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Robust global stabilisability by means of sampled-data control with positive sampling rate
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This work proposes a notion of robust reachability of one set from another set under constant control. This
notion is used to construct a control strategy, involving sequential set-to-set reachability, which guarantees
robust global stabilisation of non-linear sampled data systems with positive sampling rate. Sufficient conditions
for robust reachability of one set from another under constant control are also provided. The proposed method
is illustrated through a number of examples, including the study of the sampled-data stabilisation problem of the

chemostat.
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1. Introduction

Given the finite-dimensional continuous-time system:

X(0) = f(d(®), x(1), u(1))

1
dneDcC®R, x(t)eN', u(r)eUcCR" M

where the vector field /D x %" x U— R" is contin-
uous, u(f) represents the control input and d(r)
unknown disturbances or model uncertainty.
Consider now a state feedback law u=k(x) to be
applied to system (1) in discrete time, under zero-order
hold with sampling period /:

u(t) = k(x(t;)) on the interval [t;, 7; + h),
i=0,1,2,... (2)

The resulting closed-loop system is the following
hybrid system:

xX(1) = f(d(0), x(1), k(x(z))), 1 € [T, Tig1)
T =t+h i=0,1,2,... Q)

and the question is how to select the state feedback
function k(x) for desirable stability characteristics of (3).

There is a large body of literature concerning the
above very important and very challenging problem
of designing sampled-data feedback stabilisers.
In particular, the following lines of attack have
been pursued to derive stability results (see also the
detailed discussion in review article Monaco and
Normand-Cyrot (2001)):

e making use of numerical approximations
of the solution of the open-loop system
e.g. in the work of Nesic, Teel and others

(Nesic, Teel and Kokotovic 1999; Nesic, Teel
and Sontag 1999; Nesic and Teel 2001; Laila,
Nesic and Teel 2002; Nesic and Angeli 2002;
Nesic and Laila 2002; Grune and Nesic 2003;
Zaccarian, Teel and Nesic 2003; Kellett, Shim
and Teel 2004; Nesic and Teel 2004; Laila and
Astolfi  2005; Nesic and Grune 2005).
The results obtained in this way lead to
a systematic procedure for the construction
of practical, semi-global feedback stabilisers
and provide a list of possible reasons that
explain the occasional failure of sampled-data
control mechanisms. Recent research takes
into account performance and robustness
issues as well (Grune and Nesic 2003; Kellet
et al. 2004; Khalil 2004; Nesic and Teel 2004).
exploiting special characteristics of the system
such as homogeneity (Grune 1999, 2000),
global Lipschitz conditions (Herrmann,
Spurgeon and Edwards 1999) or linear struc-
ture with uncertainties (Bernstein and Hollot
1989).

making use of Linear Matrix Inequalities
(Ye, Michel and Hou 1998; Mancilla-
Aguilar, Garcia and Troparevsky 2000; Hu
and Michel 2000a, b), Lyapunov inequalities
(Carnevale, Teel and Nesic 2007) or small-
gain theorems (Karafyllis and Jiang 2007) in
the context of hybrid systems.

considering the closed-loop system as
a discrete-time system (see for instance
Monaco and Normand-Cyrot  (1988);
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Artstein and Weiss (2005), as well as Monaco
and Normand-Cyrot (1988) which establishes
a unified representation for sampled-data
systems and discrete-time systems with analy-
tic dynamics). Recent work has established
results that characterise the inter-sample
behaviour of the solutions based on the
behaviour of the solution of the discrete-time
system (Nesic et al. 1999).

e considering the closed-loop system under zero
order-hold as a time-delay system. This
approach was recently explored in the context
of linear systems theory (Fridman, Seuret and
Richard 2004; Fridman, Shaked and Suplin
2005) and non-linear systems theory
(Karafyllis and Kravaris 2007).

