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Stability and control of nonlinear systems
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a review of recent results
KARAFYLLIS Iasson1 & JIANG ZhongPing2†

1 Department of Environmental Engineering, Technical University of Crete, 73100, Chania, Greece;
2 Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Six Metrotech Center, Brooklyn,

NY 11201, USA

This paper reports on recent results in a series of the work of the authors on the stability and non-
linear control for general dynamical systems described by retarded functional differential and difference
equations. Both internal and external stability properties are studied. The corresponding Lyapunov and
Razuminkhin characterizations for input-to-state and input-to-output stabilities are proposed. Neces-
sary and sufficient Lyapunov-like conditions are derived for robust nonlinear stabilization. In particular,
an explicit controller design procedure is developed for a new class of nonlinear time-delay systems.
Lastly, sufficient assumptions, including a small-gain condition, are presented for guaranteeing the
input-to-output stability of coupled systems comprised of retarded functional differential and difference
equations.
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1 Introduction

The field of nonlinear systems analysis and syn-
thesis continues to attract attention of many re-
searchers due to its strong relevance to several
branches of sciences and engineering. Stability is
one of the most fundamental problems in natu-
ral systems and man-made control engineering sys-
tems. Over the last three decades, great efforts
and progress have been made in stability and con-
trol for finite-dimensional nonlinear dynamical sys-
tems with external inputs. Recently there has been

a paradigm shift to infinite-dimensional nonlinear
control systems such as those systems described
by partial differential equations (PDEs) and sys-
tems with time delays. Again, these studies on
infinite-dimensional systems are motivated by ad-
dressing several real-world applications. For exam-
ple, time delay is a very common phenomenon in
both natural and engineering systems. Examples
of time delay are found in cell-to-cell communica-
tion, wireless and wired communication systems,
multi-vehicle coordination and control, and power
networks.
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In this work, we will place our attention on
time-delay nonlinear systems described by retarded
functional differential equations (RFDEs). The
primary objective of this research initiative is to
develop tools for the stability and stabilization of
a wide class of nonlinear dynamical systems de-
scribed by the following RFDEs:

ẋ(t) = f(t, Tr(t)x, u(t), d(t)) , t � t0,

Y (t) = H(t, Tr(t)x), (1.1)

x(t) ∈ �n , Y (t) ∈ Y, d(t) ∈ D , u(t) ∈ U,

where D ⊆ �l is a non-empty set, U ⊆ �m is a non-
empty set with 0 ∈ U , Y is a normed linear space,
r > 0 is a constant, Tr(t)x := x(t + θ); θ ∈ [−r, 0]
and the mappings f : �+ × C0([−r, 0]; �n) × U ×
D → �n, H : �+ × C0([−r, 0]; �n) → Y satisfy
f(t, 0, 0, d) = 0, H(t, 0) = 0 for all (t, d) ∈ �+ ×D.
We denote by x(t) with t � t0 the solution of
the initial-value problem (1.1) with initial condi-
tion Tr(t0)x = x0 ∈ C0([−r, 0];�n).

A major advantage of allowing the output to take
values in abstract normed linear spaces is that us-
ing the framework of the case (1.1) we are in a
position to consider
• outputs with no delay, e.g. Y (t) = h(t, x(t))

with Y = �k;
• outputs with discrete or distributed delay,

e.g. Y (t) = h(x(t), x(t − r)) or Y (t) =∫ t

t−r
h(t, θ, x(θ))dθ with Y = �k;

• functional outputs with memory, e.g. Y (t) =
h(t, θ, x(t + θ)); θ ∈ [−r, 0] or the identity out-
put Y (t) = Tr(t)x = x(t + θ); θ ∈ [−r, 0] with
Y = C0([−r, 0];�k).

For RFDE systems in the above form (1.1),
we will study both internal stability and exter-
nal stability properties and characterizations us-
ing Lyapunov functionals and Razumikhin func-
tions. Here, internal stability refers mainly to ro-
bust stability with respect to disturbance input
d and when control input u is absent, while ex-
ternal stability is closely related to input-to-state
and input-to-output stability notions which have
been extensively studied in the literature of finite-
dimensional nonlinear control systems. See sec-
tion 2 for the details. To add to the generality of
our research work, we will consider both uniform

and non-uniform in time stability, and present Lya-
punov characterizations in section 3 and the Razu-
mikhin method in section 4. In section 5, we study
the robust stabilization problem for nonlinear sys-
tems described by RFDEs (1.1). Like the context
of finite-dimensional systems, we are able to derive
necessary and sufficient Lyapunov-like conditions
for robust nonlinear stabilization. More interest-
ingly, it is shown that our work at the conceptual
level can also lead to an explicit stabilization algo-
rithm for a new class of time-delay nonlinear sys-
tems with a lower-triangular structure.

In addition to the efforts on the stability and
control of general nonlinear systems of the form
(1.1), we will also investigate the stability issue for
coupled systems consisting of retarded functional
differential and difference equations:

ẋ1(t) = f1(t, d(t), Tr1(t)x1,

Tr2−τ(t)(t − τ(t))x2, u(t)), (1.2a)

x2(t) = f2(t, d(t), Tr1(t)x1,

Tr2−τ(t)(t − τ(t))x2, u(t)), (1.2b)

Y = H(t, Tr1(t)x1, Tr2(t)x2, u(t)) ∈ Y, (1.2c)

with x1(t) ∈ �n1 , x2(t) ∈ �n2 , d(t) ∈ D, u(t) ∈
U , t � 0, where D ⊆ �l is a non-empty set,
U ⊆ �m is a non-empty set with 0 ∈ U , r1 � 0,
r2 > 0, fi : ∪t�0{t} × D × C0([−r1, 0];�n1) ×
L∞([−r2 + τ(t), 0];�n2) × U → �ni , i = 1, 2, H :
�+×C0([−r1, 0];�n1)×L∞([−r2, 0];�n2)×U → Y
(again, Y is a normed linear space) are locally
bounded mappings with fi(t, d, 0, 0, 0) = 0 for
i = 1, 2, H(t, 0, 0, 0) = 0 for all (t, d) ∈ �+ × D.

As demonstrated in the previous work of sev-
eral authors independently, this class of coupled
systems appears in the context of neutral RFDEs
as well as quasilinear hyperbolic partial differential
equations (see refs. [1–4]).

Here, in section 6 we give minimal regularity hy-
potheses so that coupled systems of the form (1.2)
can be considered as control systems with a well-
defined maximal existence time for their unique so-
lution. Moreover, although continuity of the solu-
tions with respect to the initial data will not be
guaranteed, we show that our hypotheses guaran-
tee appropriate continuity properties for the so-
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lution x ≡ 0. Furthermore, we will derive new
stability criteria for the internal (Lyapunov) and
external (input-to-output) stability of the coupled
system (1.2). Interconnected systems composed of
ordinary differential equations have been studied
by several authors from the perspective of nonlin-
ear small-gain[5]. Interestingly, we show that under
a similar nonlinear small-gain condition, the cou-
pled system (1.2) will remain input-to-output sta-
ble and input-to-state stable in the sense as defined
in section 7.

Finally, we would like to point out that much
more needs to be accomplished in this field of non-
linear control for infinite-dimensional systems de-
scribed by RFDEs (1.1) and (1.2). It is expected
that the tools and stability results developed in this
paper will be useful for solving control problems re-
lated to stabilization and robust control of various
classes of time-delay nonlinear systems.

Notations. Throughout this paper we adopt
the following notations:
• Let A ⊆ �n be a set. By C0(A;Ω), we de-

note the class of continuous functions on A, which
take values in Ω . By Ck(A;Ω), where k � 1 is an
integer, we denote the class of differentiable func-
tions on A with continuous derivatives up to order
k, which take values in Ω . By C∞(A;Ω), we de-
note the class of differentiable functions on A hav-
ing continuous derivatives of all orders, which take
values in Ω , i.e., C∞(A;Ω) =

⋂
k�1 Ck(A;Ω).

• By ‖ ‖Y , we denote the norm of the normed
linear space Y. �+ denotes the set of non-negative
real numbers.
• For a vector x ∈ �n we denote by |x| its

usual Euclidean norm and by x′ its transpose. For
a bounded function x : [−r, 0] → �n we define
‖x‖r := supθ∈[−r,0] |x(θ)|.
• A continuous mapping A × B � (z, x) →

k(z, x) ∈ �m, where B ⊆ X , A ⊆ Y and X ,Y
are normed linear spaces, is called completely lo-
cally Lipschitz with respect to x ∈ B if for every
closed and bounded set S ⊆ A × B it holds that

sup
{ |k(z, x) − k(z, y)|

‖x − y‖X : (z, x) ∈ S,

(z, y) ∈ S, x 	= y

}
< +∞.

If the normed linear spaces X ,Y are finite-
dimensional, then we simply say that the contin-
uous mapping A × B � (z, x) → k(z, x) ∈ �m is
locally Lipschitz with respect to x ∈ B if for every
compact set S ⊆ A × B it holds that

sup
{ |k(z, x) − k(z, y)|

|x − y| : (z, x) ∈ S,

(z, y) ∈ S, x 	= y

}
< +∞.

• We denote by K+ the class of positive C0

functions defined on �+. We say that a func-
tion ρ : �+ → �+ is positive definite if ρ(0) = 0
and ρ(s) > 0 for all s > 0. We say that a func-
tion ρ : �+ → �+ is of class N , if ρ is non-
decreasing with ρ(0) = 0. By K we denote the
set of positive definite, increasing and continuous
functions. We say that a positive definite, increas-
ing and continuous function ρ : �+ → �+ is of
class K∞ if lims→+∞ ρ(s) = +∞. By KL we de-
note the set of all continuous functions σ = σ(s, t) :
�+ × �+ → �+ with the properties: (i) for each
t � 0 the mapping σ( · , t) is of class K; (ii) for
each s � 0, the mapping σ(s, ·) is non-increasing
with limt→+∞ σ(s, t) = 0. E denotes the class of
non-negative C0 functions μ : �+ → �+, for which
it holds:

∫ +∞
0

μ(t)dt < +∞ and limt→+∞ μ(t) = 0.
• Let I ⊆ � be an interval. By L∞(I;Ω) (resp.

L∞
loc(I;Ω)), we denote the class of measurable and

(resp. locally) bounded functions on I, which take
values in Ω ⊆ �n. If Ω ⊆ �n is a subspace of
�n, L∞(I;Ω) is a normed linear space with norm
supt∈I |x(t)|, for x ∈ L∞(I;Ω).
• Let D ⊆ �l be a non-empty set. By MD we

denote the class of all Lebesgue measurable and lo-
cally essentially bounded mappings d : �+ → D.
By M̃D we denote the class of all right-continuous
mappings d : �+ → D, with the property that
there exists a countable set Ad ⊂ �+ which is
either finite or Ad = {td

k; k = 1, . . . ,∞} with
td
k+1 > td

k > 0 for all k = 1, 2, . . . and lim td
k = +∞,

such that the mapping t ∈ �+\Ad → d(t) ∈ D is
continuous.
• Let U ⊆ �m be a non-empty set with 0 ∈ U .

By BU [0, r] := {u ∈ U ; |u| � r} we denote the
intersection of the closed sphere of radius r � 0,
centered at 0 ∈ U with U ⊆ �m.
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• Let x : [a − r, b) → �n be a continuous map-
ping with b > a > −∞ and r > 0. By Tr(t)x we
denote the “r-history” of x at time t ∈ [a, b), i.e.,
Tr(t)x := x(t + θ); θ ∈ [−r, 0].

2 Main assumptions and preliminaries
for systems described by RFDEs

In this section, we provide background material
needed for the study of systems described by
RFDEs of the form (1.1). Although the results of
this section are technical, they play a fundamental
role in the proofs of the main results of the present
work.

2.1 Main assumptions for systems
described by RFDEs

Concerning systems of the form (1.1) the following
hypotheses will be valid throughout the text:

(S1) The mapping (x, u, d) → f(t, x, u, d) is
continuous for each fixed t � 0, such that for
every bounded I ⊆ �+ and for every bounded
S ⊂ C0([−r, 0];�n) × U , there exists a constant
L � 0 such that

(x(0) − y(0))′(f(t, x, u, d) − f(t, y, u, d))

� L max
τ∈[−r,0]

|x(τ) − y(τ)|2 = L‖x − y‖2
r

∀ t ∈ I,∀(x, u, y, u) ∈ S × S,∀ d ∈ D.

Hypothesis (S1) is equivalent to the existence of a
continuous function L : �+ × �+ → �+ such that
for each fixed t � 0 the mappings L(t, ·) and L(·, t)
are non-decreasing, and that

(x(0) − y(0))′(f(t, x, u, d) − f(t, y, u, d))

� L(t, ‖x‖r + ‖y‖r + |u|)‖x − y‖2
r

∀(t, x, y, d, u) ∈ �+ × C0([−r, 0];�n)

× C0([−r, 0];�n) × D × U. (2.1)

(S2) For every bounded Ω ⊂ �+ × C0([−r, 0];
�n)×U the image set f(Ω ×D) ⊂ �n is bounded.

(S3) There exists a countable set A ⊂ �+, which
is either finite or A = {tk; k = 1, . . . ,∞}
with tk+1 > tk > 0 for all k = 1, 2, . . . and
lim tk = +∞, such that mapping (t, x, u, d) ∈
(�+\A) × C0([−r, 0];�n) × U × D → f(t, x, u, d)
is continuous. Moreover, for each fixed
(t0, x, u, d) ∈ �+×C0([−r, 0];�n)×U×D, we have
limt→t+0

f(t, x, u, d) = f(t0, x, u, d).

