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a b s t r a c t

In this work stability results for systems described by coupled Retarded Functional
Differential Equations (RFDEs) and Functional Difference Equations (FDEs) are presented.
The results are based on the observation that the composite system can be regarded as the
feedback interconnection of a subsystem described by RFDEs and a subsystem described
by FDEs. Recent small-gain results and Lyapunov-like characterizations of the Weighted
Input-to-Output Stability property for systems described by RFDEs and FDEs are employed.
It is shown that the stability results provided in this work can be used to study stability for
systems described by neutral functional differential equations and systems described by
hyperbolic partial differential equations.
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1. Notations

Throughout this paper we adopt the following notations:

* For a vector x ∈ Rn we denote by |x| its usual Euclidean norm and by x′ its transpose. For a bounded function
x : [−r, 0] → Rn we define ‖x‖r := supθ∈[−r,0] |x(θ)|. For a matrix A ∈ Rm×n by |A| we denote the induced norm
of the matrix, i.e., |A| := sup {|Ax| ; x ∈ Rn, |x| = 1}. I ∈ Rn×n denotes the identity matrix.
* Let I ⊆ R be an interval. By C0(I;Ω), we denote the class of continuous functions on I , which take values in Ω ⊆ Rn.
By C1(I;Ω), we denote the class of functions on I with continuous first order derivative, which take values inΩ ⊆ Rn.
By L∞ (I;Ω) (L∞loc (I;Ω)), we denote the class of measurable and (locally) bounded functions on I , which take values
inΩ ⊆ Rn. IfΩ ⊆ Rn is a subspace of Rn, L∞ (I;Ω) (L∞loc (I;Ω)) is a normed linear space with norm supt∈I |x(t)|, for
x ∈ L∞ (I;Ω).
* R+ denotes the set of non-negative real numbers.
* We denote by K+ the class of positive C0 functions defined on R+. We say that a function ρ : R+ → R+ is positive
definite if ρ(0) = 0 and ρ(s) > 0 for all s > 0. We say that a function ρ : R+ → R+ is of classN , if ρ is non-decreasing
with ρ(0) = 0. By K we denote the set of positive definite, increasing and continuous functions. We say that a positive
definite, increasing and continuous function ρ : R+ → R+ is of class K∞ if lims→+∞ ρ(s) = +∞. By KL we denote the
set of all continuous functions σ = σ(s, t) : R+ × R+ → R+ with the properties: (i) for each t ≥ 0 the mapping
σ( · , t) is of class K ; (ii) for each s ≥ 0, the mapping σ(s, · ) is non-increasing with limt→+∞ σ(s, t) = 0.
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* Let x : [a − r, b) → Rn with b > a > −∞ and r > 0. By Tr(t)x we denote the ‘‘r-history’’ of x at time t ∈ [a, b),
i.e., Tr(t)x := x(t + θ); θ ∈ [−r, 0].
* By ‖‖Y , we denote the norm of the normed linear space Y.

2. Introduction

In this work we consider control systems described by coupled Retarded Functional Differential Equations (RFDEs) and
Functional Difference Equations (FDEs). Let D ⊆ Rl be a non-empty set, U ⊆ Rm be a non-empty set with 0 ∈ U and
consider the system described by the following equations:

ẋ1(t) = f1(t, d(t), Tr1(t)x1, Tr2−τ(t)(t − τ(t))x2, u(t)) (2.1a)

x2(t) = f2(t, d(t), Tr1(t)x1, Tr2−τ(t)(t − τ(t))x2, u(t)) (2.1b)

Y (t) = H(t, Tr1(t)x1, Tr2(t)x2, u(t)) ∈ Y
x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , d(t) ∈ D, u(t) ∈ U, t ≥ 0 (2.1c)

where r1 ≥ 0, r2 > 0, fi : ∪t≥0{t} × D × C0 ([−r1, 0];Rn1) × L∞ ([−r2 + τ(t), 0];Rn2) × U → Rni , i = 1, 2,
H : R+×C0 ([−r1, 0];Rn1)×L∞ ([−r2, 0];Rn2)×U → Y (Y is a normed linear space) are locally boundedmappingswith
fi(t, d, 0, 0, 0) = 0 i = 1, 2, H(t, 0, 0, 0) = 0 for all (t, d) ∈ R+ × D. Specifically, we consider systems of the form (2.1)
with initial conditions x1(t0+θ) = x10(θ); θ ∈ [−r1, 0] and x2(t0+θ) = x20(θ); θ ∈ [−r2, 0]with x10 ∈ C0 ([−r1, 0];Rn1),
x20 ∈ L∞ ([−r2, 0];Rn2), under the following hypotheses:
(P1) The function τ : R+ → (0,+∞) is continuous with supt≥0 τ(t) ≤ r2.

(P2) There exist functions a ∈ K∞, β ∈ K+ such that
∣∣fi(t, d, x1, Tr2−τ(t)(−τ(t))x2, u)∣∣ ≤ a

(
β(t) ‖x1‖r1

)
+

a
(
β(t)

∥∥Tr2−τ(t)(−τ(t))x2∥∥r2−τ(t)) + a(β(t)|u|), i = 1, 2, for all (t, d, x1, x2, u) ∈ R+ × D × C0 ([−r1, 0];Rn1) ×
L∞ ([−r2, 0];Rn2)× U .
(P3) For every x1 ∈ C0 ([−r1,+∞);Rn1), d ∈ L∞loc

(
R+;D

)
, u ∈ L∞loc

(
R+;U

)
and x2 ∈ L∞loc ([−r2,+∞);R

n2)
the mappings t → fi(t, d(t), Tr1(t)x1, Tr2−τ(t)(t − τ(t))x2, u(t)), i = 1, 2 are measurable. Moreover, for each fixed
(t, d, x2, u) ∈ R+ × D × L∞ ([−r2, 0];Rn2) × U the mapping f1(t, d, x1, Tr2−τ(t)(−τ(t))x2, u) is continuous with respect
to x1 ∈ C0 ([−r1, 0];Rn1).
(P4) For every pair of bounded sets I ⊂ R+ and Ω ⊂ C0 ([−r1, 0];Rn1) × L∞ ([−r2, 0];Rn2) × U , there exists
L := L(I,Ω) ≥ 0 such that

(x1(0)− y1(0))′
(
f1(t, d, x1, Tr2−τ(t)(−τ(t))x2, u)− f1(t, d, y1, Tr2−τ(t)(−τ(t))x2, u)

)
≤ L ‖x1 − y1‖2r1

∀(t, d) ∈ I × D,∀(x1, x2, u) ∈ Ω,∀(y1, x2, u) ∈ Ω. (2.2)

(P5) ThemappingH : R+×C0 ([−r1, 0];Rn1)×L∞ ([−r2, 0];Rn2)×U → Y is continuouswithH(t, 0, 0, 0) = 0 for all t ≥
0. Moreover, the image set H(Ω) is bounded for each bounded setΩ ⊂ R+× C0 ([−r1, 0];Rn1)×L∞ ([−r2, 0];Rn2)×U .
The reader should notice that hypothesis (P1) and the fact that τ(t) > 0 for all t ≥ 0, guarantee that Eq. (2.1b) is a

functional difference equation. It should be pointed out that hypotheses (P1), (P2), (P3) are satisfied if D ⊂ Rl is compact
and there exist continuous functions τi : R+ → (0,+∞) (i = 1, . . . , p), τ : R+ → (0,+∞)with τ(t) ≤ τ1(t) < τ2(t) <
· · · < τp(t) ≤ r2 for all t ≥ 0, continuous mappings gi : R+ × D × C0 ([−r1, 0];Rn1) × Rpn2 × Rk × U → Rni , i = 1, 2,
h : R+×[−r2, 0]×Rn2 → Rk with gi(t, d, 0, 0, 0, 0) = 0, h(t, θ, 0) = 0 for all (t, θ, d) ∈ R+×[−r− T , 0]×D, such that

fi(t, d, x1, Tr2−τ(t)(−τ(t))x2, u) = gi

(
t, d, x1, x2(−τ1(t)), x2(−τ2(t)), . . . , x2(−τp(t)),

∫
−τ(t)

−r2
h(t, θ, x2(θ))dθ, u

)
,

i = 1, 2 for all (t, d, x1, x2, u) ∈ R+ × D× C0
(
[−r1, 0];Rn1

)
×L∞

(
[−r2, 0];Rn2

)
× U .

The reason for allowing the output to take values in abstract normed linear spaces is that the case (2.1) allows the study of:

• outputs with no delays, e.g. Y (t) = h(t, x1(t), x2(t))with Y = Rk,
• outputswith discrete or distributeddelay, e.g.Y(t) = h(x1(t), x1(t−r1), x2(t), x2(t−r2))orY (t) =

∫ t
t−r1
h(t, θ, x1(θ))dθ

with Y = Rk,
• functional outputs with memory, e.g. Y (t) = h(t, θ, x1(t + θ)); θ ∈ [−r1, 0] or the identity output Y (t) ={

x1(t + θ); θ ∈ [−r1, 0]
x2(t + θ); θ ∈ [−r2, 0]

with Y = C0 ([−r1, 0];Rn1)×L∞ ([−r2, 0];Rn2).

2.1. Motivation for the study of system (2.1)

Systems of the form (2.1) arise in many problems in Mathematical Control Theory and Mathematical Systems Theory.
Feedback stabilization problems for time-delay systems may result in systems of the form (2.1) (see for instance [1–4] and
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references therein). For example, consider the stabilization problem for the scalar system:

ẋ(t) = f (x(t))+ u(t)+ au(t − r)
x(t) ∈ R, u(t) ∈ R

(2.3)

where f : R → R is a continuous function with f (0) = 0 and r > 0, a ∈ R are constants. Notice the way that the input
u(t) appears in Eq. (2.3). If the designer selects to apply the feedback linearization approach for system (2.3), then we have:

u(t) = −Kx(t)− f (x(t))− au(t − r) (2.4)

where K > 0. Consequently, if a 6= 0 the closed-loop system (2.3) with (2.4) is described by the following system of coupled
RFDEs and FDEs:

ẋ(t) = −Kx(t)
u(t) = −Kx(t)− f (x(t))− au(t − r)
x(t) ∈ R, u(t) ∈ R.

(2.5)

Notice that system (2.5) has the form of system (2.1) with u(t) in place of x2(t) and x(t) in place of x1(t). Moreover,
hypotheses (P1–4) are satisfied for system (2.5).
However, the strongest motive for the study of systems of the form (2.1) is that systems of the form (2.1) allow the

consideration of discontinuous solutions to systems described by Neutral Functional Differential Equations. For example,
consider the scalar system described by a Neutral Functional Differential Equation:

d
dt
(x(t)− x(t − 2r)) = x(t − r), x(t) ∈ R (2.6)

with initial condition T2r(t0)x = x0 ∈ C0 ([−2r, 0];R). The solution of (2.6) for t ∈ [t0, t0 + r] is given by:

x(t) = x(t − 2r)+ x(t0)− x(t0 − 2r)+
∫ t−r

t0−r
x(s)ds. (2.7)

It is clear from (2.7) that the solution of (2.6) can be defined even if the initial condition is discontinuous, i.e., T2r(t0)x = x0 ∈
L∞ ([−2r, 0];R). How to obtain such a (weak) solution?
The following idea was proposed in [5] for linear systems (though it was expressed in a different way): first define

x1(t) = x(t)− x(t − 2r)
x2(t) = x(t).

Then Eq. (2.6) is transformed to the following system of coupled RFDEs and FDEs of the form (2.1):

ẋ1(t) = x2(t − r)
x2(t) = x1(t)+ x2(t − 2r)
x1(t) ∈ R, x2(t) ∈ R.

(2.8)

Notice that hypotheses (P1–4) are satisfied for system (2.8) (hypothesis (P5) is irrelevant since there is no output). The
solution of (2.8) for t ∈ (t0, t0 + r] is given by:

x1(t) = x1(t0)+
∫ t−r

t0−r
x2(s)ds; x2(t) = x2(t − 2r)+ x1(t0)+

∫ t−r

t0−r
x2(s)ds. (2.9)

Notice that x2(t) = x(t) does not coincidewith the solution of (2.6) given by (2.7) unless x1(t0) = x2(t0)−x2(t0−2r), the so-
called ‘‘matching condition’’. It should be emphasized that if the ‘‘matching condition’’ does not hold then the solution of (2.8)
(given by (2.9)) is discontinuous, even if the initial condition is smooth. Consequently, system (2.8) provides a generalized
framework for the study of the Neutral Functional Differential Equation (2.6).
The idea described for the simple example (2.6) can be generalized for nonlinear control systems described by Neutral

Functional Differential Equations of the following form (the so-called Hale’s form, see [6,7]):

d
dt

(
x(t)− g(t, Tr−τ(t)(t − τ(t))x)

)
= f (t, d(t), Tr(t)x, u(t)), x(t) ∈ Rn. (2.10)

Without loss of generality we may assume that the continuous function τ : R+ → (0,+∞) with supt≥0 τ(t) ≤ r , is
non-increasing. If we define x1(t) = x(t)− g(t, Tr−τ(t)(t − τ(t))x), x2(t) = x(t) and the operator:

R+ × C0
(
[−r, 0];Rn1

)
×L∞

(
[−2r, 0];Rn2

)
� (t, x1, x2)→ G(t, x1, T2r−τ(t)(−τ(t))x2)

G(t, x1, T2r−τ(t)(−τ(t))x2) :=
{
x2(θ), θ ∈ [−r,−τ(t)]
x1(θ)+ g(t + θ, Tr−τ(t+θ)(θ − τ(t + θ))x2), θ ∈ (−τ(t), 0]
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then system (2.10) is associated with the following system described by coupled RFDEs and FDEs:

ẋ1(t) = f
(
t, d(t),G

(
t, Tr(t)x1, T2r−τ(t)(t − τ(t))x2

)
, u(t)

)
x2(t) = x1(t)+ g(t, Tr−τ(t)(t − τ(t))x2).

(2.11)

Notice that system (2.11) is a system of the form (2.1). The component x2 of the solution of (2.11) coincides with
the solution x of (2.10) if and only if the initial data are continuous functions which satisfy the ‘‘matching condition’’:
G
(
t0, Tr(t0)x1, T2r−τ(t0)(t0 − τ(t0))x2

)
= Tr(t0)x2. However, notice that even if the matching condition holds the solution of

(2.11) can be defined for discontinuous initial data. Consequently, if the matching condition holds and the initial data are
discontinuous then the component x2 of the solution of (2.11) is a discontinuous mapping which satisfies the differential
equation d

dt

(
x2(t)− g(t, Tr−τ(t)(t − τ(t))x2)

)
= f (t, d(t), Tr(t)x2, u(t)), almost everywhere for t ≥ t0. Thus, if the

matching condition holds, then system (2.11) provides ‘‘weak’’ solutions to the Neutral Functional Differential Equation
(2.10). Other concepts of weak solutions for linear neutral functional differential equations were given in [5,8]. In recent
works control-theoretic aspects for linear neutral functional differential equations are studied (see [9–11]). It should be
noted that the converse transformation of a system described by coupled RFDEs and FDEs of the form (2.11) to a neutral
functional differential system of the form (2.10) was exploited in [12].
The approach described above is not restricted to Neutral Functional Differential Equations of the form (2.10). We can

also consider Neutral Functional Differential Equations of the form (Bellman’s form, see [13]):

ẋ(t) = f (t, d(t), Tr(t)x, Tr−τ(t)(t − τ(t))ẋ, u(t)), x(t) ∈ Rn. (2.12)
In this case the corresponding system of coupled RFDEs and FDEs is:

ẋ1(t) = f
(
t, d(t), Tr(t)x1, Tr−τ(t)(t − τ(t))x2, u(t)

)
x2(t) = f

(
t, d(t), Tr(t)x1, Tr−τ(t)(t − τ(t))x2, u(t)

)
x1(t) ∈ Rn, x2(t) ∈ Rn, d(t) ∈ D, u(t) ∈ U, t ≥ 0.