It should be mentioned here that the possibility of
using state-dependent sampling period /(x) > 0 has
recently emerged in the literature (see the classical
works in Clarke, Ledyaev, Sontag and Subbotin
(1997); Sontag (1999) and the links with sampled-
data stabilisability given in Grune (1999) in connection
with the study of asymptotic controllability of non-
linear systems. Notice that the main results in Clarke
et al. (1997); Sontag (1999) (and Theorem 9.3.1 in
Grune (1999)) lead to semi-global practical stabilisa-
tion for the case of sampling schedules with positive
sampling rate.

It is important to point out that the above very
important research results do not provide conditions
for global asymptotic stability for general non-linear
sampled-data systems (usually only semi-global prac-
tical stability properties are established or global
stability for limited classes of systems; exceptions are
the articles Carnevale et al. (2007); Karafyllis and Jiang
(2007); Karafyllis and Kravaris (2007).

The goal of the present work is the development
of a design methodology to guarantee robust
global asymptotic stability for system (3), where the
sampled-data feedback is applied with zero-order
hold and positive sampling rate. Our proposed
approach has been motivated by the following
considerations:

(1) When a continuous-time controller is designed
for the continuous-time system (1) and subse-
quently is implemented under sample-and-
hold discretisation, the sampled-data control
system does not inherit the properties of the
continuous-time control system. For example,
global closed-loop asymptotic stability in
continuous time will not, in general, be
preserved under the emulation controller:

closed-loop stability will, in general, become
local.

(i1) If the foregoing emulation design or any other
sampled-data controller design guarantees
a domain of attraction that is too small in
size for a particular application, the immediate
question that arises concerns the possibility of
extending the control strategy for the purpose
of enlargement of the domain of attraction.
When the system’s initial condition is outside
the guaranteed domain of attraction under
a given controller, is it possible to find
a strategy that can bring the system inside?

To be able to address the latter question, some
intuitive considerations would be helpful, before
a mathematical formulation is developed. In order to
drive the system’s state to the given target set, the
simplest choice of control input that could be tried is
constant control. If constant control cannot take the
system inside the target set, it will still be able to take it
somewhere else. From there, another constant value of
the control input can be tried out and, if it still does not
hit the target, still another constant control input, etc.,
until the target set is reached.

The intuitive idea of using different feedback laws
in different regions of the state space has appeared
recently in the literature. For example, in Behrens and
Wirth (2001) the authors exploit null asymptotic
controllability of the system and its linearisation in
order to obtain a piecewise constant patchy feedback
(applied continuously; not under zero-order hold) that
brings all Caratheodory (not Filippov) solutions into
a feedback invariant neighbourhood of the origin and
a sampled-data feedback (applied in the feedback
invariant neighbourhood of the origin) which guaran-
tees local exponential stability. Reachability properties
of the control system were also exploited in Section
12.1 (Feedback Stabilisation of Regular Systems) of
the book Colonius and Kliemann (2000; pp. 434—449)
in order to construct measurable feedback laws which
are applied continuously (not under zero-order hold)
and guarantee global practical stabilisation (see also
the references of Colonius and Kliemann (2000)).

The present work will provide a mathematical
formulation of the foregoing intuitive idea of sequen-
tial reachability from one region of state space to
another, ultimately reaching the target attractor.
The goal will be to develop and prove conditions
under which this intuitive idea will lead to robust
global asymptotic stability for the closed-loop system
(Theorem 3.1). In this direction, a new notion of
reachability of one set from another under constant
control will be proposed (Definition 2.4) and
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subsequently, this notion will be utilised to establish
the main stability results that involve a chain of
reachable sets. Simple sufficient conditions to test
reachability of one set from another will also be
derived (Lemma 2.7 and Lemma 2.9). Finally, the
proposed method will be applied to a number of
illustrative examples. Example 4.1 will study the
simplified Moore—Greitzer model of a jet engine with
no stall, which was recently studied in Nesic and Grune
(2005). Example 4.2 considers an important class of
one-dimensional control systems, where a globally
stabilising non-linear sampled-data feedback law is
constructed by means of Theorem 3.1. The important
class of bilinear systems will be studied in Example 4.3,
where the results of Theorem 3.1 lead to a concrete
sampled-data stabilisation algorithm by means of
bounded feedback. The problem of sampled-data
stabilisation of the chemostat will be solved in
Example 4.4. The resulting control algorithm will not
rely on any monotonicity assumption on the specific
growth rate (Smith and Waltman 1995; Karafyllis,
Kravaris, Syrou and Lyberatos 2008) and is directly
applicable for practical implementation.

