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a b s t r a c t

This paper develops a novel methodology to study robust stability properties of Nash
equilibrium points in dynamic games. Small-gain techniques in modern mathematical
control theory are used for the first time to derive conditions guaranteeing uniqueness
and global asymptotic stability of a Nash equilibrium point for economic models described
by functional difference equations. Specification to a Cournot oligopoly game is studied in
detail to demonstrate the power of the proposed methodology.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamical game-theoretical models have inherent uncertainty in many aspects. The uncertainty is related strongly to a
number of open questions which cannot be answered a priori:

1. Should the models be formulated in continuous time or discrete time?
The answer to the above question is crucial: models in discrete time will be described by difference equations (see

[1–9]) while models in continuous time are generally described by differential equations (with or without delays; see
[10,11]). The answer to the above question has significant consequences: the perception of time for each player in a
dynamic game-theoretical model affects their behavior.

2. What are the expectation rules that a player has for the other players?
Again the answer to the above question is crucial: the behavior of a player will heavily rely on expectations for the

actions of the other players. There is a large economic literature on the effect of expectation rules (e.g., naïve, backward-
looking, rational expectations, see [3,4,12,6] and references therein). Moreover, if expectation rules are using delay terms
then the consequences on stability can be important (see [10,13]).

3. What are the values of the various constants involved in a dynamic game-theoretical model?
Inmanydynamic games, the rate of change of the action of oneplayer is assumed to beproportional to either the devia-

tion of the action from the best reply (see for example [5,6]) or the gradient of the payoff function (see for example [5,11]).
The value of the proportionality constant cannot be known a priori.
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Therefore, the answers to important questions such as the existence of a Nash equilibrium point, the uniqueness of a Nash
equilibrium point and its stability properties are usually related to the specific assumptions made in order to cope with the
uncertainty. Consequently, the following question arises:

‘‘Can we extract robust information from an uncertain nonlinear economic model, which will hold no matter what
the uncertainty is?’’

The present work answers it affirmatively. In some cases, we can even show the existence of a Nash equilibrium point, its
uniqueness and its global asymptotic stability properties for all possible uncertainties. In order to be able to do this we
propose the following methodology:

• First, we formulate our models in continuous time by means of Functional Difference Equations (see [14–20]). By doing
so we convert a finite-dimensional problem to an infinite-dimensional problem, which seems to be a clear disadvantage
at first sight. However, in this way we can obtain all the features of continuous time and discrete time models. Indeed,
we will show that many models that appear in the literature can be considered as special cases of our proposed model.

• Second, we do not assume a specific expectation rule: instead, we will only assume that the expectation is consistent
with the history of the game (consistent backward looking expectation; see Definition 2.1 below).

• In order to be able to extract important information from the uncertainmodelwe use advanced stabilitymethods. Indeed,
by applying small-gain analysis (see [17–19]), we can guarantee that the Nash equilibrium point is unique and globally
asymptotically stable (see Theorems 3.1 and 4.2 below).

To our knowledge, this is the first time that such results are presented for dynamical game-theoretical nonlinear models.
The only other work which we have found and can address such questions, is [7]: our results generalize the results in [7].
Moreover, the results of [7] are applied in a discrete-time framework and cannot be used for the analysis ofmodels in contin-
uous time. As a byproduct of ourwork, wewill also give conditions for uniqueness of a fixed point (see Corollaries 3.2 and 3.3
below), which can be used in conjunction with classical fixed-point theorems and are different from other uniqueness con-
ditions in the literature (see [21]).

It should be noticed that the stability/uniqueness conditions obtained by the proposed methodology will be more de-
manding than the ones which can be obtained from the study of a specific model (with specific expectation rules, specific
values for the constants involved in themodel andwith a specific perception of time). However, this is expected since the sta-
bility/uniqueness conditions obtained by the proposedmethodology are sufficient conditions for global asymptotic stability
for an uncertain model, which contains many other models as special cases. To this end stability analysis by means of non-
linear small-gain theorems is utilized. Small-gain results have been used frequently in stability studies (see [22–25,17–19])
and are based on variations of the Input-to-State Stability property introduced by Sontag in [26] and the Input-to-Output
Stability property (see [25,16,27,28]).

The structure of the paper is as follows: in Section 2, we apply the above describedmethodology to the Cournot dynamic
oligopoly problem. There is a vast literature on this well-studied problem (see for instance [1,3,10,4–6,11,29,8,9]). For this
specific problem, we describe in detail our proposed methodology and we show how we can obtain results on the stability
properties of the Cournot equilibrium, which do not depend on the form of the uncertainty. The presentation of the special
case of the Cournot game before the general casewas preferred for tutorial purposes: all issues arising in the general case are
present in the Cournot game. In Section 3, we proceed to the more general case of dynamic strategic games and in Section 4
we discuss the problem of accommodating the rational expectations. Our concluding remarks are given in Section 5. Finally,
in the Appendix, we give the proofs of certain results of this work.

Notations. Throughout this paper we adopt the following notations:

∗ For a vector x ∈ ℜ
n we denote by |x| its usual Euclidean norm.

∗ ℜ
+ denotes the set of non-negative real numbers. For every t ∈ ℜ

+, [t] denotes the integer part of t , i.e., the largest
integer being less than or equal to t .

∗ We say that a non-decreasing continuous function γ : ℜ
+

→ ℜ
+ is of class N if γ (0) = 0.

∗ Let x : I → ℜ
n with [a, b] ⊆ I and supτ∈I |x(τ )| < +∞. We denote by ‖x‖[a,b] = supa≤τ≤b |x(τ )|.

∗ Let U ⊆ ℜ
n be a closed convex set. By PrU(x) we denote the projection of x ∈ ℜ

n on U ⊆ ℜ
n.

∗ The norm of a normed linear space X will be denoted by ‖‖X . More specifically, in the present work X will denote the
normed linear space of bounded functions x : [−T , 0] → ℜ

n with norm ‖x‖X = sup−T≤τ≤0 |x(τ )|, for given T ≥ 0.
If x : [−T , a] → ℜ

n, where a ≥ 0, is a bounded mapping then xt ∈ X with t ∈ [0, a] is defined by xt = {x(τ ) : t − T ≤

τ ≤ t} as usual in systems with delays (see [14]).
∗ For a vector q = (q1, . . . , qn) ∈ S1 × · · · × Sn we will use the notation (see [30])

q−i = (q1, . . . , qi−1, qi+1, . . . , qn) for 1 < i < n and n ≥ 3
q−1 = (q2, . . . , qn), q−n = (q1, . . . , qn−1) for n ≥ 2

i.e., q−i is the vector of order n−1 after deleting the ith component qi ∈ Si of the vector q = (q1, . . . , qn) ∈ S1 ×· · ·× Sn.
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2. Dynamic Cournot oligopoly

We consider the case of Cournot oligopoly where n players produce quantities of a single homogeneous product. The
reader should notice that the dynamics of the dynamic Cournot oligopoly game have been studied bymany researchers (see
for instance [1,3,10,4–6,11,29,8,9]). We assume that the payoff function for each player is expressed by:

πi = vi + pqi − ciqi −
1
2
Kiq2i , i = 1, . . . , n (2.1)

where Ki, ci, vi, i = 1, . . . , n are constants, qi ∈ [0,Qi], i = 1, . . . , n is the quantity of the commodity produced by the ith
player, Qi > 0 is the maximum level of production of the product for the ith player and p ≥ 0 is the price of the commodity.

Assuming a linear demand function:

p = b


a −

n−
i=1

qi


(2.2)

where a, b > 0 are constants satisfying a ≥
∑n

i=1 Qi and b > −
1
2 mini=1,...,n Ki, we obtain the best reply mapping for each

one of the players:

qi = fi(q−i) := min


Qi,max


0,

ab − ci
2b + Ki

−
b

2b + Ki

−
j≠i

qj


, i = 1, . . . , n. (2.3)

We define:

S := [0,Q1] × [0,Q2] × · · · × [0,Qn] ⊂ ℜ
n (2.4)

q = (q1, . . . , qn) ∈ S (2.5)

F(q) :=

f1(q−1)
...

fn(q−n)

 =


min


Q1,max


0,

ab − c1
2b + K1

−
b

2b + K1

−
j≠1

qj


...

min


Qn,max


0,

ab − cn
2b + Kn

−
b

2b + Kn

−
j≠n

qj




(2.6)

and we notice that the set S ⊂ ℜ
n as defined by (2.4) is compact and convex and that the map F : S → S as defined by

(2.6) is continuous. Consequently, Brouwer’s fixed point theorem guarantees the existence of at least one Nash equilibrium
q∗

∈ S with q∗

i = fi(q∗

−i) = min

Qi,max


0, ab−ci

2b+Ki
−

b
2b+Ki

∑
j≠i q

∗

j


for i = 1, . . . , n.

Next we assume that the dynamics of the game are described in continuous time as follows:

• every player forms an expectation for the behavior of all other players at each time t ≥ 0: the expectation of the ith
player for the production level of the jth player at time t ≥ 0 will be denoted by qexpi,j (t) ∈ [0,Qj] (j ≠ i, i, j = 1, . . . , n),

• every player determines her production level as a convex combination of a past production level and the best reply
response based on the expectations for the behavior of all other players at each time t ≥ 0, i.e.,

qi(t) = θi(t)min {Qi,max {0, qi(t − τi(t))}} + (1 − θi(t))

× min


Qi,max


0,

ab − ci
2b + Ki

−
b

2b + Ki

−
j≠i

qexpi,j (t)


, i = 1, . . . , n (2.7)

where θi : ℜ
+

→ [0, Θ], τi : ℜ
+

→ [r, T ], i = 1, . . . , n are in general unknown functions, 0 ≤ Θ < 1, 0 < r ≤ T are
constants (in general unknown).

The reader should notice that (2.7) is a model that evolves in continuous time, i.e., t ∈ ℜ
+. If the expectation rules qexpi,j (t)

(j ≠ i, i, j = 1, . . . , n), and the functions θi : ℜ
+

→ [0, Θ], τi : ℜ
+

→ [r, T ] (i = 1, . . . , n) were known, we would have
an accurate description of the dynamics of the Cournot oligopoly game. However, we will not assume exact knowledge of
the expectation rules but a specific consistency condition. First we give the definition for a Consistent Backward-looking
expectation with respect to the Nash equilibrium point q∗

∈ S.