(2.13)

Notice that if Tr(t0)x2 = Tr(t0)ẋ and Tr(t0)x1 = Tr(t0)x then the component x1 of the solution of (2.13) coincides with the
solution x of (2.12) for all t ≥ t0.
Consequently, it should be emphasized that the study of coupled RFDEs and FDEs offers a great advantage: Neutral

Functional Differential Equations of the form (2.10) and Neutral Functional Differential Equations of the form (2.12) can
be studied in the same way and in the same framework.
Another field which motivates the study of systems of the form (2.1) is the field of control (or dynamical) systems

described by hyperbolic partial differential equations of the form:

∂vi

∂t
(t, z)+ ai

∂vi

∂z
(t, z) = fi(t, vi(t, z), ξ(t)), i = 1, . . . , p

vi(t, z) ∈ Rni , ξ(t) ∈ Rk, z ∈ [0, 1]
(2.14a)

where ai > 0 (i = 1, . . . , p) are constants, along with boundary conditions of the form:
vi(t, 0) = Fi (t, d(t), ξ(t), u(t), v(t, z); z ∈ [τ(t), 1]) , i = 1, . . . , p (2.14b)

where v(t, z) = (v1(t, z), . . . , vp(t, z))′ and

ξ̇ (t) = g (t, d(t), ξ(t), u(t), v(t, z) ; z ∈ [τ(t), 1]) . (2.14c)
The problem (2.14) is accompanied by initial conditions vi(t0, z) = v0i(z) and ξ(t0) = ξ0 ∈ Rk. Initial value problems

of the form (2.14) arise in electrical, thermal and hydraulic engineering (see for instance the model of combined heat and
electricity generation in [14] and othermodels reported in [15] concerning lossless transmission lineswith electrical circuits
and turbines under waterhammer conditions).
If we define x1(t) = ξ(t) and x2(t) = (v1(t, 0), . . . , vp(t, 0))′, then it can be shown that the state variables x1(t),

x2(t) satisfy a system of coupled RFDEs and FDEs for t ≥ t0 + maxi=1,...,p a−1i . Consequently, the asymptotic behaviour of
system (2.14) is determined by the associated system of coupled RFDEs and FDEs. The discontinuous solutions generated
by the associated system of coupled RFDEs and FDEs are important, since such solutions correspond to mild solutions of
the problem (2.14). The following example shows that it is possible to achieve the transformation of a control problem
described by partial differential equations to a control problem described by coupled RFDEs and FDEs for systems with
more complicated boundary conditions than (2.14b).

2.2. Motivating example: Control of the linearized St. Venant equations

We consider the following system of partial differential equations:

∂h
∂t
(t, z)+

∂v

∂z
(t, z) = 0;

∂v

∂t
(t, z)+

∂h
∂z
(t, z) = −u(t) (2.15a)

where z ∈ [0, 1] and u(t) ∈ R. The above system of partial differential equations is the linearization of the nonlinear system
of partial differential equations describing the height h(t, z) and the horizontal velocity v(t, z) of an inviscid incompressible
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fluid contained in a tank at time t ≥ 0 and position within the tank z ∈ [0, 1]. The tank is constrained to move only in the
horizontal direction and the position and the velocity of the tank are denoted by D(t) and s(t), respectively. Since u(t) ∈ R

is the horizontal acceleration of the tank (i.e., the force acting on the tank) we have in addition the following ordinary
differential equations:

Ḋ(t) = s(t); ṡ(t) = u(t). (2.15b)

Finally, the system is accompanied by the ‘‘no-flow’’ boundary conditions:

v(t, 0) = v(t, 1) = 0. (2.15c)

The reader should notice that the controllability and stabilizability problem of system (2.15) has attracted attention
(see [16], page 212 as well as [17]), since it is known that system (2.15) is uncontrollable (see [18]). By defining A(t, z) :=
h(t, z)+ v(t, z), B(t, z) := h(t, z)− v(t, z), x2,1(t) := A(t, 0) and x2,2(t) := B(t, 1), we obtain by direct integration on the
characteristic lines:

A(t, z) =


h0(z − t)+ v0(z − t)−

∫ t

0
u(τ )dτ , for t ≤ z

x2,1(t − z)−
∫ t

t−z
u(τ )dτ , for t > z

,

B(t, z) =


h0(z + t)− v0(z + t)+

∫ t

0
u(τ )dτ , for t ≤ 1− z

x2,2(t + z − 1)+
∫ t

t+z−1
u(τ )dτ , for t > 1− z

where h0(z) := h(0, z) and v0(z) := v(0, z). By defining x2,1(−w) := h0(w)+v0(w) and x2,2(−w) := h0(1−w)−v0(1−w)
for w ∈ [0, 1], and using the relations h(t, z) = 1

2 (A(t, z)+ B(t, z)) and v(t, z) =
1
2 (A(t, z)− B(t, z)), we obtain for all

t ≥ 0:

h(t, z) =
1
2
x2,1(t − z)+

1
2
x2,2(t + z − 1)+

1
2

∫ max(0,t−z)

max(0,t+z−1)
u(τ )dτ (2.16a)

v(t, z) =
1
2
x2,1(t − z)−

1
2
x2,2(t + z − 1)−

1
2

∫ t

max(0,t+z−1)
u(τ )dτ −

1
2

∫ t

max(0,t−z)
u(τ )dτ . (2.16b)

It should be noticed that the above equations give discontinuous solutions for system (2.15) if the initial conditions
h0(z) := h(0, z) and v0(z) := v(0, z) are discontinuous functions. Finally, we exploit the boundary conditions (2.15c).
Using (2.15c) and (2.16b) we obtain for all t ≥ 0:

x2,1(t) = x2,2(t − 1)+
∫ t

max(0,t−1)
u(τ )dτ ; x2,2(t) = x2,1(t − 1)−

∫ t

max(0,t−1)
u(τ )dτ .

Consequently, we are led to the study of the following linear autonomous control system of coupled RFDEs and FDEs:

ẋ1,1(t) = x1,2(t)
ẋ1,2(t) = u(t)
x2,1(t) = x2,2(t − 1)+ x1,2(t)− x1,2 (t − 1)
x2,2(t) = x2,1(t − 1)− x1,2(t)+ x1,2 (t − 1)

x1(t) = (x1,1(t), x1,2(t)) ∈ R2, x2(t) = (x2,1(t), x2,2(t)) ∈ R2, u(t) ∈ R

(2.17)

where x1,1(t) is the position of the tank D(t) and x1,2(t) is the horizontal velocity of the tank s(t). Notice that system (2.17)
gives weak solutions for the original system (2.15) if x2,1(−w) := h(0, w)+v(0, w), x2,2(−w) := h(0, 1−w)−v(0, 1−w)
and x1,2(−w) = x1,2(0) forw ∈ [0, 1] by means of the formulae:

h(t, z) =
1
2
x2,1(t − z)+

1
2
x2,2(t + z − 1)+

1
2
x1,2(t − z)−

1
2
x1,2(t + z − 1)

v(t, z) =
1
2
x2,1(t − z)−

1
2
x2,2(t + z − 1)− x1,2(t)+

1
2
x1,2(t + z − 1)+

1
2
x1,2(t − z).

Questions of controllability and stabilizability for system (2.15) can be addressed by studying system (2.17). C
Finally, it should be noticed that recent contributions in the literature study systems of coupled RFDEs and FDEs of the

form (2.1) per se (see [1,19,15,20–24,14]).
In this work we present sufficient Lyapunov-like conditions for (Uniform) Robust Global Asymptotic Output Stability

(RGAOS) and (Uniform) Weighted Input-to-Output Stability (WIOS) for systems of the form (2.1). Our results are based
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on the decomposition of system (2.1) as the feedback interconnection of a system described by RFDEs and a system
described by FDEs. This particular viewpoint allows us to study the stability properties of (2.1) in great generality as well
as to obtain a unified framework for a wide class of stability notions, including the notion of Input-to-State Stability (ISS).
It should be emphasized that the introduction of the notion of ISS by Sontag in [25–27], for finite-dimensional systems
described by ordinary differential equations, led to an exceptionally rich period of progress in mathematical systems and
control theory. The notion of ISSwas extended to the notion of Input-to-Output Stability (IOS) in [28–30] and to non-uniform
in time notions of ISS and IOS, which extended the applicability of IOS to time-varying systems (see [31,32] and references
therein; see also [33,34] for time-delay systems). It is our belief that the notions of ISS and IOS have become one of the
most important conceptual tools for the development of nonlinear robust stability and control theory for a wide class of
dynamical systems and consequently, one of the novelties of the present work is the study of ISS/IOS for system (2.1).
The present work is structured as follows. In Section 2, we provide some preliminary results on existence and uniqueness

of solutions of (2.1), which allow us to consider system (2.1) as a control systemwith a robust equilibrium point, in the sense
described in [35]. In Section 3,we present a stability result, which is based on the small-gain theoremgiven in [32]. The result
relies on the notion of (Uniform)Weighted Input-to-Output Stability for control systemswith outputs. Sufficient Lyapunov-
like and Razumikhin-like conditions are also presented. In Section 4, examples are presented where the stability results of
Section 3 are utilized. Finally, in Section 5 we provide the concluding remarks of this work.

3. Preliminary results for control systems described by coupled RFDEs and FDEs

In this section we provide some fundamental results that allow us to consider system (2.1) under hypotheses (P1–5) as
a control system with a robust equilibrium point in the sense described in [35]. We start with an existence–uniqueness-
continuation theorem for the solution of (2.1). We say that a mapping x : [a, b) → Rn with −∞ < a < b ≤ +∞ is
absolutely continuous on [a, b) if for every c ∈ (a, b) the mapping x : [a, b)→ Rn is absolutely continuous on [a, c].

Theorem 3.1. Consider system (2.1) under hypotheses (P1–4). Then for every t0 ≥ 0, (x10, x20) ∈ C0 ([−r1, 0];Rn1) ×
L∞ ([−r2, 0];Rn2) , d ∈ L∞loc

(
R+;D

)
, u ∈ L∞loc

(
R+;U

)
there exist tmax ∈ (t0,+∞] and a unique pair of mappings x1 ∈

C0 ([t0 − r1, tmax);Rn1) , x2 ∈ L∞loc ([t0 − r2, tmax);R
n2) with Tr1(t0)x1 = x10, Tr2(t0)x2 = x20, x1 ∈ C

0 ([t0 − r1, tmax);Rn1)
being absolutely continuous on [t0, tmax) such that (2.1a) holds a.e. for t ∈ [t0, tmax) and (2.1b) holds for all t ∈ (t0, tmax). In
addition, if tmax < +∞ then for every M > 0 there exists t ∈ [t0, tmax) with

∥∥Tr1(t)x1∥∥r1 > M.
Theorem 3.1 guarantees that tmax ∈ (t0,+∞] is the maximal existence time for the solution of (2.1). The idea behind the
proof of Theorem 3.1 is the method of steps, used already in [15].

Proof of Theorem 3.1. Let t0 ≥ 0, (x10, x20) ∈ C0 ([−r1, 0];Rn1)×L∞ ([−r2, 0];Rn2), d ∈ L∞loc
(
R+;D

)
, u ∈ L∞loc

(
R+;U

)
(arbitrary). Define h := min ( 1;min { τ(t0 + s) : s ∈ [0, 1]} ). Notice that by virtue of definition of h > 0, it holds that
t − τ(t) ≤ t0 for all t ∈ [t0, t0 + h]. By virtue of Theorem 2.1 in [6] (and its extension for Caratheodory conditions in
page 58 of the same book) there exist δ ∈ (0, h] and x1 ∈ C0 ([t0 − r1, t0 + δ);Rn1) with Tr1(t0)x1 = x10, being absolutely
continuous on [t0, t0+δ) such that the differential equation ẋ1(t) = f1(t, d(t), Tr1(t)x1, Tr2−τ(t)(t−τ(t))x2, u(t)) is satisfied
a.e. for t ∈ [t0, t0 + δ). Moreover, hypothesis (P4) guarantees that the mapping x1 ∈ C0 ([t0 − r1, t0 + δ);Rn1) is unique
(see [33,42]). There exist two cases for the mapping x1 ∈ C0 ([t0 − r1, t0 + δ);Rn1):

(a) for everyM > 0 there exists t ∈ [t0, t0 + δ)with
∥∥Tr1(t)x1∥∥r1 > M .

(b) if
∥∥Tr1(t)x1∥∥r1 is bounded for all t ∈ [t0, t0 + δ) then the mapping x1 ∈ C0 ([t0 − r1, t0 + δ);Rn1) can be extended
continuously in a unique way on [t0 − r1, t0 + h].

Next we consider the FDE x2(t) = f2(t, d(t), Tr1(t)x1, Tr2−τ(t)(t − τ(t))x2, u(t)). By virtue of hypotheses (P2), (P3)
there exists a unique mapping x2 ∈ L∞loc ([t0 − r2, t0 + δ);R

n2) with Tr2(t0)x2 = x20 such that the FDE x2(t) =
f2(t, d(t), Tr1(t)x1, Tr2−τ(t)(t − τ(t))x2, u(t)) is satisfied for all t ∈ (t0, t0 + δ). Moreover, if

∥∥Tr1(t)x1∥∥r1 is bounded for
all t ∈ [t0, t0 + δ) and the mapping x1 ∈ C0 ([t0 − r1, t0 + δ);Rn1) can be extended continuously in a unique way on
[t0 − r1, t0 + h] then similarly x2 ∈ L∞ ([t0 − r2, t0 + δ);Rn2) can be extended on [t0 − r2, t0 + h] (notice that hypothesis
(P2) implies that x2 is bounded as long as x1 is bounded).
If case (a) holds then define tmax = t0 + δ and the proof is complete. If case (b) holds all arguments can be repeated

with t0 + h in place of t0 (next step). We continue the same procedure of construction of the solution step by step.
The procedure may be stopped after some steps (if case (a) is encountered) or may be continued indefinitely (if case
(a) is never encountered). In the latter case for each step i we obtain a pair of mappings x1 ∈ C0 ([t0 − r1, ti+1];Rn1),
x2 ∈ L∞ ([t0 − r2, ti+1];Rn2) with Tr1(t0)x1 = x10, Tr2(t0)x2 = x20, x1 ∈ C0 ([t0 − r1, ti+1];Rn1) being absolutely
continuous on [t0, ti+1], such that (2.1a) holds a.e. for t ∈ [t0, ti+1] and (2.1b) holds for all t ∈ (t0, ti+1], where the sequence
{ti}∞i=0 satisfies ti+1 = ti + min (1;min {τ(ti + s) : s ∈ [0, 1]}) for all i = 0, 1, 2, . . .. Notice that the sequence {ti}

∞

i=0 is
increasing and consequently lim ti = sup ti. The assumption that L = lim ti = sup ti < +∞ implies that ti+1 ≥ ti + µ,
where µ = min (1;min {τ(s) : s ∈ [0, L+ 1]}) for all i = 0, 1, 2, . . ., which gives the contradiction ti ≥ t0 + (i − 1)µ for
all i = 1, 2, . . .. It follows that lim ti = sup ti = +∞. The proof is complete. C
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Remark 3.2. According to Theorem 3.1 above, Definitions 2.1 and 2.4 in [35], system (2.1) under hypotheses (P1–5) is
a control system Σ := (X, Y ,MU ,MD, φ, π,H) with outputs that satisfies the ‘‘Boundedness Implies Continuation’’
property (BIC property—see [35]) with state space X = C0 ([−r1, 0];Rn1) × L∞ ([−r2, 0];Rn2), output space Y, set of
allowable control inputs MU = L∞loc

(
R+;U

)
, set of allowable disturbances MD = L∞loc

(
R+;D

)
and set of sampling times

π(t0, x0, u, d) = [t0, tmax), where tmax > t0 is the maximal existence time of the solution. Moreover, if a finite escape time
occurs then the component x1 of the solution of (2.1) must be unbounded (but x2 may or may not be unbounded).
The following theorem guarantees that (0, 0) ∈ C0 ([−r1, 0];Rn1) × L∞ ([−r2, 0];Rn2) is a robust equilibrium point

from the input u (in the sense of definition 2.6 in [35]) for system (2.1) under hypotheses (P1–4).