Whenever applicable, the proposed control method
has very desirable features, including that

e it guarantees global asymptotic stability for
the closed-loop system,

e it guarantees robustness to perturbations of
the sampling schedule,

e it provides means to determine the maximum
allowable sampling period,

e is not limited to special cases where the
solution map is available,

e is not limited to special cases where the non-
linear term is homogeneous or globally
Lipschitz.

No other existing method can guarantee all of the
above at the same time.

On the other hand, even though the proposed
methodology is conceptually very simple, its applica-
tion to a specific control problem requires further
work, based on knowledge of the dynamics of the
open-loop system under constant input (not necessarily
the solution map), in order to come up with a concrete
control strategy in a specific application. This will be
illustrated in the examples of §4, including the two
important engineering applications of a jet engine
system and the chemostat.

Notations: Throughout this article we adopt the
following notations:

e For a vector x e X" we denote by |x| its usual
Euclidean norm and by x’ its transpose.

e We say that a non-decreasing continuous
function y: T — RT is of class N if y(0)=0.
We say that a function p: %" — R is positive
definite if p(0)=0 and p(s) > 0 for all s > 0.
For the definitions of the classes K and K,
see Khalil (1996; p. 135). By KL we denote the
set of all continuous functions o=o(s,1):
RY xRT — R with the properties: (i) for
each >0 the mapping o(-,f) is of class K;
(i1) for each s> 0, the mapping o(s, ) is non-
increasing with lim,_, ;o o(s, £) = 0.

o Let DC 9 be a non-empty set. By L2 (%+; D)
we denote the class of all Lebesgue measurable
and locally bounded mappings d: %+ — D.
Notice that members of L5 (R*; D) are func-
tions d: M\ — D which are defined pointwise
and not equivalent classes of functions.

e Let ACR” be a non-empty set. For every
& >0 we define the e-neighbourhood of A4
by N(4,¢) :={y € R dist(y, A) < €}, where
dist(y, A) = inf{|y — x|: x € 4}.

e By C/(A4) (C/(4;Q)), where j>0 is a non-
negative integer, 4 C ", we denote the class of
functions (taking values in Q C Q") that have
continuous derivatives of order j on A.

e For every scalar continuously differentiable
function V' : N" — N, VI(x) denotes the gradi-
ent of Vat xe N, i.e. VI(x)=((dV/dx1)(x),...,
(0V/ox,)(x)). We say that a function
VR — M' is positive definite if V(x) >0
for all x#0 and V(0)=0. We say that a
continuous function V:N"— Rt is radially
unbounded if the following property holds:
‘for every M > 0 the set {x e R": V(x) < M} is
compact’.

2. Main assumptions and notions for sampled-data
systems

In the present work we study control systems of the
form (1) under the following hypotheses:

(H1) f(d, x,u) is continuous with respect to
(d,x,u) e D x K" x U and such that for every
bounded SCNR"x U there exists constant
L >0 such that

(x =)' (f(d.x,u) = f(d, y,w) < Llx — yl?

