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The notion of the restricted Robust Control Lyapunov Function (RCLF) is introduced and is exploited for the
design of robust feedback stabilisers for non-linear systems. Particularly, it is shown for systems with input
constraints that ‘restricted’ RCLFs can be easily obtained, while RCLFs are not available. Moreover, it is shown
that the use of ‘restricted’ RCLFs usually results in different feedback designs from the ones obtained by the use
of the standard RCLF methodology. Using the ‘restricted’ RCLFs feedback design methodology, a simple
controller that guarantees robust global stabilisation of a perturbed chemostat model is provided.
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1. Introduction

Consider a finite-dimensional control system:

_x ¼ f ðd,xÞ þ gðd, xÞu

x 2 <n, d 2 D, u 2 U
ð1:1Þ

where D�Rl is a compact set, U�Rm a non-empty

convex set with 02U, f :D�Rn
!Rn, g :D�Rn

!

Rn�m are continuous mappings with f (d , 0)¼ 0 for

all d2D. The problem of existence and design of

a continuous feedback law k :Rn
!U with

g(d, 0)k(0)¼ 0 for all d2D, which achieves robust

global stabilisation of 02Rn for (1.1), i.e. 02Rn is

uniformly robustly globally asymptotically stable

(URGAS) for the closed-loop system _x ¼ f ðd, xÞ þ

gðd, xÞkðxÞ, is closely related to the existence of

a Robust Control Lyapunov Function (RCLF) for

(1.1), i.e. the existence of a continuously differentiable,

positive definite and radially unbounded function

V :Rn
!Rþ with

inf
u2U

sup
d2D

rVðxÞ f ðd, xÞ þ gðd,xÞuð Þ5 0,

for all x 6¼ 0, x 2 <n: ð1:2Þ

The reader should consult Artstein (1983), Sontag

(1989, 1998), Freeman and Kokotovic (1996), Khalil

(1996), Clarke, Ledyaev, Sontag, and Subbotin (1997),

Ledyaev and Sontag (1999) and Karafyllis and

Kravaris (2005) and references therein, where the

methodology of Lyapunov feedback (re)design is

explained in detail. However, in many cases it is very

difficult to obtain a CLF for a given control system.

The goal of the present work is to show that

continuously differentiable, positive definite and

radially unbounded functions V :Rn
!Rþ with

inf
u2U

sup
d2D

rVðxÞ f ðd, xÞ þ gðd, xÞuð Þ5 0,

for all x 6¼ 0, x 2 � ð1:3Þ

where V�Rn does not necessarily coincide with the
whole state space Rn can be used in order to design

a globally stabilising feedback. Particularly, under

appropriate hypotheses, we show that a continuous

feedback law k :Rn
!U with g(d, 0)k(0)¼ 0 for all

d2D, which guarantees

sup
d2D

rVðxÞ f ðd,xÞ þ gðd, xÞkðxÞð Þ5 0,

for all x 6¼ 0, x 2 � ð1:4Þ

and for which V�Rn is an absorbing set for the
closed-loop system (1.1) with u¼ k(x), i.e. every

solution of the closed-loop system (1.1) with u¼ k(x)

enters V�Rn in finite time, achieves robust global

stabilisation of 02Rn for (1.1) (see Theorem 2.2 and

Theorem 2.6 below). The reader should compare

condition (1.3) with condition (1.2): it is a much

easier task to find continuously differentiable, positive

definite and radially unbounded functions

V :Rn
!Rþ satisfying (1.3) instead of (1.2). For this

reason we will call a continuously differentiable,
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positive definite and radially unbounded function
V :Rn

!Rþ satisfying (1.3) a ‘restricted’ RCLF.
It should be emphasised that the idea explained

above is intuitive and has been used in the literature in
one form or another: for example, it has been used
(without explicit statement of the idea) in Karafyllis
and Kravaris (2005) and in Tsinias (1997) for special
classes of control systems. In the present work,
a general theoretical formulation and results are
developed, so as to provide systematic guidelines for
the construction of feedback based on a ‘restricted’
RCLF. The development of the notion of the
‘restricted’ RCLF leads to two important applications:

(i) even if an RCLF is known then the use of
the ‘restricted’ RCLF feedback design metho-
dology usually results in different feedback
designs from the ones obtained by the use of
the standard RCLF design methodology;
particularly, there is no need to make the
derivative of RCLF negative everywhere,

(ii) in many cases ‘restricted’ RCLFs can be
found, while RCLFs are not available.
Consequently, the class of systems where
Lyapunov-based feedback design principles
can be applied is enlarged.

In order to illustrate the above applications of the
notion of ‘restricted’ RCLF we consider the following
applications:

(i) The obtained results are applied to the problem
of robust feedback stabilisation of the chemostat (x 3),
which has recently attracted attention (see Antonelli
and Astolfi (2000); Mailleret and Bernard (2001),
De Leenheer and Smith (2003), Gouze and Robledo
(2006), Harmard, Rapaport, and Mazenc (2006),
Mazenc, Malisoff, and De Leenheer (2007), Mazenc,
Malisoff, and Harmand (2007, 2008) and Mazenc,
Karafyllis, Kravaris, Syrou and Lyberatos (2008) as
well as Freedman, So and Waltman (1989), Smith and
Waltman (1995), Wolkowicz and Xia (1997) and Wang
and Wolkowicz (2006) for studies of the dynamics of
chemostat models). In this work, we consider the robust
global feedback stabilisation problem for the more
general uncertain chemostat model

_X ¼ �ðS Þ þ�ðS, tÞ �D� bð ÞX

_S ¼ DðSi � S Þ � K�ðS ÞXþmX

X 2 ð0, þ1Þ, S 2 ð0,SiÞ, D � 0

ð1:5Þ

where �(S, t) represents a vanishing perturbation
(uncertainty). The chemostat model (1.5) and the
form of the perturbation �(S, t) are explained in x 3.
As far as we know, this is the first time that the robust
global feedback stabilisation problem for the

chemostat model (1.5) is studied and the proposed
controllers in the literature cannot guarantee Robust
Global Asymptotic Stability for the resulting closed-
loop system (for detailed explanations see x 3 below).
Under mild hypotheses for the equilibrium point
(Xs,Ss) of system (1.5) an RCLF for (1.5) is given in
Proposition 3.1. However, using the standard RCLF
approach we obtain very complicated stabilising feed-
back laws. Different families of robust global stabi-
lisers are obtained by exploiting the idea of ‘restricted’
RCLFs. Particularly, we show that for every locally
Lipschitz non-increasing function  : ð0,SiÞ ! <

þ

with  (S )¼ 0 for all S�Ss and  (S )4 0 for
all S5Ss and for every locally Lipschitz function
L : (0,þ1)� (0,Si)! (0,þ1) with inffLðX,S Þ :
ðX,S Þ 2 ð0, þ1Þ � ð0,SiÞg4 0, the locally Lipschitz
feedback law:

D ¼
Ss

Si � Ss
max 0,K�ðS Þ �mð Þ

X

S
þ LðX,S Þ ðS Þ

ð1:6Þ

guarantees robust global asymptotic stabilisation of
the equilibrium point (Xs,Ss) of system (1.5).

(ii) The obtained results are applied to the problem
of feedback stabilisation of affine in the control non-
linear systems of the form (1.1) with input constraints.
The feedback stabilisation problem for non-linear
systems with input constraints has attracted attention
(Teel 1992, 1996; Sussmann, Sontag, and Yang 1994;
Mazenc and Praly 1996; Tsinias 1997; Mazenc and
Bowong 2004; Mazenc and Iggidr 2004). Using the
idea of ‘restricted’ RCLFs we are able to reproduce
(and slightly generalise) the main results in Tsinias
(1997) concerning triangular systems with input con-
straints (Theorem 4.4) as well as obtain simple
sufficient conditions for the existence of stabilising
feedback with a simple saturation (Example 4.1). It
is shown for systems with input constraints that
‘restricted’ RCLFs can be easily obtained, while
RCLFs are not available.

Notation: Throughout this article we adopt the
following notations:

. For a vector x2Rn we denote by jxj its usual
Euclidean norm and by x0 its transpose.

. We say that an increasing continuous function
� : <þ ! <þ is of class K if �(0)¼ 0. By KL
we denote the set of all continuous functions
�¼ �(s, t) :Rþ �Rþ !Rþ with the properties:
(i) for each t� 0 the mapping �( � , t) is of class
K; (ii) for each s� 0, the mapping �(s, � ) is
non-increasing with limt!þ1 �ðs, tÞ ¼ 0.

. Let D�Rl be a non-empty set. By MD we
denote the class of all Lebesgue measurable
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D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
E
A
L
-
L
i
n
k
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
1
7
:
2
5
 
1
5
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



and locally essentially bounded mappings

d :Rþ !D.
. By Cj(A) (C j(A; V)), where j� 0 is a non-

negative integer, A�Rn, we denote the class

of functions (taking values in V�Rm) that

have continuous derivatives of order j on A.
. For every scalar continuously differentiable

function V :Rn
!R, rV(x) denotes the

gradient of V at x2Rn, i.e. rVðxÞ ¼

ð@V@x1
ðxÞ, . . . , @V@xnðxÞÞ. We say that a function

V :Rn
!Rþ is positive definite if V(x)4 0

for all x 6¼ 0 and V(0)¼ 0. We say that

a continuous function V :Rn
!Rþ is radially

unbounded if the following property holds:

‘for every M4 0 the set {x2Rn :V(x)�M}

is compact’.
. The saturation function < 3 x! satðxÞ is

defined by sat(x) :¼ x for x2 [� 1, 1] and

satðxÞ :¼ x
jxj for x =2 ½�1, 1	.

2. Main results

In this section the main results of the present work are

presented. We start by recalling the notion of Uniform

Robust Global Asymptotic Stability. Consider the

following dynamical system:

_x ¼ Fðd, xÞ

x 2 <n, d 2 D:
ð2:1Þ

We assume throughout this section that system (2.1)

satisfies the following hypotheses:

(H1) D�Rl is compact.
(H2) The mapping D�<n 3 ðd, xÞ ! Fðd, xÞ 2 <n is

continuous.
(H3) There exists a symmetric positive definite

matrix P2Rn� n such that for every compact

set S�Rn it holds that supfðx�yÞ
0PðFðd, xÞ�Fðd, yÞÞ

jx�yj2
:

d 2 D, x, y 2 S, x 6¼ yg5þ1:

Hypothesis (H2) is a standard continuity hypothesis

and hypothesis (H3) is often used in the literature

instead of the usual local Lipschitz hypothesis

for various purposes and is a generalisation of the

so-called ‘one-sided Lipschitz condition’ (see, for

example, Stuart and Humphries (1995, p. 416) and

Fillipov (1988, p. 106)). Notice that the ‘one-sided

Lipschitz condition’ is weaker than the hypothesis of

local Lipschitz continuity of the vector field F(d, x)

with respect to x2Rn. It is clear that hypothesis (H3)

guarantees that for every (x0, d)2Rn
�MD, there

exists a unique solution x(t) of (2.1) with initial

condition x(0)¼ x0 corresponding to input d2MD.

We denote by x(t;x0, d) the unique solution of (2.1)

with initial condition x(0)¼ x02Rn corresponding to

input d2MD.