(S4) For every ε > 0, t ∈ �+, there exists
δ := δ(ε, t) > 0, such that

sup{|f(τ, x, u, d)| : τ ∈ �+, d ∈ D,u ∈ U,

|τ − t| + ‖x‖r + |u| < δ} < ε.

(S5) The mapping u → f(t, x, u, d) is Lips-
chitz on bounded sets, in the sense that for ev-
ery bounded I ⊆ �+ and for every bounded S ⊂
C0([−r, 0];�n)×U , there exists a constant LU � 0
such that

|f(t, x, u, d) − f(t, x, v, d)| � LU |u − v|,
∀t ∈ I,∀(x, u, x, v) ∈ S × S,∀d ∈ D.

Hypothesis (S5) is equivalent to the existence of
a continuous function LU : �+ × �+ → �+ such
that for each fixed t � 0 the mappings LU(t, ·)
and LU(·, t) are non-decreasing, with the following
property:

|f(t, x, u, d) − f(t, x, v, d)|
� LU(t, ‖x‖r + |u| + |v|)|u − v|
∀(t, x, d, u, v) ∈ �+ × C0([−r, 0];�n)

× D × U × U. (2.2)
(S6) U is a positive cone, i.e., for all u ∈ U and

λ � 0 it follows that (λu) ∈ U .
(S7) The mapping H(t, x) is Lipschitz on

bounded sets, in the sense that for every bounded
I ⊆ �+ and for every bounded S ⊂ C0([−r, 0];�n),
there exists a constant LH � 0 such that

‖H(t, x) − H(τ, y)‖Y � LH(|t − τ | + ‖x − y‖r),

∀(t, τ) ∈ I × I,∀(x, y) ∈ S × S. (2.3)
Hypothesis (S7) is equivalent to the existence of
a continuous function LH : �+ × �+ → �+ such
that for each fixed t � 0 the mappings LH(t, ·) and
LH(·, t) are non-decreasing, satisfying
‖H(t, x) − H(τ, y)‖Y

� LH(t + τ, ‖x‖r + ‖y‖r)(|t − τ | + ‖x − y‖r),

∀(t, τ) ∈ �+ ×�+,

∀(x, y) ∈ C0([−r, 0];�n) × C0([−r, 0];�n). (2.4)

Using hypotheses (S1–7) above, Theorem 2.1 in
ref. [1] (and its extension given in paragraph 2.6
of the same book) and Theorem 3.2 in ref. [1],
we may conclude that for every (t0, x0, d, u) ∈
�+×C0([−r, 0];�n)×MD×MU there exists tmax ∈
(t0,+∞], such that the unique solution x(t) of (1.1)
is defined on [t0 − r, tmax) and cannot be further
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continued. Moreover, if tmax < +∞ then we must
necessarily have lim supt→t−max

|x(t)| = +∞. We de-
note by Tr(t)x the “r-history” of the unique so-
lution of (1.1) with initial condition Tr(t0)x = x0

corresponding to (d, u) ∈ MD × MU . Moreover,
the following inequality holds for every pair T (·)x :
[t0, tx

max) → C0([−r, 0];�n), T (·)y : [t0, ty
max) →

C0([−r, 0];�n) of solutions of (1.1) with initial con-
ditions Tr(t0)x = x0, Tr(t0)y = y0, corresponding
to the same (d, u) ∈ MD×MU and for all t ∈ [t0, t1)
with t1 = min{tx

max; ty
max}:

‖Tr(t)x − Tr(t)y‖r

� ‖x0 − y0‖r exp(L(t, a(t))(t − t0)),

‖H(t, Tr(t)x) − H(t, Tr(t)y)‖Y
� LH(t, a(t))‖x0 − y0‖r exp(L(t, a(t))(t − t0)),

a(t) = sup
τ∈[t0,t]

(‖Tr(τ)x‖r + ‖Tr(τ)y‖r)

+ sup
τ∈[t0,t]

|u(τ)|. (2.5)

Some comments are needed for hypotheses (S1–
7). Indeed, hypotheses (S1–7) are the minimal
regularity assumptions that guarantee uniqueness
of solutions, Lipschitz continuity of the solutions
with respect to the initial state (i.e., inequal-
ity (2.5)) and the so-called Boundedness-Implies-
Continuation property (see refs. [6–9]). Based on
these minimal regularity assumptions we are in a
position to develop the tools for the study of sta-
bility for systems of the form (11).

2.2 Important notions for systems

described by RFDEs

An important property for systems of the form
(1.1) is robust forward completeness (RFC) from
an external input (see refs. [6–9]). This property
will be used extensively in the following sections of
the present work.

Definition 2.1. We say that (1.1) under
hypotheses (S1–7) is robustly forward complete
(RFC) from the input u ∈ MU if for every s � 0,
T � 0, it holds that

sup{‖Tr(t0 + ξ)x‖r;u ∈ MBU [0,s], ξ ∈ [0, T ],

‖Tr(t0)x‖r � s, t0 ∈ [0, T ], d ∈ MD} < +∞.

When U = {0} we simply say that (1.1) under hy-
potheses (S1–7) is simply called robustly forward

complete (RFC).
In order to study the asymptotic properties of

the solutions of systems of the form (1.1), we will
use Lyapunov functionals and functions. There-
fore, certain notions and properties concerning
functionals are needed. Let x ∈ C0([−r, 0];�n) and
V : �+ × C0([−r, 0];�n) → �. By Eh(x; v), where
0 � h < r and v ∈ �n we denote the following
operator

Eh(x; v) :=

{
x(0) + (θ + h)v, −h < θ � 0,

x(θ + h), −r � θ � −h,
(2.6)

and we define

V 0(t, x; v) :=

lim sup
h → 0+

y → 0

y ∈ C0([−r, 0]; �n)

V (t + h,Eh(x; v) + hy) − V (t, x)
h

.

(2.7)

The class of functionals which are “almost Lips-
chitz on bounded sets” is introduced in refs. [10,11]
and is used extensively in the present work. For
reasons of completeness we recall the definition
here.

Definition 2.2. We say that a continuous
functional V : �+ × C0([−r, 0];�n) → �+, is “al-
most Lipschitz on bounded sets”, if there exist non-
decreasing functions M : �+ → �+, P : �+ → �+,
G : �+ → [1,+∞) such that for all R � 0, the
following properties hold:

(P1) For every

x, y ∈ {ξ ∈ C0([−r, 0];�n); ‖ξ‖r � R},
it holds that

|V (t, y) − V (t, x)| � M(R)‖y − x‖r,∀t ∈ [0, R].

(P2) For every absolutely continuous function
x : [−r, 0] → �n with ‖x‖r � R and essentially
bounded derivative, it holds that

|V (t+h, x)−V (t, x)| � hP (R)
(

1+ sup
−r�τ�0

|ẋ(τ)|
)

for all t ∈ [0, R] and

0 � h � 1/G
(

R + sup
−r�τ�0

|ẋ(τ)|
)

.

If the continuous functional V : �+ ×C0([−r, 0];
�n) → �+ is “almost Lipschitz on bounded sets”,
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then the derivative V 0(t, x; v) defined by (2.7) is
simplified in the following way:

V 0(t, x; v) := lim sup
h→0+

V (t + h,Eh(x; v)) − V (t, x)
h

.

The following definition introduces an important
relation between output mappings. The equiva-
lence relation, defined next, will be used exten-
sively in the following sections of the present work
(see also refs. [10,11]).

Definition 2.3. Suppose that there exists
a continuous mapping h : [−r,+∞) × �n →
�p with h(t, 0) = 0 for all t � −r and func-
tions a1, a2 ∈ K∞ such that a1(|h(t, x(0))|) �
‖H(t, x)‖Y � a2(supθ∈[−r,0] |h(t + θ, x(θ))|) for all
(t, x) ∈ �+ × C0([−r, 0];�n). Then we say that
H : �+ × C0([−r, 0];�n) → Y is equivalent to the
finite-dimensional mapping h.

For example the identity output mapping
H(t, x) = x ∈ C0([−r, 0];�n) is equivalent to
finite-dimensional mapping h(t, x) = x ∈ �n.

2.3 Useful technical results

The following lemma presents some elementary
properties of the generalized derivative given
above.

Lemma 2.4. Consider V : �+ × C0([−r, 0];
�n) → � and let x ∈ C0([t0 − r, tmax);�n) be
a solution of (1.1) under hypotheses (S1–7) cor-
responding to certain (d, u) ∈ MD × MU , where
tmax ∈ (t0,+∞] is the maximal existence time of
the solution. Then it holds

lim sup
h→0+

h−1(V (t + h, Tr(t + h)x) − V (t, Tr(t)x))

� V 0(t, Tr(t)x;D+x(t)), a.e. on [t0, tmax), (2.8)

where D+x(t) = lim
h→0+

h−1(x(t + h) − x(t)). More-

over, if (d, u) ∈ M̃D × M̃U then (2.8) holds for all
t ∈ [t0, tmax).

The following results are direct extensions of the
similar results in ref. [12]. More specifically, the
proof of Lemma 2.6 utilizes inequality (2.5), which
guarantees continuity of the solution with respect
to the initial conditions.

Lemma 2.5. Let V : �+ × C0([−r, 0];�n) →
� be a functional which is almost Lipschitz on
bounded sets and let x ∈ C0([t0 − r, tmax);�n) be

a solution of (1.1) under hypotheses (S1–7) corre-
sponding to certain (d, u) ∈ MD × MU with initial
condition Tr(t0)x = x0 ∈ C1([−r, 0];�n), where
tmax ∈ (t0,+∞] is the maximal existence time of
the solution. Then for every T ∈ (t0, tmax), the
mapping [t0, T ] � t → V (t, Tr(t)x) is absolutely
continuous.

Lemma 2.6. Suppose that there exist map-
pings β1 : �+×C0([−r, 0];�n) → �, β2 : �+×�+×
C0([−r, 0];�n) × Θ → �, where Θ ⊆ MD × MU ,
with the following properties:

(i) for each (t, t0, d, u) ∈ �+ ×�+ ×Θ , the map-
pings x → β1(t, x), x → β2(t, t0, x, d, u) are contin-
uous;

(ii) there exists a continuous function M : �+ ×
�+ → �+ such that

sup{β2(t0 + ξ, t0, x0, d, u) : sup
t�0

|u(τ)| � s,

ξ ∈ [0, T ], x0 ∈ C0([−r, 0];�n), ‖x0‖r � s,

t0 ∈ [0, T ], (d, u) ∈ Θ} � M(T, s);
(iii) for every (t0, x0, d, u) ∈ �+ ×

C1([−r, 0];�n) × Θ the solution x(t) of (1.1) with
initial condition Tr(t0)x = x0 corresponding to
input (d, u) ∈ Θ satisfies

β1(t, Tr(t)x) � β2(t, t0, x0, d, u),∀t � t0. (2.9)
Moreover, suppose that one of the following prop-
erties holds:

(iv) We have
sup{‖Tr(t0 + ξ)x‖r : sup

t�0
|u(τ)| � s, ξ ∈ [0, T ],

x0 ∈ C0([−r, 0];�n), ‖x0‖r � s,

t0 ∈ [0, T ], (d, u) ∈ Θ} < +∞.

(v) There exist functions a ∈ K∞, μ ∈ K+

and a constant R � 0 such that a(μ(t)|x(0)|) �
β1(t, x) + R for all (t, x) ∈ �+ × C0([−r, 0];�n).

Then, for every (t0, x0, d, u) ∈ �+ × C0([−r, 0];
�n) × Θ , the solution x(t) of (1.1) with initial
condition Tr(t0)x = x0 corresponding to input
(d, u) ∈ Θ exists for all t � t0 and satisfies (2.9).

3 Stability notions and their Lyapunov
characterizations

In this section, we introduce the reader to the no-
tion of non-uniform and uniform weighted input-
to-output stability (IOS) for systems described by
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RFDEs and we provide Lyapunov characteriza-
tions of these properties for such systems. Notice
that the notion of IOS is an “external stability”
property since it is applied to systems which oper-
ate under the effect of external non-vanishing per-
turbations.