4
Y(x,u,d) e Sx D, Y(y,u,d)eSxD @

Hypothesis (H1) is a standard continuity
hypothesis and condition (4) is often used in
the literature instead of the usual local
Lipschitz hypothesis for various purposes
and is called a ‘one-sided Lipschitz condition’
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(see, for example, Stuart and Humphries
(1998; p. 416) and Fillipov (1988; p. 106)).
Notice that the ‘one-sided Lipschitz condition’
is weaker than the hypothesis of local Lipschitz
continuity of the vector field f(d, x,u) with
respect to x € R". It is clear that hypothesis
(H1) guarantees that for every (xo, d, u) € R"x
Lin (5 D) x Lis.(\T; U), there exists a unique
solution x(z) of (1) with initial condition
x(0)=xy corresponding to inputs (d,u) €
Lis (MWt D) x Lis. (RT3 U).

(H2) There exist a function a € K, such that

|/ (d, x,w)| < a(|x] + |ul),
Y(u,d,x) € U x D x R" ®)

Hypothesis (H2) guarantees that 0 € %" is an
equilibrium point for (1) and is automatically
satisfied if D c % is compact and f(d,0,0)=0
for all de D.

We next provide a definition of robust global stabi-
lisability of (1) by means of bounded sampled-data
control with positive sampling rate, which will be used
in subsequent developments.

Definition 2.1: We say that the equilibrium point
0 e N of (1) under hypotheses (H1 and H2) is robustly
globally stabilisable by means of sampled-data control
with positive sampling rate, if there exists a locally
bounded mapping k:R"— UC K™ with k&(0)=0 (the
feedback  function),a function « € K,  with
| fd, z, k(x)) | <k(|z]| +|x]) for all (d,z,x)eD x
RN x RN, a constant i >0 (the maximum allowable
sampling period) and a function o € KL such that the
following estimate holds for all (xo,d,d) e N"x
Lt D) x LS. (RT; %) and 1> 0:

loc
Ix(0)] = a(lxol, 7) (6)
where x(7) denotes the solution of the system:
X(1) = f(d(1), x(1), k(x(7:))), re (i, Ti1) e
10=0, 1y =1 +hexp(—d(t;)), i=0,1,...
with initial condition x(0) = x,.

We say that the equilibrium point 0€R"” of (1)
under hypotheses (H1 and H2) is robustly globally
stabilisable by means of bounded sampled-data control
with positive sampling rate,if the feedback function
k:R"— UC R is bounded.

Remark 2.2:

(a) In this work, the closed-loop system (7) will be
regarded as a hybrid system, that produces for

each xo € N" and for each pair of measurable and
locally bounded inputs d: %" — D,
d: Rt — RT, the absolutely continuous func-
tion t— x(r) e N", produced by the following
algorithm:

Step i:

(i) Given t; calculate 7,1, using the equation
Tip1 = T + hexp(—d(z)),

(i) Compute the state trajectory x(¢), t €[t;, ;1)
as the solution of the differential equation
x(1) = f(d(1), x(1), k(x())),

(iii) Calculate x(t;;1) using the equation x(t;41) =
lim,_”’_—+l x(1).

Hybrid systems of the form (7) were considered in
Karafyllis (2007a, b). Particularly, it was shown that
under hypotheses (H1 and H2) and the hypotheses of
Definition 2.1, the hybrid system (7) is an autonomous
system which satisfies weak semi-group property, the
‘Boundedness Implies Continuation’ property and for
which 0 € i” is a robust equilibrium point for system
(7) from the input d € L, (R+; RT) (Karafyllis 2007a).
Moreover, the existence of a function o€ KL
that satisfies (6) is equivalent to requiring Uniform
Robust Global Asymptotic Stability for the closed-

loop system (7).

(b) Under hypothesis (H2) and the assumption
that k: R"— U C N is a locally bounded map-
ping with k(0)=0, the assumption that there
exists « € Koo with |f(d, z, k(x))| < «(|z| + |x])
for all (d,z,x)e D x R" x R" is automatically
satisfied if the mapping k:R"— UCR” is
continuous at x =0.