Definition 2.1: We say that 02Rn is URGAS for (2.1)

under hypotheses (H1–H3) with F(d , 0)¼ 0 for all
d 2D if the following properties hold:

. for every s4 0, it holds that:

sup xðt;x0, d Þ
�� ��; t � 0, x0j j � s, d 2MD

� �
5þ1

ðUniform Robust Lagrange StabilityÞ

. for every "4 0 there exists a � :¼ �ð"Þ4 0 such

that:

sup xðt; x0, d Þ
�� ��; t � 0, x0j j � �, d 2MD

� �
� "

ðUniform Robust Lyapunov StabilityÞ

. for every "4 0 and s� 0, there exists
a � :¼ �ð", sÞ � 0, such that:

sup xðt; x0, d Þ
�� ��; t � �, x0j j � s, d 2MD

� �
� "

ðUniform Attractivity for bounded sets of initial statesÞ

It should be noted that the notion of uniform robust

global asymptotic stability coincides with the notion of
uniform robust global asymptotic stability presented

in Lin, Sontag, and Wang (1996).
Next we present relaxed Lyapunov-like sufficient

conditions for URGAS. The Lyapunov-like conditions

of the following theorem are ‘relaxed’ in the sense that

the Lyapunov differential inequality is not required to
hold for every non-zero state, but only for states that

belong to an appropriate subset of the state space. On
the other hand, an additional reachability condition

must hold. Its proof is provided in the Appendix.

Theorem 2.2: Consider system (2.1) under hypotheses

(H1–H3) with F(d, 0)¼ 0 for all d2D and suppose that
there exists a set V�Rn with 02V, functions V2C1(V;

Rþ ) being positive definite and radially unbounded,

T2C0(Rn; Rþ ), G2C0(Rn; Rþ ), which satisfy the
following properties:

(P1) For every (d, x0)2MD�Rn, there exists

t̂ðx0, d Þ 2 ½0,Tðx0Þ	 such that the unique solution

x(t; x0, d) of (2.1) satisfies x(t; x0, d)2V for all
t 2 ½t̂ðx0, d Þ, tmaxÞ and jx(t; x0, d) j �G(x0) for all

t 2 ½0, t̂ðx0, d Þ	, where tmax ¼ tmaxðx0, d Þ is the
maximal existence time of the solution,

(P2) supd2DðrVðxÞFðd,xÞÞ5 0 for all x2V, x 6¼ 0.

Then 02Rn is URGAS for (2.1).

Remark 2.3: For disturbance-free systems, hypothesis
(P1) of Theorem 2.2 guarantees that the set V�Rn is

an absorbing set (Temam 1998). Notice that the set
V�Rn is not required to be positively invariant.

International Journal of Control 2079
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In Karafyllis and Kravaris (2005) the name ‘capturing
region’ was given for the more general case of set-
valued maps instead of sets V�Rn having properties
(P1) and (P2) for general time-varying systems.

Moreover, hypothesis (P1) guarantees that every
solution of (2.1) is V-recurrent in the sense described
in Sontag (2003).

The proof of Theorem 2.2 utilises the following
lemma, which shows that Uniform Robust Lagrange
Stability and Uniform Attractivity for bounded sets
of initial states are sufficient conditions for URGAS.
Its proof is provided in the Appendix.

Lemma 2.4: Consider (2.1) under hypotheses (H1–H3)
with F(d, 0)¼ 0 for all d2D and suppose that there
exists a continuous function R :Rn

!Rþ such that for
every (x0, d)2Rn

�MD the solution x(t; x0, d) of (2.1)
satisfies for all t� 0:

xðt;x0, d Þ
�� �� � Rðx0Þ: ð2:2Þ

Moreover, suppose that for every "4 0, s� 0 there
exists T(", s)� 0 such that for every (x0, d)2Rn

�MD

with jx0j � s the solution x(t; x0, d) of (2.1) satisfies
jx(t; x0, d) j � " for all t�T(", s) (Uniform Attractivity
for bounded sets of initial states).

Then 02Rn is URGAS for system (2.1).

The following lemma provides sufficient conditions for
the reachability condition (P1) of Theorem 2.2. Its
proof is provided in the Appendix. Notice that we
do not assume F(d, 0)¼ 0 for all d2D (i.e. we do not
assume the existence of an equilibrium point).

Lemma 2.5: Consider system (2.1) under hypotheses
(H1–H3) and suppose that there exist locally Lipschitz
functions h1 :Rn

!R with h1(0)5 0, h2 :Rn
!R being

bounded from above with h2(0)¼ 0, W :Rn
!Rþ being

radially unbounded, a continuous function � : <þ !

ð0, þ1Þ and constants K� 0, �4 0, such that
{x2Rn : 05 h1(x)5�} 6¼Ø and

sup
d2D

rh1ðxÞFðd, xÞ � 0, for almost all x 2 <n

with 05 h1ðxÞ5 �
ð2:3aÞ

sup
d2D

rh1ðxÞ � rh2ðxÞð ÞFðd, xÞ � ��ðh1ðxÞÞ,

for almost all x 2 <n with h1ðxÞ4 0 ð2:3bÞ

sup
d2D

rWðxÞFðd, xÞ � KWðxÞ, for almost

all x 2 <n with h1ðxÞ4 0: ð2:4Þ

Then for every "̂ 2 ð0, �Þ there exist functions T2C0(Rn;
Rþ ), G2C0(Rn; Rþ ) such that property (P1) of
Theorem 2.2 holds with � :¼ fx 2 <n : h1ðxÞ � "̂g.

We next consider the control system (1.1). The

following hypotheses will be valid for system (1.1)

throughout this section:

(Q1) D�Rl
. is compact and U�Rm is a convex set

with 02U.
(Q2) The mappings D�<n 3 ðd, xÞ ! f ðd, xÞ 2 <n,

D�<n 3 ðd, xÞ ! gðd, xÞ 2 <n�m are continu-

ous with f (d, 0)¼ 0 for all d2D.
(Q3) There exists a symmetric positive definite matrix

P2Rn� n such that for every pair of compact

sets S�Rn, V�U it holds that

sup

�
ðx� yÞ0Pð f ðd, xÞ þ gðd, xÞu� f ðd, yÞ � gðd, yÞuÞ��x� y

��2 :

d 2 D, u 2 V, x, y 2 S, x 6¼ y

�
5þ1:

The following theorem provides relaxed sufficient

Lyapunov-like conditions for the existence of a locally

Lipschitz, globally stabilising feedback law k :Rn
!U.

The Lyapunov-like conditions of the following theo-

rem are ‘relaxed’ in the sense that the Lyapunov

differential inequality is not required to hold for every

non-zero state, but only for states that belong to an

appropriate set of the state space (compare with the

results in Freeman and Kokotovic (1996)). On the

other hand, additional conditions must hold. Its proof

is provided in the Appendix.

Theorem 2.6: Consider system (1.1) under hypotheses

(Q1–Q3) and suppose that there exist continuously

differentiable functions h :Rn
!R with h(0)5 0,

W :Rn
!Rþ being radially unbounded, V :Rn

!Rþ

being positive definite and radially unbounded, a

continuous non-increasing function � : <þ ! ð0, þ1Þ

and constants K� 0, "4 0 such that {x2Rn :

h(x)�"} 6¼Ø and the following properties hold:

(R1) For every x2Rn with h(x)� 0 there exists u2U

with

sup
d2D

rhðxÞ f ðd, xÞ þ gðd, xÞuð Þ � ��ðhðxÞÞ ð2:5Þ

sup
d2D

rWðxÞ f ðd,xÞ þ gðd, xÞuð Þ � KWðxÞ: ð2:6Þ

(R2) For every x 6¼ 0 with h(x)� " there exists u2U

with

sup
d2D

rVðxÞ f ðd, xÞ þ gðd, xÞuð Þ5 0: ð2:7Þ

(R3) For every x2Rn with hðxÞ 2 ½0, "	 there exists

u2U satisfying (2.5), (2.6) and (2.7).
(R4) There exists a neighbourhood N of 02Rn and

a locally Lipschitz mapping ~k : N! U with

2080 I. Karafyllis et al.
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~kð0Þ ¼ 0 such that supd2D rVðxÞð f ðd, xÞ þ
gðd,xÞ ~kðxÞÞ5 0 for all x 2 N, x 6¼ 0.

Then there exists a locally Lipschitz mapping k :Rn
!U

with k(0)¼ 0 such that 02Rn is URGAS for the closed-
loop system (1.1) with u¼ k(x).

Remark 2.7:

(a) It should be noted that if the mapping
~k : N! U involved in hypothesis (R4) of
Theorem 2.6 is C1 then the obtained feedback
k :Rn

!U is of class C1 as well. Similarly, if
the mappings ~k : N! U and h :Rn

!R are
Cj (1� j�1) then the obtained feedback
k :Rn

!U is of class Cj as well.
(b) As already noted in x 1, Theorem 2.6 can

be used for various purposes. For example, if
V :Rn

!Rþ is an RCLF for (1.1), the result of
Theorem 2.6 can be used in order to obtain
a different family of robust feedback stabilisers
from the family of robust feedback stabilisers
obtained by using the classical Lyapunov
feedback design methodology (Artstein 1983;
Sontag 1989; Freeman and Kokotovic 1996).
Indeed, the following section is devoted to the
presentation of an important control system,
for which simple formulae of robust feedback
stabilisers are obtained by the use of Theorems
2.2 and 2.6, while complicated formulae of
robust feedback stabilisers are obtained by the
use of classical results. On the other hand,
Theorems 2.2 and 2.6 can be used for the
exploitation of a function V :Rn

!Rþ which
is not necessarily an RCLF. This is the case of
systems with input constraints presented in x 4.

(c) Some comments concerning hypotheses
(R1–R4) of Theorem 2.6 are given next:
hypothesis (R1) allows the construction of a
feedback law which guarantees that Lemma 2.5
can be applied for the corresponding closed-
loop system. Hypothesis (R2) allows the con-
struction of a (different) feedback law which
guarantees that the time derivative of the
Lyapunov function is negative definite on the
set {x2Rn : h(x)5"}. On the other hand,
hypothesis (R3) is a crucial hypothesis that
guarantees that the two feedback laws con-
structed by means of hypotheses (R1 and R2)
can be combined on the region {x2Rn :
05 h(x)5"}. Finally, hypothesis (R4) is
a local hypothesis, which automatically guar-
antees the small-control property (Sontag 1989;
Freeman and Kokotovic 1996) and allows us
to construct a locally Lipschitz feedback
law (instead of a simply continuous one).

3. Application to the robust global stabilisation of

the chemostat

Continuous stirred microbial bioreactors, often called

chemostats, cover a wide range of applications. The

dynamics of the chemostat is often adequately

represented by a simple dynamic model involving two

state variables, the microbial biomass X and the

limiting organic substrate S (Smith and Waltman

1995). For control purposes, the manipulated input is

usually the dilution rate D. A commonly used delay-

free model for microbial growth on a limiting substrate

in a chemostat is of the form:

_X ¼ �ðS Þ �Dð ÞX

_S ¼ DðSi � S Þ � K�ðS ÞX

X 2 ð0, þ1Þ, S 2 ð0,SiÞ, D � 0

ð3:1Þ

where Si is the feed substrate concentration, �(S ) is

the specific growth rate and K4 0 is a biomass yield

factor. In most applications, Monod or Haldane or

generalised Haldane models are used for �(S )

(Bailey and Ollis 1986). The reader should notice

that chemostat models with time delays were

considered in Freedman et al. (1989), Wolkowicz

and Xia (1997) and Wang and Wolkowicz (2006).

The literature on control studies of chemostat models

of the form (3.1) is extensive. In De Leenheer and

Smith (2003), feedback control of the chemostat by

manipulating the dilution rate was studied for the

promotion of coexistence. Other interesting control

studies of the chemostat can be found in Antonelli

and Astolfi (2000), Mailleret and Bernard (2001),

Gouze and Robledo (2006), Harmard et al. (2006),

Mazenc et al. (2007) and Karafyllis et al. (2008). The

stability and robustness of periodic solutions of the

chemostat was studied in Mazenc et al. (2007, 2008).