Theorem 3.3. Consider system (2.1) under hypotheses (P1–4). Then for every ε > 0, T , h ∈ R+ there exists δ := δ(ε, T , h) > 0
such that for all (t0, x10, x20) ∈ [0, T ] × C0 ([−r1, 0];Rn1) × L∞ ([−r2, 0];Rn2) , (u, d) ∈ L∞loc

(
R+;U

)
× L∞loc

(
R+;D

)
with ‖x10‖r1 + ‖x20‖r2 + supt≥0 |u(t)| < δ there exist tmax ∈ (t0 + h,+∞] and a unique pair of mappings x1 ∈
C0 ([t0 − r1, tmax);Rn1) , x2 ∈ L∞loc ([t0 − r2, tmax);R

n2) with Tr1(t0)x1 = x10, Tr2(t0)x2 = x20, x1 ∈ C
0 ([t0 − r1, tmax);Rn1)

being absolutely continuous on [t0, tmax), such that (2.1a) holds a.e. for t ∈ [t0, tmax), (2.1b) holds for all t ∈ (t0, tmax) and

sup
{∥∥Tr1(t)x1∥∥r1 + ∥∥Tr2(t)x2∥∥r2 ; t ∈ [t0, t0 + h]} < ε. (3.1)

Proof. The proof of Theorem 3.3 relies on the following fact, which is proved in the Appendix.

Fact 1. For every ε > 0, T ∈ R+ there exists δ̃ := δ̃(ε, T ) > 0 such that for all (t0, x10, x20) ∈ [0, T ] × C0 ([−r1, 0];Rn1) ×
L∞ ([−r2, 0];Rn2) , (u, d) ∈ L∞loc

(
R+;U

)
× L∞loc

(
R+;D

)
with ‖x10‖r1 + ‖x20‖r2 + supt≥0 |u(t)| < δ̃ there exist

tmax ∈ (t0 + h,+∞] where h := h(T ) = min ( 1;min { τ(s) : s ∈ [0, T + 1]} ) and a unique pair of mappings x1 ∈
C0 ([t0 − r1, tmax);Rn1) , x2 ∈ L∞loc ([t0 − r2, tmax);R

n2) with Tr1(t0)x1 = x10, Tr2(t0)x2 = x20 such that (2.1a) holds a.e.
for t ∈ [t0, tmax), (2.1b) holds for all t ∈ (t0, tmax) and (3.1) holds.

Next consider the sequence {Ti}∞i=0 which is generated by the recursive relation:

Ti+1 = Ti +min (1;min {τ(s) : s ∈ [0, Ti + 1]}) , i = 0, 1, 2, . . . with T0 = T ≥ 0. (3.2)

As in the proof of Theorem 3.1 it can be shown (by contradiction) that lim Ti = sup Ti = +∞ for all T0 ≥ 0. Consequently,
given arbitrary T , h ∈ R+, there exists a non-negative integer l(T , h) such that the sequence {Ti}∞i=0 defined by (3.2) with
initial condition T0 = T , satisfies Ti ≥ T + h for all i ≥ l(T , h). The following fact exploits the properties of the sequence
{Ti}∞i=0 defined by (3.2).

Fact 2. For every ε > 0, T ∈ R+, i non-negative integer, there exists δi := δi(ε, T ) > 0 such that for all (t0, x10, x20) ∈ [0, T ]×
C0 ([−r1, 0];Rn1)×L∞ ([−r2, 0];Rn2) , (u, d) ∈ L∞loc

(
R+;U

)
×L∞loc

(
R+;D

)
with ‖x10‖r1 + ‖x20‖r2 + supt≥0 |u(t)| < δi

there exists tmax ∈ (t0 + h,+∞], where h := h(T ) = Ti+1 − T , {Ti}∞i=0 is the sequence that satisfies (3.2), and a unique pair of
mappings x1 ∈ C0 ([t0 − r1, tmax);Rn1) , x2 ∈ L∞loc ([t0 − r2, tmax);R

n2)with Tr1(t0)x1 = x10, Tr2(t0)x2 = x20 such that (2.1a)
holds a.e. for t ∈ [t0, tmax), (2.1b) holds for all t ∈ (t0, tmax) and (3.1) holds.

The proof of Fact 2 will be made by induction. By virtue of Fact 1 it is clear that Fact 2 holds for i = 0. Suppose that Fact 2
holds for a certain non-negative integer i. Let ε > 0, T ∈ R+ and define:

δi+1(ε, T ) := min
{
δi(ε, T ); δi

(
1
2
δ̃(ε, Ti+1), T

)
;
1
2
δ̃(ε, Ti+1)

}
> 0. (3.3)

Next consider the solution x1 ∈ C0 ([t0 − r1, tmax);Rn1), x2 ∈ L∞loc ([t0 − r2, tmax);R
n2) of (2.1) with Tr1(t0)x1 = x10,

Tr2(t0)x2 = x20 corresponding to inputs (u, d) ∈ L∞loc
(
R+;U

)
×L∞loc

(
R+;D

)
with ‖x10‖r1 +‖x20‖r2 + supt≥0 |u(t)| < δi+1.

Since δi+1 ≤ δi, it follows from the assumption that Fact 2 holds for the non-negative integer i:

sup
{∥∥Tr1(t)x1∥∥r1 + ∥∥Tr2(t)x2∥∥r2 ; t ∈ [t0, t0 + Ti+1 − T ]} < ε. (3.4)

Moreover, since δi+1(ε, T ) ≤ δi

(
1
2 δ̃(ε, Ti+1), T

)
, it follows from the assumption that Fact 2 holds for the non-negative

integer i:∥∥Tr1(t0 + Ti+1 − T )x1∥∥r1 + ∥∥Tr2(t0 + Ti+1 − T )x2∥∥r2 < 12 δ̃(ε, Ti+1). (3.5)

Furthermore, since ‖x10‖r1 + ‖x20‖r2 + supt≥0 |u(t)| < δi+1 and δi+1(ε, T ) ≤ 1
2 δ̃(ε, Ti+1), we obtain that supt≥0 |u(t)| ≤

1
2 δ̃(ε, Ti+1). Combining (3.5) and the previous inequality we get:∥∥Tr1(t0 + Ti+1 − T )x1∥∥r1 + ∥∥Tr2(t0 + Ti+1 − T )x2∥∥r2 + supt≥0 |u(t)| < δ̃(ε, Ti+1). (3.6)
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Notice that since t0 ∈ [0, T ], we obtain that t0 + Ti+1 − T ∈ [0, Ti+1]. The solution x1 ∈ C0 ([t0 − r1, tmax);Rn1),
x2 ∈ L∞loc ([t0 − r2, tmax);R

n2) of (2.1) with Tr1(t0)x1 = x10, Tr2(t0)x2 = x20 corresponding to inputs (u, d) ∈
L∞loc

(
R+;U

)
× L∞loc

(
R+;D

)
with ‖x10‖r1 + ‖x20‖r2 + supt≥0 |u(t)| < δi+1 coincides for t ≥ t0 + Ti+1 − T with the

solution x1 ∈ C0 ([t0 + Ti+1 − T − r1, tmax);Rn1), x2 ∈ L∞loc ([t0 + Ti+1 − T − r2, tmax);R
n2) of (2.1) with initial condition

(Tr1(t0 + Ti+1 − T )x1, Tr2(t0 + Ti+1 − T )x2) corresponding to same inputs (u, d) ∈ L∞loc
(
R+;U

)
× L∞loc

(
R+;D

)
satisfying

(3.6). Using Fact 1, in conjunction with (3.6), Remark 3.2 and the fact that t0 + Ti+1 − T ∈ [0, Ti+1], we obtain:

sup
{∥∥Tr1(t)x1∥∥r1 + ∥∥Tr2(t)x2∥∥r2 ; t ∈ [t0 + Ti+1 − T , t0 + Ti+2 − T ]} < ε. (3.7)

Combining (3.4) with (3.7), we may conclude that Fact 2 holds for i+ 1.
By virtue of Fact 2, it follows that Theorem 3.3 holds with δ(ε, T , h) := δl(T ,h)(ε, T ) > 0, where l(T , h) is the non-negative

integer with the property that the sequence {Ti}∞i=0 defined by (3.2) with initial condition T0 = T , satisfies Ti ≥ T + h for all
i ≥ l(T , h). The proof is complete. C

Remark 3.4. It should be emphasized that Theorems 3.1 and 3.3 guarantee that all stability results obtained in [31,35] for
general control systems with the ‘‘Boundedness Implies Continuation’’ property (BIC property, see [35]) hold as well for
system (2.1) under hypotheses (P1–5). This implication enables us to obtain the stability results of the following section.

Remark 3.5. It is important to notice that Theorems 3.1 and 3.3 can be applied to systems described by FDEs of the form:

x(t) = f (t, d(t), Tr−τ(t)(t − τ(t))x, u(t))
x(t) ∈ Rn, d(t) ∈ D, u(t) ∈ U, t ≥ 0

(3.8)

whereD ⊆ Rl is a non-empty set,U ⊆ Rm is a non-empty setwith 0 ∈ U , r > 0, f : ∪t≥0{t}×D×L∞ ([−r + τ(t), 0];Rn)×
U → Rn, under the following hypotheses:
(Q1) The function τ : R+ → (0,+∞) is continuous with supt≥0 τ(t) ≤ r .

(Q2) There exist functions a ∈ K∞, β ∈ K+ such that
∣∣f (t, d, Tr−τ(t)(−τ(t))x, u)∣∣ ≤ a (β(t) ∥∥Tr−τ(t)(−τ(t))x∥∥r−τ(t)) +

a (β(t) |u|), for all (t, d, x, u) ∈ R+ × D×L∞ ([−r, 0];Rn)× U .
(Q3) For every d ∈ L∞loc

(
R+;D

)
, u ∈ L∞loc

(
R+;U

)
and x ∈ L∞loc ([−r,+∞);R

n) the mapping t → f (t, d(t), Tr−τ(t)(t −
τ(t))x, u(t)) is measurable.
Indeed, system (3.8) can be embedded into the following system described by coupled RFDEs and FDEs:

ξ̇ (t) = 0
x(t) = f (t, d(t), Tr−τ(t)(t − τ(t))x, u(t))
ξ(t) ∈ R, x(t) ∈ Rn, d(t) ∈ D, u(t) ∈ U, t ≥ 0

(3.9)

which is a system of the form (2.1) that satisfies hypotheses (P1–4). Consequently, Theorems 3.1 and 3.3 can be applied to
system (3.9) and we obtain:

Corollary 3.6. Consider system (3.8) under hypotheses (Q1–3). Then for every t0 ≥ 0, x0 ∈ L∞ ([−r, 0];Rn) , (u, d) ∈
L∞loc

(
R+;U

)
× L∞loc

(
R+;D

)
there exists a unique mapping x ∈ L∞loc ([t0 − r,+∞);R

n) with Tr(t0)x = x0, such that
(3.8) holds for all t > t0. Moreover, for every ε > 0, T , h ∈ R+ there exists δ := δ(ε, T , h) > 0 such that for all
(t0, x0) ∈ [0, T ] × L∞ ([−r, 0];Rn) , (u, d) ∈ L∞loc

(
R+;U

)
× L∞loc

(
R+;D

)
with ‖x0‖r + supt≥0 |u(t)| < δ the solution

x(t) of (3.8) with initial condition Tr(t0)x = x0, corresponding to inputs (u, d) ∈ L∞loc
(
R+;U

)
× L∞loc

(
R+;D

)
satisfies

sup { ‖Tr(t)x‖r ; t ∈ [t0, t0 + h] } < ε.

4. Stability results

In this section we present stability results for a wide class of systems described by coupled RFDEs and FDEs. Particularly,
we consider the following class of systems described by coupled RFDEs and FDEs:

ẋ1(t) = f1(t, d(t), Tr1(t)x1, u(t),H2(t, Tr2−τ(t)(t − τ(t))x2)) (4.1a)

x2(t) = f2(t, d(t), Tr2−τ(t)(t − τ(t))x2, u(t),H1(t, Tr1(t)x1))
x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , u(t) ∈ U, d(t) ∈ D, t ≥ 0 (4.1b)

Y (t) = H(t, Tr1(t)x1, Tr2(t)x2) ∈ Y (4.1c)

where r1 ≥ 0, r2 > 0, D ⊆ Rl is a non-empty set, U ⊆ Rm a non-empty set with 0 ∈ U , Y is a normed linear space,
H1 : R+ × C0 ([−r1, 0];Rn1) → S1, H2 : ∪t≥0{t} × L∞ ([−r2 + τ(t), 0];Rn2) → S2, H : R+ × C0 ([−r1, 0];Rn1) ×
L∞ ([−r2, 0];Rn2) → Y are continuous mappings, S1 ⊆ Rk1 , S2 ⊆ Rk2 are sets with 0 ∈ S1, 0 ∈ S2 and the mappings
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f1 : R+ × D × C0 ([−r1, 0];Rn1) × U × S2 → Rn1 , f2 : ∪t≥0{t} × D × L∞loc ([−r2 − τ(t), 0];R
n2) × U × S1 → Rn2 are

locally bounded mappings, which satisfy the following hypotheses:
(R1) The function τ : R+ → (0,+∞) is continuous with supt≥0 τ(t) ≤ r2.

(R2) For every v ∈ L∞loc
(
R+; S1

)
, d ∈ L∞loc

(
R+;D

)
, u ∈ L∞loc

(
R+;U

)
and x2 ∈ L∞loc ([−r2,+∞);R

n2) the mapping
t → f2(t, d(t), Tr2−τ(t)(t − τ(t))x2, u(t), v(t)) is measurable.
(R3) The output map H1 : R+ × C0 ([−r1, 0];Rn1) → S1, is a continuous mapping that maps bounded sets of R+ ×

C0 ([−r1, 0];Rn1) into bounded sets ofRk1 with H1(t, 0) = 0 for all t ≥ 0.
(R4) The mapping H2 : ∪t≥0{t} × L∞ ([−r2 + τ(t), 0];Rn2) → S2 is a continuous mapping that maps bounded subsets
of ∪t≥0{t} × L∞ ([−r2 + τ(t), 0];Rn2) into bounded sets of Rk2 with H2(t, 0) = 0 for all t ≥ 0. Moreover, for every
x2 ∈ L∞loc ([−r2,+∞);R

n2) the mapping t → H2(t, Tr2−τ(t)(t − τ(t))x2) is measurable.
(R5) There exist functions β ∈ K+, a ∈ K∞ such that

∣∣f2 (t, d, Tr2−τ(t)(−τ(t))x2, u, v)∣∣ ≤ a (β(t) supθ∈[−r2,−τ(t)] |x2(θ)|) +
a (β(t) |u|) + a (β(t) |v|) for all (t, x2, u, v, d) ∈ R+ × L∞ ([−r2, 0];Rn2) × U × S1 × D and |f1(t, d, x, u, v)| ≤
a
(
β(t) ‖x‖r1

)
+ a (β(t) |u|)+ a (β(t) |v|) for all (t, x, u, v, d) ∈ R+ × C0([−r1, 0];Rn)× U × S2 × D.