Remark 2.3: The reader should notice that the
sampling period is allowed to be time-varying.
The factor exp(—d(t;)) < 1, with d(¢) > 0 some non-
negative function of time, is an uncertainty factor in
the end-point of the sampling interval. Proving robust
global stabilisability of (1) by bounded sampled-data
feedback with positive sampling rate will guarantee
stability of the closed-loop system (7) for all sampling
schedules with ;.1 —t;<h (robustness to perturba-
tions of the sampling schedule). To understand the
importance of robustness to perturbations of the
sampling schedule, consider the following situation.
Suppose that hardware limitations restrict the sam-
pling period to be ls. If we manage to design
a sampled-data feedback law with /(x)=r> 2s, then
the application of the feedback control will guarantee
stability properties for the closed-loop system even if
we ‘miss measurements’ or if we have ‘delayed measur-
ements’ (e.g., due to improper operation of the sensor).
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In such a case robustness to perturbations of the
sampling schedule becomes critical. The introduction
of the factor exp(—d(t;)) <1 is a mathematical way
of introducing perturbations to the sampling
schedule; however, it is not unique. Other ways of
introducing perturbations of the sampling schedule can
be considered.

We next propose a notion of reachability of one set
from another set for control systems of the form (1),
which is going to be utilised for the construction of
sampled-data feedback stabilisers in the following
section.

Definition 2.4: Consider system (1) under hypotheses
(H1 and H2) and let » > 0 be a constant. A set 4 CR"
is r-robustly reachable from a set Q CRK" for system (1)
with constant control if there exist veU, ¢>0
and functions a: N\T — R being non-decreasing and
b e N with the following property:

(Q) For every xo € 2,d € L, (\*; D), there
exists 7(d, xo) €[0, c 4+ b(|xg|)] such that the
solution of (1) with u(f)=v, initial condition
x(0)=x, corresponding to de Ly (NF;D)
exists for all 7 €0, 7T(d, xo) + r] and satisfies:

() |x(0) | < a(|xo), for all £€[0, T(d, xo) + 7]
(i) x(r) € A, for all 1€ [T(d, xo), T(d, x¢) + ]
(iii) x(r) € , for all 1€ [0, T(d, xo)]

Remark 2.5: It should be emphasised that r-robust
reachability of a set with constant control is a much

stronger property than simple reachability as defined in
Sontag (1998, pp. 81-84):

(a) property (Q)-(ii) requires that the solution
remains in the reachable set for at least time r
for all possible disturbances,

(b) property (Q)-(i) requires that the solution
remains uniformly bounded for all possible
disturbances and for initial conditions in
a specified compact set of the state space,

(c) property (Q) requires that the time needed
in order to reach the set 4 CR” is uniformly
bounded for all possible disturbances and for
initial conditions in a specified compact set of
the state space.

Notice that if ACR” is r-robustly reachable
from Q CR” for system (1) with constant control then
every set BCR' with ACB is r-robustly
reachable from Q CNR" for system (1) with constant
control.

Example 2.6: Consider the simplified Moore-
Greitzer model of a jet engine with no stall presented

in Krstic, Kanellakopoulos and Kokotovic (1995),
described by the planar system:

. 3 1
X1 :EX% _Ex:l; + x>
sz =u (8)

x=0(xLx) €N, uen

The sampled-data stabilisability properties of the jet
engine system were studied in in Nesic and Grune (2005),
where it was shown that system (8) can be practically,
semi-globally stabilised by sampled-data control with
positive sampling rate. Here we study the perturbed
version of the jet engine system, i.e. the system:

. 3 |
X1 = di(f)xy +§d2(t)xf - Ex? +x2

= ©)
x=(x,x) e R, ue,

d = (di(1), da(0)) € [-1, 1]

In this example, we show that the set Q,={(x,x») €
%2 |x,| <1} is r-robustly reachable from the set Q3=
{(x1,x2) € W% x, < —1} and from the set Q4= {(x}, x») €
M x,>1} for system (9) with constant control
and r=1.