Definition 3.1. We say that (1.1) under hy-
potheses (S1–7) satisfies the weighted input-to-
output stability property (WIOS) from the input
u ∈ MU with gain γ ∈ K and weight δ ∈ K+, if
(1.1) is robustly forward complete (RFC) from the
input u ∈ MU and there exist functions σ ∈ KL,
β ∈ K+, such that for all (d, u) ∈ MD × MU ,
(t0, x0) ∈ �+ × C0([−r, 0];�n) the solution x(t) of
(1.1) with Tr(t0)x = x0 corresponding to (d, u) ∈
MD × MU satisfies the following estimate for all
t � t0:

‖H(t, Tr(t)x)‖Y � max{σ(β(t0)‖x0‖r, t − t0),

sup
t0�τ�t

γ(δ(τ)|u(τ)|}. (3.1)

Moreover,
(i) if β(t) ≡ 1, then we say that (1.1) satisfies the

uniform weighted input-to-output stability prop-
erty (UWIOS) from the input u ∈ MU with gain
γ ∈ K and weight δ ∈ K+;

(ii) if δ(t) ≡ 1, then we say that (1.1) satisfies
the input-to-output stability property (IOS) from
the input u ∈ MU with gain γ ∈ K;

(iii) if β(t) = δ(t) ≡ 1, then we say that (1.1) sat-
isfies the uniform input-to-output stability prop-
erty (UIOS) from the input u ∈ MU with gain
γ ∈ K;

(iv) if ‖x‖r � ‖H(t, x)‖Y for all (t, x) ∈ �+ ×
C0([−r, 0];�n), then we say that (1.1) satisfies the
weighted input-to-state stability property (WISS)
from the input u ∈ MU with gain γ ∈ K and weight
δ ∈ K+;

(v) if ‖x‖r � ‖H(t, x)‖Y for all (t, x) ∈ �+ ×
C0([−r, 0];�n) and β(t) ≡ 1, then we say that (1.1)
satisfies the uniform weighted input-to-state stabil-
ity property (UWISS) from the input u ∈ MU with
gain γ ∈ K and weight δ ∈ K+;

(vi) if ‖x‖r � ‖H(t, x)‖Y for all (t, x) ∈ �+ ×
C0([−r, 0];�n) and δ(t) ≡ 1, then we say that (1.1)
satisfies the input-to-state stability property (ISS)
from the input u ∈ MU with gain γ ∈ K;

(vii) if ‖x‖r � ‖H(t, x)‖Y for all (t, x) ∈ �+ ×
C0([−r, 0];�n) and β(t) = δ(t) ≡ 1, then we say
that (1.1) satisfies the uniform input-to-state sta-
bility property (UISS) from the input u ∈ MU with
gain γ ∈ K.

It should be emphasized that for periodic sys-
tems estimate (3.1) leads to a simpler estimate.
We say that (1.1) under hypotheses (S1–7) is T -
periodic, if there exists T > 0 such that f(t +
T, x, u, d) = f(t, x, u, d) and H(t + T, x) = H(t, x)
for all (t, x, u, d) ∈ �+ × C0([−r, 0];�n) × U × D.
Lemmas 2.19 and 2.20 in ref. [9] show that if
system (1.1) is T -periodic and satisfies the WIOS
property with gain γ and weight δ from the input
u ∈ MU , then system (1.1) satisfies the UWIOS
property from the input u ∈ MU with gain γ and
weight δ̃, where δ̃(t) := max{δ(s); s ∈ [0, t]}.

Definition 3.2. Consider system (1.1) under
hypotheses (S1–7) with U = {0}. We say that (1.1)
is non-uniformly in time robustly globally asymp-
totically output stable (RGAOS) with disturbances
d ∈ MD if (1.1) is RFC and the following properties
hold:

P1. (1.1) is robustly lagrange output stable, i.e.,
for every ε > 0, T � 0, it holds that

sup{‖H(t, Tr(t)x)‖Y ; t ∈ [t0,+∞), ‖x0‖r � ε,

t0 ∈ [0, T ], d ∈ MD} < +∞
(robust Lagrange output stability).
P2. (2.1) is robustly Lyapunov output stable,

i.e., for every ε > 0 and T � 0 there exists a
δ := δ(ε, T ) > 0 such that

‖x0‖r � δ, t0 ∈ [0, T ] ⇒ ‖H(t, Tr(t)x)‖Y � ε,

∀ t � t0,∀d ∈ MD

(robust Lyapunov output stability)
P3. (2.1) satisfies the robust output attractivity

property, i.e. for every ε > 0, T � 0 and R � 0,
there exists a τ := τ(ε, T,R) � 0, such that

‖x0‖r � R, t0 ∈ [0, T ] ⇒ ‖H(t, Tr(t)x)‖Y � ε,

∀ t � t0 + τ,∀d ∈ MD.

Moreover, if there exists a function a ∈ K∞
such that a(‖x‖r) � ‖H(t, x)‖Y for all (t, x) ∈
�+×C0([−r, 0];�n), then we say that (2.1) is non-
uniformly in time robustly globally asymptotically
stable (RGAS) with disturbances d ∈ MD.
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We say that (2.1) is non-uniformly in time
robustly globally asymptotically output stable
(RGAOS) with disturbances d ∈ M̃D if (1.1) is
RFC and properties P1–3 above hold with d ∈ M̃D

instead of d ∈ MD.
The next lemma provides an estimate of the out-

put behavior for non-uniformly in time RGAOS
systems. It is a direct corollary of Lemma 3.4 in
ref. [6].

Lemma 3.3. System (1.1) under hypotheses
(S1–7) with U = {0} is non-uniformly in time
RGAOS with disturbances d ∈ MD (or d ∈ M̃D)
if and only if system (1.1) is RFC and there ex-
ist functions σ ∈ KL, β ∈ K+ such that the
following estimate holds for all (t0, x0) ∈ �+ ×
C0([−r, 0];�n), d ∈ MD (or d ∈ M̃D) and t � t0:

‖H(t, Tr(t)x)‖Y � σ(β(t0)‖x0‖r, t − t0). (3.2)

We next provide the definition of uniform ro-
bust global asymptotic output stability, in terms
of KL functions, which is completely analogous to
the finite-dimensional case (see refs. [13–16]). It is
clear that such a definition is equivalent to a δ − ε

definition (analogous to Definition 3.2).

Definition 3.4. Suppose that (1.1) under hy-
potheses (S1–7) with U = {0} is non-uniformly in
time RGAOS with disturbances d ∈ MD (or d ∈
M̃D) and there exists σ ∈ KL such that estimate
(1.1) holds for all (t0, x0) ∈ �+ × C0([−r, 0];�n),
d ∈ MD (or d ∈ M̃D) and t � t0 with β(t) ≡ 1.
Then we say that (1.1) is uniformly robustly glob-
ally asymptotically output stable (URGAOS) with
disturbances d ∈ MD (or d ∈ M̃D).

The following lemma must be compared to
Lemma 1.1 in ref. [1]. It shows that for periodic
systems RGAOS is equivalent to URGAOS.

Lemma 3.5. Suppose that (1.1) under hy-
potheses (S1–7) with U = {0} is T -periodic. If
(1.1) is non-uniformly in time RGAOS with dis-
turbances d ∈ MD (or d ∈ M̃D), then (1.1) is UR-
GAOS with disturbances d ∈ MD (or d ∈ M̃D).

We are now in a position to present Lyapunov-
like characterizations for non-uniform in time
RGAOS and URGAOS.

Theorem 3.6. Consider system (1.1) under
hypotheses (S1–7) with U = {0}. The following

statements are equivalent:
(a) (1.1) is non-uniformly in time RGAOS with

disturbances d ∈ MD.
(b) (1.1) is non-uniformly in time RGAOS with

disturbances d ∈ M̃D.
(c) (1.1) is RFC and there exist functions a1, a2 ∈

K∞, β, γ ∈ K+ with
∫ +∞
0

γ(t)dt = +∞, a positive
definite locally Lipschitz function ρ : �+ → �+ and
a mapping V : �+ × C0([−r, 0];�n) → �+, which
is almost Lipschitz on bounded sets, such that

a1(‖H(t, x)‖Y) � V (t, x) � a2(β(t)‖x‖r),

∀(t, x) ∈ �+ × C0([−r, 0];�n) (3.3)

V 0(t, x; f(t, x, d)) � −γ(t)ρ(V (t, x)),

∀(t, x, d) ∈ �+ × C0([−r, 0];�n) × D. (3.4)

(d) (1.1) is RFC and there exist functions
a1, a2 ∈ K∞, β ∈ K+ and a mapping V : �+ ×
C0([−r, 0];�n) → �+, which is almost Lipschitz
on bounded sets, such that inequalities (3.3), (3.4)
hold with γ(t) ≡ 1 and ρ(s) := s.

(e) (1.1) is RFC and there exist a lower semi-
continuous mapping V : �+×C0([−r−τ, 0];�n) →
�+, a constant τ � 0, functions a1, a2 ∈ K∞,
β, γ ∈ K+ with

∫ +∞
0

γ(t)dt = +∞, μ ∈ E (see
Notations) and a positive definite locally Lipschitz
function ρ : �+ → �+, such that the following in-
equalities hold:

a1(‖H(t, x)‖Y) � V (t, x) � a2(β(t)‖x‖r+τ ),

∀(t, x) ∈ �+ × C0([−r − τ, 0];�n), (3.5)

V 0(t, x; f(t, Tr(0)x, d))

� −γ(t)ρ(V (t, x)) + γ(t)μ
(∫ t

0

γ(s)ds

)
,

∀(t, d) ∈ [τ,+∞) × D , ∀x ∈ S(t), (3.6)

where the set-valued map S(t) is defined for t � τ

by S(t) :=
⋃

d∈M̃D
S(t, d) and the set-valued map

S(t, d) is defined for t � τ and d ∈ M̃D by

S(t, d) := {x ∈ C0([−r − τ, 0];�n);

x(θ) = x(−τ) +
∫ θ

−τ

f(t + s, Tr(s)x, d(τ + s))ds,

∀θ ∈ [−τ, 0]}. (3.7)

Moreover,
i) if H : �+ × C0([−r, 0];�n) → Y is equiva-

lent to the finite-dimensional continuous mapping
h : [−r,+∞) × �n → �p then inequalities (3.3)
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in statements (c) and (d) can be replaced by the
following inequalities:

a1(|h(t, x(0))|) � V (t, x) � a2(β(t)‖x‖r),

∀(t, x) ∈ �+ × C0([−r, 0];�n); (3.8)

ii) if H : �+ × C0([−r, 0];�n) → Y is equiva-
lent to the finite-dimensional continuous mapping
h : [−r,+∞) × �n → �p then inequalities (3.5)
in statement (e) can be replaced by the following
inequalities:

a1(|h(t, x(0))|) � V (t, x) � a2(β(t) ‖x‖r+τ ),

∀(t, x) ∈ �+ × C0([−r − τ, 0];�n); (3.9)

iii) if there exist functions a ∈ K∞, μ ∈ K+

and a constant R � 0 such that a(μ(t)|x(0)|) �
V (t, x)+R for all (t, x) ∈ �+×C0([−r, 0];�n), then
the requirement that (1.1) is RFC is not needed in
statements (c) and (d) above.

Theorem 3.7. Consider system (1.1) under
hypotheses (S1–7) with U = {0}. The following
statements are equivalent:

(a) (1.1) is URGAOS with disturbances d ∈ MD.
(b) (1.1) is URGAOS with disturbances d ∈ M̃D.
(c) (1.1) is RFC and there exist functions a1, a2 ∈

K∞, a positive definite locally Lipschitz func-
tion ρ : �+ → �+ and a mapping V : �+ ×
C0([−r, 0];�n) → �+, which is almost Lipschitz
on bounded sets, such that

a1(‖H(t, x)‖Y ) � V (t, x) � a2(‖x‖r),

∀(t, x) ∈ �+ × C0([−r, 0];�n), (3.10)

V 0(t, x; f(t, x, d)) � −ρ(V (t, x)),

∀(t, x, d) ∈ �+ × C0([−r, 0];�n) × D. (3.11)

(d) (1.1) is RFC and there exist functions
a1, a2 ∈ K∞ and a mapping V : �+ ×
C0([−r, 0];�n) → �+, which is almost Lipschitz on
bounded sets, such that inequalities (3.10), (3.11)
hold with ρ(s) := s. Moreover, if system (1.1) is
T -periodic, then V is T -periodic (i.e. V (t+T, x) =
V (t, x) for all (t, x) ∈ �+ × C0([−r, 0];�n)) and if
(1.1) is autonomous then V is independent of t.

(e) (1.1) is RFC and there exist constants τ, β �
0, a lower semi-continuous mapping V : �+ ×
C0([−r − τ, 0];�n) → �+, functions a1, a2 ∈ K∞
and a positive definite locally Lipschitz function
ρ : �+ → �+, such that the following inequalities

hold

a1(‖H(t, x)‖Y ) � V (t, x) � a2(‖x‖r+τ ),

∀(t, x) ∈ �+ × C0([−r − τ, 0];�n), (3.12)

V 0(t, x; f(t, Tr(0)x, d)) � β V (t, x),

∀(t, x, d) ∈ �+ × C0([−r − τ, 0];�n)

× D, (3.13a)

V 0(t, x; f(t, Tr(0)x, d)) � −ρ(V (t, x)),

∀(t, d) ∈ [τ,+∞) × D,∀x ∈ S(t), (3.13b)

where the set-valued map S(t) is defined for t � τ

by S(t) :=
⋃

d∈M̃D
S(t, d) and the set-valued map

S(t, d) is defined for t � τ and d ∈ M̃D by (3.7).
Moreover,
i) if H : �+×C0([−r, 0];�n) → Y is equivalent to

the finite-dimensional continuous T -periodic map-
ping h : [−r,+∞) × �n → �p, then inequalities
(3.10) in statements (c) and (d) can be replaced
by the following inequalities:

a1(|h(t, x(0))|) � V (t, x) � a2(‖x‖r),

∀(t, x) ∈ �+ × C0([−r, 0];�n); (3.14)

ii) if H : �+ × C0([−r, 0];�n) → Y is equivalent
to the finite-dimensional continuous T -periodic
mapping h : [−r,+∞) × �n → �p then inequal-
ities (3.12) in statement (e) can be replaced by the
following inequalities:

a1(|h(t, x(0))|) � V (t, x) � a2(‖x‖r+τ ),

∀(t, x) ∈ �+ × C0([−r − τ, 0];�n); (3.15)

iii) if there exist functions a ∈ K∞, μ ∈ K+ and
a constant R � 0 such that

a(μ(t)|x(0)|) � V (t, x) + R

for all (t, x) ∈ �+×C0([−r, 0];�n) then the require-
ment that (1.1) is RFC is not needed in statements
(c) and (d) above.