(R6) The mapping (x, u, v, d)→ f1(t, d, x, u, v) is continuous for each fixed t ≥ 0 and such that for every bounded I ⊆ R+

and for every boundedΩ ⊂ C0([−r1, 0];Rn)× U × S2, there exists a constant L ≥ 0 such that:

(x(0)− y(0))′ (f1(t, d, x, u, v)− f1(t, d, y, u, v)) ≤ L max
τ∈[−r1,0]

|x(τ )− y(τ )|2

∀t ∈ I,∀(x, u, v, y, u, v) ∈ Ω ×Ω,∀d ∈ D.

(R7) There exists a countable set A ⊂ R+, which is either finite or A = {tk; k = 1, . . . ,∞} with tk+1 > tk > 0 for
all k = 1, 2, . . . and lim tk = +∞, such that mapping (t, x, u, v, d) ∈ (R+ \ A) × C0([−r, 0];Rn) × U × S2 × D →
f1(t, d, x, u, v) is continuous. Moreover, for each fixed (t0, x, u, v, d) ∈ R+ × C0([−r, 0];Rn) × U × S2 × D, we have
limt→t+0 f1(t, d, x, u, v) = f1(t0, d, x, u, v).

(R8) The mapping H : R+ × C0 ([−r1, 0];Rn1)× L∞ ([−r2, 0];Rn2)→ Y is continuous with H(t, 0, 0) = 0 for all t ≥ 0.
Moreover, the image set H(Ω) is bounded for each bounded setΩ ⊂ R+ × C0 ([−r1, 0];Rn1)×L∞ ([−r2, 0];Rn2).
By virtue of Lemma 3.2 in [31] and Lemma 1 (page 4) in [36], it follows that system (4.1) under hypotheses (R1–8) is a

system of the form (2.1) which satisfies hypotheses (P1–5). However, it should be emphasized that not every system of the
form (2.1) can be expressed in the form (4.1). Next, we consider the following systems:

ẋ1(t) = f1(t, d(t), Tr1(t)x1, u(t), v1(t))
Y1(t) = H1(t, Tr1(t)x1)
x1(t) ∈ Rn1 , Y1(t) ∈ S1, (u(t), v1(t)) ∈ U × S2, d(t) ∈ D, t ≥ 0

(4.2)

which is a system described by RFDEs and the following system described by FDEs:

x2(t) = f2(t, d(t), Tr2−τ(t)(t − τ(t))x2, u(t), v2(t))
Y2(t) = H2(t, Tr2−τ(t)(t − τ(t))x2)
x2(t) ∈ Rn2 , Y2(t) ∈ S2, (u(t), v2(t)) ∈ U × S1, d(t) ∈ D, t ≥ 0.

(4.3)

The following remarks can be made for systems (4.2) and (4.3):
* The theory of retarded functional differential equations guarantees that under hypotheses (R3–7), for each (t0, x10) ∈

R+ × C0([−r1, 0];Rn1) and for each triple of measurable and locally bounded inputs v1 ∈ L∞loc
(
R+; S2

)
, d ∈

L∞loc
(
R+;D

)
, u ∈ L∞loc

(
R+;U

)
there exists a unique absolutely continuous mapping x1(t) that satisfies a.e. the

differential equation (4.2) with initial condition Tr1(t0)x1 = x10 ∈ C
0([−r1, 0];Rn1) (see [6,33]). Moreover, Theorem

3.2 in [6] (page 46) guarantees that (4.2) is a control system Σ1 := (C0([−r1, 0];Rn1),Rk1 ,MU×S2 ,MD, φ, π,H1) with
outputs that satisfies the Boundedness Implies Continuation property with MU×S2 ,MD the sets of all measurable and
locally boundedmappings (u, v) : R+ → U×S2, d : R+ → D, respectively (in the sense described in [35]). Furthermore,
the classical semigroup property is satisfied for this system, i.e., we have π(t0, x0, u, d) = [t0, tmax), where tmax > t0 is
the maximal existence time of the solution. Finally, hypotheses (R3–7) guarantee that 0 ∈ C0([−r1, 0];Rn1) is a robust
equilibrium point from the input (u, v) ∈ MU×S2 forΣ1.
* Hypotheses (R1–5) guarantee that for each (t0, x20) ∈ R+ × X with X := L∞ ([−r2, 0];Rn2) and for each triple
v2 ∈ L∞loc

(
R+; S1

)
, d ∈ L∞loc

(
R+;D

)
, u ∈ L∞loc

(
R+;U

)
there exists a unique measurable and locally bounded mapping

x2(t) that satisfies the difference equation (4.3) for all t > t0 with initial condition x2(t0 + θ) = x20(θ); θ ∈ [−r2, 0].
Consequently, (4.3) describes a control system Σ2 := (X,Rk2 ,MU×S1 ,MD, φ, π,H2) with outputs, MU×S1 being the set
of all measurable and locally bounded functions (u, v) : R+ → U× S1 andMD being the set of all measurable and locally
bounded functions d : R+ → D (in the sense described in [35]). Furthermore, Remark 3.5 and Corollary 3.6 show that
system (4.3) is Robustly Forward Complete from the input (u, v) ∈ MU×S1 and that 0 ∈ X is a robust equilibrium point
from the input (u, v) ∈ MU×S1 for system (4.3) in the sense described in [35]. Finally, notice that the classical semigroup
property is satisfied for system (4.3), i.e., we have π(t0, x20, u, d) = [t0,+∞).
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Fig. 1. System (4.1) regarded as the feedback interconnection of subsystem (4.2) described by RFDEs and subsystem (4.3) described by FDEs.

Systems (4.1), (4.2) and (4.3) are related in the following way: it can be said that system (4.1) is the feedback
interconnection of subsystems (4.2) and (4.3), in the sense described in [35,32]. Fig. 1 presents schematically the
interconnection of subsystems (4.2) and (4.3) that produces the composite system (4.1).
We are now in a position to present our main result, which is a direct consequence of the small-gain theorem presented

in [32]. The definition of the (Uniform)Weighted Input-to-Output Stability ((U)WIOS) property is given in the Appendix for
the reader’s convenience (see also [32]).

Theorem 4.1. Consider system (4.1) under hypotheses (R1–8) and assume that:
(H1) Subsystem (4.2) satisfies the WIOS property from the inputs v1 and u. Particularly, there exist functions σ1 ∈
KL, β1, µ1, c1, δ1, δu1, q

u
1 ∈ K

+, γ1, γ
u
1 , a1, p1, p

u
1 ∈ N , such that the following estimate holds for all (t0, x10, (v1, u, d)) ∈

R+× C0([−r1, 0];Rn1)×L∞loc(R
+
; S2×U ×D) and t ≥ t0 for the solution x1(t) of (4.2)with initial condition Tr1(t0)x1 = x10

corresponding to inputs (v1, u, d) ∈ L∞loc(R
+
; S2 × U × D):∣∣H1(t, Tr1(t)x1)∣∣ ≤ σ1 (β1(t0) ‖x10‖r1 , t − t0)+ sup

t0≤τ≤t
γ1 (δ1(τ ) |v1(τ )|)+ sup

t0≤τ≤t
γ u1
(
δu1(τ ) |u(τ )|

)
(4.4)

β1(t)
∥∥Tr1(t)x1∥∥r1 ≤ max

{
µ1(t − t0), c1(t0), a1

(
‖x10‖r1

)
, sup
t0≤τ≤t

p1 (|v1(τ )|) , sup
t0≤τ≤t

pu1
(
qu1(τ ) |u(τ )|

)}
. (4.5)

(H2) Subsystem (4.3) satisfies the WIOS property from the inputs v2 and u. Particularly, there exist functions σ2 ∈
KL, β2, µ2, c2, δ2, δu2, q

u
2 ∈ K

+, γ2, γ
u
2 , a2, p2, p

u
2 ∈ N , such that the following estimate holds for all (t0, x20, (v2, u, d)) ∈

R+×L∞ ([−r2, 0];Rn2)×L∞loc(R
+
; S1×U×D) and t ≥ t0 for the solution x2(t) of (4.3)with initial condition Tr2(t0)x2 = x20

corresponding to inputs (v2, u, d) ∈ L∞loc(R
+
; S1 × U × D):∣∣H2(t, Tr2−τ(t)(t − τ(t))x2)∣∣ ≤ σ2 (β2(t0) ‖x20‖r2 , t − t0)+ sup

t0≤s≤t
γ2 (δ2(s) |v2(s)|)+ sup

t0≤s≤t
γ u2
(
δu2(s) |u(s)|

)
(4.6)

β2(t)
∥∥Tr2(t)x2∥∥r2 ≤ max

{
µ2(t − t0), c2(t0), a2

(
‖x20‖r2

)
, sup
t0≤s≤t

p2 (|v2(s)|) , sup
t0≤s≤t

pu2
(
qu2(s) |u(s)|

)}
. (4.7)

(H3) There exist functions ρ ∈ K∞, a ∈ N and a constant M > 0 such that one of the following conditions holds for all t, s ≥ 0
and x = (x1, x2) ∈ C0([−r1, 0];Rn1)×L∞ ([−r2, 0];Rn2):

δ1(t) ≤ M (4.8a)

g1

(
δ1(t)g2

(
max
θ∈[0,t]

δ2(θ)s
))
≤ s (4.8b)

‖H(t, x1, x2)‖Y ≤ a
(
|H1(t, x1)| + γ1

(
δ1(t)

∣∣H2(t, Tr2−τ(t)(−τ(t))x2)∣∣)) (4.8c)

or

δ2(t) ≤ M (4.9a)
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g2

(
δ2(t)g1

(
max
θ∈[0,t]

δ1(θ)s
))
≤ s (4.9b)

‖H(t, x1, x2)‖Y ≤ a
(∣∣H2(t, Tr2−τ(t)(−τ(t))x2)∣∣+ γ2 (δ2(t) |H1(t, x1)|)) (4.9c)

where gi(s) := γi(s)+ ρ (γi(s)) , i = 1, 2.
Then there exists a function γ ∈ N such that system (4.1) satisfies theWIOS property from the input u ∈ MU with gain γ ∈ N

and weight δ ∈ K+, where

δ(t) := max{δu1(t), δ
u
2(t), q

u
1(t), q

u
2(t)}. (4.10)

Moreover, if β1, β2, c1, c2, δ1, δ2 ∈ K+ are bounded then system (4.1) satisfies the UWIOS property from the input u ∈ MU with
gain γ ∈ N and weight δ ∈ K+.

Remark 4.2. (a) It should be clear that Theorem 4.1 gives sufficient conditions (but not necessary) for the WIOS property
for system (4.1). The main advantage of Theorem 4.1 is that the stability properties for system (4.1) can be verified by
studying the stability properties of subsystems (4.2) and (4.3), which are simpler systems.

(b) When γ1 ∈ N or γ2 ∈ N is identically zero, it follows that (4.8b) and (4.9b) are automatically satisfied. On the
other hand, if γi(s) = Kis for certain constants Ki ≥ 0 (i = 1, 2) then hypothesis (4.8b) (or (4.9b)) is satisfied if
K1K2 supt≥0

(
δ1(t)maxτ∈[0,t] δ2(τ )

)
< 1 (or K1K2 supt≥0

(
δ2(t)maxτ∈[0,t] δ1(τ )

)
< 1).

In what follows, we present sufficient conditions so that subsystems (4.2) and (4.3) satisfy assumptions (H1) and (H2) of
Theorem 4.1. The following theorem is a direct consequence of Theorem 3.5 in [33] and gives Lyapunov-like sufficient
conditions that guarantee assumption (H1) for subsystem (4.1). Its proof can be found in the Appendix. We notice that
for a functional V : R+ × C0 ([−r, 0];Rn)→ R, the generalized derivative in the direction v ∈ Rn is defined by

V 0(t, x; v) := lim sup
h→0+

y→0,y∈C0([−r,0];Rn)

V (t + h, Eh(x; v)+ hy)− V (t, x)
h

(4.11)

where Eh(x; v)with 0 ≤ h < r , denotes the following operator:

Eh(x; v) :=
{
x(0)+ (θ + h) v for − h < θ ≤ 0
x(θ + h) for − r ≤ θ ≤ −h. (4.12)

Moreover, a continuous functional V : R+ × C0([−r, 0];Rn) → R+ is ‘‘almost Lipschitz on bounded sets’’, if there exist
non-decreasing functions M : R+ → R+, P : R+ → R+, G : R+ → [1,+∞) such that for all R ≥ 0, the following
properties hold:

(1) For every x, y ∈
{
x ∈ C0([−r, 0];Rn); ‖x‖r ≤ R

}
, it holds that: |V (t, y)− V (t, x)| ≤ M(R) ‖y− x‖r , ∀t ∈ [0, R];

(2) For every absolutely continuous function x : [−r, 0] → Rn with ‖x‖r ≤ R and an essentially bounded derivative, it
holds that: |V (t + h, x)− V (t, x)| ≤ hP(R)

(
1+ sup−r≤τ≤0 |ẋ(τ )|

)
, for all t ∈ [0, R] and 0 ≤ h ≤ 1

G(R+sup−r≤τ≤0|ẋ(τ )|)
.

Theorem 4.3 (Lyapunov-like Sufficient Conditions for Hypothesis (H1)). Consider system (4.2) under hypotheses (R3–7) and sup-
pose that there exist a Lyapunov functional V : R+× C0([−r1, 0];Rn1)→ R+, which is almost Lipschitz on bounded sets, func-
tions a2 of class K∞, ζ , ζ u of classN , β, δ1, δu1 of class K

+ and a continuous positive definite function ρ : R+ → R+ such that:

V (t, x1) ≤ a2
(
β(t) ‖x1‖r1

)
, ∀(t, x1) ∈ R+ × C0([−r1, 0];Rn1) (4.13)

V 0(t, x1; f1(t, d, x1, u, v1)) ≤ −ρ (V (t, x1)) ,
for all (t, x1, u, v1, d) ∈ R+ × C0([−r1, 0];Rn1)× U × S2 × D with

max
{
ζ (δ1(t) |v1|) ; ζ u

(
δu1(t) |u|

)}
≤ V (t, x1). (4.14)

Moreover, suppose that there exist functions a1, p of class K∞, µ of class K+ and a constant R ≥ 0 such that one of the following
inequalities holds:

a1 (|H1(t, x1)|) ≤ V (t, x1), ∀(t, x1) ∈ R+ × C0([−r1, 0];Rn1) (4.15a)

or

p (µ(t) |x1(0)|) ≤ V (t, x1)+ R, ∀(t, x1) ∈ R+ × C0([−r1, 0];Rn1). (4.15b)

If

* (4.15a) holds and there exist functions µ1, c1, φ ∈ K+, g1, p1, pu1 ∈ N , such that for every (t0, x10, (v1, u, d)) ∈ R+ ×

C0([−r1, 0];Rn1) × L∞loc(R
+
; S2 × U × D) the solution x1(t) of (4.2) with initial condition Tr1(t0)x1 = x10 corresponding
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to inputs (v1, u, d) ∈ L∞loc(R
+
; S2 × U × D) exists for all t ≥ t0 and satisfies the following estimate:

φ(t)
∥∥Tr1(t)x1∥∥r1 ≤ max

{
µ1(t − t0), c1(t0), g1

(
‖x10‖r1

)
, sup
t0≤τ≤t

p1 (|v1(τ )|) , sup
t0≤τ≤t

pu1
(
δu1(τ ) |u(τ )|

)}
(4.16)

then there exists a function σ1 ∈ KL, such that estimate (4.4) holds with β1(t) ≡ β(t), γ1(s) := a−11 (ζ (s)) , γ u1 (s) :=
a−11 (ζ u(s)) for all (t0, x10, (v1, u, d)) ∈ R+ × C0([−r1, 0];Rn1)×L∞loc(R

+
; S2 × U × D) and t ≥ t0 for the solution x1(t)

of (4.2) with initial condition Tr1(t0)x1 = x10 corresponding to inputs (v1, u, d) ∈ L∞loc(R
+
; S2 × U × D).