Definition 2.1. An expectation rule qexpi,j (t) (where j ≠ i, i, j = 1, . . . , n) is called a Consistent Backward-looking
expectation with respect to the Nash equilibrium point q∗

∈ S if there exist constants 0 < r ≤ T such that:qexpi,j (t) − q∗

j

 ≤ sup
t−T≤τ≤t−r

qj(τ ) − q∗

j

 =
qj − q∗

j


[t−T ,t−r]

, for all t ≥ 0. (2.8)
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In other words the consistency condition (2.8) recognizes that it is not logical for the ith player to expect that the
production level of the jth manufacturer will deviate from its equilibrium level more than the highest deviation they have
experienced in the past. Next we present some examples of Consistent Backward-looking expectation rules:

(1) qexpi,j (t) = ai,j(t)
∑m

l=1 wi,j,l(t)qj(t − τi,j,l(t)) + (1 − ai,j(t))q∗

j , where ai,j(t) ∈ [0, 1], T ≥ τi,j,l(t) ≥ r > 0,
wi,j,l(t) ≥ 0 with 1 =

∑m
l=1 wi,j,l(t) for all t ≥ 0 and l = 1, . . . ,m. In discrete-time models the case τi,j,l(t) = t + l − [t],

ai,j(t) ≡ 1, wi,j,l(t) ≡ wi,j,l ≥ 0 with 1 =
∑m

l=1 wi,j,l is the usual backward-looking expectation, which gives qexpi,j (t) =∑m
l=1 wi,j,lqj(k − l) for t ∈ [k, k + 1).
(2) qexpi,j (t) = ai,j(t)


−r
−T hi,j(s)qj(t + s)ds + (1 − ai,j(t))q∗

j , where 0 < r < T , ai,j(t) ∈ [0, 1] for all t ≥ 0, hi,j :

[−T , −r] → ℜ is a Lebesgue integrable function with hi,j(s) ≥ 0 for almost all s ∈ [−T , −r] and 1 =


−r
−T hi,j(s)ds. Of

course, in this case it is required that qj(t) must be Lebesgue integrable and essentially bounded.
We notice the following important fact for consistent backward-looking expectations:

Fact 1. qexpi,j (t) (where j ≠ i, i, j = 1, . . . , n) is a Consistent Backward-looking expectation with respect to the Nash equilibrium
point q∗

∈ S if and only if there exist constants 0 < r ≤ T and a function di,j : ℜ
+

→ [−1, 1] such that:

qexpi,j (t) = min

Qj,max


0, q∗

j + di,j(t)
qj − q∗

j


[t−T ,t−r]


, ∀t ≥ 0. (2.9)

Proof of Fact 1. Assume first that qexpi,j (t) (where j ≠ i, i, j = 1, . . . , n) is a Consistent Backward-looking expectation with
respect to the Nash equilibrium point q∗

∈ S, i.e., that (2.8) holds. We distinguish the following cases.
Case 1: If qexpi,j (t) = 0, then (2.8) implies that q∗

j ≤
qj − q∗

j


[t−T ,t−r]

. In this case we define di,j(t) = −1 and equality (2.9)
holds.
Case 2: If qexpi,j (t) = Qj, then (2.8) implies that Qj − q∗

j ≤
qj − q∗

j


[t−T ,t−r]

. In this case we define di,j(t) = 1 and equality
(2.9) holds.

Case3: If qexpi,j (t) ∈ (0,Qj) and
qj − q∗

j


[t−T ,t−r]

> 0 then equality (2.9) holdswithdi,j(t) = sgn

qexpi,j (t) − q∗

j

 qexpi,j (t)−q∗
j

qj−q∗
j


[t−T ,t−r]

.

Inequality (2.8) implies that
di,j(t) ≤ 1.

Case 4: If qexpi,j (t) ∈ (0,Qj) and
qj − q∗

j


[t−T ,t−r]

= 0 then inequality (2.8) implies that qexpi,j (t) = q∗

j . In this case equality
(2.9) holds for arbitrary di,j(t) ∈ [−1, 1].

On the other hand, if (2.9) holds then qexpi,j (t) ∈ [0,Qj] for all t ≥ 0. Moreover, the reader can verify that inequality (2.8)
holds. The proof is complete. �

For the dynamical system (2.7) we make the following assumption:

(H). All expectation rules qexpi,j (t)(j ≠ i, i, j = 1, . . . , n) are Consistent Backward-looking expectations with respect to the Nash
equilibrium point q∗

∈ S.

The previous fact shows that hypothesis (H) is equivalent to the existence of constants 0 < r ≤ T and functions
di,j : ℜ

+
→ [−1, 1] (j ≠ i, i, j = 1, . . . , n) such that the following equalities hold for all i = 1, . . . , n:

qi(t) = θi(t)min {Qi,max {0, qi(t − τi(t))}} + (1 − θi(t))

× min


Qi,max


0,

ab − ci
2b + Ki

−
b

2b + Ki

−
j≠i

min

Qj,max


0, q∗

j + di,j(t)
qj − q∗

j


[t−T ,t−r]


. (2.10)

In general the functions θi : ℜ
+

→ [0, Θ], τi : ℜ
+

→ [r, T ], di,j : ℜ
+

→ [−1, 1] (j ≠ i, i, j = 1, . . . , n) as well as the
constants 0 ≤ Θ < 1, 0 < r ≤ T are unknown. Therefore, the dynamical system (2.10) is an uncertain dynamical system
described by Functional Difference Equations (FDEs) (see [14–20]). In order to study the behavior of the solutions of (2.10)
we define the dimensionless deviation variables xi(t) =

qi(t)−q∗
i

Qi
(i = 1, . . . , n) and we obtain from (2.10) for i = 1, . . . , n:

xi(t) = θi(t)min {1 − Li,max {−Li, xi(t − τi(t))}} + (1 − θi(t))

× min


1 − Li,max


−Li,Mi − Li − Ri

−
j≠i

gi,j min

1,max


0, Lj + di,j(t)

xj[t−T ,t−r]


(2.11)

where Li =
q∗
i
Qi

∈ [0, 1], Mi =
ab−ci

(2b+Ki)Qi
, Ri =

b
2b+Ki

> 0, gi,j =
Qj
Qi

> 0 for j ≠ i, i = 1, . . . , n are constants which satisfy

Li = min

1,max


0,Mi − Ri

∑
j≠i gi,jLj


for all i = 1, . . . , n.
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Remarks and examples about systems (2.10), (2.11):
(a) The reader should notice that system (2.11) is an infinite-dimensional dynamical system with state space X being the
normed linear space of bounded functions x : [−T , 0] → ℜ

n with norm ‖x‖X = sup−T≤τ≤0 |x(τ )|. Indeed, by using the
method of steps, given an initial condition x0 ∈ X and functions θi : ℜ

+
→ [0, Θ], τi : ℜ

+
→ [r, T ], di,j : ℜ

+
→ [−1, 1]

(j ≠ i, i, j = 1, . . . , n) then one can in principle determine from (2.11) the solution x(t) = (x1(t), . . . , xn(t))′ ∈ ℜ
n

for t ∈ (0, r] with x(τ ) = (x1(τ ), . . . , xn(τ ))′ = x0(τ ) for all τ ∈ [−T , 0]. Then we can determine from (2.11) the
solution x(t) = (x1(t), . . . , xn(t))′ ∈ ℜ

n for t ∈ (r, 2r]. Continuing this way, we can determine from (2.11) the solution
x(t) = (x1(t), . . . , xn(t))′ ∈ ℜ

n for t ∈ (kr, (k + 1)r], where k is a positive integer. The solution is indeed bounded and
exists for all t ≥ 0, since (2.11) guarantees that xi(t) ∈ [−Li, 1 − Li] for all t ≥ 0, i = 1, . . . , n. The state of system (2.11)
will be denoted by xt = {x(τ ) : t − T ≤ τ ≤ t} ∈ X as usual in systems with delays (see [14]) and the components of the
state by xi,t = {xi(τ ) : t − T ≤ τ ≤ t} for i = 1, . . . , n.
(b) The reader should also notice that 0 ∈ X is an equilibrium point for system (2.11). Indeed, for every function θi : ℜ

+
→

[0, Θ], τi : ℜ
+

→ [r, T ], di,j : ℜ
+

→ [−1, 1] (j ≠ i, i, j = 1, . . . , n), xt0 = 0 ∈ X implies xt = 0 ∈ X for all t ≥ t0.
This equilibrium point corresponds to the Nash equilibrium point q∗

∈ S (the deviation variables have been defined by
xi(t) =

qi(t)−q∗
i

Qi
for i = 1, . . . , n).

(c) All discrete-time models of the form:

qi(k + 1) = θi(k)qi(k) + (1 − θi(k))

× min


Qi,max


0,

ab − ci
2b + Ki

−
b

2b + Ki

−
j≠i

qexpi,j (k + 1)


, i = 1, . . . , n (2.12)

with

qexpi,j (k + 1) = ai,j(k)
m−
l=0

wi,j,l(k)qj(k − l) + (1 − ai,j(k))q∗

j (2.13)

where k,m are non-negative integers, ai,j(k) ∈ [0, 1] (i, j = 1, . . . , n), θi(k) ∈ [0, Θ] (i = 1, . . . , n) with Θ ∈ [0, 1),
wi,j,l(k) ≥ 0 with 1 =

∑m
l=0 wi,j,l(k) for all k ≥ 0 and l = 0, . . . ,m (i, j = 1, . . . , n), are included in the uncertain model

(2.10) and its equivalent expression (2.11) in the sense that for every model of the form (2.12), (2.13) one can give functions
θi : ℜ

+
→ [0, Θ], τi : ℜ

+
→ [r, T ], di,j : ℜ

+
→ [−1, 1] (j ≠ i, i, j = 1, . . . , n) and initial conditions qi(s) for s ∈ [−T , 0],

i = 1, . . . , n such that the solution of (2.10) coincides with the solution obtained by the discrete-time model (2.12), (2.13),
in the sense that for every non-negative integer k ≥ 0 and i = 1, . . . , n, the solution qi(t) of (2.10) for t ∈ [k, k+ 1) is equal
to the solution qi(k) of (2.12), (2.13).
(d) All continuous-time models of the form:

q̇i(t) = µi min


Qi,max


0,

ab − ci
2b + Ki

−
b

2b + Ki

−
j≠i

qexpi,j (t)


− µiqi(t), i = 1, . . . , n (2.14)

where µi > 0 are constants and qexpi,j (t) (j ≠ i, i, j = 1, . . . , n) are Consistent Backward-looking expectations with respect
to the Nash equilibrium point q∗

∈ S, are included in the uncertain model (2.10). Indeed, for t ≥ r > 0 the solution of (2.14)
implies the following integral equations:

qi(t) = exp(−µir)qi(t − r) +

∫ t

t−r
exp (−µi(t − τ))

× min


Qi,max


0,

ab − ci
2b + Ki

−
b

2b + Ki

−
j≠i

qexpi,j (τ )


dτ , i = 1, . . . , n.