Remark 3.8. The set-valued map S(t, d) de-
fined by (3.7) can be equivalently described for
given t � τ and d ∈ M̃D as “the set of all
x ∈ C0([−r − τ, 0];�n), which are arbitrary on
[−r − τ,−τ ] (i.e., Tr(−τ)x is arbitrary) and co-
incide on [−τ, 0] with the unique solution y(t)
of ẏ(t) = f(t, Tr(t)y, d(t)) with initial condition
Tr(t − τ)y = Tr(−τ)x, i.e., Tτ (0)x = Tτ(t)y and
x = Tr+τ(t)y”.

Statements (e) of Theorem 3.6 and Theorem 3.7
are important, since they can be used efficiently

2112 KARAFYLLIS I et al. Sci China Ser F-Inf Sci | Nov. 2009 | vol. 52 | no. 11 | 2104-2126



when some information about the solution of (1.1)
is available (e.g., we have analytical expressions
for some components of the solution vector). In
this case, the Lyapunov differential inequality is
required to hold only for all (t, d) ∈ [τ,+∞) × D

and x ∈ S(t) since the solution of (1.1) initiated
from t0 � 0 and corresponding to input d ∈ M̃D

satisfies Tr+τ(t)x ∈ S(t, d) for all t � t0 + τ . More-
over, statements (e) of Theorem 3.6 and Theorem
3.7 have an additional advantage: the Lyapunov
functional is not required to be almost Lipschitz on
bounded sets (lower semi-continuity is sufficient).
Consequently, value functionals of optimal control
problems can be used for verification of RGAOS
(usually value functionals are not continuous).

We are now in a position to state characteriza-
tions for the WIOS property for time-varying un-
certain systems.

Theorem 3.9. The following statements are
equivalent for system (1.1) under hypotheses (S1–
7):

(a) System (1.1) is robustly forward complete
(RFC) from the input u ∈ MU and there ex-
ist functions σ ∈ KL, β, φ ∈ K+, ρ ∈ K such
that that for all (d, u) ∈ MD × MU , (t0, x0) ∈
�+ ×C0([−r, 0];�n) the solution x(t) of (1.1) with
Tr(t0)x = x0 corresponding to (d, u) ∈ MD × MU

satisfies the following estimate for all t � t0:

‖H(t, Tr(t)x)‖Y � max{σ(β(t0)‖x0‖r, t − t0),

sup
t0�τ�t

σ(ρ(φ(τ)|u(τ)|), t − τ)}. (3.16)

(b) System (1.1) satisfies the WIOS property
from the input u ∈ MU .

(c) There exists a locally Lipschitz function θ ∈
K∞, functions φ, μ ∈ K+ such that the following
system is non-uniformly in time RGAOS with dis-
turbances (d′, d) ∈ M̃Δ:

ẋ(t) = f

(
t, Tr(t)x,

θ(‖Tr(t)x‖r)
φ(t)

d′(t), d(t)
)

,

Y (t) = H̃(t, Tr(t)x), (3.17)

where Δ := BU [0, 1] × D,

H̃(t, x) := (H(t, x), μ(t)x) ∈ Y × C0([−r, 0];�n).

(d) There exist a Lyapunov functional V : �+ ×
C0([−r, 0];�n) → �+, which is almost Lipschitz

on bounded sets, functions a1, a2, a3 of class K∞,
β, δ, μ of class K+ such that

a1(‖H(t, x)‖Y + μ(t)‖x‖r)

� V (t, x) � a2(β(t)‖x‖r),

f5.2∀(t, x) ∈ �+ × C0([−r, 0];�n),(3.18)

V 0(t, x; f(t, x, u, d)) � −V (t, x) + a3(δ(t)|u|),
∀(t, x, u, d) ∈ �+ × C0([−r, 0];�n) × U × D.(3.19)

(e) System (1.1) is RFC from the input u ∈ MU

and there exist a Lyapunov functional V : �+ ×
C0([−r, 0];�n) → �+, which is almost Lipschitz on
bounded sets, functions a1, a2, ζ of class K∞, β, δ

of class K+ and a locally Lipschitz positive definite
function ρ : �+ → �+ such that

a1(‖H(t, x)‖Y) � V (t, x) � a2(β(t)‖x‖r),

∀(t, x) ∈ �+ × C0([−r, 0];�n), (3.20)

V 0(t, x; f(t, x, u, d)) � −ρ(V (t, x)) (3.21)

for all (t, x, u, d) ∈ �+ × C0([−r, 0];�n) × U × D

with ζ(δ(t)|u|) � V (t, x).
(f) System (1.1) is RFC from the input u ∈ MU

and system (1.1) with u ≡ 0 is non-uniformly in
time RGAOS with disturbances d ∈ MD.

Moreover,
i) if H : �+ × C0([−r, 0];�n) → Y is equiva-

lent to the finite-dimensional continuous mapping
h : [−r,+∞) × �n → �p then inequality (3.20)
in the above statement (e) can be replaced by the
following inequality:

a1(|h(t, x(0))|) � V (t, x) � a2(β(t)‖x‖r),

∀(t, x) ∈ �+ × C0([−r, 0];�n); (3.22)

ii) if there exist functions a ∈ K∞, μ ∈ K+

and a constant R � 0 such that a(μ(t)|x(0)|) �
‖H(t, x)‖Y + R for all (t, x) ∈ �+ ×C0([−r, 0];�n)
then the requirement that (1.1) is RFC from the
input u ∈ MU is not needed in statement (a) above;

iii) if there exist functions p ∈ K∞, μ ∈ K+

and a constant R � 0 such that p(μ(t)|x(0)|) �
V (t, x)+R for all (t, x) ∈ �+×C0([−r, 0];�n) then
the requirement that (1.1) is RFC from the input
u ∈ MU is not needed in statement (e) above.

In order to obtain characterizations of the UIOS
property, we need an extra hypothesis for system
(1.1).
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(S8) There exists a constant R � 0 and a func-
tion a ∈ K∞ such that the inequality ‖x‖r �
a(‖H(t, x)‖Y ) + R holds for all (t, x) ∈ �+ ×
C0([−r, 0];�n).

Hypothesis (S8) holds for the important case of
the output map H(t, x) := d(x(θ),Γ ); θ ∈ [−r, 0],
where Γ ⊂ �n is a compact set which contains
0 ∈ �n and d(x,Γ ) denotes the distance of the
point x ∈ �n from the set Γ ⊂ �n. Notice that it
is not required that Γ ⊂ �n is positively invariant
for (1.1) with u ≡ 0. Hypothesis (S8) allows us
to provide characterizations for the UIOS property
for periodic uncertain systems.

Theorem 3.10. Suppose that system (1.1)
under hypotheses (S1–8) is T -periodic. The fol-
lowing statements are equivalent:

(a) There exist functions σ ∈ KL, ρ ∈ K∞
such that for all (d, u) ∈ MD × MU , (t0, x0) ∈
�+ ×C0([−r, 0];�n) the solution x(t) of (1.1) with
Tr(t0)x = x0 corresponding to (d, u) ∈ MD × MU ,
satisfies the following estimate for all t � t0:

‖H(t, Tr(t)x)‖Y � max{σ(‖x0‖r, t − t0),

sup
t0�τ�t

σ(ρ(|u(τ)|), t − τ)}. (3.23)

(b) System (1.1) satisfies the UIOS property.
(c) There exists a locally Lipschitz function θ ∈

K∞ such that 0 ∈ C0([−r, 0];�n) is URGAOS with
disturbances (d′, d) ∈ M̃Δ for the system

ẋ(t) = f(t, Tr(t)x, θ(‖H(t, Tr(t)x)‖Y)d′(t), d(t)),

Y (t) = H(t, Tr(t)x), (3.24)

where Δ := BU [0, 1] × D.
(d) There exists a T -periodic Lyapunov func-

tional V : �+ × C0([−r, 0];�n) → �+, which is al-
most Lipschitz on bounded sets, functions a1, a2, a3

of class K∞ such that

a1(‖H(t, x)‖Y) � V (t, x) � a2(‖x‖r),

∀(t, x) ∈ �+ × C0([−r, 0];�n), (3.25)

V 0(t, x; f(t, x, u, d)) � −V (t, x) + a3(|u|),
∀(t, x, u, d) ∈ �+ × C0([−r, 0];�n) × U × D. (3.26)

(e) There exists a Lyapunov functional V : �+×
C0([−r, 0];�n) → �+, which is almost Lipschitz
on bounded sets, functions a1, a2, ζ of class K∞
and a locally Lipschitz positive definite function

ρ : �+ → �+ such that

a1(‖H(t, x)‖Y) � V (t, x) � a2(‖x‖r),

∀(t, x) ∈ �+ × C0([−r, 0];�n), (3.27)

V 0(t, x; f(t, x, u, d)) � −ρ(V (t, x)), (3.28)

for all (t, x, u, d) ∈ �+ × C0([−r, 0];�n) × U × D

with ζ(|u|) � V (t, x).
Finally, if H : �+ × C0([−r, 0];�n) → Y is

equivalent to the finite-dimensional continuous T -
periodic mapping h : [−r,+∞) × �n → �p, then
inequalities (3.25), (3.27) in the above statements
(d) and (e), respectively, can be replaced by the
following inequality:

a1(|h(t, x(0))|) � V (t, x) � a2(‖x‖r),

∀(t, x) ∈ �+ × C0([−r, 0];�n). (3.29)

Remark 3.11. A statement like (e) of The-
orem 3.10 was extensively used as a tool of prov-
ing the UISS property for autonomous time-delay
systems in ref. [17]. Moreover, Sontag and
Wang[15,16] formulated IOS for continuous-time
finite-dimensional systems using an estimate of
the form (3.1) with β(t) ≡ δ(t) ≡ 1. On the
other hand, estimates of the form (3.23) (“fad-
ing memory estimates”) were first used by Praly
and Wang[18] for the formulation of exp-ISS, and
by Grune[19,20] for the formulation of input-to-
state dynamical stability (ISDS) with H(t, x) = x,
β(t) ≡ δ(t) ≡ 1, which was proved to be quali-
tatively equivalent to (3.1) for finite-dimensional
continuous-time systems.

The following theorem provides sufficient
Lyapunov-like conditions for the (U)WIOS prop-
erty. The proofs of implications (e)⇒(a) of The-
orem 3.9 and (e)⇒(a) of Theorem 3.10 are based
on the result of Theorem 3.12, which gives quan-
titative estimates of the solutions of (1.1) under
hypotheses (S1–7). The gain functions and the
weights of the WIOS property can be determined
explicitly in terms of the functions involved in the
assumptions of Theorem 3.12.

Theorem 3.12. Consider system (1.1) under
hypotheses (S1–7) and suppose that there exists a
Lyapunov functional V : �+ × C0([−r, 0];�n) →
�+, which is almost Lipschitz on bounded sets,

2114 KARAFYLLIS I et al. Sci China Ser F-Inf Sci | Nov. 2009 | vol. 52 | no. 11 | 2104-2126



functions a, ζ of class K∞, β, δ of class K+ and a lo-
cally Lipschitz positive definite function ρ : �+ →
�+ such that

V (t, x) � a(β(t)‖x‖r),

∀(t, x) ∈ �+ × C0([−r, 0];�n), (3.30)

V 0(t, x; f(t, x, u, d)) � −ρ(V (t, x)), (3.31)

for all (t, x, u, d) ∈ �+ × C0([−r, 0];�n) × U × D

with ζ(δ(t)|u|) � V (t, x).
Moreover, suppose that one of the following

holds:
a) system (1.1) is RFC from the input u ∈ MU ;
b) there exist functions p ∈ K∞, μ ∈ K+

and a constant R � 0 such that p(μ(t)|x(0)|) �
V (t, x) + R for all (t, x) ∈ �+ × C0([−r, 0];�n).

Then, system (1.1) is RFC from the input u ∈
MU and there exists a function σ ∈ KL with
σ(s, 0) = s for all s � 0, such that for all (d, u) ∈
MD ×MU , (t0, x0) ∈ �+ ×C0([−r, 0];�n) the solu-
tion x(t) of (1.1) with Tr(t0)x = x0 corresponding
to (d, u) ∈ MD × MU , satisfies the following esti-
mate for all t � t0:

V (t, Tr(t)x) � max{σ(a(β(t0)‖x0‖r), t − t0),

sup
t0�τ�t

σ(ζ(δ(τ)|u(τ)|), t − τ)}. (3.32)

Finally,
(i) if there exists a function a1 of class K∞

such that a1(‖H(t, x)‖Y) � V (t, x) for all (t, x) ∈
�+×C0([−r, 0];�n), then system (1.1) satisfies the
WIOS property from the input u ∈ MU with gain
γ(s) := a−1

1 (ζ(s)) and weight δ. Moreover, if in ad-
dition it holds that β(t) ≡ 1, then system (1.1) sat-
isfies the UWIOS property from the input u ∈ MU

with gain γ(s) := a−1
1 (ζ(s)) and weight δ;

(ii) if H : �+ × C0([−r, 0];�n) → Y is equiva-
lent to the finite-dimensional continuous mapping
h : [−r,+∞) × �n → �p and there exist func-
tions a1, a2 of class K∞ such that a1(|h(t, x(0))|) �
V (t, x), ‖H(t, x)‖Y � a2(supθ∈[−r,0] |h(t + θ, x(θ))|)
for all (t, x)∈�+×C0([−r, 0];�n), then system (1.1)
satisfies the WIOS property from the input u ∈ MU

with gain γ(s) := a2(a−1
1 (ζ(s))) and weight δ.