* (4.15b) holds and δ1(t) ≡ 1 then for every (t0, x10, (v1, u, d)) ∈ R+ × C0([−r1, 0];Rn1) × L∞loc(R
+
; S2 × U × D) the

solution x1(t) of (4.2)with initial condition Tr1(t0)x1 = x10 corresponding to inputs (v1, u, d) ∈ L∞loc(R
+
; S2×U×D) exists

for all t ≥ t0. Furthermore, for every φ ∈ K+ there exist functions µ1, c1 ∈ K+, g1, p1, pu1 ∈ N , such that (4.16) holds for all
t ≥ t0. Moreover, if φ ∈ K+ is bounded and there exists constant L > 0 such that:

β(t)+
1
µ(t)

≤ L, ∀t ≥ 0 (4.17)

then the function c1 ∈ K+ is bounded.

Remark 4.4. It should be emphasized that the main results in [33] are closely related to Theorem 4.3: more specifically
in [33], the problem of the existence of a Lyapunov functional V : R+×C0([−r1, 0];Rn1)→ R+ satisfying the assumptions
of Theorem 4.3 under hypothesis (H1) of Theorem 4.1 is studied.
The following proposition provides Razumikhin sufficient conditions that guarantee assumption (H1) for subsystem (4.2).

Its proof can be found in the Appendix. Notice that if V : [−r1,+∞) × Rn1 → R is a locally Lipschitz mapping and
(t, x1, v) ∈ R+ × Rn1 × Rn1 , we may define the generalized Dini derivative in the direction v ∈ Rn1 by the following
relation:

D+V (t, x1; v) := lim sup
h→0+

V (t + h, x1 + hv)− V (t, x1)
h

. (4.18)

Proposition 4.5 (Razumikhin-like Sufficient Conditions forHypothesis (H1)).Consider system (4.2)under hypotheses (R3–7) and
suppose that there exist a locally Lipschitz function V : [−r1,+∞)×Rn1 → R+, functions a1, a2 , a of class K∞ with a(s) < s
for all s > 0, ζ , ζ u of class N, β, δ1, δu1 of class K

+ and a positive definite function ρ such that:

V (t − r1, x1) ≤ a2(β(t) |x1|), ∀(t, x1) ∈ R+ ×Rn1 (4.19)
D+V (t, x1(0); f1(t, d, x1, u, v1)) ≤ −ρ (V (t, x1(0))) ,
for all (t, x1, u, v1, d) ∈ R+ × C0([−r1, 0];Rn1)× U × S2 × D with

max
{
ζ (δ1(t) |v1|) , ζ u

(
δu1(t) |u|

)
, a
(
sup

θ∈[−r1,0]
V (t + θ, x1(θ))

)}
≤ V (t, x1(0)). (4.20)

Moreover, suppose that there exist functions a1, p of class K∞, µ of class K+ and a constant R ≥ 0 such that one of the following
inequalities hold:

a1 (|H(t, x1)|) ≤ sup
θ∈[−r1,0]

V (t + θ, x1(θ)), ∀(t, x1) ∈ R+ × C0([−r1, 0];Rn1) (4.21a)

or

p (µ(t) |x1|) ≤ V (t − r1, x1)+ R, ∀(t, x1) ∈ R+ ×Rn1 . (4.21b)

If
* (4.21a) holds and there exist functions µ1, c1, φ ∈ K+, g1, p1, pu1 ∈ N, such that for every (t0, x10, (v1, u, d)) ∈ R+ ×

C0([−r1, 0];Rn1) × L∞loc(R
+
; S2 × U × D) the solution x1(t) of (4.2) with initial condition Tr1(t0)x1 = x10 corresponding

to inputs (v1, u, d) ∈ L∞loc(R
+
; S2 × U × D) exists for all t ≥ t0 and satisfies (4.16), then there exists a function

σ1 ∈ KL, such that estimate (4.4) holds with β1(t) := max0≤τ≤t+r1 β(τ), γ1(s) := a
−1
1 (ζ (s)) , γ u1 (s) := a

−1
1 (ζ u(s)) for

all (t0, x10, (v1, u, d)) ∈ R+ × C0([−r1, 0];Rn1) × L∞loc(R
+
; S2 × U × D) and t ≥ t0 for the solution x1(t) of (4.2) with

initial condition Tr1(t0)x1 = x10 corresponding to inputs (v1, u, d) ∈ L∞loc(R
+
; S2 × U × D).

* (4.21b) holds and δ1(t) ≡ 1 then for every (t0, x10, (v1, u, d)) ∈ R+ × C0([−r1, 0];Rn1) × L∞loc(R
+
; S2 × U × D) the

solution x1(t) of (4.2)with initial condition Tr1(t0)x1 = x10 corresponding to inputs (v1, u, d) ∈ L∞loc(R
+
; S2×U×D) exists

for all t ≥ t0. Furthermore, for every φ ∈ K+ there exist functions µ1, c1 ∈ K+, g1, p1, pu1 ∈ N, such that (4.16) holds for all
t ≥ t0. Moreover, if φ ∈ K+ is bounded and there exists a constant L > 0 such that (4.17) holds then the function c1 ∈ K+ is
bounded.

For the proof of Proposition 4.5 we need the following comparison lemma. Its proof can be found in [37].
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Lemma 4.6. For each positive definite continuous function ρ : R+ → R+ there exists a function σ of class KL, with σ(s, 0) = s
for all s ≥ 0 with the following property: if y : [t0, t1] → R+ is an absolutely continuous function, u : R+ → R+ is a locally
boundedmapping and I ⊂ [t0, t1] a set of Lebesguemeasure zero such that ẏ(t) is defined on [t0, t1]\I and such that the following
implication holds for all t ∈ [t0, t1] \ I :

y(t) ≥ u(t) ⇒ ẏ(t) ≤ −ρ (y(t)) (4.22)

then the following estimate holds for all t ∈ [t0, t1]:

y(t) ≤ max
{
σ (y(t0), t − t0) , sup

t0≤s≤t
σ (u(s), t − s)

}
. (4.23)

Next sufficient Lyapunov-like conditions for hypothesis (H2) of Theorem 4.1 are presented. The proof of the following
theorem can be found in the Appendix.

Theorem 4.7 (Lyapunov-like Sufficient Conditions for Hypothesis (H2)). Consider system (4.3) under hypotheses (R1–5) and
suppose that there exist a Lyapunov functional V : R+ × L∞([−r2, 0];Rn2) → R+, functions a2 of class K∞, ζ , ζ u of class
N , β, δ2, δ

u
2 of class K

+ and a continuous positive definite function ρ : R+ → R+ such that:

V (t, x2) ≤ a2
(
β(t) ‖x2‖r2

)
, ∀(t, x2) ∈ R+ ×L∞([−r2, 0];Rn2) (4.24)

V (t + h,Gh(t, x2; d, u, v2)) ≤ max
{
σ (V (t, x2), h) , sup

t≤τ≤t+h
ζ (δ2(τ ) |v2(τ )|) , sup

t≤τ≤t+h
ζ u
(
δu2(τ ) |u(τ )|

)}
,

for all (t, x2, u, v2, d) ∈ R+ ×L∞([−r2, 0];Rn2)×MU ×MS1 ×MD and h ∈ (0, g(t)] (4.25)

where

Gh(t, x2; d, u, v2) =
{
x2(h+ θ), θ ∈ [−r2,−h]
f2(s, d(s), Tr2−τ(s)(−τ(s))x2, u(s), v2(s)); s = t + h+ θ, θ ∈ (−h, 0] (4.26)

g(t) = min
{
1, min
t≤s≤t+1

τ(s)
}

(4.27)

and σ ∈ KL is the function that satisfies

∂

∂t
σ(s, t) = −ρ (σ(s, t)) for all t, s ≥ 0 (4.28a)

σ(s, 0) = s for all s ≥ 0. (4.28b)

Moreover, suppose that there exist functions a1, p of class K∞, µ of class K+ and a constant R ≥ 0 such that one of the following
inequalities holds:

a1
(∣∣H2 (t, Tr2−τ(t)(−τ(t))x2)∣∣) ≤ V (t, x2), ∀(t, x2) ∈ R+ ×L∞([−r2, 0];Rn2) (4.29a)

or

p (µ(t) |x2(0)|) ≤ V (t, x2)+ R, ∀(t, x2) ∈ R+ ×L∞([−r2, 0];Rn2). (4.29b)

If
* (4.29a) holds then there exists a function σ2 ∈ KL, such that estimate (4.6) holds with β2(t) ≡ β(t), γ2(s) :=
a−11 (ζ (s)) , γ u2 (s) := a

−1
1 (ζ u(s)) for all (t0, x20, (v2, u, d)) ∈ R+×L∞([−r2, 0];Rn2)×L∞loc(R

+
; S1×U×D) and t ≥ t0

for the solution x2(t) of (4.3)with initial condition Tr2(t0)x2 = x20 corresponding to inputs (v2, u, d) ∈ L∞loc(R
+
; S1×U×D).

* (4.29b) holds and δ2(t) ≡ 1 then for every φ ∈ K+ there exist functionsµ2, c2 ∈ K+, g2, p2, pu2 ∈ N , such that the following
estimate holds for all t ≥ t0

φ(t)
∥∥Tr2(t)x2∥∥r2 ≤ max

{
µ2(t − t0), c2(t0), g2

(
‖x20‖r2

)
, sup
t0≤s≤t

p2 (|v2(s)|) , sup
t0≤s≤t

pu2
(
δu2(s) |u(s)|

)}
(4.30)

for all (t0, x20, (v2, u, d)) ∈ R+ × L∞([−r2, 0];Rn2) × L∞loc(R
+
; S1 × U × D) and t ≥ t0 for the solution x2(t) of (4.3)

with initial condition Tr2(t0)x2 = x20 corresponding to inputs (v2, u, d) ∈ L∞loc(R
+
; S1 × U × D). Moreover, if φ ∈ K+ is

bounded and there exists a constant L > 0 such that (4.17) holds then the function c2 ∈ K+ is bounded.

The following corollary shows how a Lyapunov functional satisfying the assumptions of Theorem 4.7 for system (4.3) can
be constructed. Its proof is simple and is omitted.

Corollary 4.8 (Lyapunov-like Sufficient Conditions for Hypothesis (H2)). Consider system (4.3) under hypotheses (R1-5) and
suppose that there exist a function W : [−r2,+∞)× Rn2 → R+, functions ã1, ã2, b of class K∞, ζ , ζ u of classN , β̃, δ2, δu2 of
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class K+ and a constant λ ∈ [0, 1) such that:

W (t − r2, x2) ≤ ã2
(
β̃(t) |x2|

)
, ∀(t, x2) ∈ R+ ×Rn2 (4.31)

W (t, f2(t, d, Tr2−τ(t)(−τ(t))x2, u, v2)) ≤ max

{
λ sup
−r2≤θ≤−τ(t)

W (t + θ, x2(θ)), ζ (δ2(t) |v2|) , ζ u
(
δu2(t) |u|

)}
for all (t, x2, u, v2, d) ∈ R+ ×L∞([−r2, 0];Rn2)× U × S1 × D. (4.32)

Let constant µ > 0 such that λ exp(µ r2) ≤ 1. Define for all (t, x2) ∈ R+ ×L∞([−r2, 0];Rn2) the functional:

V (t, x2) = sup
−r2≤θ≤0

exp(µθ)W (t + θ, x2(θ)). (4.33)

Then the functional V : R+ × L∞([−r2, 0];Rn2) → R+ satisfies inequalities (4.24) and (4.25) with β(τ) :=
maxt≤s≤t+r2 β̃(s), a2(s) := ã2(s), σ (s, t) = s exp(−µ t) and consequently σ ∈ KL is a function satisfying (4.28a) and (4.28b)
with ρ(s) := µ s. Moreover,
* if there exists a function ã1 of class K∞, such that the following inequality holds

ã1
(∣∣H2(t, Tr2−τ(t)(−τ(t))x2)∣∣) ≤ sup

θ∈[−r2,0]
W (t + θ, x2(θ)), ∀(t, x2) ∈ R+ ×L∞([−r2, 0];Rn2) (4.34)

then inequality (4.29a) holds with a1(s) := exp(−µ r2)ã1 (s) .
* if there exist functions p of class K∞, µ ∈ K+ and a constant R ≥ 0 such that the following inequality holds

p (µ(t) |x2|) ≤ W (t, x2)+ R, ∀(t, x2) ∈ R+ ×Rn2 (4.35)

then inequality (4.29b) holds.

5. Illustrative examples

The following example shows the applicability of the results of the previous section to nonlinear Neutral Functional
Differential Equations.

Example 5.1. Consider the following system:

ẋ(t) = −ax(t)+ d(t)ϕ (t, ẋ(t − 2r))
x(t) ∈ R, d(t) ∈ D = [−1, 1]

(5.1)

where a > 0, r > 0 are constants and ϕ : R+ ×R→ R is a continuous function that satisfies

|ϕ(t, x)| ≤ c−1 |x| , ∀(t, x) ∈ R+ ×R (5.2)

for a certain constant c > 1. Clearly, system (5.1) is a system described by a Neutral Functional Differential Equation of the
form (2.12). However, it should be noted that system (5.1) cannot bewritten inHale’s form (2.10). Consequently, the stability
properties of the zero solution of system (5.1) cannot be studied using the results contained in [6]. On the other hand, an
extension of Theorem 1.6 in [38] can be usedwith a Lyapunov functional of the form V (t) = 1

2x
2(t)+M

∫ t
t−2r ẋ

2(θ)dθ , for an
appropriateM > 0 (since Theorem 1.6 in [38] is not concerned with systems with disturbances). Indeed, by using Theorem
1.6 in [38], it is possible to derive sufficient conditions that guarantee limt→+∞ |x(t)| = 0, but further study is required to
conclude that limt→+∞ |ẋ(t)| = 0. Here, we will apply Theorem 4.1 to system (5.1) and we will be able to derive sufficient
conditions for Robust Global Asymptotic Stability of x(t) as well as of ẋ(t).
We have already remarked (in the Introduction) that system (5.1) is associated with the following system described by

coupled RFDEs and FDEs:

ẋ1(t) = −ax1(t)+ d(t)ϕ (t, x2(t − 2r))
x2(t) = −ax1(t)+ d(t)ϕ (t, x2(t − 2r))
x1(t) ∈ R, x2(t) ∈ R, d(t) ∈ D = [−1, 1].