The problem of the stabilisation of a non-trivial

steady state (Xs,Ss) of the chemostat model (1.1) was

considered in Mailleret and Bernard (2001), where it

was shown that the simple feedback law D ¼ �ðS ÞXXs

is a globally stabilising feedback. See also the recent

work by Karafyllis et al. (2008) for the study of the

robustness properties of the closed-loop system (3.1)

with D ¼ �ðS ÞXXs
for time-varying inlet substrate

concentration Si.
In this work we consider the robust global feedback

stabilisation problem for the more general uncertain

chemostat model (1.5)

_X ¼ �ðS Þ þ�ðS, tÞ �D� bð ÞX

_S ¼ DðSi � S Þ � K�ðS ÞXþmX

X 2 ð0, þ1Þ, S 2 ð0,SiÞ, D � 0:
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In the above equation:

. The term bX in the biomass balance represents

the death rate of the cells in the chemostat. The

parameter b� 0 is the cell mortality rate.
. The term mX in the substrate balance

accounts for the rate of substrate consumption

for cell maintenance (Bailey and Ollis 1986,

pp. 390 and 450) as well as the rate of release

of substrate due to the death of the cells in

the chemostat (which is proportional to bX).

The parameter m is either negative or assumes

a small positive value. The parameter m is

related to the presence of variable apparent

yield coefficient (which has been studied

recently in Zhu and Huang (2006) and Zhu,

Huang, and Su (2007)).
. The term �(S, t) represents possible deviations

of the specific growth rate of the biomass,

primarily accounting for the adjustment of the

biomass to changes in the substrate levels.

The following assumption is made about the

uncertainty term �(S, t):

(S0) There exist constants Ss2 (0,Si) and a� 0

such that �ðS, tÞ ¼ d1ðtÞjS� Ssj � d2ðtÞmaxf0,

Ss � Sg, where di :Rþ ! [0, a] (i¼ 1, 2) are

measurable, essentially bounded functions.

Clearly, a� 0 is a constant which quantifies the

uncertainty range, Ss2 (0,Si) is the value of

the substrate concentration where _X is precisely

known to be equal to (�(Ss)�D� b)X. Notice that

at Ss2 (0,Si), the uncertainty �(S, t) is assumed to

vanish. See Figure 1 for a sketch of the shape of the

uncertainty range as a function of S.
It should be noticed that (1.5) under hypothesis

(S0) is a more general chemostat model than (3.1)

(if we set a¼ b¼m¼ 0 we obtain model (3.1)).

In Gouze and Robledo (2006), the problem of the

output regulation of the chemostat model (1.5) with

m¼ 0 was considered.
It is important to notice that even in the case of

zero uncertainty and zero mortality rate (i.e.

a¼ b¼ 0) and for negative values for the constant

m, the application of the feedback law D ¼ �ðS ÞXXs

does not necessarily lead to global stability. For

example, for the Haldane model �ðS Þ :¼ �maxS
K1þSþK2S2, it

is easy to verify that for arbitrarily small negative

values for the constant m, the closed-loop system (1.5)

under hypothesis (S0) with D ¼ �ðS ÞXXs
and a¼ b¼ 0

has two equilibrium points in the first quadrant with

coordinates (S1,Xs) and (S2,Xs), where 05S15S2.

The equilibrium point (S2,Xs) is locally asymptoti-

cally stable with region of attraction the set {(S,X) :

S4S1,X4 0}. The stable manifold of the unstable

equilibrium (S1,Xs) is the straight line S¼S1 and if

the initial condition for the substrate is less than S1

then the system is led to shutdown in finite time (i.e.

there exists T� 0 such that limt!T� SðtÞ ¼ 0).

Therefore, the feedback law D ¼ �ðS ÞXXs
needs to

be modified in order to be able to guarantee

global asymptotic stability for the desired equilibrium

point.
Throughout this section we will assume that the

specific growth rate function � : < ! ½0,�max	

involved in the chemostat models (1.5) is a locally

Lipschitz function with �(S )¼ 0 for all S� 0 and

�(S )4 0 for all S4 0. We consider system (1.5) under

the following additional hypotheses:

(S1) There exists an equilibrium point (Xs,Ss)2

(0,þ1)� (0,Si) with �(Ss)¼Dsþ b and
DsðSi�SsÞ

KðDsþbÞ�m
¼ Xs for certain value of the dilution

rate Ds4 0.

Assumption (S1) is satisfied for Monod, Haldane and

generalised Haldane kinetics, as long as the value of

the dilution rate Ds is not too high.

(S2) There exists Sþ2 (0,Ss) and p4 0 such that

K�(S )�m� p and �(S )� b� 2p for all

S2 [Sþ,Si].

Assumption (S2) is satisfied for Monod, Haldane

and generalised Haldane kinetics, as long as

minð�ðSsÞ,�ðSiÞÞ4 maxðb, mKÞ.
The goal is the robust global stabilisation of the

non-trivial equilibrium point (Xs,Ss)2 (0,þ1)� (0,Si)

with �(Ss)¼Dsþ b and DsðSi�SsÞ

KðDsþbÞ�m
¼ Xs involved in

hypotheses (S1 and S2) for system (1.5). To this end

we apply the change of coordinates:

S ¼
Si expðx1Þ

cþ expðx1Þ
;

X

Si � S
¼ G expðx2Þ ð3:2ÞFigure 1. Indicative uncertainty range for the specific growth

rate of the biomass �(S )þ�(S, t) (here �ðS Þ ¼ 75S
100þSþ0:025S2,

a¼ 0.05 and Ss¼ 506.72).
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and the input transformation:

D ¼ Ds þ u ð3:3Þ

where

c :¼
Si

Ss
� 1 and G :¼

Ds

KðDs þ bÞ �m
:

The above coordinate change maps the strip

{(X,S )2R2 :X4 0, 05S5Si} onto R2. Under the

above transformation system (1.5) under hypothesis

(S0) is expressed by the following control system:

_x1 ¼ cexpð�x1Þþ 1ð Þ Dsþ u�ðK ~�ðx1Þ�mÞGexpðx2Þð Þ

_x2 ¼ ~�ðx1Þþ d1
cSs

cþ expðx1Þ
expðx1Þ� 1
�� ���

�d2
cSs

cþ expðx1Þ
max 0,1� expðx1Þð Þ� b

�
�ðK ~�ðx1Þ�mÞGexpðx2Þ

x¼ ðx1,x2Þ 2 <
2, u 2U :¼ ½�Ds, þ1Þ,

d¼ ðd1,d2Þ 2 ½0,a	
2

ð3:4Þ

where ~�ðx1Þ :¼�ððSiexpðx1ÞÞ=ðcþ expðx1ÞÞÞ:Notice that

x¼ 0 is an equilibrium point for the above system for

u
 0. Therefore, we seek for a locally Lipschitz

feedback law k :R2
!R with k(0)¼ 0 so that 02R2

is URGAS for the closed-loop system (3.4) with

u¼ k(x) in the sense described in the previous section.
Insights for the solution of the feedback stabilisa-

tion problem for (3.4) may be obtained by setting

a¼ b¼m¼ 0 and obtaining the transformed

system (3.1):

_x1 ¼ c expð�x1Þ þ 1ð Þ Ds þ u� ~�ðx1Þ expðx2Þð Þ

_x2 ¼ ~�ðx1Þ � ~�ðx1Þ expðx2Þ

x ¼ ðx1, x2Þ 2 <
2, u 2 U :¼ ½�Ds, þ1Þ:

ð3:5Þ

For the control system (3.5), families of CLFs

are known (Karafyllis et al. 2008). Let � : < ! <þ,

� : < ! <þ be non-negative, continuously differenti-

able functions with �(0)¼ �(0)¼ 0 and such that

x� 0ðxÞ4 0, x�0ðxÞ4 0, for all x 6¼ 0 ð3:6aÞ

if x!�1 then �ðxÞ ! þ1 and �ðxÞ ! þ1:

ð3:6bÞ

For example, the functions �(x) and �(x) could be of

the form Kxm, where K4 0 and m4 0 is an even

positive integer. Properties (3.6a and b) guarantee that

the following family of functions:

VðxÞ ¼ �ðx1Þ þ �ðx2Þ ð3:7Þ

are radially unbounded, positive definite and continu-

ously differentiable functions. The reader may verify

that the above functions are CLFs for the control

system (3.5). The knowledge of the above family of

CLFs allows us to obtain a family of stabilising

feedback laws for (3.5). The reader may verify that the

following family of feedback laws:

kðxÞ :¼ �Ds þ ~�ðx1Þ expðx2Þ’ðx1Þ þ qðx1, x2Þ ð3:8Þ

where ’ : < ! <þ is a locally Lipschitz, non-negative

function with ’(0)¼ 1,’(x)5 1 for x4 0 and ’(x)4 1

for x5 0, q :R2
!Rþ is a locally Lipschitz, non-

negative function with q(x1,x2)¼ 0 for x1� 0, is

a family of globally stabilising feedback laws for

(3.5). For example, the selection ’ðxÞ ¼ cþ1
cþexpðxÞ, q
 0

gives a feedback law, which transformed back to the

original coordinates gives D ¼ �ðS ÞXXs
. This is the

feedback law considered in Mailleret and Bernard

(2001) (see also Karafyllis et al. (2008) and references

therein).
On the other hand, it can be verified that V as

defined by (3.7), where � : < ! <þ and � : < ! <þ

satisfy (3.6), is not necessarily a CLF for (3.4) under

hypotheses (S1 and S2). However, we will show next

that � : < ! <þ and � : < ! <þ can be selected

so that V as defined by (3.7) is a CLF for (3.4)

under hypotheses (S1 and S2). Hypothesis (S2)

implies that there exists x�1 2 ½x
þ
1 , 0Þ, where xþ1 ¼

lnð Sþc
Si�Sþ
Þ, such that

acSs

cþ expðx1Þ
max 0,1� expðx1Þð Þ � p, K ~�ðx1Þ�m� p

and ~�ðx1Þ� b� 2p for all x1 � x�1: ð3:9Þ

Proposition 3.1: The function

VðxÞ :¼ �ðx1Þ þ
1

2
x22 ð3:10Þ

where

�ðx1Þ :¼
1

2
Mx21

þ

A½expð2ðx1 þ x�1ÞÞ

�1� 2ðx1 þ x�1Þ	,
for x1 � �x

�
1

0, for x1 5 � x�1

8<
:

ð3:11Þ

and M, A4 0 are constants sufficiently large, is

an RCLF for (3.4) under hypotheses (S1 and S2)

(Figure 2). Moreover, the feedback law:

kðxÞ ¼ �Ds þmaxf0,K ~�ðx1Þ �mgG expðx2 � x1Þ

þ qðx1, x2Þ ð3:12Þ
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where q :R2
!Rþ is a locally Lipschitz, non-negative

function with q(x1, x2)¼ 0 for x1� 0 and

qðx1, x2Þ �
Wðx1, x2Þ expðx1Þ

M cþ expðx1Þð Þ
þ a

cSs x2j j expðx1Þ

Mðcþ expðx1ÞÞ
2

� expðx1Þx2
~�ðx1Þ � b� ðK ~�ðx1Þ �mÞG expðx2Þ

Mx1 cþ expðx1Þð Þ
,

for x1 � x�1 ð3:13Þ

where W :R2
!Rþ is any locally Lipschitz, positive

definite function, satisfies for all x 6¼ 0, d¼

(d1, d2)2 [0, a]
2:

_V¼rVðxÞ

cexpð�x1Þþ1ð ÞðDsþkðxÞ

�ðK ~�ðx1Þ�mÞGexpðx2ÞÞ

~�ðx1Þþd1
cSs

cþ expðx1Þ
expðx1Þ�1
�� ��

�d2
cSs

cþ expðx1Þ
max 0,1� expðx1Þð Þ

�b�ðK ~�ðx1Þ�mÞGexpðx2Þ

2
6666666664

3
7777777775
50:

Proof: Notice that the function V defined by (3.10)

and (3.11) is continuously differentiable, positive

definite and radially unbounded. It suffices to prove

that maxf _V : ðd1, d2Þ 2 ½0, a	
2
g5 0 for all x 6¼ 0, where

_V is the directional derivative of V along the

trajectories off the closed-loop system (3.4) with

u¼ k(x) and k defined by (3.12) and (3.13).
Let

L :¼ sup
�ðS Þ � �ðSsÞ
�� ��

S� Ssj j
: S 2 ð0,SiÞ, S 6¼ Ss

� �
:

Clearly, L�L�5þ1 where L� denotes the Lipschitz

constant for the specific growth rate function on [0,Si].