To prove reachability of €, from 4, let v=—1 and
notice that the solution x(¢) of (9) with initial condition
Xo = (x10, X20)" € Q4 satisfies x»(f) =x,9— ¢ for all 1 >0
such that the solution of (9) exists. Moreover, we have:

% (xT(0)) = 2d1 (D)x7(t) + 3d2(1)x3 () — xT(1) + 2x1(£)xa (1)
< 8x7(1) +x3(1)

The above differential inequality in conjunction with
the fact that x,(f) = x29 — 1 gives x3(¢) < (x3, + (1/8) x
maxXeeo,q(X20 — 7)%) exp(8 + 8|xo|) for all 7€ [0, 1 + |xo|].
Consequently, the solution of (9) exists for all 7€
[0, 1+ |x0]]. It follows that:

|x(n)| < (lxol + g{%f}lxzo - Tl) exp(4 + 4]xol),
forall 1 € [0,1 + |xg]] (10)

Next we show that property (Q) of Definition 2.4 holds
with ¢:=0, b(s) := s € N, a(s) := 2sexp(4 + 4s) € N and
T(d, xp) = x50 — 1. Indeed, we have x(¢) € 2, for all ¢t e
[T(d, x0), T(d, x¢) + 1], x(f) € 24 for all ¢te][0, T(d, xy)],
where T(d, xo) = x»9— 1. Moreover, we have T(d, xy) <
¢+ b(|xo]), where ¢:=0 and b(s):=s e N. Finally,
from (10) we also obtain |x(f)|<a(]xo|) for all
t€[0, 7(d, xo) + 1], where a(s) := 2sexp(4 + 4s).
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Similarly, we can prove that the set Q,=
{(x1,x2) €M% |xo| <1} is r-robustly reachable from
the set Q3={(x;,x2) R x,<—1} for system (9)
with constant control and r=1. Particularly, using
the same arguments we can show that property (Q) of
Definition 2.4 holds with v=1, ¢:=0, b(s) :=s €N,
a(s) := 2sexp(4 + 4s) € N and T(d, x¢) = x50+ 1.

The following simple lemma provides sufficient
conditions for r-robust reachability of sets with
constant control. More specifically, given a positively
invariant set QCR" for system (1), we present
conditions for the construction of an appropriate
subset A C Q, which is r-robustly reachable from
QC R for system (1) with constant control for every
r>0. The following lemma will be used in the
examples of the present work.

Lemma 2.7: Consider system (1) under hypotheses
(H1 and H2) and suppose that there exists a set
QCN", a continuously  differentiable  function
h N — N and constants ve U, R>0, § > 0 such that
{x e Q: h(x) >R} # 0O and

sup Vh(x)f(da X, V) = _89
deD

forall x € Q with h(x) > R (11)

Moreover, suppose that there exist functions a,, a; € Ko
and constants, p, G >0, such that for every xo € Q, d €
Lis:(RF: D), the solution of (1) with u(t)=v and initial
condition x(0)=xq exists for all t>0 and satisfies
x(1) € Q, a)(|x(1)]) < (G + ax(|x0)) exp(pt) for all t > 0.
Then for every r > 0, the set A:=QN{xeN": h(x) <R}
is r-robustly reachable from Q CR" for system (1) with
constant control.

Proof: Let r > 0. Notice that inequality (11) guaran-
tees that the set 4 :=Q N {xeNR": h(x) < R} is positively
invariant for system (1) with u(¢f) = v. Consequently, if
Xo€ A then x(r)e A for all 1>0 and d € L,.(%*; D).
Let arbitrary xo € 2, with A(xg) > R, d € L{,,(W; D)
and consider the solution of (1) with u(z) = v and initial
condition x(0)=x,. Define the set {r> 0: x(¢)¢ A}.
Clearly this set is non-empty (since
0ef{r>0:x(t)¢ A}). We next claim that sup{r > 0:
x(f)¢ A} < 87" (h(xo) — R). Suppose that this is not
the case. Then there exists 7> 8 '(h(xo) — R) with
h(x(1)) > R. Since A:=QN{xeNR": h(x) <R} is posi-
tively invariant for system (1) with u(7) = v, this implies
that h(x(r)) > R for all 7€[0,7. Consequently, it
follows from (11) that (d/dt)i(x(t)) < -8, a.e. on
[0,7]. Thus we obtain /(x(?)) < h(x¢) — 8¢, which com-
bined with the hypothesis 7> 8 '(h(xo) — R) gives
h(x(7)) < R, a contradiction.