From the above expression under the assumption that the mappings t → qexpi,j (t) (j ≠ i, i, j = 1, . . . , n) are continuous, we
can conclude that for all t ≥ r and i = 1, . . . , n, there exists gi(t) ∈ [t − r, t], i = 1, . . . , n such that

qi(t) = exp(−µir)qi(t − r) + (1 − exp(−µir))

× min


Qi,max


0,

ab − ci
2b + Ki

−
b

2b + Ki

−
j≠i

qexpi,j (gi(t))


, i = 1, . . . , n.

The readermay verify that for Consistent Backward-looking expectations with respect to the Nash equilibrium point q∗
∈ S,

the above model can be described by the uncertain model (2.10) with θi(t) ≡ exp(−µir), τi(t) ≡ r , i = 1, . . . , n and
Θ := maxi=1,...,n exp(−µir) < 1.

The crucial question that can be posed is the question of robust asymptotic stability of the Nash equilibrium q∗
∈ S

for system (2.10) or equivalently the question of robust asymptotic stability of 0 ∈ X for system (2.11). The reader can
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obtain rigorous definitions for robust global asymptotic stability in [15–19]. The following theorem is the main result of
the present section and shows that for certain values of the parameters involved, the Nash equilibrium q∗

∈ S is robustly
globally asymptotically stable for system (2.10) in the sense that for every initial condition and for every set of functions
θi : ℜ

+
→ [0, Θ], τi : ℜ

+
→ [r, T ], di,j : ℜ

+
→ [−1, 1] (j ≠ i, i, j = 1, . . . , n), the solution q(t) = (q1(t), . . . , qn(t))′ ∈ ℜ

n

of system (2.10) satisfies limt→+∞ q(t) = q∗.

Theorem 2.2. 0 ∈ X is Robustly Globally Asymptotically Stable for system (2.11), if the following set of conditions holds for each
p = 2, . . . , n:

Ri1 . . . Rip(n − 1)p < 1 (2.15)

for all ij ∈ {1, . . . , n}, ij ≠ ik if j ≠ k.

In other words, if conditions (2.15) hold then the Nash equilibrium point q∗
∈ S is robustly Globally Asymptotically

Stable with respect to all possible Consistent Backward-looking expectation rules with respect to the Nash equilibrium
point q∗

∈ S, qexpi,j (t), i, j = 1, . . . , n, i ≠ j. It should be noticed that conditions (2.15) are more demanding inequalities than
other stability conditions in the literature. However, this is expected since conditions (2.15) are sufficient conditions for
global asymptotic stability for the uncertain model (2.10) which contains many models studied in the literature as special
cases.

Conditions (2.15) are termed as small-gain conditions inMathematical Control Theory (see [31,19]). For n = 2 conditions
(2.15) are equivalent to the inequality:

R1R2 < 1.

For n = 3, conditions (2.15) are equivalent to the following four inequalities:

4R1R2 < 1, 4R1R3 < 1, 4R2R3 < 1, 8R1R2R3 < 1. (2.16)

For n = 4, conditions (2.15) are equivalent to the following eleven inequalities:

9R1R2 < 1, 9R1R3 < 1, 9R1R4 < 1, 9R2R3 < 1, 9R2R4 < 1, 9R3R4 < 1
27R1R2R3 < 1, 27R1R2R4 < 1, 27R1R3R4 < 1, 27R2R3R4 < 1
81R1R2R3R4 < 1.

The coefficients Ri =
b

2b+Ki
> 0 (i = 1, . . . , n) appearing in the small-gain conditions (2.15), are dimensionless constants

which have special physical meaning: they show how much the production level qi of the ith player will decrease if the
production level of her competitors

∑
j≠i qj is increased by one unit. In other words, the coefficients Ri =

b
2b+Ki

> 0
(i = 1, . . . , n) quantify the effect of changes of the actions of the rest of the players to the response of each player. The
products of the coefficients Ri show how much the production level qi of the ith player will decrease (in the future) if her
production level is increased (now) by one unit. For example, a unit increase of the production level of player 1, will result
in a decrease of the production level of player 2 by R2 units and this will cause an increase of the production level of player
1 by R1R2 units.

The proof of Theorem 2.2 relies heavily on recent results on dynamical systems (see [19]) and techniques developed for
delay systems (see [18,19]) and is provided at the Appendix. An interesting corollary for the Cournot oligopoly game is given
next.

Corollary 2.3. If conditions (2.15) hold for each p = 2, . . . , n and for all ij ∈ {1, . . . , n}, ij ≠ ik if j ≠ k then the Nash
equilibrium point q∗

∈ S is unique for the game described by (2.3)–(2.5).

The reader should notice that Brouwer’s fixed point theorem guarantees the existence of the Nash equilibrium q∗
∈ S but

does not guarantee uniqueness.

Proof of Corollary 2.3. Suppose that there exists q∗∗
∈ S with q∗∗

i = min

Qi,max


0, ab−ci

2b+Ki
−

b
2b+Ki

∑
j≠i q

∗∗

j

 
for

i = 1, . . . , n and q∗∗
≠ q∗. This implies that yi :=

q∗∗
i −q∗

i
Qi

= min

1 − Li,max


−Li,Mi − Li − Ri

∑
j≠i gi,j(Lj + yj)

 
for

i = 1, . . . , n. Using the previous equalities, the reader can verify that the solution of (2.11) with initial condition x0 = Py,
where Py := {y : −T ≤ τ ≤ 0} ∈ X , y = (y1, . . . , yn)′, corresponding to the constant inputs

θi(t) ≡ 0, di,j(t) := sgn(yj) =

1 if yj > 0
0 if yj = 0
−1 if yj < 0

, j ≠ i, i, j = 1, . . . , n

satisfies xt = Py for all t ≥ 0 (τi : ℜ
+

→ [r, T ], i = 1, . . . , n are irrelevant) and consequently we cannot have
limt→+∞ x(t) = 0. This is impossible according to Theorem 2.2. The proof is complete. �
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3. Extension to the general case of dynamic games

The approach described in the previous section for the Cournot oligopoly game can be extended to any strategic game.
Consider a strategic game with n players and Si ⊆ ℜ

ki (i = 1, . . . , n) being the action space for each one of the players.
We assume that the best reply mapping for each one of the players is a function fi : S1 × · · · × Si−1 × Si+1 × · · · × Sn → Si
for 1 < i < n, n ≥ 3 and f1 : S2 × · · · × Sn → S1, fn : S1 × · · · × Sn−1 → Sn, satisfying the following inequalities:

πi(qi, q−i) < πi(fi(q−i), q−i), for all qi ∈ Si with qi ≠ fi(q−i), i = 1, . . . , n (3.1)

where πi(qi, q−i) is the payoff function of the ith player.
We assume the existence of a Nash equilibrium q∗

∈ S for the game, where S := S1 × · · · × Sn is the outcome space for
the game, i.e., there exists q∗

= (q∗

1, . . . , q
∗
n) ∈ S such that

q∗

i = fi(q∗

−i), i = 1, . . . , n. (3.2)

The existence of a Nash equilibrium can be guaranteed by Brouwer’s fixed point theorem when all action spaces Si ⊆ ℜ
ki

(i = 1, . . . , n) are compact and convex and when all the best reply mappings fi : S1 × · · · × Si−1 × Si+1 × · · · × Sn → Si for
1 < i < n, n ≥ 3 and f1 : S2 × · · · × Sn → S1, fn : S1 × · · · × Sn−1 → Sn are continuous mappings.

Next we assume that Si ⊆ ℜ
ki (i = 1, . . . , n) are closed convex sets and that the dynamics of the game are described in

continuous time as follows:

• every player forms an expectation for the behavior of all other players at each time t ≥ 0: the expectation of the ith
player for the production level of the jth player at time t ≥ 0 will be denoted by qexpi,j (t) ∈ Sj (j ≠ i, i, j = 1, . . . , n),

• every player determines her action as a convex combination of a past action and the best reply response based on the
expectations for the behavior of all other players at each time t ≥ 0, i.e.,

q1(t) = θ1(t) PrS1 (q1(t − τ1(t))) + (1 − θ1(t))f1(q
exp
1,2 (t), . . . , q

exp
1,n (t))

...

qi(t) = θi(t) PrSi (qi(t − τi(t))) + (1 − θi(t))fi(q
exp
i,1 (t), . . . , qexpi,i−1(t), q

exp
i,i+1(t), . . . , q

exp
i,n (t))

...

qn(t) = θn(t) PrSn (qn(t − τn(t))) + (1 − θn(t))fn(q
exp
n,1 (t), . . . , q

exp
n,n−1(t))

(3.3)

where θi : ℜ
+

→ [0, Θ], τi : ℜ
+

→ [r, T ], i = 1, . . . , n are in general unknown functions, 0 ≤ Θ < 1, 0 < r ≤ T are
constants (in general unknown),

• all expectation rules qexpi,j (t) ∈ Sj (j ≠ i, i = 1, . . . , n), are Consistent Backward-looking expectations with respect to the
Nash equilibrium point q∗