Using definition ~�ðx1Þ :¼ �ð
si expðx1Þ
cþexpðx1Þ

Þ, we obtain:

~�ðx1Þ � ~�ð0Þ
�� �� � LSsc

expðx1Þ � 1
�� ��
cþ expðx1Þ

, for all x1 2 <:

ð3:14Þ

Let �2 (0, p) and define:

�min :¼ ln
p� �

ðK�max �mÞG

� �
;

�max :¼ ln
1

pG
�max þ aðcþ 1ÞSs � bþ �ð Þ

� �
: ð3:15Þ

Notice that by selecting �2 (0, p) sufficiently close to

p we have �min 5 05�max. We will show next that

the function V defined by (3.10) and (3.11) is

an RCLF for (3.4) for constants M,A4 0 that

satisfy:

2AcpG expð�minÞ expð2x
�
1Þ

� BSs L
Kb�mj j

KðDs þ bÞ �m
þ a

� �
þ 1 ð3:16aÞ

M �
2A

�x�1
;

M �
1

2c
expð��min � x�1Þ þ

c

2
expð��min � x�1Þ

�
Ssr

"pG

� �2
L Kb�mj j

KðDs þ bÞ �m
þ 2a

� �2

ð3:16bÞ

where B :¼ maxfj�minj, j�maxjg and "4 0 is sufficiently

small such that

x1ðexpð�x1Þ � 1Þ � �"x21 for all x1 2 x�1, � x�1
	 


ð3:17aÞ:

x2ð1� expðx2ÞÞ � �"x
2
2 for all x2 2 ½�min,�max	

ð3:17bÞ

We consider the following cases.

Case 1: x1 � x�1 and x2 =2 ½�min,�max	:

Notice that by virtue of (3.9) and definitions (3.15),

the following inequalities hold for x1 � x�1:

�min � ln
1

ðK ~�ðx1Þ �mÞG
~�ðx1Þ � bð

�

�
acSs

cþ expðx1Þ
max 0, 1� expðx1Þð Þ � �

��
ð3:18aÞ

�max � ln
1

ðK ~�ðx1Þ �mÞG
~�ðx1Þð

�

þ
acSs

cþ expðx1Þ
expðx1Þ � 1
�� ��� bþ �

��
: ð3:18bÞ

0

1

2

3

4

5

6

7

−2 −1,5 −1 −0,5 0 0.5 1 1.5 2x1

Figure 2. Graph of the function �(x1) defined by (3.11) with
M ¼ A ¼ �x

�

1 ¼ 1.
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Using (3.18a), we obtain for all x1 � x�1, x2 � �min,

d¼ (d1, d2)2 [0, a]
2:

~�ðx1Þ þ d1
cSs

cþ expðx1Þ
expðx1Þ � 1
�� ���

� d2
cSs

cþ expðx1Þ
max 0, 1� expðx1Þð Þ � b

�
� ðK ~�ðx1Þ �mÞG expðx2Þ � �: ð3:19aÞ

Using (3.18b), we obtain for all x1 � x�1, x2 � �max,

d¼ (d1, d2)2 [0, a]
2:

~�ðx1Þ þ d1
cSs

cþ expðx1Þ
expðx1Þ � 1
�� ���

� d2
cSs

cþ expðx1Þ
max 0, 1� expðx1Þð Þ � b

�

� ðK ~�ðx1Þ �mÞG expðx2Þ � ��: ð3:19bÞ

Consequently, we obtain from (3.12) and (3.19a and b)

for all x1 � x�1, x2 =2 ½�min,�max	 and d¼ (d1, d2)2 [0, a]
2:

_V � � 0ðx1Þ c expð�x1Þ þ 1ð ÞpG expðx2Þ expð�x1Þ � 1ð Þ

� � x2j j5 :0 ð3:20Þ

Case 2: x1 2 ½x
�
1, � x�1	 and x2 2 ½�min,�max	:

In this case, using (3.12), we have:

_V�Mx1 cexpð�x1Þþ 1ð ÞðK ~�ðx1Þ�mÞGexpðx2Þ

� expð�x1Þ� 1ð Þþ
Kb�m

KðDsþ bÞ�m
x2 ~�ðx1Þ� ~�ð0Þð Þ

þ
cSs

cþ expðx1Þ
x2d1 expðx1Þ� 1

�� ��
� d2

cSs

cþ expðx1Þ
x2max 0,1� expðx1Þð Þ

þ ðK ~�ðx1Þ�mÞGx2ð1� expðx2ÞÞ: ð3:21Þ

Let r4 0 such that j expðx1Þ�1j
cþexpðx1Þ

� rjx1j for all

x1 2 ½x
�
1, � x�1	. Using the previous inequality in

conjunction with (3.9), (3.14), (3.17a and b) and

(3.21) we obtain for all x1 2 ½x
�
1, � x�1	, x2 2

½�min,�max	 and d¼ (d1, d2)2 [0, a]
2:

_V � �"M cþ expðx�1Þ
� �

pG expð�min þ x�1Þx
2
1

þ
L Kb�mj j

KðDs þ bÞ �m
þ 2a

� �
cSsr x2j j x1j j � "pGx

2
2:

ð3:22Þ

By completing the squares in the right-hand side of

(3.22) and using (3.16b), we obtain for all x1 2

½x�1, � x�1	, x2 2 ½�min,�max	 and d¼ (d1, d2)2 [0, a]
2:

_V � �
" pG

2
x21 þ x22
� �

: ð3:23Þ

Case 3: x1 � �x
�
1 and x2 2 ½�min,�max	:

Let B :¼ maxfj�minj, j�maxjg. In this case, using (3.9),

(3.12) and (3.14) we obtain for all x1 � �x
�
1,

x2 2 ½�min,�max	 and d¼ (d1, d2)2 [0, a]
2:

_V �

"
� 0ðx1ÞcpG expð�min � 2x1Þ

�BSs L
Kb�mj j

KðDs þ bÞ �m
þ a

� �#

� 1� expðx1Þð Þ þ pGx2ð1� expðx2ÞÞ: ð3:24Þ

By virtue of definition (3.11) we get for all x1 � �x
�
1:

� 0ðx1ÞcpG expð�min � 2x1Þ

¼ 2AcpG expð�minÞ expð2x
�
1Þ

þ cpG expð�min � 2x1ÞMx1 � 2A½ 	: ð3:25Þ

Using (3.16a and b) and (3.25), we obtain for all

x1 � �x
�
1, x2 2 ½�min,�max	 and d¼ (d1, d2)2 [0, a]

2:

_V � 1� expðx1Þð Þ þ pGx2ð1� expðx2ÞÞ5 0: ð3:26Þ

Case 4: x1 � x�1:

In this case we have:

_V ¼Mx1 c expð�x1Þ þ 1ð Þ Ds þ kðxÞð

� ðK ~�ðx1Þ �mÞG expðx2ÞÞ

þ x2 ~�ðx1Þ þ ðd1 � d2Þ
cSs

cþ expðx1Þ

�
� 1� expðx1Þð Þ � b� ðK ~�ðx1Þ �mÞG expðx2ÞÞ:

ð3:27Þ

By virtue of (3.12), (3.13) and (3.27) we obtain for all

x1 � x�1, x22R and d¼ (d1, d2)2 [0, a]
2:

_V � x1Wðx1, x2Þ5 0: ð3:28Þ

The proof is complete. œ

We next consider the possibility of constructing

simpler feedback laws than the family of feedback laws

given by (3.12) and (3.13). To this purpose we utilise

the relaxed Lyapunov-like conditions of Theorem 2.6

and the stability conditions of Theorem 2.2.

Theorem 3.2: Let  : < ! <þ be a locally Lipschitz

non-increasing function with  (s)¼ 0 for all s� 0 and

 (s)4 0 for all s5 0 and let L :R2
! (0,þ1) be

a locally Lipschitz function with inffLðxÞ : x 2 <2g4 0.

Under Hypotheses (S1 and S2), for every a� 0, 02R2 is

URGAS for the closed-loop system (3.4) with

u ¼ �Ds þmaxð0,K ~�ðx1Þ �mÞG expðx2 � x1Þ

þ Lðx1, x2Þ ðx1Þ: ð3:29Þ
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Proof: We define:

� :¼ ðx1, x2Þ 2 <
2 : x1 � x�1

� �
: ð3:30Þ

Following exactly the same arguments as in Cases 1–3
of the proof of Proposition 3.1, we are in a position to
show that Hypothesis (P2) of Theorem 2.2 holds for
the closed-loop system (3.4) with (3.29) with V as
defined by (3.30) and V as defined by (3.10) and (3.11)
for sufficiently large constants M, A4 0. Next define:

hðxÞ :¼
1

2
x�1 � x1: ð3:31Þ

It should be noticed that by virtue of definitions (3.30)
and (3.31), the set V satisfies � :¼ fx 2 <2 : hðxÞ � "̂g
with "̂ ¼ �1

2x
�
1 4 0. Let l :¼ inffLðxÞ : x 2 <2g4 0. It

follows from (3.4), (3.29) and (3.31) and the fact that
 : < ! <þ is non-increasing, that the following
inequality holds for all x2R2 with h(x)� 0:

_h ¼ rhðxÞ _x ¼ � c expð�x1Þ þ 1ð Þ

� Ds þ u� ðK ~�ðx1Þ �mÞG expðx2Þð Þ

� �l c exp �
1

2
x�1

� �
þ 1

� �
 

1

2
x�1

� �
: ð3:32Þ

Consequently, inequalities (2.3a and b) of Lemma 2.5
hold for every �4 "̂ with h1(x) :¼ h(x), h2(x)
 0 and

�ðxÞ :¼ l c exp �
1

2
x�1

� �
þ 1

� �
 

1

2
x�1

� �
4 0: ð3:33Þ

Finally, define the continuously differentiable
function:

Wðx1, x2Þ :¼
1

2
x21 þ

1

2
minf0, x2gð Þ

2

þ
1

2
maxf0, x2 � lnðcþ ex1 Þgð Þ

2
þ1: ð3:34Þ

Notice that the following inequalities hold for all
x1, x2� 0 and d¼ (d1, d2)2 [0, a]

2:

�aSs � K�maxG � ~�ðx1Þ þ ðd1 � d2Þ
cSs

cþ expðx1Þ

� 1� expðx1Þð Þ � ðK ~�ðx1Þ �mÞG

� expðx2Þ � �max þ aSs þmG

ð3:35Þ

as well as the following equality:

d

dt
x2 � lnðcþ ex1 Þð Þ

¼ ~�ðx1Þ þ d1
cSs

cþ expðx1Þ
expðx1Þ � 1
�� ��

� d2
cSs

cþ expðx1Þ
max 0, 1� expðx1Þð Þ � b�Ds � u:

ð3:36Þ

Using inequalities (3.35) in conjunction with (3.34) and

(3.35) we obtain inequality (2.4) for certain constant

K4 0 sufficiently large. Consequently, Lemma 2.5

implies that hypothesis (P1) of Theorem 2.2 holds

for the closed-loop system (3.4) with (3.29) with V as

defined by (3.30). Theorem 2.2 implies that 02R2 is

URGAS for the closed-loop system (3.4) with (3.29).

