in conjunction
with estimate (3.2) implies that there exists M2 > 0 such that sup; <, ¢, L (r) < Ma. It follows from
(3.3) and inequality w(t)|#(t, to, X0, U, d)||x < b(L(t) + g(V (1)) + x(1)) that the transition map of
X, i.e, ¢(t, to, Xo, U, d), is bounded on [tg, tmax) and this contradicts the requirement that for every
M > Othereexistst € [to, tmax) With ||¢(t, to, X0, U, d)||x > M. Hence, we must have tyax = 400
and consequently, (A.1) holdsfor al t > to.

Let arbitrary r > 0, T > 0 and let arbitrary u € M(By[0,r]) N My, |IXollx < 1, to € [0, T],
d € Mp be given. Estimate (A.1) shows that there exists My := Ma(r, T) > 0 such thatsupy, <, -t,+1
|V (7)] < M1 < +00. Consequently, estimate (3.2) implies that there exists M, := Ma(r, T) > O such
that supy <, <t,+1 L () < M2 < +oo0. It follows from (3.3) and inequality x(t)|4(t, to, Xo, U, ) [l x <
b(L(t) + g(V (1)) + k(1)) that there exists M3 := M3(r, T) > 0 such that SUPy, <7 <tg+T ll¢(z, to, Xo, U,
d)llx < M3 < 400. Hence, it holds that

sup{||¢ (to + s, to, X0, U, d) [l x; u € M(Buy[O0,r]) N My,s € [0, T], [Xollx <Tr,to€[0,T],d € Mp}.
< 400

Therefore, we conclude that 2 is RFC from theinput u € My.

1102 ‘22 Jaquiaidas uo 81319 Jo ANSIaAUN [eda1uyda ] Je B10’s[eulnolpiojxo’iowew| Wwoly papeojumoq


http://imamci.oxfordjournals.org/

342 |. KARAFYLLISAND Z.-P. JANG

Step 4. We prove the following claim.

Claim: Foreverye > 0,k € Z,, R, T > 0, there exists zx(¢, R, T) > 0 such that for every
(to, Xo, U, d) € Ry x X x My x Mp withtg € [0, T] and ||xollx < R the following inequality holds:

V(©) < MAX{Q(12), TV Qo (L(t0). 0)), 6 ((U(®)ledlon)} forall t>to+m. (A3

Moreover, if 8, ¢ € K+ are bounded then forevery e > 0,k € Z,, R > 0, there exists 7x(¢, R) > 0
such that for every (to, Xo, U, d) € R+ x X x My x Mp with ||Xg|lx < R inequality (A.3) holds.

Note that Hypothesis (H2), which is equivalent with statement (i) of Proposition 2.7, and inequality
(3.3) guaranteesthe existence of k(¢, T, R) € Z4 suchthat Q(1e) > I'V(Q (Lo (b(R maxo<t<T A(1)),
0))) forall > k. If # € K* isbounded then k is independent of T. Therefore, by virtue of (A.3),
property P3 of Lemma2.16 in Karafyllis & Jiang (2007) holds for system X withV = V; and y = G;
(i=1,...,n). Moreover, if 8, ¢ € K™ are bounded then (A.3) implies that property P3 of Lemma2.17
in Karafyllis & Jiang (2007) hold for system X2 withV =V andy = G; (i = 1, ..., n). The proof
of Theorem 3.1 is thus completed with the help of Lemma 2.16 (or Lemma 2.17) in Karafyllis & Jiang
(2007).

Proof of Step 2. The proof of the claim will be made by inductiononk € Z .

First, we show inequality (A.3) fork = 1. Let arbitrary ¢ > 0, R, T > O, (to, Xo, U, d) € R x X x
My x Mp withtg € [0, T] and ||xollx < R be given. Inequality (3.1) in conjunction with inequality
(A.1) givefort > to:

V() <MAX {10 (L (o), t = 10), 7 (Q(Lo (L), 00, I (Q (7 ([IW(®) ey ) ) -

1 (@)} (A4
Since I'(Q(x)) < Q(x) and Q(x) > x for dl x € R, inequality (A.4) impliesfor al t > to:
V(1) < MAX {15 (L(to), t — to), I'(Q(1s (L (t0), 0))), Q (1 ([Iu(®)lled)fto,7)) } - (A.5)

Similarly inequality (3.2) in conjunction with inequality (A.1) givefort > to:
L(t) < max {v(t — t0), ¢(to), a(llxollx), P(Q(La (L(t0), 0))), p (Q (1¢ ([Iu()llelfto.11))) -

P ([ ) |- (A.6)

Note that (3.3) implies L(tg) < b(B(to)llXollx) < b(R maxogi<T A(t)). Using the properties of
the KL functions we can guarantee that there exists z1(e, R, T) > 0 such that o (b(R maxogi<T A(1)),
71) < e. Notethat if p € KT isbounded then r; > 0isindependent of T. Then it follows from (A.5)
that we have V (t) < MAX({le, I'(Q (1o (L(to), 0))), QA ([llu(z)llzelfto,t7))} for @l t > tg + 71. Since
G(s) = Q(1¢(s)) for @l s > 0 (aconsequence of (3.5)) and Q(1e) > 1e, we conclude that inequality
(A.3) holdsfor k = 1.