∈ S, i.e., there exist constants 0 < r ≤ T such that:qexpi,j (t) − q∗

j

 ≤ sup
t−T≤τ≤t−r

qj(τ ) − q∗

j

 =
qj − q∗

j


[t−T ,t−r]

, for all t ≥ 0. (3.4)

We notice the following fact for consistent backward-looking expectations:

Fact 2. Suppose that Sj ⊆ ℜ
kj is a closed convex set. qexpi,j (t) (j ≠ i, i, j = 1, . . . , n) is a Consistent Backward-looking

expectation with respect to the Nash equilibrium point q∗
∈ S if and only if there exist constants 0 < r ≤ T and a function

di,j : ℜ
+

→

d ∈ ℜ

kj : |d| ≤ 1

such that:

qexpi,j (t) = PrSj

q∗

j + di,j(t)
qj − q∗

j


[t−T ,t−r]


, ∀t ≥ 0. (3.5)

Proof of Fact 2. Indeed, using the fact that |PrU(x) − PrU(y)| ≤ |x − y| for every x, y ∈ ℜ
n, whereU ⊆ ℜ

n is a closed convex
set, one can verify that for every di,j : ℜ

+
→


d ∈ ℜ

kj : |d| ≤ 1

the function qexpi,j (t) defined by (3.5) satisfies (3.4) and

qexpi,j (t) ∈ Sj for all t ≥ 0. Hence it is a Consistent Backward-looking expectation with respect to the Nash equilibrium point
q∗

∈ S. On the other hand, if qexpi,j (t) ∈ Sj is a Consistent Backward-looking expectation with respect to the Nash equilibrium
point q∗

∈ S satisfying (3.4) for all t ≥ 0 then the function defined by:

di,j(t) =
1qj − q∗

j


[t−T ,t−r]


qexpi,j (t) − q∗

j


, if

qj − q∗

j


[t−T ,t−r]

> 0

di,j(t) = 0, if
qj − q∗

j


[t−T ,t−r]

= 0

satisfies di,j(t) ∈

d ∈ ℜ

kj : |d| ≤ 1

. Moreover, (3.5) holds for all t ≥ 0. The proof is complete. �
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Fact 2 shows that if all action spaces Sj ⊆ ℜ
kj (j = 1, . . . , n) are closed convex sets then there exist constants 0 < r ≤ T ,

0 ≤ Θ < 1 and functions θi : ℜ
+

→ [0, Θ], τi : ℜ
+

→ [r, T ], di,j : ℜ
+

→

d ∈ ℜ

kj : |d| ≤ 1

(j ≠ i, i, j = 1, . . . , n) such

that:

q1(t) = θ1(t) PrS1 (q1(t − τ1(t))) + (1 − θ1(t))f1

PrS2


q∗

2 + d1,2(t)
q2 − q∗

2


[t−T ,t−r]


, . . . ,

PrSn

q∗

n + d1,n(t)
qn − q∗

n


[t−T ,t−r]


,

...

qn(t) = θn(t) PrSn (qn(t − τn(t))) + (1 − θn(t))fn

PrS1


q∗

1 + dn,1(t)
q1 − q∗

1


[t−T ,t−r]


, . . . ,

PrSn−1


q∗

n−1 + dn,n−1(t)
qn−1 − q∗

n−1


[t−T ,t−r]


.

(3.6)

In general, the constants 0 < r ≤ T , 0 ≤ Θ < 1 and the functions θi : ℜ
+

→ [0, Θ], τi : ℜ
+

→ [r, T ],
di,j : ℜ

+
→

d ∈ ℜ

kj : |d| ≤ 1

(j ≠ i, i, j = 1, . . . , n) are unknown. Therefore, the dynamical system (3.6) is an uncertain

dynamical system described by Functional Difference Equations (FDEs) (see [14–20]). In order to study the behavior of the
solutions of (3.6) we define the deviation variables xi(t) = qi(t) − q∗

i (i = 1, . . . , n) and we obtain from (3.6):

x1(t) = θ1(t)

PrS1


x1(t − τ1(t)) + q∗

1


− q∗

1


+ (1 − θ1(t))


f1

PrS2


q∗

2 + d1,2(t) ‖x2‖[t−T ,t−r]

, . . . , PrSn


q∗

n + d1,n(t) ‖xn‖[t−T ,t−r]


− q∗

1


,

...

xn(t) = θn(t)

PrSn


xn(t − τn(t)) + q∗

n


− q∗

n


+ (1 − θn(t))


fn

PrS1


q∗

1 + dn,1(t) ‖x1‖[t−T ,t−r]

, . . . , PrSn−1


q∗

n−1 + dn,n−1(t) ‖xn−1‖[t−T ,t−r]


− q∗

n


.

(3.7)

Finally, we assume that there exist functions γ̃i,j ∈ N (j ≠ i, i, j = 1, . . . , n) such that the following inequalities hold for all
q ∈ S: fi(q−i) − q∗

i

 ≤ max
j≠i

γ̃i,j
qj − q∗

j

 , i = 1, . . . , n. (3.8)

Using again the fact that |PrU(x) − PrU(y)| ≤ |x − y| for every x, y ∈ ℜ
n, where U ⊆ ℜ

n is a closed convex set and
inequalities (3.8), we obtain from (3.7) for all t ≥ 0 and µ > Θ:

|xi(t)| ≤ max

µ ‖xi‖[t−T ,t−r] ,max

j≠i

µ − µΘ

µ − Θ
γ̃i,j

xj[t−T ,t−r]


, i = 1, . . . , n. (3.9)

Remarks and examples about systems (3.7), (3.8):
(a) The reader should notice that system (3.7) is an infinite-dimensional dynamical system with state space X being the
normed linear space of bounded functions x : [−T , 0] → ℜ

N , where N = k1 +· · ·+kn with norm ‖x‖X = sup−T≤τ≤0 |x(τ )|.
Indeed, by using the method of steps, given an initial condition x0 ∈ X and functions θi : ℜ

+
→ [0, Θ], τi : ℜ

+
→ [r, T ],

di,j : ℜ
+

→

d ∈ ℜ

kj : |d| ≤ 1

(j ≠ i, i, j = 1, . . . , n) then one can in principle determine from (3.8) the solution

x(t) = (x1(t), . . . , xn(t))′ ∈ ℜ
m for t ∈ (0, r] with x(τ ) = (x1(τ ), . . . , xn(τ ))′ = x0(τ ) for all τ ∈ [−T , 0]. Then we can

determine from (3.8) the solution x(t) = (x1(t), . . . , xn(t))′ ∈ ℜ
N for t ∈ (r, 2r]. Continuing this way, we can determine

from (3.8) the solution x(t) = (x1(t), . . . , xn(t))′ ∈ ℜ
N for t ∈ (kr, (k + 1)r], where k is a positive integer. The state of

system (3.8) will be denoted by xt = {x(τ ) : t − T ≤ τ ≤ t} ∈ X as usually in systems with delays (see [14]) and the
components of the state by xi,t = {xi(τ ) : t − T ≤ τ ≤ t} for i = 1, . . . , n. The solution exists for all t ≥ 0 and satisfies
xt = {x(τ ) : t − T ≤ τ ≤ t} ∈ X for all t ≥ 0. To see this, notice that (3.9) implies the existence of a function G ∈ N such
that:

sup
t∈[0,r]

|x(t)| = ‖x‖[0,r] ≤ G

‖x‖[−T ,0]


. (3.10)

Without loss of generality we may assume that G(s) ≥ s for all s ≥ 0. Inequality (3.10) implies that

‖x‖[t−T ,t] ≤ G

‖x‖[−T ,0]


, for all t ∈ [0, r] and ‖x‖[r−T ,r] ≤ G


‖x‖[−T ,0]


. (3.11)

Working in this way and using induction we may establish that for every positive integer k > 0 it holds that

‖x‖[t−T ,t] ≤ G(k) 
‖x‖[−T ,0]


, for all t ∈ [0, kr] (3.12)

where G(k)(s) := G ◦ · · · ◦ G  
k times

(s). Therefore (3.12) implies that

‖xt‖X = ‖x‖[t−T ,t] ≤ G(1+[t/r]) 
‖x‖[−T ,0]


= G(1+[t/r]) (‖x0‖X ) , for all t ≥ 0 (3.13)

where [t/r] denotes the integer part of t/r .



Author's personal copy

2944 I. Karafyllis et al. / Computers and Mathematics with Applications 60 (2010) 2936–2952

(b) The reader should also notice that 0 ∈ X is an equilibrium point for system (3.7). Indeed, for any functions θi : ℜ
+

→

[0, Θ], τi : ℜ
+

→ [r, T ], di,j : ℜ
+

→

d ∈ ℜ

kj : |d| ≤ 1

(j ≠ i, i, j = 1, . . . , n), xt0 = 0 ∈ X implies xt = 0 ∈ X for all

t ≥ t0. This equilibrium point corresponds to the Nash equilibrium point q∗
∈ S (noting that the deviation variables have

been defined by xi(t) = qi(t) − q∗

i for i = 1, . . . , n).

(c) Similarly, as shown in previous section, many discrete-time and continuous-time dynamic models describing the
evolution of the corresponding strategic game are included in the uncertain model (3.6) and its equivalent expression (3.7).

(d) The reader should notice that no continuity assumption is made for the best reply mappings of the players fi :

S1 × · · · × Si−1 × Si+1 × · · · × Sn → Si for 1 < i < n, n ≥ 3 and f1 : S2 × · · · × Sn → S1, fn : S1 × · · · × Sn−1 → Sn.
Moreover, we have not assumed that the action spaces Sj ⊆ ℜ

kj (j = 1, . . . , n) are compact sets: we simply require that the
action spaces are closed, convex sets. However, we have assumed the existence of a Nash equilibrium point q∗

∈ S and the
existence of functions γ̃i,j ∈ N (j ≠ i, i = 1, . . . , n) satisfying (3.8).