(5.3)

Specifically, if T2r(t0)x2 = T2r(t0)ẋ and x1(t0) = x(t0) then the solution of (5.1) corresponding to input d ∈ L∞loc
(
R+;D

)
is

related with the solution of (5.3) corresponding to the same input d ∈ L∞loc
(
R+;D

)
by the following equations:

x1(t) = x(t), x2(t) = ẋ(t), for t ≥ t0 a.e.

Thus, in order to study the stability properties of the zero solution of system (5.1) we are led to study the stability properties
of the zero solution of system (5.3). If we define r2 = 2r , r1 = 2r , τ(t) ≡ r ,H2(t, x2) := x2(−r),H1(t, x1) := x1(0), S1 = S2 =
R, H(t, x1, x2) := (x1(0), x2(−r2))′ ∈ Y := R2 for all (t, x1, x2) ∈ R+ × C0([−2r, 0];R)×L∞ ([−2r, 0];R), then system
(5.3) is of the form (4.1). Furthermore, hypotheses (R1–8) are satisfied. Notice that no external input is present (U = {0}).
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In order to apply Theorem 4.1, we have to study the stability properties of the zero solution for the two independent
subsystems:

ẋ1(t) = −a x1(t)+ d(t)ϕ(t, v1(t))
x1(t) ∈ R, v1(t) ∈ R, d(t) ∈ D = [−1, 1]

(5.4)

and

x2(t) = −av2(t)+ d(t)ϕ(t, x2(t − r2))
x2(t) ∈ R, v2(t) ∈ R, d(t) ∈ D = [−1, 1].

(5.5)

Study of system (5.5)
We define the function

W (t, x2) = |x2| . (5.6)

It should be noted thatW satisfies all hypotheses of Corollary 4.8. Particularly, (4.31) holds with ã2(s) := s and β̃(t) ≡ 1.
Moreover, elementary calculations in conjunction with inequality (5.2) and definition (5.6) give for all (t, d, v2, x2) ∈
R+ × [−1, 1] ×R×L∞ ([−r2, 0];R) and ε2 ∈ (0, c − 1):

W (t,−av2 + dϕ(t, x2(−r2))) = |−av2 + dϕ(t, x2(−r2))| ≤ a |v2| + |ϕ(t, x2(−r2))|

≤ a |v2| + c−1 |x2(−r2)| ≤ max

{(
1+

1
ε2

)
a |v2| ; (1+ ε2)c−1 sup

−r2≤θ≤−τ(t)
W (t + θ, x2(θ))

}
.

It follows that W satisfies inequality (4.32) with λ = (1 + ε2)c−1 < 1, ζ (s) :=
(
1+ 1

ε2

)
a s, δ2(t) ≡ 1, ζ u(s) ≡ 0 and

δu2(t) ≡ 1. Inequalities (4.34) and (4.35) hold as well with ã1(s) = p(s) := s, R = 0 and µ(t) ≡ 1.
By virtue of Theorem 4.7 it follows that there exists a function σ2 ∈ KL, µ2, c2 ∈ K+, a2, p2, pu2 ∈ N , such that es-

timates (4.6) and (4.7) hold with β2(t) ≡ 1, γ2(s) := c a ε−12 , γ
u
2 (s) := 0, δ2(t) ≡ 1, δu2(t) = qu2(t) ≡ 1, for all

(t0, x20, (v2, u, d)) ∈ R+ × L∞([−r2, 0];Rn2) × L∞loc(R
+
; S1 × U × D) and t ≥ t0 for the solution x2(t) of (5.4) with

initial condition Tr2(t0)x2 = x20 corresponding to inputs (v2, u, d) ∈ L∞loc(R
+
; S1 × U × D). Moreover, c2 ∈ K+ is bounded.

Study of system (5.4)
We define the functional for all (t, x1) ∈ R+ × C0([−2r, 0];R):

V (t, x1) =
1
2
x21(0). (5.7)

It should be noted that V satisfies inequalities (4.13), (4.15a) and (4.15b) with a1(s) = a2(s) = p(s) := 1
2 s
2, R = 0 and

β(t) = µ(t) ≡ 1. Moreover, we have for all (t, x1, d, v1) ∈ R+ × C0([−2r, 0];R)× [−1, 1] ×R:

V 0(t, x1;−ax1(0)+ dϕ(t, v1)) = −ax21(0)+ dx1(0)ϕ(t, v1).

Taking into account (5.2) and completing the squares, we find the following implication which holds for all (t, x1, d, v1) ∈
R+ × C0([−2r, 0];R)× [−1, 1] ×R and ε1 > 1:

ε21

2a2c2
|v1|

2
≤ V (t, x1)⇒ V 0(t, x1;−ax1(0)+ dϕ(t, v1)) ≤ −2a

(
1−

1
ε1

)
V (t, x1).

Consequently, inequality (4.14) holds with ζ (s) := ε21
2a2c2

s2, ρ(s) := 2a
(
1− 1

ε1

)
s, ζ u(s) ≡ 0, δ1(t) ≡ 1 and δu1(t) ≡ 1. By

virtue of Theorem4.3, it follows that there exist functions σ1 ∈ KL,µ1, c1 ∈ K+, a1, p1, pu1 ∈ N , such that estimates (4.4) and
(4.5) holdwith γ1(s) :=

ε1
ac s, γ

u
1 (s) := 0, q

u
1(t) ≡ 1 for all (t0, x10, (v1, u, d)) ∈ R+×C0([−r1, 0];Rn1)×L∞loc(R

+
; S2×U×D)

and t ≥ t0 for the solution x1(t) of (5.4) with initial condition Tr1(t0)x1 = x10 corresponding to inputs (v1, u, d) ∈
L∞loc(R

+
; S2 × U × D). Moreover, c1 ∈ K+ is bounded.

Study of system (5.3)
The previous analysis shows that hypotheses (H1) and (H2) of Theorem 4.1 are satisfied. Inequality (4.8c) holds with

a(s) = s+ ac
ε1
s. Using Theorem 4.1 and Remark 4.2(b), we conclude that system (5.3) is Uniformly Robustly Globally Asymp-

totically Output Stable with output H(t, x1, x2) := (x1(0), x2(−r2))′ ∈ Y := R2 if the following condition holds:
ε1

ε2
< 1.

Since ε1 > 1 and ε2 ∈ (0, c − 1) are arbitrary, the condition above holds if

c > 2. (5.8)
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Hence, due to the nature of the output map H(t, x1, x2) := (x1(0), x2(−r2))′ ∈ Y := R2, we are in a position to establish
that if (5.8) holds then system (5.3) is Uniformly Robustly Globally Asymptotically Stable. C

The following example considers linear-time-varying systems described by coupled RFDEs and FDEs.

Example 5.2. Consider the linear-time-varying system:

ẋ1(t) = A(t)x1(t)+ B(t)x2(t − r)+ G1(t)u(t)
x2(t) = C(t)x1(t)+ D(t)x2(t − r)+ G2(t)u(t)
x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , u(t) ∈ Rm, t ≥ 0

(5.9)

where r > 0 and the matrices A(t), B(t), C(t),D(t),G1(t),G2(t) have continuous elements. The stability properties of
the zero solution for linear systems of the form (5.9) without external inputs (i.e., u(t) ≡ 0) have been studied for the
autonomous case in [1,12,15,21,23]. Here, we study the more general problem of the output stability of system (5.9) with
output Y (t) = x1(t).
Let c ∈ K+ a non-decreasing function and η ∈ (0, 1) such that

max {|D(t)| , η} ≤ c(t), for all t ≥ 0. (5.10)

Define φ : [−r,+∞)→ (0,+∞) by the equation:

φ(t) = exp
(
−r−1

∫ t

−r
log

(
η−1c(s+ r)

)
ds
)
. (5.11)

Notice that φ : [−r,+∞)→ (0,+∞) is non-increasing and that definition (5.11) implies:

φ(t) ≤
η

c(t)
φ(t − r), for all t ≥ 0. (5.12)

We assume that:
(S1) 0 ∈ Rn1 is globally asymptotically stable for the system ẋ1(t) = A(t)x1(t). Particularly, there exist a continuously
differentiable symmetric positive definite matrix P(t) ∈ Rn1×n1 and a functionµ ∈ K+ with

∫
+∞

0 µ(t)dt = +∞ such that:

Ṗ(t)+ P(t)A(t)+ A′(t)P(t) ≤ −2µ(t)P(t), for all t ≥ 0 (5.13a)
I ≤ P(t), for all t ≥ 0. (5.13b)

The reader should notice that hypothesis (S1) does not imply that 0 ∈ Rn1 is uniformly globally asymptotically stable for
the system ẋ1(t) = A(t)x1(t). Furthermore, we assume that:
(S2) There exists a constantM > 0 such that the following inequalities hold:

sup
t≥0

|B(t)|
√
|P(t)|

µ(t)φ(t − r)
≤ M (5.14a)

sup
t≥0

(
|B(t)|

√
|P(t)|

µ(t)φ(t − r)
max
τ∈[0,t]

φ(τ) |C(τ )|
)
< 1− η. (5.14b)

We will next show that system (5.9) with output Y (t) = x1(t) under hypotheses (S1) and (S2) satisfies the WIOS property
from the input u. First notice that system (5.9) satisfies hypotheses (R1–8) with r1 = r2 = r , τ(t) ≡ r/2, H1(t, x1) := x1(0),
H2(t, Tr−τ(t)(−τ(t))x2) = φ(t − r)x2(t − r), S1 = Y = Rn1 , S2 = Rn2 and U = Rm (d ∈ D is irrelevant for this system).
Next consider the system described by linear FDEs:

x2(t) = C(t)v2(t)+ D(t)x2(t − r)+ G2(t)u(t)
v1(t) ∈ Rn1 , x2(t) ∈ Rn2 , u(t) ∈ Rm, t ≥ 0.

(5.15)

Notice that the function:

W (t, x2) = φ(t) |x2| (5.16)

satisfies (4.31) with ã2(s) := s, β̃(t) := φ(t− r). By virtue of (5.10) and (5.12),W satisfies (4.32) with λ = (1+ε1)(1+ε2)η,
ζ (s) := (1 + ε−11 )s, ζ

u(s) := (1 + ε1)(1 + ε−12 ) s, δ2(t) := φ(t) |C(t)|, δu2(t) := φ(t) |G2(t)| and ε1, ε2 > 0 with
(1+ε1)(1+ε2)η < 1.Moreover, inequalities (4.34) and (4.35) are satisfiedwith ã1(s) := s, p(s) := s,µ(t) := φ(t) and R = 0.
It follows from Theorem 4.7 and Corollary 4.8 that there exist functions σ2 ∈ KL, µ2, c2 ∈ K+, a2, p2, pu2 ∈ N , such that
estimates (4.6) and (4.7) hold with γ2(s) := η−1ε−11 (1+ ε2)

−1s, γ u2 (s) := η
−1ε−12 s, β2(t) := φ(t − r), q

u
2(t) := φ(t) |G2(t)|

for all (t0, x20, (v2, u)) ∈ R+×L∞([−r2, 0];Rn2)×L∞loc(R
+
; S1×U) and t ≥ t0 for the solution x2(t) of (5.15) with initial
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condition Tr2(t0)x2 = x20 corresponding to inputs (v2, u) ∈ L∞loc(R
+
; S2 × U). Moreover, if there exists a constant l > 0

such that φ(t) ≥ l for all t ≥ 0 then the function c2 ∈ K+ is bounded. Next, consider the linear system described by RFDEs:

ẋ1(t) = A(t)x1(t)+
1

φ(t − r)
B(t)v1(t)+ G1(t)u(t)

x1(t) ∈ Rn1 , v1(t) ∈ Rn2 , u(t) ∈ Rm, t ≥ 0
(5.17)

and define the functional for all (t, x1) ∈ R+ × C0([−r, 0];Rn1):

V (t, x1) := x′1(0)P(t)x1(0). (5.18)

It is clear that for every (t0, x10) ∈ R+ × C0([−r, 0];Rn1), (v1, u) ∈ L∞loc(R
+
;Rn2) × L∞loc(R

+
;Rm), the function

V (t) = V (t, Tr(t)x1) is absolutely continuous on [t0,+∞), where x1(t) denotes the solution of (5.17) with initial condition
Tr(t0)x1 = x10 corresponding to inputs (v1, u) ∈ L∞loc(R

+
;Rn2) × L∞loc(R

+
;Rm). Using (5.13a) and completing the

squares, we can argue that the derivative of V (t) = V (t, Tr(t)x1) satisfies the following inequalities a.e. on [t0,+∞) for
all ε3 ∈ (0, 1):

V̇ (t) ≤ −2µ(t)V (t)+
2

φ(t − r)
x′1(t)P(t)B(t)v1(t)+ 2x

′

1(t)P(t)G1(t)u(t)

≤ −(1− ε3)µ(t)V (t)+
1

µ(t)φ2(t − r)
v′1(t)B

′(t)P(t)B(t)v1(t)+
1

ε3µ(t)
u′(t)G′1(t)P(t)G1(t)u(t).

The above linear differential inequality implies the following estimate:

V (t) ≤ V (t0) exp
(
−(1− ε3)

∫ t

t0
µ(s)ds

)
+

∫ t

t0

1
µ(τ)φ2(τ − r)

exp
(
−(1− ε3)

∫ t

τ

µ(s)ds
)
|P(τ )| |B(τ )|2 |v1(τ )|2 dτ

+

∫ t

t0

1
ε3µ(τ)

exp
(
−(1− ε3)

∫ t

τ

µ(s)ds
)
|P(τ )| |G1(τ )|2 |u(τ )|2 dτ

≤ |P(t0)| ‖x10‖2r1 exp
(
(1− ε3)

∫ t0

0
µ(s)ds

)
exp

(
−(1− ε3)

∫ t−t0

0
µ(s)ds

)
+ sup
t0≤τ≤t

|P(τ )| |B(τ )|2

(1− ε3)µ2(τ )φ2(τ − r)
|v1(τ )|

2
+ sup
t0≤τ≤t

|P(τ )| |G1(τ )|2

ε3(1− ε3)µ2(τ )
|u(τ )|2 .

Consequently, by virtue of (5.13b), estimate (4.4) holds with β1(t) :=
√
|P(t)| exp

(
1−ε3
2

∫ t
0 µ(s)ds

)
, σ1(s, t) :=

s exp
(
−
1−ε3
2

∫ t
0 µ(s)ds

)
, γ1(s) = γ u1 (s) := s, δ1(t) :=

√
|P(t)| |B(t)|

√
1−ε3 µ(t)φ(t−r)

and δu1(t) :=
√
|P(t)| |G1(t)|√
ε3(1−ε3) µ(t)

. Moreover, there

exist functions µ1, c1 ∈ K+, g1, p1, pu1 ∈ N , such that estimate (4.5) holds with qu1(t) :=
√
|P(t)| |G1(t)|√
ε3(1−ε3) µ(t)

. Finally, if

β1(t) :=
√
|P(t)| exp

(
1−ε3
2

∫ t
0 µ(s)ds

)
is bounded then the function c1 ∈ K+ is bounded, too.

The previous analysis shows that hypotheses (H1) and (H2) of Theorem 4.1 are satisfied. Inequality (4.8c) holds with
a(s) = s. By virtue of (5.14a), it follows that (4.8a) holds. Using Theorem 4.1 and Remark 4.2(b), we conclude that system
(5.9) satisfies the WIOS property from the input uwith output H(t, x1, x2) := x1(0) if the following condition holds:

1
ε1(1+ ε2)η

√
1− ε3

sup
t≥0

(
|B(t)|

√
|P(t)|

µ(t)φ(t − r)
max
τ∈[0,t]

φ(τ) |C(τ )|
)
< 1.