Thus, for every xg € Q, d € L, (W*; D) there exists
time 7(d, xo) >0 with T(d, xo) < §~' max{0, h(xy) — R}
such that x(r)e A, for all t€[T(d, xy), T(d, x¢) + r].
Furthermore, inequality T(d, xo) < 6~ max{0,
h(xo) — R} implies 7(d, xq) < ¢+ b(|xo|), where b(s) :=
87! (max|y <y max{0, h(x) — R} — max{0,(0) — R}) € N
and ¢ := 8" max{0,/(0) — R} > 0. By virtue of the
hypotheses of the lemma, |x(7)|<a(|xo|), for all
1€[0, T(d, xo) +r], where a(s) := aj'(exp(p(c+r)+
pb(s))(G + ax(s))). Consequently, all requirements of
Definition 2.4 hold and the set A4:=QN{xeNR"
h(x) <R} is r-robustly reachable from QCHR" for
system (1) with constant control. The proof is
complete. U

The following example illustrates how Lemma 2.7
can be used for the establishment of r-robust reach-
ability of sets with constant control.

Example 2.8: Consider again the perturbed jet engine
system (9). In this example, we show that for every r > 0
the set A= {(x],x2) € R |x2| < 1,|x;| <4} is r-robustly
reachable from the set Q,={(x},x2) €N’ |xy] <1} for
system (9) with constant control. Define Q=%,,
h(x) = x? and v=0. Notice that the solution x() of (9)
with initial condition xo = (x19,X2) € £, satisfies
X2(f)=x29€[—1,1] for all £>0 such that the solution
of (9) exists. Moreover, we have:

%(x%(t)) = 2d,()x7 (1) + 3da(0)x3 (1) — x(1)
4 2x1(1)x2(1) < 8x3(2) + x3(1)

The above differential inequality in conjunction with
the fact that x,(r) = xa9 gives x7(1) < (x3, + (1/8)x3,) x
exp(8¢) for all 1> 0. Consequently, the solution of (9)
exists for all >0 and satisfies x(7) € Q and

|x(1)| < 2|xol exp(4), forall 1 >0 (12)
Moreover, notice that

sup 2d,x7 + 3dhx — x4+ 2x1x, < -7,
de[—1,11

for all x € Q with Ai(x) > 16 (13)

It follows from (12), (13) that the hypotheses of
Lemma 2.7 hold with a(s) :=s, ax(s) :=2s, p=4, G=0,
8=7 and R:=16. Consequently for every r > 0 the set
A:=QN{xeR" h(x)<16} is r-robustly reachable
from QCR" for system (9) with constant control.
Notice that 4 = {(x},x,) € R |xa] < 1, x| <4}.
Finally, we end this section with a result that
provides links between r-robust reachability of sets
with constant control and attractor theory for systems
without disturbances. Particularly, we show that for
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every &, r>0 an e-neighbourhood of a compact
global attractor is r-robustly reachable from R".
Consequently, knowledge of the dynamics of a control
system under constant input may be used for the
construction of r-robustly reachable sets.

Lemma 2.9: Let UCR” with 0 € U and consider the
control system:

X(1) = f(x(1), (1))

x(1) e R", u()eU 19

where f is a locally Lipschitz vector field with f(0)=0.
Suppose that there exists ve U such that the dynamical
system (14) with u(t)=v has a compact global attractor

A CN'. Then for every g, r > 0 the e-neighbourhood of

ACH", N(A4,¢) (see notations) is r-robustly reachable

from K" for system (14) with constant control.