4 Razumikhin method for WIOS

Let V : [−r,+∞) ×�n → � be a locally Lipschitz

mapping and let (t, x, v) ∈ �+×�n×�n. We define

D+V (t, x; v)

:= lim sup
h→0+

V (t + h, x + hv) − V (t, x)
h

.(4.1)

The following proposition provides conditions in
terms of Razumikhin functions for the (U)WIOS
property. Its proof follows closely the methodol-
ogy introduced in ref. [21].

Proposition 4.1. Consider system (1.1) un-
der hypotheses (S1–7) and suppose that H : �+ ×
C0([−r, 0];�n) → Y is equivalent to the finite-
dimensional mapping h : [−r,+∞) × �n → �p.
Moreover, suppose that there exists a locally Lips-
chitz function V : [−r,+∞) ×�n → �+, functions
a1, a2, a, ζ of class K∞ with a(s) < s for all s > 0,
functions β, δ of class K+ and a locally Lipschitz
positive definite function ρ such that

a1(|h(t − r, x)|) � V (t − r, x) � a2(β(t)|x|),
∀(t, x) ∈ �+ ×�n, (4.2)

D+V (t, x(0); f(t, x, u, d)) � −ρ(V (t, x(0))), (4.3)

for all (t, x, u, d) ∈ �+ × C0([−r, 0];�n) × U × D

with

max
{

ζ(δ(t)|u|), a
(

sup
θ∈[−r,0]

V (t + θ, x(θ))
)}

� V (t, x(0)).

Finally, suppose that one of the following holds:
(i) system (1.1) is RFC from the input u ∈ MU ;
(ii) there exist functions p ∈ K∞, μ ∈ K+

and a constant R � 0 such that p(μ(t)|x|) �
V (t − r, x) + R for all (t, x) ∈ �+ ×�n.

Let a3 ∈ K∞ be the function with the prop-
erty ‖H(t, x)‖Y � a3(supθ∈[−r,0] |h(t + θ, x(θ))|)
for all (t, x) ∈ �+ × C0([−r, 0];�n). Then, sys-
tem (1.1) satisfies the WIOS property with gain
γ(s) := a3(a−1

1 (ζ(s))) and weight δ. Moreover, if β

is bounded, then, system (1.1) satisfies the UWIOS
property from the input u ∈ MU . Finally, if β, δ

are bounded, then system (1.1) satisfies the UIOS
property from the input u ∈ MU .

The following corollary extends the classical
Razumikhin theorem to systems with disturbances
as well as to the case of output asymptotic stability.

Corollary 4.2. Consider system (1.1) under
hypotheses (S1–7) with U = {0} and suppose that
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H : �+ × C0([−r, 0];�n) → Y is equivalent to the
finite-dimensional mapping h : [−r,+∞) × �n →
�p. Moreover, suppose that there exists a locally
Lipschitz function V : [−r,+∞)×�n → �+, func-
tions a1, a2, a of class K∞, with a(s) < s for all
s > 0, function β of class K+ and a locally Lips-
chitz positive definite function ρ such that

a1(|h(t − r, x)|) � V (t − r, x) � a2(β(t)|x|),
∀(t, x) ∈ �+ ×�n, (4.4)

and

D+V (t, x(0); f(t, x, 0, d)) � −ρ(V (t, x(0))),

for all (t, x, d) ∈ �+ × C0([−r, 0];�n) × D with

a( sup
θ∈[−r,0]

V (t + θ, x(θ))) � V (t, x(0)). (4.5)

Finally, suppose that one of the following holds:
(i) system (1.1) with u ≡ 0 is RFC;
(ii) there exist functions ζ ∈ K∞, μ ∈ K+

and a constant R � 0 such that ζ(μ(t)|x|) �
V (t − r, x) + R for all (t, x) ∈ �+ ×�n.

Then, system (1.1) with U = {0} is non-
uniformly in time RGAOS. Moreover, if β is
bounded, then system (1.1) with U = {0} is UR-
GAOS.

5 Necessary and sufficient conditions for
robust global stabilization

In this section, we consider control systems of the
form (1.1) under hypotheses (S1–7) and under the
additional hypothesis:

(S0) The set D ⊂ �l is compact and U ⊆ �m is
a closed convex set.

We next give the definition of the output robust
control Lyapunov functional for system (1.1).

Definition 5.1. We say that (1.1) under hy-
potheses (S0–7) admits an output robust control
Lyapunov functional (ORCLF) if there exists an
(almost Lipschitz on bounded sets) functional V :
�+ ×C0([−r, 0];�n) → �+ (called the output con-
trol Lyapunov functional), which satisfies the fol-
lowing properties:

(i) There exist functions a1, a2 ∈ K∞, β, μ ∈ K+

such that the following inequality holds for all
(t, x) ∈ �+ × C0([−r, 0];�n)

max{a1(‖H(t, x)‖Y ), a1(μ(t)‖x‖r)}

� V (t, x) � a2(β(t)‖x‖r). (5.1)

(ii) There exist a function Ψ : �+ × �p × U →
�⋃{+∞} with Ψ(t, 0, 0) = 0 for all t � 0 such that
for each u ∈ U the mapping (t, ϕ) → Ψ(t, ϕ, u) is
upper semi-continuous, a function q ∈ E , a con-
tinuous mapping �+ × C0([−r, 0];�n) � (t, x) →
Φ(t, x) ∈ �p being completely locally Lipschitz
with respect to x ∈ C0([−r, 0];�n) with Φ(t, 0) = 0
for all t � 0 and a C0 positive definite function
ρ : �+ → �+ such that the following inequality
holds:

inf
u∈U

Ψ(t, ϕ, u) � q(t), (5.2)

∀t � 0,∀ϕ = (ϕ1, . . . , ϕp)′ ∈ �p.

Moreover, for every finite set {u1, u2, . . . , uN} ⊂
U and for every λi ∈ [0, 1](i = 1, . . . , N) with∑N

i=1 λi = 1, it holds that

sup
d∈D

V 0

(
t, x; f

(
t, d, x,

N∑
i=1

λiui

))
� −ρ(V (t, x))

+ max{Ψ(t,Φ(t, x), ui), i = 1, . . . , N},
∀(t, x) ∈ �+ × C0([−r, 0];�n). (5.3)

If, in addition to the above, there exist a ∈ K∞,
γ ∈ K+ such that for every (t, ϕ) ∈ �+ ×�p there
exists u ∈ U with |u| � a(γ(t)|ϕ|), satisfying

Ψ(t, ϕ, u) � q(t), (5.4)

then, we say that V : �+ × C0([−r, 0];�n) → �+

satisfies the “small-control” property.
For the case when H(t, x) ≡ x ∈ C0([−r, 0];�n),

we simply call V : �+ × C0([−r, 0];�n) → �+

a state robust control Lyapunov functional (SR-
CLF).

It is clear that the notion of the robust control
Lyapunov functional is a generalization of the no-
tion of the robust control Lyapunov function for
finite-dimensional systems (see ref. [22]). Partic-
ularly, in the finite-dimensional case the map Φ is
the identity map, while in the affine in the control
case

ẋ = f(t, d, x) + g(t, d, x)u,

the map Ψ is simply

Ψ(t, x, u) :=
∂V

∂t
(t, x)

+ sup
d∈D

∂V

∂x
(t, x)(f(t, d, x) + g(t, d, x)u).
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In the infinite-dimensional case, the map Φ
plays a crucial role, since it maps the infinite-
dimensional space C0([−r, 0];�n) to the finite-
dimensional space �p, where partition of unity ar-
guments can be used for the construction of the
feedback stabilizer (see Figure 1).

Figure 1 The main idea in the proof of Theorems 5.2 and 5.3.

We are now in a position to state our main re-
sults for the infinite-dimensional case (1.1) (see ref.
[28]).

Theorem 5.2. Consider system (1.1) under
hypotheses (S0–7). The following statements are
equivalent:

(a) There exists a continuous mapping

�+ × C0([−r, 0];�n) � (t, x) → k(t, x) ∈ U

being completely locally Lipschitz with respect to
x ∈ C0([−r, 0];�n) with k(t, 0) = 0 for all t � 0,
such that the closed-loop system (1.1) with u =
k(t, Tr(t)x) is RGAOS.

(b) System (1.1) admits an ORCLF, which sat-
isfies the small control property with q(t) ≡ 0.

(c) System (1.1) admits an ORCLF.

Theorem 5.3. Consider system (1.1) under
hypotheses (S0–7). The following statements are
equivalent:

(a) System (1.1) admits an ORCLF, which sat-
isfies the small-control property and inequalities
(5.1), (5.4) with β(t) ≡ 1, q(t) ≡ 0. Moreover,
there exist continuous mappings η ∈ K+, A �
(t, ϕ) → K(t, ϕ) ∈ U where A =

⋃
t�0{t} × {ϕ ∈

�p : |ϕ| < 4η(t)} being locally Lipschitz with re-
spect to ϕ with K(t, 0) = 0 for all t � 0 and such

that
Ψ(t,Φ(t, x),K(t,Φ(t, x))) � 0 (5.5)

for all (t, x) ∈ �+×C0([−r, 0];�n) with |Φ(t, x)| �
2η(t), where Φ = (Φ1, . . . ,Φp)′ : �+ ×
C0([−r, 0];�n) → �p and Ψ : �+ × �p × U →
�⋃{+∞} are the mappings involved in property
(ii) of Definition 5.1.

(b) There exists a continuous mapping �+ ×
C0([−r, 0];�n) � (t, x) → k(t, x) ∈ U being
completely locally Lipschitz with respect to x ∈
C0([−r, 0];�n) with k(t, 0) = 0 for all t � 0,
such that the closed-loop system (1.1) with u =
k(t, Tr(t)x) is URGAOS.

Remark 5.4. From the proof of Theorem
5.3 it becomes apparent that if statement (a)
of Theorem 5.3 is strengthened so that the OR-
CLF V , the mappings Φ = (Φ1, . . . ,Φp)′ : �+ ×
C0([−r, 0];�n) → �p, Ψ involved in property (ii)
of Definition 5.1 and the mapping K : A → U are
time-independent, then the continuous mapping k,
whose existence is guaranteed by statement (b) of
Theorem 5.3, is time-invariant.

We next show that our generalized RCLF
methodology is more than an existence-type result,
but can yield constructive design tools for an en-
larged class of nonlinear control systems. To this
end, we will study in detail a class of triangular
time-delay nonlinear systems described by RFDEs,
i.e.,

ẋi(t)=fi(t, d(t), Tr(t)x1, . . . , Tr(t)xi)

+ gi(t, d(t), Tr(t)x1, . . . , Tr(t)xi)xi+1(t),

ẋn(t)=fn(t, d(t), Tr(t)x) + gn(t, d(t), Tr(t)x)u(t),

x(t)=(x1(t), . . . , xn(t)) ∈ �n, (5.6)

where d(t) ∈ D,u(t) ∈ �, t � 0, i = 1, . . . , n − 1.
Autonomous and disturbance-free systems of the

form (5.6) have been studied in refs. [23–26]. In the
present work it is shown that the construction of a
stabilizing feedback law for (5.6) proceeds in paral-
lel with the construction of a state robust control
Lyapunov functional. Moreover, sufficient condi-
tions for the existence and design of a stabilizing
feedback law u(t) = k(x(t)), which is independent
of the delay, are given below.

Our main result concerning triangular time-
delay control systems of the form (5.6) is stated

KARAFYLLIS I et al. Sci China Ser F-Inf Sci | Nov. 2009 | vol. 52 | no. 11 | 2104-2126 2117



next. It must be compared to Theorem 5.1 in
ref. [22], which deals with the triangular finite-
dimensional case.

Theorem 5.5. Consider system (5.6), where
r > 0, D ⊂ �l is a compact set, the mappings
fi : �+ × D × C0([−r, 0];�i) → �, gi : �+ × D ×
C0([−r, 0];�i) → � (i = 1, . . . , n) are continuous
with fi(t, d, 0) = 0 for all (t, d) ∈ �+ ×D and each
gi : �+ × D × C0([−r, 0];�i) → � (i = 1, . . . , n)
is completely locally Lipschitz with respect to x ∈
C0([−r, 0];�i). Suppose that there exists a func-
tion ϕ ∈ C∞(�+; (0,+∞)) being non-decreasing,
such that for every i = 1, . . . , n, it holds that

1
ϕ(‖x‖r)

� gi(t, d, x) � ϕ(‖x‖r),

∀(t, x, d) ∈ �+ × C0([−r, 0];�i) × D. (5.7)

Moreover, suppose that for every i = 1, . . . , n, it
holds that

sup
{ |fi(t, d, x) − fi(t, d, y)|

‖x − y‖r

: (t, d) ∈ �+ × D,

x ∈ S, y ∈ S, x 	= y

}
< +∞ (5.8)

for every bounded S ⊂ C0([−r, 0];�i).
Then, for every σ > 0 there exist functions μi ∈

C∞(�i; (0,+∞)), ki ∈ C∞(�i;�) (i = 1, . . . , n)
with

k1(ξ1) := −μ1(ξ1)ξ1, (5.9a)

kj(ξ1, . . . , ξj) := − μj(ξ1, . . . , ξj)

· (ξj − kj−1(ξ1, . . . , ξj−1)), (5.9b)

for j = 2, . . . , n,
such that the following functional

V (x) := max
θ∈[−r,0]

exp(2σθ)
(

x2
1(θ) +

n∑
j=2

|xj(θ)

− kj−1(x1(θ), . . . , xj−1(θ))|2
)

(5.10)

is a state robust control Lyapunov functional (SR-
CLF) for (5.6), which satisfies the “small-control”
property. Moreover, the closed-loop system (5.6)
with u(t) = kn(x(t)) is URGAS. More specifi-
cally, the inequality V 0(x; v) � −2σV (x) holds
for all (t, x, d) ∈ �+ × C0([−r, 0];�n) × D with
v = (f1(t, d, x1) + g1(t, d, x1)x2(0), . . . , fn(t, d, x) +
gn(t, d, x)kn(x(0)))′ ∈ �n.