The proof is complete. œ

It should be noticed that the obtained family of

stabilising feedback laws (3.29) is much simpler than

the family of stabilising feedback laws given by

(3.12) and (3.13). Moreover, it should be emphasised

that the family of stabilising feedback laws (3.29)

and the family of stabilising feedback laws given by

(3.12) and (3.13) do not coincide (although both

families of feedback laws are members of the family

expressed by (3.8) for the case m¼ 0). The reader

should notice that the feedback law (3.29) trans-

formed back to the original coordinates is expressed

by (1.6). Finally, it is clear that the feedback law

(3.29) is independent of the constant a� 0 which

quantifies the uncertainty range. Therefore, the

feedback law (3.29) achieves stabilisation of 02R2

for all a� 0, i.e. for arbitrary large range of

uncertainty.

4. Feedback stabilisation of control systems with

input restrictions

In this section some examples are provided, which

show that the notion of restricted Control Lyapunov

Functions is very useful when trying to design

stabilising feedback laws for control systems with

input restrictions. Our first example deals with a single

input affine control system.

Example 4.1: Consider the single input, affine in the

control disturbance free system:

_x ¼ f ðxÞ þ gðxÞu

x 2 <n, u 2 U :¼ ½�a, þ1Þ � <
ð4:1Þ

where a4 0 is a constant and f, g :Rn
!Rn are smooth

vector fields with f (0)¼ 0. Suppose that a smooth,

positive definite and radially unbounded function

V :Rn
!Rþ is known such that

rVðxÞf ðxÞ � �ðxÞ rVðxÞgðxÞð Þ
2 5 0, 8x 6¼ 0 ð4:2Þ

where � : <n! <þ is a smooth function. Notice that

under hypothesis (4.2), it follows that if the control

input u were allowed to take values in R then

V :Rn
!Rþ would be a CLF for (4.1) and a smooth

stabilising feedback for (4.1) would be k(x) :¼

� �(x)rV(x)g(x). On the other hand, the control
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input u is restricted to take values in U :¼
[�a,þ1)�R. Clearly, the use of the feedback
k(x) :¼� �(x)rV(x)g(x) becomes problematic on the
set {x2Rn : �(x)rV(x)g(x)4 a} and V :Rn

!Rþ is
not necessarily a CLF for (4.1).

Let "2 (0, a) and define h(x) :¼ �(x)rV(x)g(x)�
aþ ". Clearly, h(0)5 0 and by virtue of (4.2) the
smooth feedback k(x) :¼� �(x)rV(x)g(x) can be
applied on the set � :¼ fx 2 <n : hðxÞ � "g, i.e. hypoth-
eses (R2) and (R4) of Theorem 2.6 hold. Moreover,
assume the existence of a function W :Rn

!Rþ being
radially unbounded and a constant K� 0 such that

rWðxÞf ðxÞþurWðxÞgðxÞ �KWðxÞ, for all u��aþ"

and x2<n with a� "� �ðxÞrVðxÞgðxÞ � a ð4:3Þ

rWðxÞf ðxÞ � arWðxÞgðxÞ � KWðxÞ, for all

x 2 <n with a � �ðxÞrVðxÞgðxÞ:
ð4:4Þ

Furthermore, assume the existence of a positive
constant �4 0 such that

rhðxÞf ðxÞ � arhðxÞgðxÞ � ��, for all x 2 <n with

a � �ðxÞrVðxÞgðxÞ ð4:5Þ

rhðxÞf ðxÞþ urhðxÞgðxÞ ���, for all u��aþ "

and x 2<n with a� "� �ðxÞrVðxÞgðxÞ � a ð4:6Þ

Notice that inequalities (4.3), (4.4), (4.5) and (4.6) in
conjunction with inequality (4.2) guarantee that
hypotheses (R1) and (R3) of Theorem 2.6 hold as
well. In this case an explicit formula for a locally
Lipschitz feedback stabiliser can be given. The locally
Lipschitz feedback law:

~kðxÞ :¼ �min a; �ðxÞrVðxÞgðxÞ
� �

ð4:7Þ

guarantees global stabilisation of 02Rn for system
(4.1). This fact follows from Lemma 2.5 and Theorem
2.2 in conjunction with inequalities (4.2), (4.3), (4.4),
(4.5) and (4.6).

For example, the linear planar system

_x1 ¼ �x1 þ x2

_x2 ¼ u

x ¼ ðx1, x2Þ
0
2 <2, u 2 ½�1, þ1Þ

ð4:8Þ

satisfies all the above requirements with VðxÞ :¼ 1
2x

2
1þ

1
2x

2
2,W(x)
V(x), a :¼ 1, " :¼ 1

2,K :¼ 1, � :¼ 1
2 and

�(x)
 1. Notice that VðxÞ :¼ 1
2x

2
1 þ

1
2x

2
2 is not a CLF

for (4.8). It follows that the feedback law ~kðxÞ :¼
�minf1; x2g guarantees global stabilisation of 02R2

for system (4.8).

The following example deals with the design of
bounded feedback stabilisers for non-linear uncertain

systems. Many researchers have studied the problem

of existence and design of robust bounded feedback

stabilisers for control systems (Teel 1992, 1996;

Sussmann et al. 1994; Mazenc and Praly 1996;

Tsinias 1997; Mazenc and Bowong 2004; Mazenc and

Iggidr 2004). Here, we show that the ‘restricted’

Lyapunov conditions given in the present work can

be used in order to rediscover sufficient conditions for

the existence of robust bounded feedback stabilisers

which have been obtained previously (Tsinias 1997).

Example 4.2: Here we study the problem of ‘adding

an integrator’ with bounded feedback. Particularly,

we consider the system:

_x ¼ Fðd,x, yÞ

x 2 <n, y 2 <, d 2 D
ð4:9Þ

where D�Rk is a compact set, F :D�Rn
�R!Rn is

a locally Lipschitz mapping with F(d, 0, 0)¼ 0 for all

d2D. We will assume next that system (4.9) can be

stabilised by a locally Lipschitz bounded feedback law

y¼ ’(x). However, we will not assume the knowledge

of a Lyapunov function for the closed-loop system

(4.9) with y¼’(x): instead we will assume the knowl-

edge of a quadratic ‘restricted’ Lyapunov function for

the closed-loop system (4.9) with y¼’(x). The follow-
ing set of assumptions is similar to the one presented

in Tsinias (1997):

(W1) There exists a symmetric, positive definite

matrix P2Rn� n, constants �, a4 0, a locally

Lipschitz function ’ : <n! ½�a, a	, a vector

k2Rn and a compact set S�Rn containing

a neighbourhood of 02Rn such that:

x0PFðd, x, k0xÞ � ��x0Px, 8x 2 S ð4:10Þ

’ðxÞ ¼ k0x, 8x 2 S: ð4:11Þ

(W2) There exists a constant c4 0 and continuous

mappings T,Q :Rn
!Rþ such that for all

(x0, d, v)2Rn
�MD�M[�c,c] there exists

t̂ðx0, d, vÞ 2 ½0,Tðx0Þ	 with the property that

the solution x(t) of (4.9) with y¼’(x)þ v,

x(0)¼ x0 corresponding to inputs (d, v)2

MD�M[�c,c] exists for all t� 0 and satisfies

x(t)2S for all t � t̂ðx0, d, vÞ, jx(t) j �Q(x0) for

all t 2 ½0, t̂ðx0, d, vÞ	.
(W3) There exist constants C, b,�� 0 such that

jF(d,x,’(x)) j �Cjxj, jF(d, x, ’(x)þ v)�F(d, x,

’(x)) j �Cjvj, j’(x) j ��jxj for all (d, x, v)2

D�Rn
�R. Moreover, it holds that

jr’(x)F(d, x, ’(x)þ v) j � b, for almost all

x2Rn and all (d, v)2D� [�c, c].
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The reader should notice that by virtue of hypoth-
esis (W1) it follows that property (P2) of Theorem 2.2
holds with VðxÞ ¼ x0Px. Moreover hypothesis (W2)
guarantees that property (P1) of Theorem 2.2 holds as
well for the closed-loop system (4.9) with y¼’(x).
Therefore, Theorem 2.2 implies that 02Rn is RGAS
for the closed-loop system (4.9) with y¼’(x) under
hypotheses (W1–W2).

Next we consider the subsystem:

_y ¼ f ðd, x, yÞ þ gðd, x, yÞu

u 2 <
ð4:12Þ

where f :D�Rn
�R!Rn, g :D�Rn

�R!Rn are
locally Lipschitz mappings with f (d, 0, 0)¼ 0 for all
d2D, which satisfy the following hypothesis:

(W4) There exist constants q,L, r4 0 such that
j f ðd, x, yÞj � minfq,Ljxj þ Ljyjg, r� g(d, x, y),
for all (d, x, y)2D�Rn

�R.

Exploiting the results of x 2, we are in a position to
prove the following lemma. Its proof is provided in the
Appendix. It should be emphasised that the proof of
Lemma 4.3 is based on the result of Lemma 2.5.

Lemma 4.3: Consider system (4.9) and (4.12) under
hypotheses (W1–W4). For every ~c 2 <þ, ~a 2
ð ~cþ r�1ðqþ bÞ, þ1Þ there exists p4 0 sufficiently
large and continuous mappings ~T, ~Q : <n �< ! <þ

such that hypotheses (W1 and W2) hold with ~c 2 <þ,
~a 2 ð ~cþ r�1ðqþ bÞ, þ1Þ, ~x :¼ ðx, yÞ 2 <nþ1, ~y :¼ u,
~’ð ~xÞ :¼ � ~a satð pð y� ’ðxÞÞÞ, ~S :¼ fðx, yÞ 2 S�< :

jy � ’ðxÞj � p�1g � <nþ1, ~k :¼ � ~apð�k0, 1Þ0 2 <nþ1,

~P :¼
Pþ kk0 �k

�k0 1

" #
2 <ðnþ1Þ�ðnþ1Þ,

~Fðd, ~x, ~yÞ :¼
Fðd, x, yÞ

f ðd, x, yÞ þ gðd, x, yÞu

" #
, and ~� :¼

1

2
�,

in place of c4 0, a4 0, x2Rn, y2R, ’(x), S�Rn,
k2Rn, P2Rn� n, F(d, x, y) and �, respectively.

Moreover, if there exists a constant R4 0 such that
g(d, x, y)�R, for all (d,x, y)2D�Rn

�R then hypoth-
esis (W3) holds as well with ~C :¼ 2ðCþ LÞ þ
C�þ R ~apð�þ 1Þ þ R, ~b :¼ ~apðqþ R ~aþ R ~cþ bÞ,
~� :¼ ~apð1þ�Þ in place of C, b,�� 0.

Applying induction and the result of Lemma 4.3 gives
the following theorem.

Theorem 4.4: Consider the system

_xi ¼ fiðd,x1, . . . ,xiÞþ giðd,x1, . . . ,xiÞxiþ1 i¼ 1, . . . ,n� 1

_xn ¼ fnðd,xÞþ gnðd,xÞu

x¼ ðx1, . . . ,xnÞ
0
2 <n, d 2D, u 2< ð4:13Þ

where D�Rk is a compact set, fi :D�Ri
!R,

gi :D�Ri
!R (i¼ 1, . . . , n) are locally Lipschitz

mappings with fi(d, 0, 0)¼ 0 for all d2D (i¼ 1, . . . , n),
which satisfy the following hypotheses:

(W5) There exist constants q,L, r4 0 such that
jfiðd, xÞj � minfq,Ljxjg, r� gi(d, x), for all
(d, x)2D�Ri (i¼ 1, . . . , n).