The crucial question that can be posed is the question of robust asymptotic stability of the Nash equilibrium q∗
∈ S for

system (3.6) or equivalently the question of robust asymptotic stability 0 ∈ X for system (3.7). The following theorem is
the main result of this section and shows that robust global stability can be determined by the functions γ̃i,j ∈ N (j ≠ i,
i = 1, . . . , n) satisfying (3.8).

Theorem 3.1. 0 ∈ X is Robustly Globally Asymptotically Stable for system (3.7), if there exists ω > 1 such that the following set
of conditions holds for each p = 2, . . . , n:

γi1,i2 ◦ γi2,i3 ◦ · · · ◦ γip,i1


(s) < s, ∀s > 0 (3.14)

for all ij ∈ {1, . . . , n}, ij ≠ ik if j ≠ k, where γi,j(s) := ωγ̃i,j(ωs).

In other words, if conditions (3.14) hold then the Nash equilibrium point q∗
∈ S is robustly Globally Asymptotically

Stable with respect to all possible Consistent Backward-looking expectation rules with respect to the Nash equilibrium
point q∗

∈ S, qexpi,j (t), i, j = 1, . . . , n, i ≠ j.
Conditions (3.14) are termed as cyclic small-gain conditions in Mathematical Control Theory (see [31,19]). For n = 2

conditions (3.14) are equivalent to the inequalities:

γ1,2

γ2,1(s)


< s and γ2,1


γ1,2(s)


< s, ∀s > 0.

For n = 3, conditions (3.14) are equivalent to the following twelve inequalities for all s > 0:

γ1,2

γ2,1(s)


< s, γ2,1


γ1,2(s)


< s

γ1,3

γ3,1(s)


< s, γ3,1


γ1,3(s)


< s

γ2,3

γ3,2(s)


< s, γ3,2


γ2,3(s)


< s

γ1,2

γ2,3


γ3,1(s)


< s, γ3,1


γ1,2


γ2,3(s)


< s, γ2,3


γ3,1


γ1,2(s)


< s

γ2,1

γ1,3


γ3,2(s)


< s, γ1,3


γ3,2


γ2,1(s)


< s, γ3,2


γ2,1


γ1,3(s)


< s.

The reader should notice that many of the above inequalities are equivalent. For example, for n = 2 the inequality
γ1,2


γ2,1(s)


< s, for all s > 0 implies the inequality γ2,1


γ1,2(s)


< s for all s > 0. Similarly, for the case n = 3 the following

five inequalities γ1,2

γ2,1(s)


< s, γ1,3


γ3,1(s)


< s, γ2,3


γ3,2(s)


< s, γ1,2


γ2,3


γ3,1(s)


< s, γ2,1


γ1,3


γ3,2(s)


< s for

all s > 0, imply all twelve inequalities which express conditions (3.14) in this case.
It should be noticed that for the Cournot oligopoly game studied in the previous section, the best reply mappings fi

(i = 1, . . . , n) are defined by (2.3). Consequently, using the convexity of the sets Si = [0,Qi] (i = 1, . . . , n), we obtain the
following inequalities for i = 1, . . . , n:fi(q−i) − q∗

i

 ≤
b

2b + Ki

−
j≠i

qj − q∗

j

 ≤
b

2b + Ki
(n − 1)max

j≠i

qj − q∗

j

 .
The above inequalities imply that inequalities (3.8) hold with γ̃i,j(s) := Ri(n − 1) s, where Ri :=

b
2b+Ki

. Theorem 3.1 and
the above definitions guarantee robust global asymptotic stability of the Nash equilibrium provided that there exists ω > 1
such that the following set of conditions holds for each p = 2, . . . , n:

Ri1Ri2 . . . Rip(n − 1)pω2p < 1

for all ij ∈ {1, . . . , n}, ij ≠ ik if j ≠ k. Conditions (2.15) are necessary and sufficient conditions for the existence of a
(sufficiently small) constant ω > 1 satisfying the above inequalities for each p = 2, . . . , n and for all ij ∈ {1, . . . , n}, ij ≠ ik
if j ≠ k. Therefore, we conclude that Theorem 2.2 is a special case of Theorem 3.1. A more careful analysis similar to the
above analysis reveals that theNash equilibrium for the Cournot oligopoly gamedescribed in Section 2will be asymptotically
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stable provided that there exist n sets of positive real numbers Ai =

ai,j, j ≠ i


(i = 1, . . . , n)with

∑
j≠i xj ≤ maxj≠i


ai,jxj


for all x = (x1, . . . , xn)′ ∈ (ℜ+)n and i = 1, . . . , n such that the following set of conditions holds for each p = 2, . . . , n:

ai1,i2ai2,i3 . . . aip,i1Ri1Ri2 . . . Rip < 1

for all ij ∈ {1, . . . , n}, ij ≠ ik if j ≠ k. The above conditions are less restrictive than conditions (2.15); indeed, conditions
(2.15) are implied by the above conditions for the special case ai,j = n − 1 for all i, j = 1, . . . , nwith j ≠ i. For example, for
n = 3, the above small-gain conditions are equivalent to the existence of ε1, ε2, ε3 > 0 such that:

R1R2(1 + ε1)(1 + ε2) < 1
R1R3(1 + ε−1

1 )(1 + ε3) < 1

R2R3(1 + ε−1
2 )(1 + ε−1

3 ) < 1v

R1R2R3(1 + ε1)(1 + ε−1
2 )(1 + ε3) < 1

R1R2R3(1 + ε−1
1 )(1 + ε2)(1 + ε−1

3 ) < 1.

For the above inequalities we have used a1,2 = 1 + ε1, a1,3 = 1 + ε−1
1 , a2,1 = 1 + ε2, a2,3 = 1 + ε−1

2 , a3,1 = 1 + ε3 and
a3,2 = 1 + ε−1

3 . By selecting ε1 = ε2 = ε3 = 1, we obtain inequalities (2.16).
It should be emphasized that the parameters T ≥ r > 0which are involved in the definition of the Consistent Backward-

looking expectation (Definition 2.1), play no role in the small-gain conditions. Consequently, the small-gain conditions can
help us to decide whether the Nash equilibrium point is robustly stablewithout any knowledge of the expectation rules.
The small-gain conditions (3.14) demand knowledge of the Nash equilibrium point q∗

∈ S and the best reply mappings
fi : S1 × · · · × Si−1 × Si+1 × · · · × Sn → Si for 1 < i < n, n ≥ 3 and f1 : S2 × · · · × Sn → S1, fn : S1 × · · · × Sn−1 → Sn for
which inequalities (3.8) hold.

The proof of Theorem 3.1 relies heavily on recent results of dynamical systems (see [19]) and techniques developed for
time-delay systems (see [18,19]) and is provided in the Appendix. An interesting corollary is given next.

Corollary 3.2. If there exists ω > 1 such that conditions (3.14) hold for each p = 2, . . . , n and for all ij ∈ {1, . . . , n}, ij ≠ ik if
j ≠ k then the Nash equilibrium point q∗

∈ S is unique.

The proof of Corollary 3.2 is exactly the same with the proof of Corollary 2.3: we show that the existence of an additional
Nash equilibrium q∗∗

∈ S contradicts robust global asymptotic stability of 0 ∈ X for system (3.7). Details are left to the
reader.

Using Corollary 3.2 we may obtain conditions for uniqueness for a fixed point. Indeed, we have:

Corollary 3.3. Let Si ⊆ ℜ
ki (i = 1, . . . , n) be closed, convex sets and let functions fi : S1 × · · · × Si−1 × Si+1 × · · · × Sn →

Si for1 < i < n, n ≥ 3 and f1 : S2 × · · · × Sn → S1, fn : S1 × . . . × Sn−1 → Sn for which there exists q∗
= (q∗

1, . . . , q
∗
n) ∈ S,

where S := S1 × · · · × Sn satisfying (3.3). Furthermore, suppose that there exist functions γ̃i,j ∈ N (j ≠ i, i, j = 1, . . . , n) such
that inequalities (3.8) hold for all q ∈ S and that there exists ω > 1 such that conditions (3.14) hold for each p = 2, . . . , n
and for all ij ∈ {1, . . . , n}, ij ≠ ik if j ≠ k. Then q∗

= (q∗

1, . . . , q
∗
n) ∈ S is the unique fixed point of the mapping

Sq → F(q) := (f1(q−1), . . . , fn(q−n)) ∈ S.

The reader should notice that Corollary 3.3 does not guarantee the existence of a fixed point for the mapping S ∋

q → F(q) := (f1(q−1), . . . , fn(q−n)) ∈ S. Corollary 3.3 can be used in conjunction with classical fixed-point theorems
(e.g., Brouwer’s fixed point theorem when all action spaces Si ⊆ ℜ

ki (i = 1, . . . , n) are compact and convex and when the
mapping S ∋ q → F(q) := (f1(q−1), . . . , fn(q−n)) ∈ S is continuous) in order to guarantee uniqueness of the fixed point.

4. Remarks on the rational expectation case

It is clear from Definition 2.1 that rational expectations qexpi,j (t) = qj(t) are not necessarily consistent backward-looking
expectationswith respect to theNash equilibriumpoint q∗

∈ S. Therefore, the case of rational expectations is not necessarily
covered by the results of the previous sections. This pointmotivates the following definition for the strategic game described
in the previous section.

Definition 4.1. An expectation rule qexpi,j (t) (j ≠ i, i, j = 1, . . . , n) is called a Rational-Consistent Backward-looking
expectation with respect to the Nash equilibrium point q∗

∈ S if there exists a constant 0 < T such that:qexpi,j (t) − q∗

j

 ≤ sup
t−T≤τ≤t

qj(τ ) − q∗

j

 =
qj − q∗

j


[t−T ,t]

, for all t ≥ 0. (4.1)

Clearly, rational expectations are Rational-Consistent Backward-looking expectations with respect to the Nash
equilibrium point q∗

∈ S. Moreover, a Consistent Backward-looking expectation (in the sense of Definition 2.1) is a Rational-
Consistent Backward-looking expectation with respect to the Nash equilibrium point q∗

∈ S.
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Can we consider system (3.3) where all expectation rules qexpi,j (t) ∈ Sj (j ≠ i, i, j = 1, . . . , n), are Rational-Consistent
Backward-looking expectations with respect to the Nash equilibrium point q∗

∈ S? The key mathematical problem that
arises in this case is whether we can obtain a well-defined dynamical system: Remark (a) in the previous section does not
apply. However, we can extend the analysis of the previous section under the following hypothesis:

(H′). There exist m index sets Jl ⊆ {1, . . . , n}, l = 1, . . . ,mwith Jl ∩ Jk = ∅ for l ≠ k and ∪l=1,...,m Jl = {1, . . . , n} such that:
All players with i ∈ Jm are using Consistent Backward-looking expectations with respect to the Nash equilibrium point q∗

∈ S.
Moreover, for every k = 1, . . . ,m − 1, the following statement holds:
All players with i ∈ Jk are using Rational-Consistent Backward-looking expectations, qexpi,j (t) ∈ Sj if j ∈ Jl with l > k and

Consistent Backward-looking expectations, qexpi,j (t) ∈ Sj if otherwise.