Remark 5.6. The reader should notice that
the feedback law u(t) = kn(x(t)) is delay-
independent. The proof of Theorem 5.5 shows that
the functions μi ∈ C∞(�i; (0,+∞)) (i = 1, . . . , n)
are obtained by a procedure similar to the back-
stepping procedure used for finite-dimensional tri-
angular control systems. Consequently, as in the
finite-dimensional case, the feedback design and
the construction of the state robust control Lya-
punov functional proceed in parallel. Indeed, in-
equality (5.8) in conjunction with the fact that
fi(t, d, 0) = 0 for all (t, d) ∈ �+ × D (i = 1, . . . , n)
implies the existence of a non-decreasing func-
tion L ∈ C∞(�+; (0,+∞)) such that for every
i = 1, . . . , n, it holds that

|fi(t, d, x)| � L(‖x‖r)‖x‖r,

∀(t, x, d) ∈ �+ × C0([−r, 0];�i) × D.(5.11)

Let σ > 0 be a given number. We next
define functions μi ∈ C∞(�i; (0,+∞)), γi ∈
C∞(�+; (0,+∞)), bi ∈ C∞(�+; (0,+∞)) (i =
1, . . . , n) using the following algorithm (see ref.
[28]).

Algorithm:
Step i = 1: We define

μ1(ξ1) :=
γ1(1 + ξ2

1) + nσ

b1(1 + ξ2
1)

, (5.12)

where

γ1(s) := exp(σr)L(s exp(σr))

+ ϕ(s exp(σr)), (5.13a)

b1(s) :=
1

ϕ(s exp(σr))
. (5.13b)

Step i � 2: Based on the knowledge of the func-
tions μj ∈ C∞(�j; (0,+∞)) (j = 1, . . . , i − 1)
from previous steps, we can define the function
μi ∈ C∞(�i; (0,+∞)). First, for each 1 � j � i,
set

k0 ≡ 0, k1(ξ1) := −μ1(ξ1)ξ1, (5.14a)

kj(ξ1, . . . , ξj) := − μj(ξ1, . . . , ξj)

· (ξj − kj−1(ξ1, . . . , ξj−1)),

j = 2, . . . , i − 1, (5.14b)

γj(s) := exp(σr)L(s exp(σr)Bj(s exp(σr)))

× Bj(s exp(σr))
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+ ϕ(s exp(σr)Bj(s exp(σr))),

j = 1, . . . , i. (5.15a)

bj(s) :=
1

ϕ(s exp(σr)Bj(s exp(σr)))
, (5.15b)

where Bj ∈ C∞(�+; (0,+∞))(j = 1, . . . , i) are
non-decreasing functions that satisfy

B1(s) := 1,

Bj(s) � max
{

1 +
j−1∑
l=1

μl(ξ1, . . . , ξl) :

max
l=1,...,j

|ξl − kl−1(ξ1, . . . , ξl−1)| � s

}
(5.15c)

for all s � 0 and j � 2.
Let ρj ∈ C∞(�+; (0,+∞))(j = 1, . . . , i) and

δj ∈ C∞(�j; (0,+∞))(j = 0, . . . , i − 1) be func-
tions such that the following inequalities hold:

bj(s′) − bj(s) + sγj(s) − s′γj(s′) � (s − s′)ρj(s),

∀s � s′ � 0, (5.16)

δj(ξ1, . . . , ξj) � |∇kj(ξ1, . . . , ξj)|(1 + μ1(ξ1)

+ . . . + μj(ξ1, . . . , ξj)),

∀(ξ1, . . . , ξj) ∈ �j. (5.17)

Now, let us define

μi(ξ1, . . . , ξi) := b−1
i (p)

[
(n + 1 − i)σ +

i − 1
4σ

a2(p, ξ1,

. . . , ξj−1) + γi(p) + ci−1(p)

δi−1(ξ1, . . . , ξj−1)
]
, (5.18a)

where

p :=
i

2
+

1
2

i∑
j=1

|ξj − kj−1(ξ1, . . . , ξj−1)|2, (5.18b)

c0 ≡ 0, cj(s) :=
∑j

k=1 γk(s), for j = 1, . . . , i,

a(s, ξ1, . . . , ξi−1)

:= ci−1(s)δi−1(ξ1, . . . , ξi−1)

+ ci(s) +
(

1 +
i−1∑
j=1

(sμj(ξ1, . . . , ξj)

+ δj−1(ξ1, . . . , ξj−1))
) i−1∑

k=1

ρk(s). (5.18c)

It should be noticed that in every step i � 2
of the above algorithm we only need to com-
pute the functions γi(s), bi(s), Bi(s), ρi−1(s),

δi−1(ξ1, . . . , ξi−1) and μi(ξ1, . . . , ξi) (the functions
γj(s), bj(s), Bj(s), ρj−1(s), δj−1(ξ1, . . . , ξj−1) and
μj(ξ1, . . . , ξj) for j = 1, . . . , i − 1 have been com-
puted in the previous steps).

The proof of Theorem 5.5 is based on the
following lemma. The reader should notice
that Lemma 5.7 in conjunction with definition
(5.10) of the SRCLF for system (5.6) indi-
cate one of the complications frequently encoun-
tered in the study of infinite-dimensional sys-
tems. Namely, although the differential equa-
tions (5.6) are affine in the control input u ∈ �,
the derivative V 0(x; v), where v = (f1(t, d, x1) +
g1(t, d, x1)x2(0), . . . , fn(t, d, x)+gn(t, d, x)u)′ ∈ �n,
x = (x1, . . . , xn) ∈ C0([−r, 0];�n) is not affine in
the control input u ∈ �.

Lemma 5.7. Let Q ∈ C1(�n;�+), σ > 0 and
consider the functional V : C0([−r, 0];�n) → �+

defined by

V (x) := max
θ∈[−r,0]

exp(2σθ)Q(x(θ)). (5.19)

The functional V : C0([−r, 0];�n) → �+ defined
by (5.19) is Lipschitz on bounded sets of
C0([−r, 0];�n) and enjoys the following facts:

V 0(x; v) � −2σV (x) (5.20a)

for all (x, v) ∈ C0([−r, 0];�n)×�n with Q(x(0)) <

V (x), and

V 0(x; v) � max{−2σV (x),∇Q(x(0))v} (5.20b)

for all (x, v) ∈ C0([−r, 0];�n)×�n with Q(x(0)) =
V (x).

6 Coupled systems

In this section, we consider coupled systems of
the form (1.2) with initial conditions x1(t0 + θ) =
x10(θ); θ ∈ [−r1, 0] and x2(t0 + θ) = x20(θ);
θ ∈ [−r2, 0] with x10 ∈ C0([−r1, 0];�n1), x20 ∈
L∞([−r2, 0];�n2), under the following hypotheses:

(P1) The function τ : �+ → (0,+∞) is continu-
ous with supt�0 τ(t) � r2.

(P2) There exist functions a ∈ K∞, β ∈ K+ such
that

|fi(t, d, x1, Tr2−τ(t)(−τ(t))x2, u)|
� a(β(t)‖Tr2−τ(t)(−τ(t))x2‖r2−τ(t))

+ a(β(t)|u|) + a(β(t)‖x1‖r1)
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for each i = 1, 2, and for all (t, d, x1, x2, u) ∈
�+ ×D×C0([−r1, 0];�n1)×L∞([−r2, 0];�n2)×U.

(P3) For every x1 ∈ C0([−r1,+∞);�n1), d ∈
L∞

loc(�+;D), u ∈ L∞
loc(�+;U) and x2 ∈ L∞

loc([−r2,

+∞);�n2) the mappings t → fi(t, d(t), Tr1 (t)x1,

Tr2−τ(t)(t − τ(t))x2, u(t)), i = 1, 2 are measur-
able. Moreover, for each fixed (t, d, x2, u) ∈ �+ ×
D × L∞([−r2, 0];�n2) × U the mapping f1(t, d,

x1, Tr2−τ(t)(−τ(t))x2, u) is continuous with respect
to x1 ∈ C0([−r1, 0];�n1).

(P4) For every pair of bounded sets I ⊂ �+ and
Ω ⊂ C0([−r1, 0];�n1)×L∞([−r2, 0];�n2)×U , there
exists L := L(I,Ω) � 0 such that

(x1(0) − y1(0))′(f1(t, d, x1, Tr2−τ(t)(−τ(t))x2, u)

− f1(t, d, y1, Tr2−τ(t)(−τ(t))x2, u))

� L‖x1 − y1‖2
r1

,∀(t, d) ∈ I × D,

∀(x1, x2, u) ∈ Ω ,∀(y1, x2, u) ∈ Ω . (6.1)
(P5) The mapping H : �+ × C0([−r1, 0];�n1) ×

L∞([−r2, 0];�n2) × U → Y is continuous with
H(t, 0, 0, 0) = 0 for all t � 0. Moreover, the
image set H(Ω) is bounded for each bounded set
Ω ⊂ �+×C0([−r1, 0];�n1)×L∞([−r2, 0];�n2)×U .

The reader should notice that hypothesis (P1)
and the fact that τ(t) > 0 for all t � 0, guar-
antee that eq. (1.2b) is a functional difference
equation. It should be pointed out that hypothe-
ses (P1), (P2), (P3) are satisfied if D ⊂ �l is
compact and there exist continuous functions τi :
�+ → (0,+∞) (i = 1, . . . , p), τ : �+ → (0,+∞)
with τ(t) � τ1(t) < τ2(t) < . . . < τp(t) � r2 for
all t � 0, continuous mappings gi : �+ × D ×
C0([−r1, 0];�n1)×�pn2×�k×U → �ni , i = 1, 2, h :
�+× [−r2, 0]×�n2 → �k with gi(t, d, 0, 0, 0, 0) = 0,
h(t, θ, 0) = 0 for all (t, θ, d) ∈ �+ × [−r−T, 0]×D,
such that

fi(t, d, x1, Tr2−τ(t)(−τ(t))x2, u)

= gi

(
t, d, x1, x2(−τ1(t)), x2(−τ2(t)), . . . ,

x2(−τp(t)),
∫ −τ(t)

−r2

h(t, θ, x2(θ))dθ, u

)
,

i = 1, 2,
for all (t, d, x1, x2, u) ∈ �+×D×C0([−r1, 0];�n1)×
L∞([−r2, 0];�n2) × U .

We start with an existence-uniqueness-
continuation theorem for the solution of (1.2).

We say that a mapping x : [a, b) → �n with
−∞ < a < b � +∞ is absolutely continu-
ous on [a, b) if for every c ∈ (a, b) the mapping
x : [a, b) → �n is absolutely continuous on [a, c].

Theorem 6.1. Consider system (1.2) un-
der hypotheses (P1–4). Then for every t0 � 0,
(x10, x20) ∈ C0([−r1, 0];�n1) × L∞([−r2, 0];�n2),
d ∈ L∞

loc(�+;D), u ∈ L∞
loc(�+;U) there exists

tmax ∈ (t0,+∞] and a unique pair of mappings x1 ∈
C0([t0−r1, tmax);�n1), x2 ∈ L∞

loc([t0−r2, tmax);�n2)
with Tr1(t0)x1 = x10, Tr2(t0)x2 = x20, x1 ∈
C0([t0 − r1, tmax);�n1) being absolutely continu-
ous on [t0, tmax) such that (1.2a) holds a.e. for
t ∈ [t0, tmax) and (1.2b) holds for all t ∈ (t0, tmax).
In addition, if tmax < +∞ then for every M > 0
there exists t ∈ [t0, tmax) with ‖Tr1(t)x1‖r1 > M .

Theorem 6.1 guarantees that tmax ∈ (t0,+∞]
is the maximal existence time for the solution of
(1.2). The idea behind the proof of Theorem 6.1 is
the method of steps, used already in ref. [3].

Remark 6.2. According to Theorem 6.1
above, Definitions 2.1 and 2.4 in ref. [9], system
(1.2) under hypotheses (P1–5) is a control system
Σ := (X ,Y,MU ,MD, φ, π,H) with outputs that
satisfies the “Boundedness-Implies-Continuation”
property (BIC property in refs. [6–9]) with state
space X = C0([−r1, 0];�n1) × L∞([−r2, 0];�n2),
output space Y, set of allowable control inputs
MU = L∞

loc(�+;U), set of allowable disturbances
MD = L∞

loc(�+;D) and set of sampling times
π(t0, x0, u, d) = [t0, tmax), where tmax > t0 is the
maximal existence time of the solution. Moreover,
if a finite escape time occurs then the component
x1 of the solution of (1.2) must be unbounded (but
x2 may or may not be unbounded).