(W6) There exists a constant R4 0 such that
gi(d,x)�R, for all (d, x)2D�Ri (i¼
1, . . . , n� 1).

Then there exist constants ai, pi� 0 (i¼ 1, . . . , n) such
that the locally Lipschitz feedback law:

u ¼ ’nðxÞ ð4:14Þ

obtained by the recursive formula

’iþ1ðxÞ :¼�aiþ1sat piþ1 xiþ1�’iðxÞð Þð Þ, i¼ 1, . . . ,n� 1

’1ðx1Þ ¼�a1sat p1x1ð Þ ð4:15Þ

robustly globally asymptotically stabilises 02Rn for
system (4.13). Moreover, there exists a symmetric,
positive definite matrix P2Rn� n and a compact set
V�Rn containing a neighbourhood of 02Rn such that
the hypotheses (P1) and (P2) of Theorem 2.2 hold
with VðxÞ :¼ x0Px for appropriate T2C0(Rn;Rþ ),
G2C0(Rn;Rþ ).

Sketch of proof: By virtue of Lemma 4.3 it suffices to
show that there exist a1, p14 0 such that hypotheses
(W1–W3) hold for the scalar subsystem:

_x1 ¼ f1ðd, x1Þ þ gðd, x1Þx2

with ’1(x1)¼�a1sat( p1x1), P¼ [1], S :¼ fx1 2 <,
jx1j � p�11 g and appropriate c4 0. The proof of (W1)
and (W3) is straightforward, while the proof of (W2)
makes use of Lemma 2.5 (exactly as in the proof of
Lemma 4.3). Details are left to the reader. œ

5. Concluding remarks

The notion of restricted RCLF is introduced and is
exploited for the design of robust feedback stabilisers
for non-linear systems. The development of the notion
of the ‘restricted’ RCLF is important because even if
an RCLF is known then the use of ‘restricted’ RCLF
feedback design methodology usually results in differ-
ent feedback designs from the ones obtained by the use
of the standard RCLF design methodology; particu-
larly, there is no need to make the derivative of RCLF
negative everywhere. Moreover, in many cases
‘restricted’ RCLFs can be found, while RCLFs are
not available. Consequently, the class of systems where
Lyapunov-based feedback design principles can be
applied is enlarged. Particularly, it is shown for systems
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with input constraints that ‘restricted’ RCLFs can be

easily obtained, while RCLFs are not available.
Moreover, it is shown that the use of ‘restricted’
RCLFs in certain cases results to different feedback
designs from the ones obtained by the use of the

standard RCLF methodology. Using the ‘restricted’
RCLFs feedback design methodology, a simple con-
troller that guarantees robust global stabilisation of
a perturbed chemostat model is provided. The pro-

posed controller guarantees stabilisation without
assuming knowledge of the size of the uncertainty
range.
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Appendix

Proof of Lemma 2.4: It suffices to show that 02Rn is
uniformly robustly Lyapunov stable. Let s4 0. Clearly, by
virtue of the property of Uniform attractivity for bounded
sets of initial states, there exists T(s)� 0 such that for every
(x0, d)2Rn

�MD with jx0j � s the solution x(t; x0, d) of (2.1)
satisfies:

xðt;x0, d Þ
�� �� � s, for all t � TðsÞ: ðA1Þ

Let rðsÞ :¼ maxfRðx0Þ : jx0j � sg, where R :Rn
!Rþ is the

continuous function involved in (2.2) and define
S :¼ {x2Rn : jxj � r(s)} (a compact set) and

LðsÞ :¼max 0;sup
ðx�yÞ0PðFðd,xÞ�Fðd,yÞÞ

x�y
�� ��2 : x,y2S,x 6¼ y

( )( )
,

where P2Rn� n is the symmetric positive definite matrix
involved in hypothesis (H3). Let (x0, d)2Rn

�MD with
jx0j � s and consider the solution x(t; x0, d) of (2.1). The
evaluation of the derivative of the absolutely continuous
function VðtÞ ¼ x0ðt; x0, d ÞPxðt;x0, d Þ, in conjunction with
previous definitions, inequality (2.2) and hypothesis (H3)
gives:

_VðtÞ �
2LðsÞ

K1
VðtÞ, a:e: for t � 0 ðA2Þ

and

xðt;x0, d Þ
�� �� �

ffiffiffiffiffiffi
K2

K1

r
exp

LðsÞ

K1
t

� �
x0j j, 8t � 0 ðA3Þ

where K1,K24 0 are constants satisfying K1jxj
2 � x0Px �

K2jxj
2 for all x2Rn. Combining (A1) and (A3) we

conclude that for every (x0, d)2Rn
�MD with jx0j � s the

solution x(t; x0, d) of (2.1) satisfies the following estimate for
all �� s:

xðt; x0, d Þ
�� �� � ffiffiffiffiffiffi

K2

K1

r
exp

Lð�ÞTð�Þ

K1

� �
s, 8t � 0 ðA4Þ

The above inequality guarantees Uniform Robust Lyapunov
Stability. Particularly, by virtue of (A4) it follows that for
every "4 0 there exists � :¼ �ð"Þ :¼

ffiffiffiffi
K1

K2

q
" exp ð�Lð"ÞTð"ÞÞ

K1

n o
4 0

such that for all (x0, d)2Rn
�MD with jx0j � � the solution

x(t; x0, d) of (2.1) satisfies jx(t) j � " for all t� 0. The proof is
complete. œ

Proof of Theorem 2.2: By virtue of Lemma 2.4 it suffices to
show that there exists a continuous function R :Rn

!Rþ

satisfying (2.2) and that the property of uniform attractivity
for bounded sets of initial states holds. Standard arguments
utilising hypothesis (P2) and the fact that x(t; x0, d)2V
for all t � t̂ðx0, d Þ, guarantee that tmax ¼ þ1 and the
existence of a function � 2KL such that for every
(x0, d)2Rn

�MD the solution x(t; x0, d) of (2.1) satisfies
jxðt; x0, d Þj � �ðjxðt̂ðx0, d Þ; x0, d Þj, t� t̂ðx0, d ÞÞ for all
t � t̂ðx0, d Þ. Using the previous estimate and hypothesis
(P1) we obtain:

xðt;x0, d Þ
�� �� � � Gðx0Þ, t� t̂ðx0, d Þ

� �
, for all t � t̂ðx0, d Þ

ðA5Þ

xðt;x0, d Þ
�� �� � max Gðx0Þ, � Gðx0Þ, 0ð Þ

� �
, for all t � 0:

ðA6Þ

Inequality (A6) shows that the continuous function
Rðx0Þ :¼ maxfGðx0Þ, �ðGðx0Þ, 0Þg satisfies inequality (2.2).
Moreover, inequality (A5) and the fact t̂ðx0, d Þ 2 ½0,Tðx0Þ	
shows that for every "4 0, s� 0, (x0, d)2Rn

�MD

with jx0j � s the solution x(t; x0, d) of (2.1) satisfies
jx(t; x0, d) j � " for all t�T(", s), where T(", s) :¼ g(", s)þ
�(s), �ðsÞ :¼ maxfTðx0Þ : jx0j � sg and g(", s)� 0 is any time
satisfying �(r(s), g(", s))�" with rðsÞ :¼ maxfGðx0Þ : jx0j � sg.
The proof is complete. œ

Proof of Lemma 2.5: First notice that inequalities (2.3a and
b), (2.4) in conjunction with Corollary 8.2 in Clarke et al.
(1998) imply that the following implications hold for every
(x0, d)2Rn

�MD:
If h1(x(t; x0, d))2 (0, �), _xðt;x0, d Þ ¼ FðdðtÞ, xðt;x0, d ÞÞ

and d
dth1ðxðt;x0, d ÞÞ exists then

d

dt
h1ðxðt; x0, d ÞÞ � 0: ðA7Þ

If h1(x(t; x0, d))4 0, _xðt;x0, d Þ ¼ FðdðtÞ, xðt;x0, d ÞÞ and
d
dtqðxðt;x0, d ÞÞ exists then

d

dt
qðxðt;x0, d ÞÞ � �� h1ðxðt; x0, d ÞÞð Þ: ðA8Þ

If h1(x(t; x0, d))4 0, _xðt;x0, d Þ ¼ FðdðtÞ, xðt;x0, d ÞÞ and
d
dtWðxðt;x0, d ÞÞ exists then

d

dt
Wðxðt; x0, d ÞÞ � KWðxðt; x0, d ÞÞ ðA9Þ

where q(x) :¼ h1(x)� h2(x).
Let "̂ 2 ð0, �Þ. Notice that implication (A7) guarantees

that the set � :¼ fx 2 <n : h1ðxÞ � "̂g is positively invariant
for system (2.1). Indeed, if x02V then for every d2MD

it holds that x(t; x0, d)2V for all t 2 ½0, tmaxÞ, where
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tmax ¼ tmaxðx0, d Þ is the maximal existence time of the
solution. In order to show positive invariance of
� :¼ fx 2 <n : h1ðxÞ � "̂g, we use the following contradiction
argument: suppose that there exists x02V, d2MD and
t 2 ð0, tmaxÞ such that xðt;x0, d Þ =2�, i.e. h1ðxðt;x0, d ÞÞ4 "̂.
Exploiting continuity of the mapping �! h1(x(�; x0, d)) we
guarantee that the set A :¼ f� 2 ½0, t	 : h1ðxð�;x0, d ÞÞ ¼ "̂g is
non-empty. Let T :¼ supA. Notice that continuity of the
mapping �! h1(x(�; x0, d)) implies T5 t, h1ðxðT;x0, d ÞÞ ¼ "̂
and h1ðxð�;x0, d ÞÞ4 "̂ for all � 2 (T, t]. Without loss of
generality we may also assume that h1(x(�; x0, d))5� for all
� 2 (T, t) (possibly by replacing t by t̂ :¼ infB, where
B :¼ {� 2 [T, t] : h1(x(�; x0, d))��}). Absolute continuity of
the mapping �! h1(x(�; x0, d)) implies that