Indeed, if hypothesis (H′) holds then system (3.3) is expressed in deviation variables xi(t) = qi(t) − q∗

i (i = 1, . . . , n) by
the following equations:

x1(t) = θ1(t)

PrS1


x1(t − τ1(t)) + q∗

1


− q∗

1


+ (1 − θ1(t))


f1

PrS2


q∗

2 + d1,2(t)s1,2(t)

, . . . , PrSn


q∗

n + d1,n(t)s1,n(t)


− q∗

1


,

...

xn(t) = θn(t)

PrSn


xn(t − τn(t)) + q∗

n


− q∗

n


+ (1 − θn(t))


fn

PrS1


q∗

1 + dn,1(t)sn,1(t)

, . . . , PrSn−1


q∗

n−1 + dn,n−1(t)sn,n−1(t)


− q∗

n


,

si,j(t) :=
xj[t−T ,t] if i ∈ Jk and j ∈ Jl with l > k

si,j(t) := ‖x2‖[t−T ,t−r] if i ∈ Jk and j ∈ Jl with l ≤ k

(4.2)

where θi : ℜ
+

→ [0, Θ], τi : ℜ
+

→ [r, T ], di,j : ℜ
+

→

d ∈ ℜ

kj : |d| ≤ 1

(j ≠ i, i, j = 1, . . . , n).

Let us explain next why system (4.2) is an infinite-dimensional dynamical system with state space X being the normed
linear space of bounded functions x : [−T , 0] → ℜ

N , where N = k1 +· · ·+ kn with norm ‖x‖X = sup−T≤τ≤0 |x(τ )|. Indeed,
by using the method of steps, given an initial condition x0 ∈ X and functions θi : ℜ

+
→ [0, Θ], τi : ℜ

+
→ [r, T ],

di,j : ℜ
+

→

d ∈ ℜ

kj : |d| ≤ 1

(j ≠ i, i, j = 1, . . . , n) then one can in principle determine from (4.2) the solution

x(t) = (x1(t), . . . , xn(t))′ ∈ ℜ
m for t ∈ (0, r] with x(τ ) = (x1(τ ), . . . , xn(τ ))′ = x0(τ ) for all τ ∈ [−T , 0] using the

following procedure:
Step 1:

First determine the solution xi(t) for t ∈ (0, r] and for all players with i ∈ Jm who are using Consistent Backward-
looking expectations with respect to the Nash equilibrium point q∗

∈ S. In this case, we are in a position to determine the
components of the solution xj(t) for j ∈ Jm and t ∈ (0, r] by means of (4.2). Furthermore, in this case inequality (3.9) holds
for t ∈ (0, r], i ∈ Jm and consequently there exists function Gm ∈ N such that:

sup
t∈[0,r]

|xi(t)| ≤ Gm

‖x‖[−T ,0]


, for i ∈ Jm. (4.3)

Step 2: Next determine the solution xi(t) for t ∈ (0, r] and for all players with i ∈ Jm−1 who are using Rational-Consistent
Backward-looking expectations, qexpi,j (t) ∈ Sj if j ∈ Jm and Consistent Backward-looking expectations, qexpi,j (t) ∈ Sj if
otherwise. In this case, (3.8) implies that the following inequality holds for all t ∈ (0, r]:

|xi(t)| ≤ max
j≠i
j∉Jm

γ̃i,j

xj[t−T ,t−r]


+ max

j≠i
j∈Jm

γ̃i,j

xj[t−T ,t]


. (4.4)

However, the components of the solution xj(t) for j ∈ Jm and t ∈ (0, r] have been determined by Step 1. Therefore, we
are in a position to determine the components of the solution xj(t) for j ∈ Jm−1 and t ∈ (0, r] by means of (4.2). Using (4.3)
and (4.4) we obtain the existence of a function Gm−1 ∈ N such that:

sup
t∈[0,r]

|xi(t)| ≤ Gm−1

‖x‖[−T ,0]


, for i ∈ Jm ∪ Jm−1. (4.5)

Step k (3 ≤ k ≤ m): We determine the solution xi(t) for t ∈ (0, r] and for all players with i ∈ Jm+1−k who are using Rational-
Consistent Backward-looking expectations, qexpi,j (t) ∈ Sj if j ∈ Jl with l > m + 1 − k and Consistent Backward-looking
expectations, qexpi,j (t) ∈ Sj if otherwise. In this case, (3.8) implies that the following inequality holds for all t ∈ (0, r]:

|xi(t)| ≤ max
j≠i
j∈Jl

l≤m+1−k

γ̃i,j

xj[t−T ,t−r]


+ max

j≠i
j∈Jl

l>m+1−k

γ̃i,j

xj[t−T ,t]


. (4.6)
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However, the components of the solution xj(t) for j ∈ Jl with l > m+1−k and t ∈ (0, r] have been determined by previous
steps. Therefore, we are in a position to determine the components of the solution xj(t) for j ∈ Jm+1−k and t ∈ (0, r] by
means of (4.2). Moreover, by virtue of previous steps there exists a function Gm+2−k ∈ N such that:

sup
t∈[0,r]

|xi(t)| ≤ Gm+2−k

‖x‖[−T ,0]


, for i ∈


l=m+2−k,...,m

Jl. (4.7)

Using (4.6) and (4.7) we obtain the existence of a function Gm+1−k ∈ N such that:

sup
t∈[0,r]

|xi(t)| ≤ Gm+1−k

‖x‖[−T ,0]


, for i ∈


l=m+1−k,...,m

Jl. (4.8)

After the completion of them steps we have determined all components of the solution xj(t) for j = 1, . . . , n and t ∈ (0, r].
Moreover, we have also constructed a function G ∈ N such that:

sup
t∈[0,r]

|x(t)| ≤ G

‖x‖[−T ,0]


. (4.9)

Without loss of generality we may assume that G(s) ≥ s for all s ≥ 0. Moreover, by using (4.9) we may conclude exactly as
in the previous section that estimates (3.11)–(3.13) hold.

The proof of the following theorem is exactly the same with the proof of the Theorem 3.1 and therefore is omitted.

Theorem 4.2. 0 ∈ X is Robustly Globally Asymptotically Stable for system (4.2) under hypothesis (H′

), if there existsω > 1 such
that the set of conditions (3.14) holds for each p = 2, . . . , n and for all ij ∈ {1, . . . , n}, ij ≠ ik if j ≠ k, where γi,j(s) := ωγ̃i,j(ω s).

It should be emphasized that the parameters T ≥ r > 0, which are involved in the definition of the Consistent Backward-
looking expectation (Definition 2.1), play no role in the small-gain conditions. Moreover, the numberm of the index sets Jl ⊆

{1, . . . , n} involved in hypothesis (H′) or the particular members of each index set play absolutely no role in the small-gain
conditions (3.14). Furthermore, all these parameters are allowed to change with time: there is no need to assume that these
parameters remain constant. Consequently, the small-gain conditions can help us to decide whether the Nash equilibrium
point is robustly stable without any knowledge of the expectation rules. Again, the small-gain conditions (3.14) demand
knowledge of the Nash equilibrium point q∗

∈ S and the best reply mappings fi : S1 × · · · × Si−1 × Si+1 × · · · × Sn → Si for
1 < i < n, n > 3 and f1 : S2 × · · · × Sn → S1, fn : S1 × · · · × Sn−1 → Sn for which inequalities (3.8) hold.

Finally, it should be noted that for a specific strategic game, even less demanding hypotheses than hypothesis (H′) can be
used in order to guarantee that system (3.3) gives an infinite-dimensional dynamical system with state space X being the
normed linear space of bounded functions x : [−T , 0] → ℜ

N , where N = k1 +· · ·+kn with norm ‖x‖X = sup−T≤τ≤0 |x(τ )|.
This can be done by exploiting special properties of the best reply mappings fi : S1 × · · · × Si−1 × Si+1 × · · · × Sn → Si for
1 < i < n, n > 3 and f1 : S2 × · · · × Sn → S1, fn : S1 × · · · × Sn−1 → Sn (e.g., if some of the functions are independent of
certain arguments).

5. Conclusions

In this work, advanced stability methods have been used in order to provide sufficient conditions, called cyclic small gain
conditions, which guarantee robust global asymptotic stability of the Nash equilibrium in dynamic games. The obtained
results are powerful because they can be applied to uncertain models for which the players form consistent expectations
based on the history of the game. In addition, by formulating dynamic game-theoretical models by means of Functional
Difference Equations, it is possible to obtain all features of continuous-time and discrete-time models. A Cournot oligopoly
game has been used in order to illustrate the theoretical results.