Thus we conclude that the above condition holds for appropriate ε1, ε2 > 0 and ε3 ∈ (0, 1), if (5.14b) holds. Moreover, if
there exists a constant L > 0 such that

√
|P(t)| exp

(∫ t
0 µ(s)ds

)
+ |C(t)| + 1

φ(t) ≤ L, for all t ≥ 0, then system (5.9) satisfies
the UWIOS property from the input uwith output H(t, x1, x2) := x1(0). Consider for example the system:

ẋ1(t) = − exp(t)x1(t)+ bx2(t − r)+ u(t)
x2(t) = x1(t)+ 2x2(t − r)+ u(t)
x1(t) ∈ R, x2(t) ∈ R, u(t) ∈ R

(5.19)

where b ∈ R with |b| < 1. System (5.19) has the form (5.9) with A(t) = − exp(t), C(t) = 1, B(t) = b, D(t) = 2,
G1(t) = G2(t) = 1. System (5.19) satisfies hypothesis (S1) with P(t) = 1 and µ(t) = exp(t). The function c(t) = 2

satisfies inequality (5.10) for all η ∈ (0, 1). The function φ(t) defined by (5.11) is given by the equation φ(t) =
(
η

2

) t+r
r .



3356 I. Karafyllis et al. / Nonlinear Analysis 71 (2009) 3339–3362

Consequently, hypothesis (S2) will be satisfied if supt≥0
(
|B(t)|

√
|P(t)|

µ(t)φ(t−r)

)
= |b| supt≥0

(
exp

(
−t + t r−1 log

(
2
η

)))
< 1 − η.

The previous inequality is satisfied for an appropriate selection of η ∈ (0, 1) if and only if r > log(2) and |b| < 1−2 exp(−r)
(delay-dependent condition). Therefore, if r > log(2) and |b| < 1−2 exp(−r) then system (5.19) satisfies theWIOSproperty
from the input u (the weight function is δ(t) = K exp(−s t) for appropriate constants K > 0 and s ∈ (0, 1)). Notice that
for system (5.19), it can happen that lim supt→+∞ |x2(t)| = +∞. This feature does not disturb our analysis since the WIOS
property concerns the output of the system, which is Y (t) = x1(t).
It should be noted for system (5.9), that if all matrices A(t), B(t), C(t),D(t),G1(t),G2(t) are constant, D is Schur stable

(|D| < 1 is a case frequently studied in the literature), thematrix P(t) ∈ Rn1×n1 is constant and the functionµ(t) is constant
(i.e., µ(t) ≡ µ > 0), then hypothesis (S2) guarantees UIOS property from the input u. Particularly, in this case hypothesis
(S2) takes the form:

|C | |B|
√
|P| < µ (1− |D|) .

The above condition is in complete agreement with the Linear Matrix Inequalities proposed in [15,24]. C

6. Conclusions

In this work stability results for systems described by coupled Retarded Functional Differential Equations (RFDEs) and
Functional Difference Equations (FDEs) are presented. The motivation for the study of systems described by coupled RFDEs
and FDEs is strong, since such systems can be used to study generalized solutions of systems described by neutral functional
differential equations and systems described by hyperbolic partial differential equations. The obtained stability results
are based on the observation that the composite system can be regarded as the feedback interconnection of a subsystem
described by RFDEs and a subsystemdescribed by FDEs. Recent small-gain results and Lyapunov-like characterizations of the
Weighted Input-to-Output Stability property for systems described by RFDEs and FDEs are employed. Illustrating examples
are provided, which show the applicability of the obtained stability results.
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Appendix

Proof of Fact 1 in the proof of Theorem 3.3. Without loss of generality wemay assume that the function a ∈ K∞ involved
in hypothesis (P2) satisfies a(s) ≥ s for all s ≥ 0 and that the function β ∈ K+ involved in hypothesis (P2) is non-decreasing
with β(t) ≥ 1 for all t ≥ 0. Let ε > 0, T ∈ R+ and define:

δ̃(ε, T ) :=
1

β(T + 1)
a−1

exp
(
−L̃(ε, T )− 1

)
4β(T + 1)

a−1
(ε
9

) (A.1)

where L̃(ε, T ) is the constant that corresponds to the bounded sets I := [0, T + 1] ⊂ R+, Ω ={
x1 ∈ C0 ([−r1, 0];Rn1) : ‖x1‖r1 ≤ ε

}
×
{
x2 ∈ L∞ ([−r2, 0];Rn2) : ‖x2‖r2 ≤ ε

}
× {u ∈ U : |u| ≤ ε} and satisfies (2.2).

Let (t0, x10, x20) ∈ [0, T ] × C0 ([−r1, 0];Rn1) × L∞ ([−r2, 0];Rn2), (u, d) ∈ L∞loc
(
R+;U

)
× L∞loc

(
R+;D

)
with

‖x10‖r1 + ‖x20‖r2 + supt≥0 |u(t)| < δ̃ (but otherwise arbitrary). By virtue of Theorem 3.1 there exist tmax ∈ (t0,+∞] and a
unique pair of mappings x1 ∈ C0 ([t0 − r1, tmax);Rn1), x2 ∈ L∞loc ([t0 − r2, tmax);R

n2) with Tr1(t0)x1 = x10, Tr2(t0)x2 = x20,
x1 being absolutely continuous on [t0, tmax) such that (2.1a) holds a.e. for t ∈ [t0, tmax) and (2.1b) holds for all t ∈ (t0, tmax).
In addition, if tmax < +∞ then for everyM > 0 there exists t ∈ [t0, tmax)with

∥∥Tr1(t)x1∥∥r1 > M .
Define the set:

A =
{
t ∈ [t0, tmax) :

∥∥Tr1(t)x1∥∥r1 > 1
β(T + 1)

a−1
(ε
9

)}
. (A.2)

We distinguish two cases:

(1) A ∩ [t0, t0 + h] = ∅;
(2) A ∩ [t0, t0 + h] 6= ∅.

Case 1:
We will show that (3.1) holds in this case with δ̃ := δ̃(ε, T ) > 0 as defined by (A.1). If A ∩ [t0, t0 + h] = ∅, where

h := h(T ) = min ( 1;min { τ(s) : s ∈ [0, T + 1]} ), then x1 is bounded on [t0, t0+h] and consequentlywe have tmax > t0+h.
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Moreover, by virtue of hypothesis (P2) we have for all t ∈ [t0, t0 + h]:

|x2(t)| ≤ a
(
β(t)

∥∥Tr1(t)x1∥∥r1)+ a (β(t) ∥∥Tr2−τ(t)(t − τ(t))x2∥∥r2−τ(t))+ a (β(t) |u(t)|) . (A.3)

Since A ∩ [t0, t0 + h] = ∅ (which implies a
(
β(t)

∥∥Tr1(t)x1∥∥r1) ≤ ε
9 for all t ∈ [t0, t0 + h]; see (A.2)), ‖x20‖r2 < δ̃ (which

implies a
(
β(t)

∥∥Tr2−τ(t)(t − τ(t))x2∥∥r2−τ(t)) ≤ ε
9 for all t ∈ [t0, t0 + h]; see (A1)) and supt≥0 |u(t)| < δ̃ (which implies

a (β(t) |u(t)|) ≤ ε
9 for all t ∈ [t0, t0 + h]; see (A.1)), we obtain from (A.3):

|x2(t)| ≤
ε

3
, ∀t ∈ [t0, t0 + h]. (A.4)

Inequality (A.4) in conjunction with the fact that ‖x20‖r2 < δ̃ ≤ ε
3 and the assumption A ∩ [t0, t0 + h] = ∅ (which implies∥∥Tr1(t)x1∥∥r1 ≤ a (β(t) ∥∥Tr1(t)x1∥∥r1) ≤ ε

9 for all t ∈ [t0, t0 + h]) shows that (3.1) holds in this case.

Case 2:
We will show that this case cannot happen by contradiction. Assume that A ∩ [t0, t0 + h] 6= ∅ and define t1 = inf A. By

continuity of the map t →
∥∥Tr1(t)x1∥∥r1 and since ‖x10‖r1 < δ̃ < 1

β(T+1)a
−1
(
ε
9

)
, it follows that t1 > t0. Hence, by continuity

of the map t →
∥∥Tr1(t)x1∥∥r1 and definition (A.2) we have ∥∥Tr1(t1)x1∥∥r1 = 1

β(T+1)a
−1
(
ε
9

)
. Evaluating the derivative of the

absolutely continuous map |x1(t)|2 a.e. on [t0, t1] in conjunction with hypothesis (P4) gives:

d
dt
|x1(t)|2 = 2x′1(t)f1(t, d(t), Tr1(t)x1, Tr2−τ(t)(t − τ(t))x2, u(t))

≤ 2L̃
∥∥Tr1(t)x1∥∥2r1 + 2x′1(t)f1(t, d(t), 0, Tr2−τ(t)(t − τ(t))x2, u(t)) (A.5)

where L̃ is the constant that corresponds to the bounded sets I := [0, T + 1] ⊂ R+,Ω = {x1 ∈ C0([−r1, 0];Rn1) : ‖x1‖r1
≤ ε}×

{
x2 ∈ L∞ ([−r2, 0];Rn2) : ‖x2‖r2 ≤ ε

}
×{u ∈ U : |u| ≤ ε} and satisfies (2.2). Inequality (A.5) in conjunctionwith

hypothesis (P2) and the facts that ‖x20‖r2 < δ̃ (which implies a
(
β(t)

∥∥Tr2−τ(t)(t − τ(t))x2∥∥r2−τ(t)) ≤ exp(−L̃(ε,T )−1)
4β(T+1) a−1

(
ε
9

)
for all t ∈ [t0, t0 + h]; see (A.1)) and supt≥0 |u(t)| < δ̃ (which implies a (β(t) |u(t)|) ≤ exp(−L̃(ε,T )−1)

4β(T+1) a−1
(
ε
9

)
for all

t ∈ [t0, t0 + h]; see (A.1)), gives:

d
dt
|x1(t)|2 ≤ 2(L̃+ 1)

∥∥Tr1(t)x1∥∥2r1 + exp
(
−2L̃− 2

)
4β2(T + 1)

(
a−1

(ε
9

))2
, a.e. on [t0, t1]. (A.6)

Integrating both sides of (A.6) we get for all t ∈ [t0, t1]:

|x1(t)|2 ≤ |x1(t0)|2 + 2(L̃+ 1)
∫ t

t0

∥∥Tr1(s)x1∥∥2r1 ds+ exp
(
−2L̃− 2

)
4β2(T + 1)

(
a−1

(ε
9

))2
. (A.7)

The following inequality is a direct consequence of (A.7) and holds for all t ∈ [t0, t1]:

∥∥Tr1(t)x1∥∥2r1 ≤ ∥∥Tr1(t0)x1∥∥2r1 + 2(L̃+ 1)
∫ t

t0

∥∥Tr1(s)x1∥∥2r1 ds+ exp
(
−2L̃− 2

)
4β2(T + 1)

(
a−1

(ε
9

))2
. (A.8)

Since the map t →
∥∥Tr1(t)x1∥∥r1 is continuous and (A.8) holds on [t0, t1], we may apply the Gronwall–Bellman lemma. We

obtain for all t ∈ [t0, t1]:∥∥Tr1(t)x1∥∥r1 ≤ exp ((L̃+ 1)) ∥∥Tr1(t0)x1∥∥r1 + 1
2β(T + 1)

a−1
(ε
9

)
. (A.9)

Since ‖x10‖r1 < δ̃ (which implies
∥∥Tr1(t0)x1∥∥r1 ≤ exp(−L̃−1)

4β(T+1) a
−1
(
ε
9

)
) we get from (A.9):

∥∥Tr1(t1)x1∥∥r1 ≤ 3
4β(T + 1)

a−1
(ε
9

)
<

1
β(T + 1)

a−1
(ε
9

)
. (A.10)

Inequality (A.10) contradicts the equality
∥∥Tr1(t1)x1∥∥r1 = 1

β(T+1)a
−1
(
ε
9

)
. Thus the case A ∩ [t0, t0 + h] 6= ∅ cannot happen.

The proof is complete. C
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Definition of the notion of Weighted Input-to-Output Stability (See Also [35,32]). Consider a control system Σ :=

(X,Y,MU ,MD, φ, π,H) with outputs and the BIC property and for which 0 ∈ X is a robust equilibrium point from the
input u ∈ MU (in the sense described in [35]). Suppose thatΣ is Robustly Forward Complete from the input u ∈ MU (in the
sense described in [35]).
* If there exist functions σ ∈ KL, β, δ ∈ K+, γ ∈ N such that the following estimate holds for all u ∈ MU , (t0, x0, d) ∈

R+ ×X×MD and t ≥ t0:

‖H(t, φ(t, t0, x0, u, d), u(t))‖Y ≤ σ (β(t0) ‖x0‖X , t − t0)+ sup
t0≤τ≤t

γ (δ(τ ) ‖u(τ )‖U) (A.11)

then we say that Σ satisfies the Weighted Input-to-Output Stability (WIOS) property from the input u ∈ MU with gain
γ ∈ N and weight δ ∈ K+. Moreover, if β(t) ≡ 1 then we say that Σ satisfies the Uniform Weighted Input-to-Output
Stability (UWIOS) property from the input u ∈ MU with gain γ ∈ N and weight δ ∈ K+.
* If there exist functions σ ∈ KL, β ∈ K+, γ ∈ N such that the following estimate holds for all u ∈ MU , (t0, x0, d) ∈

R+ ×X×MD and t ≥ t0:

‖H(t, φ(t, t0, x0, u, d), u(t))‖Y ≤ σ (β(t0) ‖x0‖X , t − t0)+ sup
t0≤τ≤t

γ (‖u(τ )‖U) (A.12)

then we say that Σ satisfies the Input-to-Output Stability (IOS) property from the input u ∈ MU with gain γ ∈ N .
Moreover, if β(t) ≡ 1 then we say that Σ satisfies the Uniform Input-to-Output Stability (UIOS) property from the input
u ∈ MU with gain γ ∈ N .
For the special case of the identity output mapping, i.e., H(t, x, u) := x, the (Uniform) (Weighted) Input-to-Output

Stability property from the input u ∈ MU is called (Uniform) (Weighted) Input-to-State Stability property from the input
u ∈ MU .
Finally, if no external input is present (U = {0}) then we say that Σ is (Uniformly) Robustly Globally Asymptotically

Output Stable ((U)RGAOS). For the special case of the identity output mapping, i.e., H(t, x, u) := x, we say that Σ is
(Uniformly) Robustly Globally Asymptotically Stable ((U)RGAS).

Proof of Theorem 4.3. Let arbitrary (t0, x10, (v1, u, d)) ∈ R+ × C0([−r1, 0];Rn1) × L∞loc(R
+
; S2 × U × D) and consider

the solution x1(t) of (4.2) with initial condition Tr1(t0) = x10 corresponding to inputs (v1, u, d) ∈ L∞loc(R
+
; S2 × U × D). By

virtue of Theorem 3.5 in [33], implication (3.14) guarantees the existence of a function σ ∈ KLwith σ(s, 0) = s for all s ≥ 0,
such that the following estimate holds for all t ≥ t0 for which the solution exists:

V (t, Tr1(t)x1) ≤ max
{
σ
(
a2
(
β(t0) ‖x10‖r1

)
, t − t0

)
, sup
t0≤τ≤t

σ (ζ (δ1(τ ) |v1(τ )|) , t − τ) ,

sup
t0≤τ≤t

σ
(
ζ u
(
δu1(τ ) |u(τ )|

)
, t − τ

)}
. (A.13)

We next distinguish the following cases:
(A) If (4.15a) holds then, by exploiting the left-hand-side inequality (4.14) and the fact σ ∈ KLwith σ(s, 0) = s for all s ≥ 0,
we obtain from (A.13) the following estimate, which holds for all t ≥ t0:

a1
(∣∣H1(t, Tr1(t)x1)∣∣)
≤ max

{
σ
(
a2
(
β(t0) ‖x10‖r1

)
, t − t0

)
, sup
t0≤τ≤t

ζ (δ1(τ ) |v1(τ )|) , sup
t0≤τ≤t

ζ u
(
δu1(τ ) |u(τ )|

)}
. (A.14)

Estimate (A.14) implies that estimate (4.4) holds with β1(t) ≡ β(t), γ1(s) := a−11 (ζ (s)), γ u1 (s) := a
−1
1 (ζ u(s)).