"̂5 h1ðxðt;x0, d ÞÞ ¼ h1ðxðT;x0, d ÞÞ

þ

Z t

T

d

d�
h1ðxð�; x0, d ÞÞd� � "̂,

a contradiction.
Next, we consider the case x0 =2�. Let arbitrary x02Rn,

with h1ðx0Þ4 "̂, d2MD and consider the solution x(t; x0, d)
of (2.1). Define the set ft � 0 : xðt;x0, d Þ =2�g. Clearly this set
is non-empty (since 0 2 ft � 0 : xðt;x0, d Þ =2�g). We next
claim that

t̂ðx0, d Þ :¼ supft � 0 : xðt;x0, d Þ =2�g

�
qðx0Þ þ L� "̂

min �ðsÞ : "̂ � s � Lþ qðx0Þ
� � ,

where q(x0) :¼ h1(x0)� h2(x0), L :¼ supx2<n h2ðxÞ. The proof
is made by contradiction. Suppose that this is not the case.
Then there exists

t4
qðx0Þ þ L� "̂

min �ðsÞ : "̂ � s � Lþ qðx0Þ
� �

with h1ðxðt;x0, d ÞÞ4 "̂. Since � :¼ fx 2 <n : h1ðxÞ � "̂g is
positively invariant for system (2.1), this implies that
h1ðxð�;x0, d ÞÞ4 "̂ for all � 2 [0, t]. Consequently, it follows
from (A8) that d

d�qðxð�; x0, d ÞÞ � 0, a.e. on [0, t], where
q(x) :¼ h1(x)� h2(x). Therefore the mapping ½0, t	 3 �!
qðxð�;x0, d ÞÞ is non-increasing, i.e. q(x(�; x0, d))� q(x0) for
all � 2 [0, t]. Thus, it holds that "̂ � h1ðxð�; x0, d ÞÞ � qðx0Þ þ L
for all � 2 [0, t], where L :¼ supx2<n h2ðxÞ. Differential
inequality (A8) and the fact that "̂ � h1ðxð�;x0, d ÞÞ �
qðx0Þ þ L for all � 2 [0, t] gives d

d�qðxð�;x0, d ÞÞ � �minf�ðsÞ :
"̂ � s � Lþ qðx0Þg a.e. on [0, t]. Thus we obtain
qðxðt;x0, d ÞÞ � qðx0Þ � tminf�ðsÞ : "̂ � s � Lþ qðx0Þg, which
directly implies h1ðxðt; x0, d ÞÞ � qðx0Þ þ L� tminf�ðsÞ :
"̂ � s � Lþ qðx0Þg. The latter inequality combined with the
hypothesis t4 qðx0ÞþL�"̂

minf�ðsÞ:"̂�s�Lþqðx0Þg
gives h1ðxðt; x0, d ÞÞ � "̂,

a contradiction.
Since

t̂ðx0, d Þ :¼ supft � 0 : xðt;x0, d Þ =2�g

�
qðx0Þ þ L� "̂

min �ðsÞ : "̂ � s � Lþ qðx0Þ
� �

and t̂ðx0, d Þ4 0, it follows from (A9) and previous defini-
tions that d

d�Wðxð�; x0, d ÞÞ � KWðxð�;x0, d ÞÞ, a.e. on
½0, t̂ðx0, d ÞÞ. The previous differential inequality implies

Wðxð�;x0, d ÞÞ � exp K
qðx0Þ þ L� "̂

min �ðsÞ : "̂ � s � Lþ qðx0Þ
� �

 !
Wðx0Þ

for all � 2 ½0, t̂ðx0, d ÞÞ. Since W is radially unbounded, it
follows that the solution of (2.1) exists on ½0, t̂ðx0, d Þ	 and
satisfies xðt̂ðx0, d Þ; x0, d Þ 2 �,

Wðxð�;x0, d ÞÞ � exp K
qðx0Þ þ L� "̂

min �ðsÞ : "̂ � s � Lþ qðx0Þ
� �

 !
Wðx0Þ

for all � 2 ½0, t̂ðx0, d Þ	. Consequently, tmax 4 t̂ðx0, d Þ and
since the set � :¼ fx 2 <n : h1ðxÞ � "̂g is positively invariant
for system (2.1) it follows that x(t; x0, d)2V for all
t 2 ½t̂ðx0, d Þ, tmaxÞ.

Since W is radially unbounded, it follows that for all
s � minx2<n WðxÞ the set {x2Rn :W(x)� s} is non-empty
and compact. Define rðsÞ :¼ maxfjxj : x 2 <n,WðxÞ � sg for
s � minx2<n WðxÞ, which is a non-decreasing function. Define
the continuous function

Bðx0Þ :¼ exp K
maxf0, qðx0Þ þ L� "̂g

min �ðsÞ : "̂ � s � "̂þmaxf0, qðx0Þ þ Lg
� �

 !
Wðx0Þ:

By distinguishing the cases x02V (which implies t̂ðx0, d Þ ¼ 0)
and x0 =2�, we notice that property (P1) of Theorem 2.2
holds with � :¼ fx 2 <n : h1ðxÞ � "̂g and functions
T2C0(Rn;Rþ ), G2C0(Rn;Rþ ) defined as follows:

Tðx0Þ :¼
maxf0, qðx0Þ þ L� "̂g

min �ðsÞ : "̂ � s � "̂þmaxf0, qðx0Þ þ Lg
� � ,

Gðx0Þ :¼ ~r Bðx0Þð Þ

where ~rðsÞ :¼
R sþ1
s rðwÞdw. The proof is complete. œ

Proof of Theorem 2.6: Without loss of generality and since
h(0)5 0 we may assume that the neighbourhood N involved
in hypothesis (R4) satisfies N � fx 2 <n : hðxÞ5 0g. Let r4 0
with fx 2 <n : jxj � 2rg � N.

The construction of the feedback will be accomplished in
three steps:

Step 1: Construction of preliminary feedback laws, which
work on certain sets of the state space.

Step 2: Definition of the required feedback law by patching
together the preliminary feedback laws of the previous step.

Step 3: Proof of URGAS by using Theorem 2.2 and
Lemma 2.5.

Step 1: Construction of preliminary feedback laws, which
work on certain sets of the state space.

Using hypothesis (R1), convexity of U�Rm and standard
partition of unity arguments, we construct a smooth feed-
back law k1 : {x2Rn : h(x)4 0}!U such that the following
inequalities hold for all x2 {x2Rn : h(x)4 0}:

sup
d2D

rhðxÞ f ðd, xÞ þ gðd, xÞk1ðxÞð Þ � �
1

2
�ðhðxÞÞ ðA10Þ

sup
d2D

rWðxÞ f ðd, xÞ þ gðd, xÞk1ðxÞð Þ � KWðxÞ þ 1: ðA11Þ

Using hypothesis (R2), convexity of U�Rm and standard
partition of unity arguments, we construct a smooth feed-
back law k2 : {x2Rn : h(x)5", x 6¼ 0}!U such that the
following inequality holds for all x2 {x2Rn : h(x)5", x 6¼ 0}:

sup
d2D

rVðxÞ f ðd, xÞ þ gðd, xÞk2ðxÞð Þ5 0: ðA12Þ
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Using Hypothesis (R3), convexity of U�Rm and
standard partition of unity arguments, we construct
a smooth feedback law k3 : {x2Rn : 05 h(x)5 "}!U such
that the following inequalities hold for all x2
{x2Rn : 05 h(x)5"}:

sup
d2D

rhðxÞ f ðd, xÞ þ gðd, xÞk3ðxÞð Þ � �
1

2
�ðhðxÞÞ ðA13Þ

sup
d2D

rWðxÞ f ðd, xÞ þ gðd, xÞk3ðxÞð Þ � KWðxÞ þ 1 ðA14Þ

sup
d2D

rVðxÞ f ðd, xÞ þ gðd, xÞk3ðxÞð Þ5 0: ðA15Þ

Step 2: Definition of the required feedback law by patching
together the preliminary feedback laws of the previous step.

Let p :R! [0, 1] a smooth non-decreasing function with
p(x)¼ 0 for all x� 0 and p(x)¼ 1 for all x� 1. We define:

kðxÞ :¼ k1ðxÞ for all x 2 x 2 <n : hðxÞ4
4"

5

� �
ðA16Þ

kðxÞ :¼ k2ðxÞ for all x 2 x 2 <n : hðxÞ5
"

5

n o
\ x 2 <n : jxj4 2rf g ðA17Þ

kðxÞ :¼ k3ðxÞ for all x 2 x 2 <n :
2"

5
5 hðxÞ5

3"

5

� �
ðA18Þ

kðxÞ :¼ 1� p
5hðxÞ

"
� 3

� �� �
k3ðxÞþ p

5hðxÞ

"
� 3

� �
k1ðxÞ for all

x 2 x 2<n :
3"

5
� hðxÞ �

4"

5

� �
ðA19Þ

kðxÞ :¼ 1� p
5hðxÞ

"
� 1

� �� �
k2ðxÞþ p

5hðxÞ

"
� 1

� �
k3ðxÞ for all

x 2 x 2<n :
"

5
� hðxÞ �

2"

5

� �
ðA20Þ

kðxÞ :¼ ~kðxÞ for all x 2 x 2 <n : xj j5 rf g ðA21Þ

kðxÞ :¼ 1� p
jxj2 � r2

3r2

� �� �
~kðxÞ þ p

jxj2 � r2

3r2

� �
k2ðxÞ for all

x 2 x 2 <n : r � jxj � 2rf g ðA22Þ

where ~k : N! U is the locally Lipschitz mapping involved
in hypothesis (R4). Convexity of U�Rm and the above
definitions imply that k(x)2U for all x2Rn. Notice that the
mapping k :Rn

!U defined above is locally Lipschitz with
k(0)¼ 0. By virtue of (A10), (A11), (A12), (A13), (A14),
(A15) and definitions (A16–A22) we obtain the following
inequalities:

sup
d2D

rhðxÞ f ðd, xÞ þ gðd, xÞkðxÞð Þ � �
1

2
�ðhðxÞÞ, for all

x 2 x 2 <n : hðxÞ �
2"

5

� �
ðA23Þ

sup
d2D

rWðxÞ f ðd, xÞ þ gðd, xÞkðxÞð Þ � KWðxÞ þ 1, for all

x 2 x 2 <n : hðxÞ �
2"

5

� �
ðA24Þ

sup
d2D

rVðxÞ f ðd, xÞ þ gðd, xÞkðxÞð Þ5 0, for all

x 2 x 2 <n : x 6¼ 0, hðxÞ �
3"

5
:

� �
ðA25Þ

Step 3: Proof of URGAS by using Theorem 2.2 and
Lemma 2.5.

First notice that by virtue of hypotheses (Q1–Q3) and the
fact that the mapping k :Rn

!U defined above is locally
Lipschitz with k(0)¼ 0, it follows that the closed-loop system
(1.1) with u¼ k(x) satisfies hypotheses (H1–H3). Next define
h1ðxÞ :¼ hðxÞ � 2"

5 ,
~�ðsÞ :¼ 1

2�ðsþ
2"
5 Þ,

~K :¼ Kþ 1, ~WðxÞ :¼
WðxÞ þ 1. It should be noticed that by virtue of inequalities
(A23) and (A24), all requirements of Lemma 2.5 hold with
F(d, x) :¼ f (d, x)þ g(d), x)k(x), h2(x)
 0, arbitrary �4 "

5,
"̂ :¼ "

5 and ~�, ~K, ~W in place of �,K,W, respectively.
Therefore, there exist functions T2C0(Rn; Rþ ), G2C0(Rn;
Rþ ) such that property (P1) of Theorem 2.2 holds with � :¼
fx 2 <n : h1ðxÞ � "̂g ¼ fx 2 <

n : hðxÞ � 3"
5 g. On the other

hand, inequality (A25) guarantees that property (P2) of
Theorem 2.2 holds with � :¼ fx 2 <n : hðxÞ � 3"

5 g.
Consequently, we may conclude from Theorem 2.2 that
02Rn is URGAS for the closed-loop system (1.1) with
u¼ k(x). The proof is complete. œ

Proof of Lemma 4.3: Let p4 0 sufficiently large so that:

p � c�1 ðA26Þ

p ~crþ qþ bð Þ �
�

2
þLþC kj j þ

1

2�K
C Pj j þC kj j þLþL kj jð Þ

2

ðA27Þ

where K :¼ minjxj¼1 x
0Px.