Future research can address the economic meaning of small-gain conditions to other games used in economic research
(e.g., the study of the stability properties of theWalrasian equilibrium of an abstract economy). A step towards this research
direction is the fact that the results presented in thiswork can be directly extended to the casewhere the best replymappings
are set-valued maps instead of functions, i.e., fi(q−i) ⊆ Si. However, in this case inequalities (3.8) must be modified in the
following way:p − q∗

i

 ≤ max
j≠i

γ̃i,j
qj − q∗

j

 , for all p ∈ fi(q−i) and i = 1, . . . , n. (3.8′)

The above set of inequalities directly implies that the Nash equilibrium point satisfies fi(q∗

−i) = {q∗

i } for all i = 1, . . . , n.
With this modification, Theorem 3.1, Corollaries 3.2, 3.3 and Theorem 4.2 hold in this case as well. Future research can also
address the issue of studying dynamic game-theoreticalmodels bymeans of recent results in hybrid systems theory (see [32,
33]) or the issue of stabilization of Nash equilibria for dynamic game-theoretical models by means of nonlinear feedback
laws, using recently proposed methodologies (see for example [34,35]).
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Appendix

Proof of Theorem 2.2. Notice that (2.10) implies that the followings equations hold for all t ≥ 0:

qi(t) = θi(t) Pr[0,Qi] (qi(t − τi(t))) + (1 − θi(t)) Pr[0,Qi]


ab − ci
2b + Ki

−
b

2b + Ki

−
j≠i

qexpi,j (t)


qexpi,j (t) = Pr[0,Qj]


q∗

j + di,j(t)
qj − q∗

j


[t−T ,t−r]

 , i = 1, . . . , n. (A.1)

Using the fact that |PrU(x) − PrU(y)| ≤ |x − y| for every x, y ∈ ℜ
n, where U ⊆ ℜ

n is a closed convex set, in conjunction
with q∗

i = Pr[0,Qi]


ab−ci
2b+Ki

−
b

2b+Ki

∑
j≠i q

∗

j


and θi(t) ∈ [0, Θ] with, we obtain from (A.1) for i = 1, . . . , n:

qi(t) − q∗

i

 ≤ θi(t)
qi(t − τi(t)) − q∗

i

+ (1 − θi(t))

Pr[0,Qi]


ab − ci
2b + Ki

−
b

2b + Ki

−
j≠i

qexpi,j (t)



− Pr[0,Qi]


ab − ci
2b + Ki

−
b

2b + Ki

−
j≠i

q∗

j


≤ θi(t)

qi(t − τi(t)) − q∗

i

+ (1 − θi(t))b
2b + Ki

−
j≠i

(qexpi,j (t) − q∗

j )


≤ θi(t)

qi(t − τi(t)) − q∗

i

+ (1 − θi(t))b
2b + Ki

−
j≠i

qexpi,j (t) − q∗

j

 . (A.2)

Combining (A.2) with (2.8) and using definitions Ri =
b

2b+Ki
> 0, xi(t) =

qi(t)−q∗
i

Qi
, gi,j =

Qj
Qi

> 0 (j ≠ i, i = 1, . . . , n), we
conclude that for every x0 ∈ X and for every set of functions θi : ℜ

+
→ [0, Θ], τi : ℜ

+
→ [r, T ], di,j : ℜ

+
→ [−1, 1] (j ≠ i,

i, j = 1, . . . , n), the solution xt ∈ X of (2.11) with initial condition xt0 = x0 ∈ X corresponding to inputs θi : ℜ
+

→ [0, Θ],
τi : ℜ

+
→ [r, T ], di,j : ℜ

+
→ [−1, 1] (j ≠ i, i, j = 1, . . . , n) satisfies:

|xi(t)| ≤ θi(t) ‖xi‖[t−T ,t−r] + (1 − θi(t))Ri

−
j≠i

gi,j
xj[t−T ,t−r] for all t ≥ t0. (A.3)

We notice that system (2.11) is an autonomous uncertain dynamical system in the sense described in [15–17]. Nextwe show
that 0 ∈ X is a robust equilibrium point for system (2.11) in the sense described in [15–17], i.e., for every ε > 0, T > 0
there exists δ := δ(ε, T ) > 0 such that if ‖x0‖X ≤ δ then for every set of functions θi : ℜ

+
→ [0, Θ], τi : ℜ

+
→ [r, T ],

di,j : ℜ
+

→ [−1, 1] (j ≠ i, i, j = 1, . . . , n), the solution xt ∈ X of (2.11) with initial condition x0 ∈ X corresponding to
inputs θi : ℜ

+
→ [0, Θ], τi : ℜ

+
→ [r, T ], di,j : ℜ

+
→ [−1, 1] (j ≠ i, i, j = 1, . . . , n) satisfies ‖xt‖X = ‖x‖[t−T ,t] ≤ ε for

all t ∈ [0, T ]. To see this, notice that (A.3) implies the existence of a constant G ≥ 0 such that:

sup
t∈[0,r]

|x(t)| = ‖x‖[0,r] ≤ G ‖x‖[−T ,0] . (A.4)

Without loss of generality we may assume that G ≥ 1. Inequality (A.4) implies that

‖x‖[t−T ,t] ≤ G ‖x‖[−T ,0] , for all t ∈ [0, r]. (A.5)

Working in this way and using induction we may establish that for every positive integer k > 0 it holds that

‖x‖[t−T ,t] ≤ Gk
‖x‖[−T ,0] , for all t ∈ [0, kr]. (A.6)

Therefore (A.6) implies that

‖xt‖X = ‖x‖[t−T ,t] ≤ G1+[t/r]
‖x‖[−T ,0] = G1+[t/r]

‖x0‖X , for all t ≥ 0 (A.7)

where [t/r] denotes the integer part of t/r . Consequently, (A.7) implies that for every ε > 0, T > 0 there exists
δ := δ(ε, T ) = ε G−1−[T/r] > 0 such that if ‖x0‖X ≤ δ then for every set of functions θi : ℜ

+
→ [0, Θ], τi : ℜ

+
→ [r, T ],

di,j : ℜ
+

→ [−1, 1] (j ≠ i, i, j = 1, . . . , n), the solution xt ∈ X of (2.11) with initial condition x0 ∈ X corresponding to
inputs θi : ℜ

+
→ [0, Θ], τi : ℜ

+
→ [r, T ], di,j : ℜ

+
→ [−1, 1] (j ≠ i, i, j = 1, . . . , n) satisfies ‖xt‖X = ‖x‖[t−T ,t] ≤ ε for

all t ∈ [0, T ]. Therefore 0 ∈ X is a robust equilibrium point for system (2.11) in the sense described in [15–17].
The reader should notice that inequality (A.3) implies the following inequality for all i = 1, . . . , n and µ > Θ:

|xi(t)| ≤ max


µ ‖xi‖[t−T ,t−r] ,

µ − µΘ

µ − Θ
Ri

−
j≠i

gi,j
xj[t−T ,t−r]


for all t ≥ t0. (A.8)
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Let σ > 0 and consider the family of functionals Vi : X → ℜ
+, i = 1, . . . , n defined by:

Vi(x) = sup
−T≤τ≤0

Qi |xi(τ )| exp (στ) . (A.9)

Let h ∈ (0, r) and t ≥ 0 be arbitrary. Definition (A.9) and inequality (A.8) imply that:

Vi(xt+h) = sup
−T≤τ≤0

Qi |xi(t + h + τ)| exp (στ)

= sup
t+h−T≤s≤t+h

Qi |xi(s)| exp (σ (s − t − h))

≤ max


sup
t+h−T≤s≤t

Qi |xi(s)| exp (σ (s − t − h)) , sup
t≤s≤t+h

Qi |xi(s)| exp (σ (s − t − h))


≤ max


exp (−σh) Vi(xt), µQi sup

t≤s≤t+h
‖xi‖[s−T ,s−r] exp (σ (s − t − h)) ,

µ − µΘ

µ − Θ
Ri sup

t≤s≤t+h

−
j≠i

Qigi,j
xj[s−T ,s−r] exp (σ (s − t − h))

 .

Using definition (A.9) and the facts that gi,j =
Qj
Qi

> 0 (j ≠ i, i, j = 1, . . . , n) and
xj[s−T ,s−r] = sups−T≤τ≤s−r

xj(τ )
 =

sup−T≤w≤−r

xj(s + w)
, we obtain from the above inequality:

Vi(xt+h) ≤ max


exp (−σh) Vi(xt), µ sup

t≤s≤t+h
sup

−T≤w≤−r
Qi |xi(s + w)| exp (σw) exp (−σw) exp (σ (s − t − h)) ,

µ − µ Θ

µ − Θ
Ri sup

t≤s≤t+h

−
j≠i

Qj sup
−T≤w≤−r

xj(s + w)
 exp (σw) exp (−σw) exp (σ (s − t − h))


≤ max


exp (−σh) Vi(xt), µ exp(σT ) sup

t≤s≤t+h
Vi(xs),

µ − µΘ

µ − Θ
Ri exp(σT ) sup

t≤s≤t+h

−
j≠i

Vj(xs)



≤ max

exp (−σh) Vi(xt), µ exp(σT ) sup

t≤s≤t+h
Vi(xs),

µ − µΘ

µ − Θ
Ri(n − 1) exp(σT )max

j≠i
sup

t≤s≤t+h
Vj(xs)


.

Consequently, for every i = 1, . . . , n, µ > Θ , σ > 0, h ∈ (0, r) and t ≥ 0 it holds that:

Vi(xt+h) ≤ max

exp (−σh) Vi(xt), µ exp(σT ) sup

t≤s≤t+h
Vi(xs),

µ − µΘ

µ − Θ
Ri(n − 1) exp(σT )max

j≠i
sup

t≤s≤t+h
Vj(xs)


.

(A.10)

Using induction and (A.10), we can show that for every i = 1, . . . , n, µ > Θ , σ > 0, h ∈ (0, r), t ≥ 0 and for every
non-negative integer k ≥ 0, it holds that:

Vi(xt+kh) ≤ max

exp (−σkh) Vi(xt), µ exp(σT ) sup

t≤s≤t+kh
Vi(xs),

µ − µΘ

µ − Θ
Ri(n − 1) exp(σT )max

j≠i
sup

t≤s≤t+kh
Vj(xs)


.