(B) If (4.15b) holds and δ1(t) ≡ 1 then Theorem 3.5 in [33] directly implies that system (4.2) is Robustly Forward Complete
from the input (u, v1) (see [31]) and consequently for all (t0, x10, (v1, u, d)) ∈ R+×C0([−r1, 0];Rn1)×L∞loc(R

+
; S2×U×D)

the solution x1(t) of (4.2) with initial condition Tr1(t0)x1 = x10 corresponding to inputs (v1, u, d) ∈ L∞loc(R
+
; S2 × U × D)

exists for all t ≥ t0. By exploiting inequality (4.15b) and the fact σ ∈ KLwith σ(s, 0) = s for all s ≥ 0, we obtain from (A.13)
the following estimate, which holds for all t ≥ t0:

µ(t) |x1(t)| ≤ p−1(2R)+max
{
p−1

(
2a
(
β(t0) ‖x10‖r1

))
,

sup
t0≤τ≤t

p−1 (2ζ (|v1(τ )|)) , sup
t0≤τ≤t

p−1
(
2ζ u

(
δu1(τ ) |u(τ )|

))}
. (A.15)

By virtue of Corollary 10 and Remark 11 in [39] there exists κ ∈ K∞ such that p−1 (2a (rs)) ≤ κ(r)κ(s) for all (r, s) ∈
(
R+
)2.

Consequently, we obtain from (A.15):

µ(t) |x1(t)| ≤ p−1(2R)+
1
2
(κ (β(t0)))2
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+ max
{
1
2

(
κ
(
‖x10‖r1

))2
, sup
t0≤τ≤t

p−1 (2ζ (|v1(τ )|)) , sup
t0≤τ≤t

p−1
(
2ζ u

(
δu1(τ ) |u(τ )|

))}
which implies:

|x1(t)| ≤
1

2µ2(t)
+

(
p−1(2R)+

1
2
(κ (β(t0)))2

)2
+ max

{(
κ
(
‖x10‖r1

))4
, sup
t0≤τ≤t

(
p−1 (2ζ (|v1(τ )|))

)2
, sup
t0≤τ≤t

(
p−1

(
2ζ u

(
δu1(τ ) |u(τ )|

)))2}
. (A.16)

Estimate (A.16) shows that the following estimate holds for all t ≥ t0:∥∥Tr1(t)x1∥∥r1 ≤ 1
2min{µ2(τ ) : τ ∈ [0, t]}

+

(
p−1(2R)+

1
2
(κ (β(t0)))2

)2
+ max

{(
κ
(
‖x10‖r1

))4
+ ‖x10‖r1 , sup

t0≤τ≤t

(
p−1 (2ζ (|v1(τ )|))

)2
, sup
t0≤τ≤t

(
p−1

(
2ζ u

(
δu1(τ ) |u(τ )|

)))2}
.

Let φ ∈ K+. Multiplying the above inequality by φ(t) and using repeatedly the inequality ab ≤ 1
2a
2
+
1
2b
2 we get:

φ(t)
∥∥Tr1(t)x1∥∥r1 ≤ φ(t)

2min{µ2(τ ) : τ ∈ [0, t]}
+ φ2(t)+

1
2

(
p−1(2R)+

1
2
(κ (β(t0)))2

)4
+ max

{((
κ
(
‖x10‖r1

))4
+ ‖x10‖r1

)2
, sup
t0≤τ≤t

(
p−1 (2ζ (|v1(τ )|))

)4
, sup
t0≤τ≤t

(
p−1

(
2ζ u

(
δu1(τ ) |u(τ )|

)))4}
.

Using the fact that a+ b ≤ max {2a, 2b} for all a, b ≥ 0 in conjunction with the above inequality gives:

φ(t)
∥∥Tr1(t)x1∥∥r1 ≤ max

{
φ(t)

min{µ2(τ ) : τ ∈ [0, t]}
+ 2φ2(t)

+

(
p−1(2R)+

1
2
(κ (β(t0)))2

)4
, 2
((
κ
(
‖x10‖r1

))4
+ ‖x10‖r1

)2
,

sup
t0≤τ≤t

2
(
p−1 (2ζ (|v1(τ )|))

)4
, sup
t0≤τ≤t

2
(
p−1

(
2ζ u

(
δu1(τ ) |u(τ )|

)))4}
. (A.17)

Notice that if (4.17) holds and φ ∈ K+ is bounded then estimate (A.17) shows that (4.16) holds for appropriateµ1, c1 ∈ K+,
g1, p1, pu1 ∈ N with c1 ∈ K+ being bounded.
Let γ (t) = φ(t)

min{µ2(τ ):τ∈[0,t]}
+ 2φ2(t). Define:

a(T , s) := max {γ (t0 + h)− γ (t0) : h ∈ [0, s], t0 ∈ [0, T ]} . (A.18)

Clearly, definition (A.18) implies that for each fixed s ≥ 0, a(·, s) is non-decreasing and for each fixed T ≥ 0, a(T , ·) is
non-decreasing. Furthermore, continuity of γ guarantees that for every T ≥ 0, lims→0+ a(T , s) = a(T , 0) = 0. It turns out
from Lemma 3.2 in [31], that there exist functions ζ ∈ K∞ and q ∈ K+ such that

a(T , s) ≤ ζ (q(T )s), ∀(T , s) ∈
(
R+
)2
. (A.19)

Combining definition (A.18) with inequality (A.19), we conclude that for all t0 ≥ 0 and t ≥ t0, it holds that:

γ (t) ≤ γ (t0)+ ζ (q(t0) (t − t0)) ≤ γ (t0)+ ζ
(
1
2
q2(t0)+

1
2
(t − t0)2

)
≤ γ (t0)+ ζ

(
q2(t0)

)
+ ζ

(
(t − t0)2

)
≤ max

{
2γ (t0)+ 2ζ

(
q2(t0)

)
; 2ζ

(
(t − t0)2

)}
.

The above inequality in conjunction with (A.17) and definition γ (t) = φ(t)
min{µ2(τ ):τ∈[0,t]}

+ 2φ2(t) implies that (4.16) holds
for appropriate µ1, c1 ∈ K+, g1, p1, pu1 ∈ N . The proof is complete. C

Proof of Proposition 4.5. Let arbitrary (t0, x10, (v1, u, d)) ∈ R+ × C0([−r1, 0];Rn1)×L∞loc(R
+
; S2 × U × D) and consider

the solution x1(t) of (4.2) with initial condition Tr1(t0)x1 = x10 corresponding to inputs (v1, u, d) ∈ L∞loc(R
+
; S2×U×D). Let

tmax > t0 be the maximal existence time of the solution. It follows from (4.20) and Lemma 4.6 that there exists a continuous
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function σ of class KL, with σ(s, 0) = s for all s ≥ 0 such that for all t ∈ [t0, tmax)we have:

V (t, x1(t)) ≤ max


σ (V (t0, x1(t0)), t − t0) ; sup

t0≤s≤t
σ (ζ (δ1(s) |v1(s)|) , t − s)

sup
t0≤s≤t

σ

(
a
(
sup

θ∈[−r1,0]
V (s+ θ, x1(s+ θ))

)
, t − s

)
; sup
t0≤s≤t

σ
(
ζ u
(
δu1(s) |u(s)|

)
, t − s

)
 . (A.20)

An immediate consequence of estimate (A.20) and the fact that σ(s, 0) = s for all s ≥ 0 is the following estimate for all
t ∈ [t0, tmax):

sup
θ∈[−r1,0]

V (t + θ, x1(t + θ)) ≤ max


σ̄

(
sup

θ∈[−r1,0]
V (t0 + θ, x1(t0 + θ)), t − t0

)
; sup
t0≤s≤t

ζ (δ1(s) |v1(s)|)

a
(
sup
t0≤s≤t

sup
θ∈[−r1,0]

V (s+ θ, x1(s+ θ))
)
; sup
t0≤s≤t

ζ u
(
δu1(s) |u(s)|

)
 (A.21)

where σ̄ (s, t) := s for t ∈ [0, r] and σ̄ (s, t) := σ(s, t − r) for t > r . Using the fact that a(s) < s for all s > 0 and estimate
(A.21) it may be shown that:

sup
θ∈[−r1,0]

V (t + θ, x1(t + θ))

≤ max
{
sup

θ∈[−r1,0]
V (t0 + θ, x1(t0 + θ)); sup

t0≤s≤t
ζ (δ1(s) |v1(s)|) ; sup

t0≤s≤t
ζ u
(
δu1(s) |u(s)|

)}
, t ∈ [t0, tmax). (A.22)

Combining (A.21) with (A.22) we obtain for all t ∈ [t0, tmax):

sup
θ∈[−r1,0]

V (t + θ, x1(t + θ))

≤ inf
t0≤ξ≤t

max


σ̄

(
sup

θ∈[−r1,0]
V (t0 + θ, x1(t0 + θ)), t − ξ

)
; a
(
sup
ξ≤s≤t

sup
θ∈[−r1,0]

V (s+ θ, x1(s+ θ))
)

sup
t0≤s≤t

ζ (δ1(s) |v1(s)|) ; sup
t0≤s≤t

ζ u
(
δu1(s) |u(s)|

)
 . (A.23)

Theorem 1 in [40] in conjunction with inequality (A.23) implies the existence of σ̃ ∈ KL such that:

sup
θ∈[−r1,0]

V (t + θ, x1(t + θ)) ≤ max


σ̃

(
sup

θ∈[−r1,0]
V (t0 + θ, x1(t0 + θ)), t − t0

)
sup
t0≤s≤t

ζ (δ1(s) |v1(s)|) ; sup
t0≤s≤t

ζ u
(
δu1(s) |u(s)|

)
 , ∀t ∈ [t0, tmax). (A.24)

We next distinguish the following cases:
(A) If (4.21a) holds and there exist functions µ1, c1, φ ∈ K+, g1, p1, pu1 ∈ N , such that for every (t0, x10, (v1, u, d)) ∈

R+×C0([−r1, 0];Rn1)×L∞loc(R
+
; S2×U×D) the solution x1(t) of (4.2)with initial condition Tr1(t0)x1 = x10 corresponding

to inputs (v1, u, d) ∈ L∞loc(R
+
; S2 × U × D) exists for all t ≥ t0 and satisfies (4.16), then we clearly have tmax = +∞.

Inequalities (4.19) and (4.21a) in conjunction with estimate (A.24), guarantee that there exist a function σ1 ∈ KL, such that
estimate (4.4) holds with γ1(s) := a−11 (ζ (s)), γ u1 (s) := a

−1
1 (ζ u(s)), β1(t) := max0≤τ≤t+r1 β(τ), for all (t0, x10, (v1, u, d)) ∈

R+×C0([−r1, 0];Rn1)×L∞loc(R
+
; S2×U×D) and t ≥ t0 for the solution x1(t) of (4.2) with initial condition Tr1(t0)x1 = x10

corresponding to inputs (v1, u, d) ∈ L∞loc(R
+
; S2 × U × D).

(B) If (4.21b) holds and δ1(t) ≡ 1, then using (4.19) and (4.21b), we get for all t ∈ [t0, tmax):∥∥Tr1(t)x1∥∥r1 ≤ 1
2 min
0≤τ≤t+r

µ2(τ )
+
(
p−1(2R)

)2
+max

{(
p−1

(
2a2

(
max

0≤τ≤t0+r1
β(τ) ‖x10‖r1

)))2
;

sup
t0≤s≤t

(
p−1 (2ζ (|v1(s)|))

)2
; sup
t0≤s≤t

(
p−1

(
2ζ u

(
δu1(s) |u(s)|

)))2 }
. (A.25)

It follows from estimate (A.25) and a simple contradiction argument that for all (t0, x10, (v1, u, d)) ∈ R+ ×

C0([−r1, 0];Rn1)×L∞loc(R
+
; S2 × U × D) the solution x1(t) of (4.2) with initial condition Tr1(t0)x1 = x10 corresponding to

inputs (v1, u, d) ∈ L∞loc(R
+
; S2 × U × D) exists for all t ≥ t0, i.e., tmax = +∞. From this point on, the proof continues in

exactly the same way as in Case B in the proof of Theorem 4.3. C

Proof of Theorem 4.7. By virtue of Lemma 4.4 in [41] there exists σ ∈ KL satisfying (4.28a) and (4.28b). Let arbitrary
(t0, x20, (v2, u, d)) ∈ R+ ×L∞([−r2, 0];Rn2)×L∞loc(R

+
; S1 × U × D) and consider the solution x2(t) of (4.3) with initial
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condition Tr2(t0)x2 = x20 corresponding to inputs (v2, u, d) ∈ L∞loc(R
+
; S1 × U × D). Define the sequence {ti}∞i=0:

ti+1 = ti + g(ti). (A.26)

Working exactly as in the proof of Theorem 3.1, it can be shown by contradiction that lim ti = +∞. Moreover, using
induction, (4.28b), inequality (4.25), as well as the fact that σ (σ(s, t), h) = σ(s, t + h) for all s, t, h ≥ 0, we get for all
i = 0, 1, 2, . . .:

V (ti, Tr2(ti)x2) ≤ max
{
σ (V (t0, x20), ti − t0) , sup

t0≤τ≤ti
ζ (δ2(τ ) |v2(τ )|) , sup

t0≤τ≤ti
ζ u
(
δu2(τ ) |u(τ )|

)}
. (A.27)

Using (A.27), (4.28b), inequality (4.25), as well as the fact that σ (σ(s, t), h) = σ(s, t+h) for all s, t, h ≥ 0, we can establish
that the following estimate holds for all t 6∈ {ti}∞i=0:

V (t, Tr2(t)x2) ≤ max
{
σ (V (t0, x20), t − t0) , sup

t0≤τ≤t
ζ (δ2(τ ) |v2(τ )|) , sup

t0≤τ≤t
ζ u
(
δu2(τ ) |u(τ )|

)}
. (A.28)

By virtue of (A.27) and (A.28), we conclude that (A.28) holds for all t ≥ t0. Next we distinguish the cases:
(A) If (4.29a) holds, then by combining (A.28) with (4.24) and (4.29a), we conclude that estimate (4.6) holds with

γ2(s) := a−11 (ζ (s)), γ u2 (s) := a
−1
1 (ζ u(s)) and σ2 (s, t) = a−11 (σ (a2(s), t)).

(B) If (4.29b) holds and δ2(t) ≡ 1, then estimate (A.28) in conjunction with (4.24) and (4.29b) implies the following
estimate:

p (µ(t) |x2(t)|) ≤ R+max
{
a2
(
β(t0) ‖x20‖r2

)
, sup
t0≤τ≤t

ζ (|v2(τ )|) , sup
t0≤τ≤t

ζ u
(
δu2(τ ) |u(τ )|

)}
.

From this point on, the proof continues in exactly the same way as in Case B in the proof of Theorem 4.3. C
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