The following theorem guarantees that (0, 0) ∈
C0([−r1, 0];�n1) × L∞([−r2, 0];�n2) is a robust
equilibrium point from the input u (in the sense
of Definition 2.6 in ref. [9]) for system (1.2) under
hypotheses (P1–4).

Theorem 6.3. Consider system (1.2) un-
der hypotheses (P1–4). Then for every ε >

0, T, h ∈ �+ there exists δ := δ(ε, T, h) >

0 such that for all (t0, x10, x20) ∈ [0, T ] ×
C0([−r1, 0];�n1) × L∞([−r2, 0];�n2), (u, d) ∈
L∞

loc(�+;U)×L∞
loc(�+;D) with ‖x10‖r1 + ‖x20‖r2 +
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supt�0 |u(t)| < δ there exists tmax ∈ (t0 +
h,+∞] and a unique pair of mappings x1 ∈
C0([t0−r1, tmax);�n1), x2 ∈ L∞

loc([t0−r2, tmax);�n2)
with Tr1(t0)x1 = x10, Tr2(t0)x2 = x20, x1 ∈
C0([t0 − r1, tmax);�n1) being absolutely continu-
ous on [t0, tmax), such that (1.2a) holds a.e. for
t ∈ [t0, tmax), (1.2b) holds for all t ∈ (t0, tmax) and

sup{‖Tr1(t)x1‖r1 + ‖Tr2(t)x2‖r2 ;

t ∈ [t0, t0 + h]} < ε. (6.2)

Remark 6.4. It should be emphasized that
Theorems 6.1 and 6.3 guarantee that all stability
results obtained in refs. [6–9] for general control
systems with the “Boundedness Implies Continua-
tion” property hold as well for system (1.2) under
hypotheses (P1–5). This implication enables us to
obtain the stability results of the following section.

Remark 6.5. It is important to notice that
Theorems 6.1 and 6.3 can be applied to systems
described by FDEs of the form

x(t) = f(t, d(t), Tr−τ(t)(t − τ(t))x, u(t)),

x(t) ∈ �n, d(t) ∈ D,u(t) ∈ U, t � 0, (6.3)

where D ⊆ �l is a non-empty set, U ⊆ �m is a
non-empty set with 0 ∈ U , r > 0, f : �+ × D ×
L∞([−r+ τ(t), 0];�n)×U → �n, under the follow-
ing hypotheses:

(Q1) The function τ : �+ → (0,+∞) is continu-
ous with supt�0 τ(t) � r.

(Q2) There exist functions a ∈ K∞, β ∈ K+

such that

|f(t, d, Tr−τ(t)(−τ(t))x, u)|
� a(β(t)‖Tr−τ(t)(−τ(t))x‖r−τ(t)) + a(β(t)|u|),

for all (t, d, x, u) ∈ �+ × D × L∞([−r, 0];�n) × U .
(Q3) For every d ∈ L∞

loc(�+;D), u ∈ L∞
loc(�+;U)

and x ∈ L∞
loc([−r,+∞);�n) the mapping t →

f(t, d(t), Tr−τ(t)(t − τ(t))x, u(t)) is measurable.
Indeed, system (6.3) can be embedded into the

following system described by coupled RFDEs and
FDEs:

ξ̇(t) = 0,

x(t) = f(t, d(t), Tr−τ(t)(t − τ(t))x, u(t)),

ξ(t) ∈ �, x(t) ∈ �n, d(t) ∈ D,u(t) ∈ U,

t � 0, (6.4)

which is a system of the form (1.2) that satisfies hy-
potheses (P1–4). Consequently, Theorems 6.1 and
6.3 can be applied to system (6.4) and we obtain

Corollary 6.6. Consider system (6.3) under
hypotheses (Q1–3). Then for every t0 � 0, x0 ∈
L∞([−r, 0];�n), (u, d) ∈ L∞

loc(�+;U)× L∞
loc(�+;D)

there exists a unique mapping x ∈ L∞
loc([t0 −

r,+∞);�n) with Tr(t0)x = x0, such that (6.3)
holds for all t > t0. Moreover, for every ε >

0, T, h ∈ �+ there exists δ := δ(ε, T, h) > 0
such that for all (t0, x0) ∈ [0, T ] × L∞([−r, 0];�n),
(u, d) ∈ L∞

loc(�+;U) × L∞
loc(�+;D) with ‖x0‖r +

supt�0 |u(t)| < δ the solution x(t) of (6.3) with
initial condition Tr(t0)x = x0, corresponding to
inputs (u, d) ∈ L∞

loc(�+;U) × L∞
loc(�+;D) satisfies

sup{‖Tr(t)x‖r; t ∈ [t0, t0 + h]} < ε.

7 Stability results for coupled systems

In this section, we present stability results for a
wide class of systems described by coupled RFDEs
and FDEs. Particularly, we consider the following
class of systems described by coupled RFDEs and
FDEs:

ẋ1(t) = f1(t, d(t), Tr1(t)x1, u(t),

H2(t, Tr2−τ(t)(t − τ(t))x2)), (7.1a)

x2(t) = f2(t, d(t), Tr2−τ(t)(t − τ(t))x2,

u(t),H1(t, Tr1(t)x1)), (7.1b)

x1(t) ∈ �n1 , x2(t) ∈ �n2 , u(t) ∈ U, d(t) ∈ D, t � 0,

Y (t) = H(t, Tr1(t)x1, Tr2(t)x2) ∈ Y, (7.1c)

where r1 � 0, r2 > 0, D ⊆ �l a non-empty set,
U ⊆ �m a non-empty set with 0 ∈ U , Y is a normed
linear space, H1 : �+ × C0([−r1, 0];�n1) → S1,
H2 : ∪t�0{t} × L∞([−r2 + τ(t), 0];�n2) → S2,
H : �+ ×C0([−r1, 0];�n1)×L∞([−r2, 0];�n2) → Y
are continuous mappings, S1 ⊆ �k1 , S2 ⊆ �k2

are sets with 0 ∈ S1, 0 ∈ S2 and the mappings
f1 : �+ × D × C0([−r1, 0];�n1) × U × S2 → �n1 ,
f2 : ∪t�0{t} × D × L∞

loc([−r2 − τ(t), 0];�n2) × U ×
S1 → �n2 are locally bounded mappings, which
satisfy the following hypotheses:

(R1) The function τ : �+ → (0,+∞) is continu-
ous with supt�0 τ(t) � r2.

(R2) For every v ∈ L∞
loc(�+;S1), d ∈ L∞

loc(�+;
D), u ∈ L∞

loc(�+;U) and x2 ∈ L∞
loc([−r2,+∞);�n2)
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the mapping t → f2(t, d(t), Tr2−τ(t)(t − τ(t))x2,

u(t), v(t)) is measurable.
(R3) The output map H1 : �+×C0([−r1, 0];�n1)

→ S1, is a continuous mapping that maps bounded
sets of �+ × C0([−r1, 0];�n1) into bounded sets of
�k1 with H1(t, 0) = 0 for all t � 0.

(R4) H2 : ∪t�0{t} × L∞([−r2 + τ(t), 0];�n2) →
S2 is a continuous mapping that maps bounded
subsets of ∪t�0{t} × L∞([−r2 + τ(t), 0];�n2 ) into
bounded sets of �k2 with H2(t, 0) = 0 for all t � 0.
Moreover, for every x2 ∈ L∞

loc([−r2,+∞);�n2) the
mapping t → H2(t, Tr2−τ(t)(t − τ(t))x2) is measur-
able.

(R5) There exist functions β ∈ K+, a ∈ K∞
such that

|f2(t, d, Tr2−τ(t)(−τ(t))x2, u, v)|
� a

(
β(t) sup

θ∈[−r2,−τ(t)]

|x2(θ)|
)

+ a(β(t)|u|) + a(β(t)|v|)
for all (t, x2, u, v, d) ∈ �+×L∞([−r2, 0];�n2)×U ×
S1 × D, and

|f1(t, d, x, u, v)|
� a(β(t)‖x‖r1 ) + a(β(t)|u|) + a(β(t)|v|)

for all (t, x, u, v, d) ∈ �+ × C0([−r1, 0];�n) × U ×
S2 × D.

(R6) The mapping (x, u, v, d) → f1(t, d, x, u, v)
is continuous for each fixed t � 0 and such that
for every bounded I ⊆ �+ and for every bounded
Ω ⊂ C0([−r1, 0];�n) × U × S2, there exists a con-
stant L � 0 such that

(x(0) − y(0))′(f1(t, d, x, u, v) − f1(t, d, y, u, v))

� L max
τ∈[−r1,0]

|x(τ) − y(τ)|2,
∀t ∈ I,∀(x, u, v, y, u, v) ∈ Ω × Ω ,∀d ∈ D.

(R7) There exists a countable set A ⊂ �+, which
is either finite or A = {tk; k = 1, . . . ,∞} with
tk+1 > tk > 0 for all k = 1, 2, . . . and lim tk =
+∞, such that mapping (t, x, u, v, d) ∈ (�+\A) ×
C0([−r, 0];�n)×U×S2×D → f1(t, d, x, u, v) is con-
tinuous. Moreover, for each fixed (t0, x, u, v, d) ∈
�+ × C0([−r, 0];�n) × U × S2 × D, we have
limt→t+0

f1(t, d, x, u, v) = f1(t0, d, x, u, v).
(R8) The mapping H : �+ × C0([−r1, 0];�n1) ×

L∞([−r2, 0];�n2) → Y is continuous with

H(t, 0, 0) = 0 for all t � 0. Moreover, the im-
age set H(Ω) is bounded for each bounded set
Ω ⊂ �+ × C0([−r1, 0];�n1) × L∞([−r2, 0];�n2).

By virtue of Lemma 3.2 in ref. [6] and Lemma 1
in ref. [27], it follows that system (7.1) under hy-
potheses (R1–8) is a system of the form (1.2) which
satisfies hypotheses (P1–5). However, it should be
emphasized that not every system of the form (1.2)
can be expressed in the form (7.1). Next, we con-
sider the following systems

ẋ1(t) = f1(t, d(t), Tr1(t)x1, u(t), v1(t)),

Y1(t) = H1(t, Tr1(t)x1),

x1(t) ∈ �n1 , Y1(t) ∈ S1,

(u(t), v1(t)) ∈ U × S2, d(t) ∈ D, t � 0, (7.2)

which is a system described by RFDEs, and the
following system described by FDEs:

x2(t) = f2(t, d(t), Tr2−τ(t)(t − τ(t))x2, u(t), v2(t)),

Y2(t) = H2(t, Tr2−τ(t)(t − τ(t))x2),

x2(t) ∈ �n2 , Y2(t) ∈ S2, (u(t), v2(t)) ∈ U × S1,

d(t) ∈ D, t � 0. (7.3)

The following things can be remarked for sys-
tems (7.2) and (7.3).
• The theory of retarded functional differen-

tial equations guarantees that under hypotheses
(R3–7), for each (t0, x10) ∈ �+ × C0([−r1, 0];�n1)
and for each triple of measurable and locally
bounded inputs v1 ∈ L∞

loc(�+;S2), d ∈ L∞
loc(�+;D),

u ∈ L∞
loc(�+;U) there exists a unique abso-

lutely continuous mapping x1(t) that satisfies a.e.
the differential equation (7.2) with initial con-
dition Tr1(t0)x1 = x10 ∈ C0([−r1, 0];�n1) (see
refs. [1, 11]). Moreover, Theorem 3.2 in ref.
[1] guarantees that (7.2) is a control system
Σ1 := (C0([−r1, 0];�n1),�k1 ,MU×S2 ,MD, φ, π,H1)
with outputs that satisfies the Boundedness Im-
plies Continuation property with MU×S2 ,MD the
sets of all measurable and locally bounded map-
pings (u, v) : �+ → U × S2, d : �+ → D, respec-
tively (in the sense described in refs. [6–9]). Fur-
thermore, the classical semigroup property is sat-
isfied for this system, i.e., we have π(t0, x0, u, d) =
[t0, tmax), where tmax > t0 is the maximal existence
time of the solution. Finally, hypotheses (R3–7)
guarantee that 0 ∈ C0([−r1, 0];�n1) is a robust
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equilibrium point from the input (u, v) ∈ MU×S2

for Σ1.
• Hypotheses (R1–5) guarantee that for each

(t0, x20) ∈ �+×X with X := L∞([−r2, 0];�n2) and
for each triple v2 ∈ L∞

loc(�+;S1), d ∈ L∞
loc(�+;D),

u ∈ L∞
loc(�+;U) there exists a unique measur-

able and locally bounded mapping x2(t) that sat-
isfies the difference equations (7.3) for all t > t0
with initial condition x2(t0 + θ) = x20(θ); θ ∈
[−r2, 0]. Consequently, (7.3) describes a control
system Σ2 := (X ,�k2 ,MU×S1 ,MD, φ, π,H2) with
outputs, MU×S1 being the set of all measurable and
locally bounded functions (u, v) : �+ → U × S1

and MD being the set of all measurable and locally
bounded functions d : �+ → D (in the sense de-
scribed in ref. [9]). Furthermore, Remark 6.5 and
Corollary 6.6 show that system (7.3) is robustly
forward complete from the input (u, v) ∈ MU×S1

and that 0 ∈ X is a robust equilibrium point from
the input (u, v) ∈ MU×S1 for system (7.3) in the
sense described in ref. [9]. Finally, notice that the
classical semigroup property is satisfied for system
(7.3), i.e., we have π(t0, x20, u, d) = [t0,+∞).