Next, suppose that for every ¢ > 0, R, T > O, there exists 7x(¢, R, T) > 0 such that for every
(to, Xo, U, d) € Ry x X x My x Mp withtg € [0, T] and ||Xollx < R (A.3) holdsfor somek € Z.
Letarbitrary e > O, R, T > 0, (to, Xo, U, d) € Ry x X x My x Mp withtg € [0, T] and || xollx < R be
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given. Note that the weak semi-group property impliesthat z (to, Xo, U, d) N [to + =«, to + 7« + r] # 9.
Letty € 7 (to, Xo, U, d) N [to + 7k, to + 7% + r]. Then (3.1) implies

V(t) < MAX {1o (L(tk), t —t), I'([V]e) 1 (U@ e )}, foral t>t. (A7)
Moreover, inequality (A.3) gives
[V][tk,q<MAx{Q(le),F<k)(Q<1a(L(to>,0))),G([||u(r)||u][to,t])}, foral t>t. (A8

Inequality (A.6) also implies:
L (1) < max {v(t — to), c(to), a(R), Qe (L (1), 0)), P (Q (L ([ @)l ) ) -

x ([0 el ) - (A.9)

Using (A.8) and the fact that 7"(G(s)) < G(s)for al s > 0 (adirect consequence of definition (3.5) and
the fact that 77(Q(x)) < Q(x) for al x e R.), we obtain

I (V1) < MAX{QQ2), I D(Q(o (L), 0)), 6 ([IU@ ]y )} foral t >t
(A.10)
Inequality (A.10) in conjunction with inequality (A.7), the fact that G(s) > Q(1r(s)) = 17(s) for all
s > Oand thefact that ty < to + =« + r implies:

V() < MAX Lo (L6, t —to — o — 1), Q(e), I Qe (L(to), 0)), G (Iu(®) el )}
foral t>tg+t+r. (A.11)

Inequality (A.9) in conjunction with the fact that 1o (p“(s), 0) < G(s), 1o (p(Q (1 (5))), 0) < G(5)
foral s > 0andthefactsthat ty <tg+ x +r,to € [0, T] and | Xollx < R impliesthat

(L), t—to— 7 —1) S MAX {Lo(F (&, T, R) t=to = 5= 1), G ([IN®le] ) |-
foral t>tog+ 1+, (A.12)

where

f(e, T,R):= max[ max v(t), max c(t),a(R),
0t <t (6,R, T)+r o<t<T

x p (Q (15 (b (R orgntang ﬁ(t)) O)))] . (A.13)

The reader should note that if §,¢c € K+ are bounded and i is independent of T then f can be
chosen to be independent of T aswell. Note that by combining (A.11) and (A.12), we get

V(t) < MAX {1o(f(s, T,R),t —tg— o — 1), Q(Le), I **D(Q(1s (L(tp), 0))),

G([nu(f)nu]m)}, foral t>to+ i +T. (A.14)
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Clearly, thereexistst(e, R, T) > Osuchthat o (f (¢, T, R), 7) < ¢. Define
+1(e, R, T) = (e, R, T)+r + (s, R, T) (A.15)

Adgain, the reader should notice that if f and 7y are independent of T then zx1 isindependent of T
aswell. Since Q(1le) > 1le, we obtain from (A.14):

V(©) <MAX{Q(), I*(Q(s (L), 0)), 6 ([Iu@) ey )} Foral
t>10+ k41 (A.16)

which showsthat (A.3) holds for k + 1.

To finish the proof, we assume that Hypothesis (H4) holds. Let ¢ > 0, R, T > O, (tp, Xo, U, d) €
Ry x X x My x Mp be arbitrary and denote Y (t) = H(t, ¢ (t, to, Xo, U, d), u(t)) fort > to. Using
(3.6), (A.1) and the following fact:

Fact: If p € Ny and R: ®7. — R is a non-decreasing mapping, then the following inequality
holds for all s, r € R: p(MAX{R(1s), R(1r)}) = max(p(R(1s)), p(R(1r))).

we obtain for al t > to:

1Y ®lly < max{a(Q(La (L), 0. a (Q (1 ([Nulledly )} - (A17)

Inequality (A.17) showsthat properties P1 and P2 of Lemma2.16 in Karafyllis & Jiang (2007) hold
for system X with V. = |[H(t, X, u)||y and y (s) := q(G(s)). Moreover, if # € K is bounded, then
(A.17) implies that properties P1 and P2 of Lemma 2.17 in Karafyllis & Jiang (2007) hold for system
2 withV = [H(, x,u)|ly and y (s) := q(G(s)).

Inequality (A.3) in conjunction with Hypothesis (H2), which is equivalent with statement (i) of
Proposition 2.7, and inequality (3.3) guarantees the existence of k := k(e, T, R) € Z, such that for
every (to, Xo, U, d) € R4 x X x My x Mp withtg € [0, T] and ||xollx < R thefollowing inequality
holds:

V(1) < MAX{Q(Le), G ([Iu(@)lledito) }»  foral t>to+ w (A.18)

If B,c € KT are bounded then k is independent of T. The above Fact in conjunction with (3.6),
(A.18) and definition (3.5) of G imply that property P3 of Lemma 2.16 in Karafyllis & Jiang (2007)
holds for system X with V. = |[H(t, x,u)|ly and y (s) = q(G(s)). Moreover, if g,c € KT are
bounded then (A.18) and (3.6) imply that property P3 of Lemma2.17 in Karafyllis & Jiang (2007) hold
for system X with V = ||H(t, x, u)|lyy and y (S) := q(G(s)). The proof is complete. O

1102 ‘22 Jaquiaidas uo 81319 Jo ANSIaAUN [eda1uyda ] Je B10’s[eulnolpiojxo’iowew| Wwoly papeojumoq


http://imamci.oxfordjournals.org/