We start by proving the analogue of (W1) for system
(4.9) and (4.12). First notice that the following equality holds
for all ðd, x, yÞ 2 D� ~S:

~x0 ~P ~Fðd, ~x, ~k0 ~xÞ ¼ x0PFðd, x, yÞ þ ð y� k0xÞð f ðd, x, yÞ

� ~apgðd, x, yÞð y� k0xÞ � k0Fðd, x, yÞÞ:

Exploiting (4.10) we get from the above equation for all
ðd, x, yÞ 2 D� ~S:

~x0 ~P ~Fðd, ~x, ~k0 ~xÞ � ��x0Pxþ x0PðFðd, x, yÞ � Fðd, x, k0xÞÞ

þ ð y� k0xÞð f ðd, x, yÞ

� ~apgðd, x, yÞð y� k0xÞ � k0Fðd, x, yÞÞ:

Hypotheses (W3) and (W4) in conjunction with the above
inequality imply for all ðd, x, yÞ 2 D� ~S:

~x0 ~P ~Fðd, ~x, ~k0 ~xÞ ���x0Pxþ C Pj jþC kj jþLþL kj jð Þ xj j y�k0x
�� ��

� ~apr�L�C kj jð Þ y�k0x
�� ��2:
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Completing the squares we get for all ðd, x, yÞ 2 D� ~S:

~x0 ~P ~Fðd, ~x, ~k0 ~xÞ � �
1

2
�x0Pxþ

1

2�K
C Pj j þ C kj j þ Lþ L kj jð Þ

2

� y� k0x
�� ��2� ~apr� L� C kj jð Þ y� k0x

�� ��2
where K :¼ minjxj¼1 x

0Px. Finally, notice that the above
inequality in conjunction with the facts ~x0 ~P ~x ¼ x0Pxþ
ð y� k0xÞ2, ~a4 ~cþ r�1ðqþ bÞ and (A27) implies for all
ðd, x, yÞ 2 D� ~S:

~x0 ~P ~Fðd, ~x, ~k0 ~xÞ � �
�

2
~x0 ~P ~x: ðA28Þ

Moreover, the equality ~’ð ~xÞ :¼ � ~a satð pð y� ’ðxÞÞÞ ¼ ~k0 ~x for
all ~x 2 ~S :¼ fðx, yÞ 2 S�< : jy� ’ðxÞj � p�1g � <nþ1 holds
automatically, by virtue of (4.11). Therefore, the analogue of
hypothesis (W1) holds for system (4.9) and (4.12).

We continue by showing the analogue of hypothesis
(W2). Let ðx0, y0, d, vÞ 2 <

n �<�MD �M½� ~c, ~c	 the solution
x(t) of (4.9) and (4.12) with u ¼ � ~a satð pð y� ’ðxÞÞÞ þ v,
(x(0), y(0))¼ (x0, y0) corresponding to inputs ðd, vÞ 2MD�

M½� ~c, ~c	. Hypothesis (W3) implies that

_xðtÞ
�� �� � C xðtÞ

�� ��þ C yðtÞ � ’ðxðtÞÞ
�� ��, a:e: for t 2 ½0, tmaxÞ

ðA29Þ

where tmax 4 0 is the maximal existence time of the solution.
Define the absolutely continuous function
YðtÞ ¼ maxfaþ p�1, jyðtÞjg. Notice that if y(t)� aþ p�1 then
y(t)�’(x(t))� p�1 and consequently uðtÞ ¼ � ~aþ vðtÞ.
Moreover, if _yðtÞ ¼ f ðd, xðtÞ, yðtÞÞ þ gðd, xðtÞ, yðtÞÞuðtÞ, then
the inequalities ~a4 ~cþ r�1q and vðtÞ � ~c in conjunction with
hypothesis (W4) imply that _yðtÞ � 0. Similarly, the case
y(t)��a� p�1 implies _yðtÞ � 0. Therefore, we obtain:

_YðtÞ � 0, a:e: for t 2 ½0, tmaxÞ: ðA30Þ

The above differential inequality implies that the mapping
t!Y(t) is non-increasing and consequently we obtain the
estimate:

yðtÞ
�� �� � aþ p�1 þ y0

�� ��, for all t 2 ½0, tmaxÞ: ðA31Þ

Since j’(x(t)) j � a, we get from (A29) and (A31):

_xðtÞ
�� �� � C xðtÞ

�� ��þ C 2aþ p�1 þ y0
�� ��� �

, a:e: for t 2 ½0, tmaxÞ

ðA32Þ

which directly implies (by means of the fact that

lim sup
h!0þ

xðtþ hÞ
�� ��� xðtÞ

�� ��
h

� lim
h!0þ

Z tþh

t

_xð�Þ
�� ��d�, for all t 2 ½0, tmaxÞ

and the comparison principle in Khalil (1996)

xðtÞ
�� �� � x0j j þ 2aþ p�1 þ y0

�� ��� �
expðCtÞ, for all t 2 ½0, tmaxÞ:

ðA33Þ

Inequalities (A31) and (A33) guarantee that tmax ¼ þ1.
We are now in a position to apply Lemma 2.5 with

h1(x, y) :¼ y� ’(x)�	p�1, h2(x, y)¼�’(x), Wðx, yÞ ¼ jxj þ
maxfaþ p�1, jyjg þ 1, � :¼ ð1� 	Þp�1, �ð�Þ :¼ rð	 ~a� ~cÞ � q,

where ~crþqþb
~ar 5 	5 1. Using (A29) and (A30), hypotheses

(W3) and (W4), inequalities (A26), j’(x) j � a and definition
~’ð ~xÞ :¼ � ~a satð pð y� ’ðxÞÞÞ with ~a4 ~cþ r�1ðqþ bÞ, it may
be shown that:

sup
d2D,v2½� ~c, ~c	

rhðx, yÞ ~Fðd, x, y, ~’ðx, yÞ þ vÞ � 0, for almost all

x 2 <n with 05 h1ðx, yÞ5 � ðA34Þ

sup
d2D,v2½� ~c, ~c	

rh1ðx, yÞ � rh2ðx, yÞð Þ ~Fðd, x, y, ~’ðx, yÞ þ vÞ

� ��ðh1ðx, yÞÞ, for almost all x 2 <n with h1ðx, yÞ4 0

ðA35Þ

sup
d2D,v2½� ~c, ~c	

rWðx, yÞFðd, x, y, ~’ðx, yÞ þ vÞ � KWðx, yÞ,

for almost all x 2 <n with h1ðx, yÞ4 0 ðA36Þ

with K :¼C(1þ a). Therefore, there exist mappings
T12C

0(Rn
�R ;Rþ ), Q12C

0(Rn
�R ;Rþ ) such that for

every ðx0, y0, d, vÞ 2 <
n �<�MD �M½� ~c, ~c	, there exists

t̂1ðx0, y0, d, vÞ 2 ½0,T1ðx0, y0Þ	 in such a way that the
solution (x(t), y(t)) of (4.9) and (4.12) with u ¼
� ~a satð pð y� ’ðxÞÞÞ þ v, (x(0), y(0))¼ (x0, y0) corresponding
to inputs ðd, vÞ 2MD� M½� ~c, ~c	 satisfies y(t)�’(x(t))� p�1 for
all t � t̂1ðx0, y0, d, vÞ and j(x(t),y(t)) j �Q1(x0, y0) for all
t 2 ½0, t̂1ðx0, y0, d, vÞ	.

Applying Lemma 2.5 (again) with h1(x, y) :¼
’(x)� y� 	p�1, h2(x, y)¼ ’(x), Wðx, yÞ ¼ jxj þmaxfaþ
p�1, jyjg þ 1, � :¼ ð1� 	Þp�1, �ð�Þ :¼ rð	 ~a� ~cÞ � q, where
~crþqþb

~ar 5 	5 1. Using (again) (A29) and (A30), hypotheses
(W3) and (W4), inequalities (A26), j’(x) j � a and definition
~’ð ~xÞ :¼ � ~a satð pð y� ’ðxÞÞÞ with ~a4 ~cþ r�1ðqþ bÞ, it may
be shown that inequalities (A34), (A35) and (A36) hold as
well with K :¼C(1þ a). Therefore, there exist mappings
T22C

0(Rn
�R ;Rþ ), Q22C

0(Rn
�R ;Rþ ) such that for

every ðx0, y0, d, vÞ 2 <
n �<�MD �M½� ~c, ~c	, there exists

t̂2ðx0, y0, d, vÞ 2 ½0,T2ðx0, y0Þ	 in such a way that the solution
(x(t),y(t)) of (4.9) and (4.12) with u ¼ � ~a satð pð y�
’ðxÞÞÞ þ v, (x(0),y(0))¼ (x0, y0) corresponding to inputs
ðd, vÞ 2MD �M½� ~c, ~c	 satisfies y(t)�’(x(t))��p�1 for all
t � t̂2ðx0, y0, d, vÞ and j(x(t),y(t)) j �Q2(x0, y0) for all t 2
½0, t̂2ðx0, y0, d, vÞ	.

We conclude that for every ðx0, y0, d, vÞ 2 <
n �<�

MD �M½� ~c, ~c	, there exists �tðx0, y0, d, vÞ 2 ½0, T̂ðx0, y0Þ	, where
T̂ðx0, y0Þ :¼ maxfT1ðx0, y0Þ,T2ðx0, y0Þg, �tðx0, y0, d, vÞ :¼
maxft̂1ðx0, y0, d, vÞ, t̂2ðx0, y0, d, vÞg in such a way that the
solution (x(t), y(t)) of (4.9) and (4.12) with u ¼ � ~a satð pð y�
’ðxÞÞÞ þ v, (x(0), y(0))¼ (x0, y0) corresponding to inputs
ðd, vÞ 2MD �M½� ~c, ~c	 satisfies jy(t)�’(x(t)) j � p�1 for all t �
�tðx0, y0, d, vÞ and jðxðtÞ, yðtÞÞj � Q̂ðx0, y0Þ for all t 2
½0, �tðx0, y0, d, vÞ	, where Q̂ðx0, y0Þ :¼ maxfQ1ðx0, y0Þ,
Q2ðx0, y0Þg.

Since p�1� c (a consequence of (A26)), hypothesis (W2)
and inequality (A31) imply that for every ðx0, y0, d, vÞ 2
<n �<�MD �M½� ~c, ~c	, there exists ~tðx0, y0, d, vÞ 2
½0, ~Tðx0, y0Þ	, where

~Tðx0, y0Þ :¼ T̂ðx0, y0Þ þmax TðxÞ : xj j � Q̂ðx0, y0Þ
n o

in such a way that the solution (x(t),y(t)) of (4.9) and (4.12)
with u ¼ � ~a satð pð y� ’ðxÞÞÞ þ v, (x(0), y(0))¼ (x0, y0)
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corresponding to inputs ðd, vÞ 2MD �M½� ~c, ~c	 satisfies

ðxðtÞ, yðtÞÞ 2 ~S for all t � ~tðx0, y0, d, vÞ and jðxðtÞ, yðtÞÞj �
~Qðx0, y0Þ for all t 2 ½0, ~tðx0, y0, d, vÞ	, where

~Qðx0, y0Þ :¼ Q̂ðx0, y0Þ þmax QðxÞ : xj j � Q̂ðx0, y0Þ
n o

þ aþ p�1 þ y0:
�� ��

Finally, we have:

r ~’ð ~xÞ ¼ 0, provided that y� ’ðxÞ
�� ��4 p�1

r ~’ð ~xÞ ¼ � ~ap �r’ðxÞ, 1½ 	, a:e: for

ðx, yÞ 2 ðx, yÞ 2 <nþ1 : y� ’ðxÞ
�� ��5 p�1:

� �
Consequently, if there exists constant R4 0 such that
g(d, x, y)�R, for all (d, x, y)2D�Rn

�R then we obtain
r ~’ð ~xÞ ~Fðd, ~x, ~’ð ~xÞ þ vÞ ¼ ~apr’ðxÞFðd, x, yÞ � ~apð f ðd, x, yÞ þ
gðd, x, yÞð ~’ð ~xÞ þ vÞÞ, a.e. for (x, y)2 {(x, y)2Rnþ 1 : jy�
’(x) j5 p�1} and the inequality jr ~’ð ~xÞ ~Fðd, ~x, ~’ð ~xÞ þ vÞj �
~b, for almost all ~x 2 <n and all ðd, vÞ 2 D � ½� ~c, ~c	, where
~b :¼ ~apðq þ R ~a þ R ~c þ bÞ, follows directly from hypotheses
(W3) and (W4). The proof is complete. œ
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