Systems (7.1), (7.2) and (7.3) are related in the
following way: it can be said that system (7.1) is
the feedback interconnection of subsystems (7.2)
and (7.3), in the sense described in ref. [9]. Fig-
ure 2 presents schematically the interconnection of
subsystems (7.2) and (7.3) that produces the com-
posite system (7.1).

We are now in a position to present our main

result, which is a direct consequence of the Small-
Gain Theorem presented in ref. [9]. Here we are
using the notion of the (U)WIOS property for ab-
stract control systems given in ref. [9].

Theorem 7.1. Consider system (7.1) under
hypotheses (R1–8) and assume that

(H1) Subsystem (7.2) satisfies the WIOS prop-
erty from the inputs v1 and u. Particularly, there
exist functions σ1 ∈ KL, β1, μ1, c1, δ1, δ

u
1 , qu

1 ∈ K+,
γ1, γ

u
1 , a1, p1, p

u
1 ∈ N , such that the following es-

timate holds for all (t0, x10, (v1, u, d)) ∈ �+ ×
C0([−r1, 0];�n1)×L∞

loc(�+;S2 ×U ×D) and t � t0
for the solution x1(t) of (7.2) with initial con-
dition Tr1(t0)x1 = x10 corresponding to inputs
(v1, u, d) ∈ L∞

loc(�+;S2 × U × D):

|H1(t, Tr1(t)x1)| � σ1(β1(t0)‖x10‖r1 , t − t0)

+ sup
t0�τ�t

γ1(δ1(τ)|v1(τ)|)
+ sup

t0�τ�t

γu
1 (δu

1 (τ)|u(τ)|), (7.4)

β1(t)‖Tr1(t)x1‖r1 � max{μ1(t − t0), c1(t0),

a1(‖x10‖r1), sup
t0�τ�t

p1(|v1(τ)|),
sup

t0�τ�t

pu
1 (qu

1 (τ)|u(τ)|)}. (7.5)

(H2) Subsystem (7.3) satisfies the WIOS prop-
erty from the inputs v2 and u. Particularly, there
exist functions σ2 ∈ KL, β2, μ2, c2, δ2, δ

u
2 , qu

2 ∈ K+,
γ2, γ

u
2 , a2, p2, p

u
2 ∈ N , such that the following esti-

mate holds for all (t0, x20, (v2, u, d)) ∈ �+ ×L∞

Figure 2 System (7.1) regarded as the feedback interconnection of subsystem (7.2) described by RFDEs and subsystem (7.3) described

by FDEs.
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([−r2, 0];�n2) × L∞
loc(�+;S1 × U × D) and t � t0

for the solution x2(t) of (7.3) with initial con-
dition Tr2(t0)x2 = x20 corresponding to inputs
(v2, u, d) ∈ L∞

loc(�+;S1 × U × D):

|H2(t, Tr2−τ(t)(t − τ(t))x2)|
� σ2(β2(t0)‖x20‖r2 , t − t0)

+ sup
t0�s�t

γ2(δ2(s)|v2(s)|)
+ sup

t0�s�t

γu
2 (δu

2 (s)|u(s)|), (7.6)

β2(t)‖Tr2(t)x2‖r2

� max{μ2(t − t0), c2(t0), a2(‖x20‖r2),

sup
t0�s�t

p2(|v2(s)|),
sup

t0�s�t

pu
2 (qu

2 (s)|u(s)|)}. (7.7)

(H3) There exist functions ρ ∈ K∞, a ∈ N and
a constant M > 0 such that one of the following
conditions holds for all t, s � 0 and x = (x1, x2) ∈
C0([−r1, 0];�n1) × L∞([−r2, 0];�n2):

δ1(t) � M, (7.8a)

g1

(
δ1(t)g2

(
max
θ∈[0,t]

δ2(θ)s
))

� s, (7.8b)

‖H(t, x1, x2)‖Y � a(|H1(t, x1)|
+ γ1(δ1(t)|H2(t, Tr2−τ(t)(−τ(t))x2)|)); (7.8c)

or
δ2(t) � M, (7.9a)

g2

(
δ2(t)g1

(
max
θ∈[0,t]

δ1(θ)s
))

� s, (7.9b)

‖H(t, x1, x2)‖Y
� a(|H2(t, Tr2−τ(t)(−τ(t))x2)|

+ γ2(δ2(t)|H1(t, x1)|)), (7.9c)

where gi(s) := γi(s) + ρ(γi(s)), i = 1, 2.
Then, there exists a function γ ∈ N such that

system (7.1) satisfies the WIOS property from the
input u ∈ MU with gain γ ∈ N and weight δ ∈ K+,
where

δ(t) := max{δu
1 (t), δu

2 (t), qu
1 (t), qu

2 (t)}. (7.10)

Moreover, if β1, β2, c1, c2, δ1, δ2 ∈ K+ are bounded,
then system (7.1) satisfies the UWIOS property
from the input u ∈ MU with gain γ ∈ N and weight
δ ∈ K+.

Remark 7.2.
(a) It should be clear that Theorem 7.1 gives suf-

ficient conditions (but not necessary) for the WIOS
property for system (7.1). The main advantage of
Theorem 7.1 is that the stability properties for sys-
tem (7.1) can be verified by studying the stability
properties of subsystems (7.2) and (7.3), which are
simpler systems.

(b) When γ1 ∈ N or γ2 ∈ N is identi-
cally zero, it follows that (7.8b) and (7.9b) are
automatically satisfied. On the other hand, if
γi(s) = Kis for certain constants Ki � 0 (i =
1, 2), then hypothesis (7.8b) (or (7.9b)) is satis-
fied if K1K2 supt�0(δ1(t)maxτ∈[0,t] δ2(τ)) < 1 (or
K1K2 supt�0(δ2(t)maxτ∈[0,t] δ1(τ)) < 1).

It is clear that hypothesis (H1) of Theorem 7.1
can be verified by using the results of sections 3
and 4. Next, sufficient Lyapunov-like conditions
for hypothesis (H2) of Theorem 7.1 are presented.

Theorem 7.3 (Lyapunov-like sufficient con-
ditions for hypothesis (H2)). Consider system
(7.3) under hypotheses (R1–5) and suppose that
there exist a Lyapunov functional V : �+ ×
L∞([−r2, 0];�n2) → �+, functions a2 of class K∞,
functions ζ, ζu of class N , functions β, δ2, δ

u
2 of

class K+ and a continuous positive definite func-
tion ρ : �+ → �+ such that

V (t, x2) � a2(β(t)‖x2‖r2),

∀(t, x2) ∈ �+ × L∞([−r2, 0];�n2),(7.11)

V (t + h,Gh(t, x2; d, u, v2))

� max{σ(V (t, x2), h),

sup
t�τ�t+h

ζ(δ2(τ)|v2(τ)|),
sup

t�τ�t+h

ζu(δu
2 (τ)|u(τ)|)}, (7.12)

for all (t, x2, u, v2, d) ∈ �+ × L∞([−r2, 0];�n2) ×
MU × MS1 × MD and h ∈ (0, g(t)].

In the above equation,

Gh(t, x2; d, u, v2)

=

{
x2(h + θ), θ ∈ [−r2,−h],

f̃2(s), θ ∈ (−h, 0],

(7.13)

where

f̃2(s) = f2(s, d(s), Tr2−τ(s)(−τ(s))x2, u(s), v2(s));

s = t + h + θ,

2124 KARAFYLLIS I et al. Sci China Ser F-Inf Sci | Nov. 2009 | vol. 52 | no. 11 | 2104-2126



g(t) = min
{

1, min
t�s�t+1

τ(s)
}

(7.14)

and σ ∈ KL is the function that satisfies
∂

∂t
σ(s, t) = −ρ(σ(s, t)), ∀ t, s � 0,(7.15a)

σ(s, 0) = s, ∀s � 0. (7.15b)

Moreover, suppose that there exist functions
a1, p of class K∞, μ of class K+ and a constant
R � 0 such that one of the following inequalities
holds:

a1(|H2(t, Tr2−τ(t)(−τ(t))x2)|) � V (t, x2),

∀(t, x2) ∈ �+ × L∞([−r2, 0];�n2), (7.16a)

or

p(μ(t)|x2(0)|) � V (t, x2) + R,

∀(t, x2) ∈ �+ × L∞([−r2, 0];�n2). (7.16b)

If
• (7.16a) holds then there exists a function σ2 ∈

KL, such that estimate (7.6) holds with β2(t) ≡
β(t), γ2(s) := a−1

1 (ζ(s)), γu
2 (s) := a−1

1 (ζu(s)) for
all (t0, x20, (v2, u, d)) ∈ �+ × L∞([−r2, 0];�n2) ×
L∞

loc(�+;S1 × U × D) and t � t0 for the solution
x2(t) of (7.3) with initial condition Tr2(t0)x2 = x20

corresponding to inputs (v2, u, d) ∈ L∞
loc(�+;S1 ×

U × D).
• (7.16b) holds and δ2(t) ≡ 1 then for ev-

ery φ ∈ K+ there exist functions μ2, c2 ∈ K+,
g2, p2, p

u
2 ∈ N , such that the following estimate

holds for all t � t0

φ(t)‖Tr2(t)x2‖r2

� max{μ2(t − t0), c2(t0), g2(‖x20‖r2),

sup
t0�s�t

p2(|v2(s)|), sup
t0�s�t

pu
2(δ

u
2 (s)|u(s)|)},(7.17)

for all (t0, x20, (v2, u, d)) ∈ �+×L∞([−r2, 0];�n2)×
L∞

loc(�+;S1 × U × D) and t � t0 for the solution
x2(t) of (7.3) with initial condition Tr2(t0)x2 = x20

corresponding to inputs (v2, u, d) ∈ L∞
loc(�+;S1 ×

U ×D). Moreover, if φ ∈ K+ is bounded and there
exists constant L > 0 such that

β(t) +
1

μ(t)
� L, ∀ t � 0, (7.18)

then the function c2 ∈ K+ is bounded.
The following corollary shows how a Lyapunov

functional satisfying the assumptions of Theorem
7.3 for system (7.3) can be constructed.

Corollary 7.4 (Lyapunov-like sufficient condi-
tions for hypothesis (H2)). Consider system (7.3)
under hypotheses (R1–5) and suppose that there
exists a function W : [−r2,+∞)×�n2 → �+, func-
tions ã1, ã2, b of class K∞, ζ, ζu of class N , β̃, δ2, δ

u
2

of class K+ and a constant λ ∈ [0, 1) such that

W (t − r2, x2) � ã2(β̃(t)|x2|),
∀(t, x2) ∈ �+ ×�n2 , (7.19)

W (t, f2(t, d, Tr2−τ(t)(−τ(t))x2, u, v2))

� max
{

λ sup
−r2�θ�−τ(t)

W (t + θ, x2(θ)),

ζ(δ2(t)|v2|), ζu(δu
2 (t)|u|)

}
, (7.20)

for all

(t, x2, u, v2, d) ∈ �+ × L∞([−r2, 0];�n2)

× U × S1 × D.

Select constant μ > 0 such that λ exp(μr2) � 1.
Define for all (t, x2) ∈ �+ × L∞([−r2, 0];�n2) the
functional

V (t, x2) = sup
−r2�θ�0

exp(μθ)W (t + θ, x2(θ)). (7.21)

Then, the functional

V : �+ × L∞([−r2, 0];�n2) → �+

satisfies inequalities (7.11), (7.12) with

β(τ) := max
t�s�t+r2

β̃(s), a2(s) := ã2(s),

σ(s, t) = s exp(−μt)

and consequently σ ∈ KL is a function satisfying
(7.15a,b) with ρ(s) := μs. Moreover,
• if there exists a function ã1 of class K∞, such

that the following inequality holds:

ã1(|H2(t, Tr2−τ(t)(−τ(t))x2)|)
� sup

θ∈[−r2,0]

W (t + θ, x2(θ)),

∀(t, x2) ∈ �+ × L∞([−r2, 0];�n2), (7.22)

then inequality (7.16a) holds with

a1(s) := exp(−μr2)ã1(s);

• if there exist functions p of class K∞, μ ∈ K+

and a constant R � 0 such that the following in-
equality holds:

p(μ(t)|x2|) � W (t, x2) + R,∀(t, x2)

∈ �+ ×�n2 , (7.23)
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then inequality (7.16b) holds.

8 Conclusions

As already remarked in the Introduction, we would
like to stress that much more needs to be accom-
plished in the field of nonlinear control for infinite-
dimensional systems described by RFDEs of the
form (1.1) or coupled systems of the form (1.2).
The results of the present work, and in particu-
lar ref. [28], are expected to have numerous ap-
plications for mathematical control theory. For
example, the characterizations presented in this
work can be directly used (exactly as in the finite-
dimensional case) in order to:

– develop Lyapunov redesign methodologies
which guarantee robustness to disturbance inputs;

– study the solution of tracking control problems
where the signal to be tracked is not necessarily
bounded with respect to time;

– study the observer existence/design problem
for systems described by RFDEs by means of
Lyapunov-like conditions (e.g., Observer Lyapunov
Function, Lyapunov characterizations of observ-
ability/detectability);

– study the stability properties and feedback sta-
bilization problems for systems described by quasi-
linear hyperbolic partial differential equations.

Future work will address these problems.
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