(A.11)

Therefore, (A.11) implies that for every i = 1, . . . , n, µ > Θ , σ > 0 and t ≥ 0 the following inequality holds:

Vi(xt) ≤ max

exp (−σ t) Vi(x0), µ exp(σT ) sup

0≤s≤t
Vi(xs),

µ − µΘ

µ − Θ
Ri(n − 1) exp(σT )max

j≠i
sup
0≤s≤t

Vj(xs)


. (A.12)

Next, we assume that σ < T−1 ln(2). The reader should notice that definition (A.8) implies that 2
Qi

Vi(xt) ≥ sup−T≤τ≤0

|xi(t + τ)| for σ < T−1 ln(2) and consequently:

‖xt‖X = ‖x‖[t−T ,t] ≤

n−
i=1

sup
−T≤τ≤0

|xi(t + τ)| ≤
2
q

n−
i=1

Vi(xt) (A.13)

where q := mini=1,...,n Qi. It follows from (A.12), (A.13) and definition (A.9) (which implies Vi(xt) ≤ Q ‖xt‖X for Q :=

maxi=1,...,n Qi) that the following inequalities hold for every i = 1, . . . , n, µ > Θ , σ > 0 and t ≥ 0 with σ < T−1 ln(2):

Vi(xt) ≤ max

Q exp (−σ t) L(x0), µ exp(σT ) sup

0≤s≤t
Vi(xs),

µ − µΘ

µ − Θ
Ri(n − 1) exp(σT )max

j≠i
sup
0≤s≤t

Vj(xs)


(A.14)

L(xt) ≤ max


4nQ
q

‖x0‖X ,
4n
q

(R(n − 1) + 1)
n−

j=1

sup
0≤s≤t

Vj(xs)


(A.15)
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where L(x) := ‖x‖X and R := maxi=1,...,n Ri. It follows from (A.13)–(A.15) and Theorem 3.1 in [19] that 0 ∈ X is Robustly
Globally Asymptotically Stable for system (2.11), provided that the following set of conditions holds for each p = 2, . . . , n:

Ri1 . . . Rip(n − 1)p


µ − µΘ

µ − Θ

p

exp(pσT ) < 1 (A.16)

for all ij ∈ {1, . . . , n}, ij ≠ ik if j ≠ k and

µ exp(σT ) < 1. (A.17)

Notice that if conditions (2.15) hold for each p = 2, . . . , n and for all ij ∈ {1, . . . , n}, ij ≠ ik if j ≠ k then the conditions
(A.16), (A.17) hold for each p = 2, . . . , n and for all ij ∈ {1, . . . , n}, ij ≠ ik if j ≠ k for sufficiently small σ > 0 and for
µ ∈ (Θ, 1) sufficiently close to 1. The proof is complete. �

Proof of Theorem 3.1. We first notice that system (3.7) is an autonomous dynamical system in the sense described in
[15–17]. Next we show that 0 ∈ X is a robust equilibrium point for system (3.7) in the sense described in [15–17], i.e., for
every ε > 0, T > 0 there exists δ := δ(ε, T ) > 0 such that if ‖x0‖X ≤ δ then for every set of functions θi : ℜ

+
→ [0, Θ],

τi : ℜ
+

→ [r, T ], di,j : ℜ
+

→

d ∈ ℜ

kj : |d| ≤ 1

(j ≠ i, i, j = 1, . . . , n), the solution xt ∈ X of (3.7) with initial

condition x0 ∈ X corresponding to inputs θi : ℜ
+

→ [0, Θ], τi : ℜ
+

→ [r, T ], di,j : ℜ
+

→

d ∈ ℜ

kj : |d| ≤ 1

(j ≠ i,

i, j = 1, . . . , n) satisfies ‖xt‖X = ‖x‖[t−T ,t] ≤ ε for all t ∈ [0, T ]. Without loss of generality we may assume that the
function G ∈ N involved in (3.13) is a strictly increasing function. Define κ(s) := G(1+[T/r]) (s) for every T > 0, which is
a strictly increasing, continuous function with κ(0) = 0 and lims→+∞ κ(s) = +∞ (recall that G(s) ≥ s for all s ≥ 0)
and define κ−1

: ℜ
+

→ ℜ
+ to be the inverse function of κ on ℜ

+. Indeed, (3.13) implies that for every ε > 0, T > 0
there exists δ := δ(ε, T ) = κ−1(ε) > 0 such that if ‖x0‖X ≤ δ then for every set of functions θi : ℜ

+
→ [0, Θ],

τi : ℜ
+

→ [r, T ], di,j : ℜ
+

→

d ∈ ℜ

kj : |d| ≤ 1

(j ≠ i, i, j = 1, . . . , n), the solution xt ∈ X of (3.7) with initial condition

x0 ∈ X corresponding to inputs θi : ℜ
+

→ [0, Θ], τi : ℜ
+

→ [r, T ], di,j : ℜ
+

→

d ∈ ℜ

kj : |d| ≤ 1

(j ≠ i, i, j = 1, . . . , n)

satisfies ‖xt‖X = ‖x‖[t−T ,t] ≤ ε for all t ∈ [0, T ]. Therefore 0 ∈ X is a robust equilibrium point for system (3.7) in the sense
described in [15–17].

Let σ > 0 and consider the family of functionals Vi : X → ℜ
+, i = 1, . . . , n defined by:

Vi(x) = sup
−T≤τ≤0

|xi(τ )| exp (στ) . (A.18)

Using definition (A.18) and (3.9) we obtain for every h ∈ (0, T ), i = 1, . . . , n, µ > Θ and t ≥ 0:

Vi(xt+h) = sup
−T≤τ≤0

|xi(t + h + τ)| exp (στ)

= sup
t+h−T≤s≤t+h

|xi(s)| exp (σ (s − t − h))

≤ max


sup
t+h−T≤s≤t

|xi(s)| exp (σ (s − t − h)) , sup
t≤s≤t+h

|xi(s)| exp (σ (s − t − h))


≤ max

exp (−σh) Vi(xt), sup

t≤s≤t+h
µ ‖xi‖[s−T ,s] exp (σ (s − t − h)) ,

sup
t≤s≤t+h

max
j≠i

µ − µΘ

µ − Θ
γ̃i,j

xj[s−T ,s]


exp (σ (s − t − h))



= max


exp (−σh) Vi(xt), sup

t≤s≤t+h
µ sup

−T≤w≤0
|xi(w + s)| exp (σw) exp (−σw) exp (σ (s − t − h)) ,

sup
t≤s≤t+h

max
j≠i

µ − µΘ

µ − Θ
γ̃i,j


sup

−T≤w≤0

xj(w + s)
 exp (σw) exp (−σw)


exp (σ (s − t − h))


≤ max


exp (−σh) Vi(xt), sup

t≤s≤t+h
µ exp(σT )Vi(xs), sup

t≤s≤t+h
max
j≠i

µ − µΘ

µ − Θ
γ̃i,j

exp(σT )Vj(xs)


≤ max


exp (−σh) Vi(xt), µ exp(σT ) sup

t≤s≤t+h
Vi(xs),max

j≠i

µ − µΘ

µ − Θ
γ̃i,j


exp(σT ) sup

t≤s≤t+h
Vj(xs)


.

Consequently, for every i = 1, . . . , n, σ > 0, h ∈ (0, T ), µ > Θ and t ≥ 0 it holds that:

Vi(xt+h) ≤ max

exp (−σh) Vi(xt), µ exp(σT ) sup

t≤s≤t+h
Vi(xs),max

j≠i

µ − µΘ

µ − Θ
γ̃i,j


exp(σT ) sup

t≤s≤t+h
Vj(xs)


. (A.19)
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Using induction and (A.19), we can show that for every i = 1, . . . , n, σ > 0, h ∈ (0, T ), µ > Θ , t ≥ 0 and for every
non-negative integer k ≥ 0, it holds that:

Vi(xt+kh) ≤ max

exp (−σkh) Vi(xt), µ exp(σT ) sup

t≤s≤t+kh
Vi(xs),max

j≠i

µ − µΘ

µ − Θ
γ̃i,j


exp(σT ) sup

t≤s≤t+kh
Vj(xs)


.

(A.20)

Therefore, (A.20) implies that for every i = 1, . . . , n, µ > Θ , σ > 0 and t ≥ 0 the following inequality holds:

Vi(xt) ≤ max

exp (−σ t) Vi(x0), µ exp(σT ) sup

0≤s≤t
Vi(xs),max

j≠i

µ − µ Θ

µ − Θ
γ̃i,j


exp(σT ) sup

0≤s≤t
Vj(xs)


. (A.21)

The reader should notice that definition (A.18) implies that 2 Vi(xt) ≥ sup−T≤τ≤0 |xi(t + τ)| for σ ≤ T−1 ln(2) and
consequently:

‖xt‖X = ‖x‖[t−T ,t] ≤

n−
i=1

sup
−T≤τ≤0

|xi(t + τ)| ≤ 2
n−

i=1

Vi(xt). (A.22)

Without loss of generality we may assume Θ > 0. Define µ :=
ωΘ

ω−1+Θ
and let the constant σ > 0 satisfy the

inequalities: σ ≤ T−1 ln(2), σ < T−1 ln(ω) and σ < T−1 ln


ω−1+Θ

ωΘ


, where ω > 1 is the constant involved in the

hypotheses of the theorem. Notice that the hypothesis Θ < 1 and previous definitions imply that µ exp(σT ) < 1, µ > Θ ,
exp(σT ) ≤ ω and µ−µΘ

µ−Θ
≤ ω. It follows from (A.21), (A.22) and definition (A.18) (which implies Vi(xt) ≤ ‖xt‖X ) that the

following inequalities hold for every i = 1, . . . , n and t ≥ 0:

Vi(xt) ≤ max

exp (−σ t) L(x0), B sup

0≤s≤t
Vi(xs),max

j≠i
ωγ̃i,j


ω sup

0≤s≤t
Vj(xs)


(A.23)

L(xt) ≤ max


2n ‖x0‖X , 2

n−
i=1

max
j≠i

ωγ̃i,j


ω sup

0≤s≤t
Vj(xs)


+ 2B

n−
i=1

sup
0≤s≤t

Vi(xs)


(A.24)

where L(x) := ‖x‖X and B := µ exp(σT ) < 1. It follows from (A.22)–(A.24) and Theorem 3.1 in [19] that 0 ∈ X is Robustly
Globally Asymptotically Stable for system (3.7), provided that the set of conditions (3.14) holds for each p = 2, . . . , n and
for all ij ∈ {1, . . . , n}, ij ≠ ik if j ≠ k. The proof is complete. �
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