Proof: Let x(z,xy) denote the solution of (14) with
u(f)=v and initial condition x(0) = x,. Since 4 C R" is
a global attractor, for every e, R > (0 there exists
T(e, R) >0 such that the following implication holds
(Stuart and Humphries 1998, p. 166):

‘f |xo| < R then x(z,x9) € N (4,¢e) forall ¢ > T(e, R)
(15)

Let g:M"— R be defined by g(s):=T(e,k+1)+
(s—k)(T(e,k+2)—T(e,k+1)) for selk,k+1) and
every non-negative integer k. Clearly, g: %" — R is
continuous with g(s) > min{7(e,[s]+ 1), T(e, [s] + 2)},
where [s] is the integer part of s> 0. Define ¢:=g(0)
and b(s) := max{g(y) — g(0): y € [0, s]}. Clearly, b € N
with g(s) < c—+ b(s) for all s> 0.

Let xqeN” and consider the solution of (14) with
u(t)=v and initial condition x(0)=x,. By virtue of
implication (15), there exists 7(x¢) >0 such that
x(t,x0) € N(4, ¢) for all 1> T(xy). Moreover, T(xy) <
min{T(e, [Ixoll + 1), T(e,[lxol]+2)),  where  [Ixol]
is the integer part of |xo| and consequently, we obtain
T(x0) <g(|xol) <c+b(]x0]). Consequently, require-
ments (i), (iii) of Property (Q) of Definition 2.4 hold.

We next show that requirement (i) of Property (Q)
of Definition 2.4 holds as well for appropriate a € N.
Since 4 C K" is bounded, there exists M > 0 such that
N(4, ¢e) < By, where B), denotes the closed sphere in
R of radius M > 0, centred at 0 € K". Consequently,
by virtue of implication (15), we obtain for all s> 0:

sup{|x(t, x0)|: # = 0, [xo| < s}
< max(sup{|x(t,xo)| : # € [0, T(&, 9)], |xo| < s},

sup{|x(t, xo)|: 1 > T(e, s), Ixo| < s})
< max(sup{|x(t, xo)|: t € [0, T(e, 9)], |x0] < s}, M).

By virtue of continuity of the mapping RT x R">
(1, x0) = |x(t,x0)| e ¥t and compactness of the set
{(2, x0) € RT x N1 €0, T(e, 5)], |xo| < s}, it follows
that sup{|x(¢, xo)|: t € [0, T(e, )], | x0| < s} < +o00.
Therefore, for all s > 0, it holds that a(s) : = sup{|x(¢, xo)|:
t>0,|xo| <s} < +o0. By definition we have:

|x(t, x0)| < a(lxol), forall (1, x0) € KT x K" (16)

It follows from (16) that requirement (i) of Property
(Q) of Definition 2.4 holds as well. The proof is
complete. ]

3. Main results

Our main result is presented below. Theorem 3.1 is an
existing result for (bounded) sampled-data feedback.
The reader should notice that Theorem 3.1 does not
guarantee continuity of the sampled-data feedback
stabiliser.

Theorem 3.1: Consider system (1) under hypotheses
(H1 and H2) and suppose the following:

(P1) There exist a locally bounded mapping
k:h"— UCR" with 15(0) =0, a bounded
open set ® CR" which contains a neighbour-
hood of 0eMN", a function ye Ky with
|f(d,z, k)| < y(lzl + 1x]) for all (d,z,x)€
D xR"x K", a constant h > 0 and a function
o€ KL such that the following estimate
holds  for all (xo,d,d) € © x L2 (Rt; D)x

loc
Lin (Rt RF) and t > 0:
|X(0)| < o(lxol, 1), x(1) € © (17)
where x(t) denotes the solution of the system:

3(0) = f(d0). X0, K(x()), 1 € [riTin)
=0, Ty =1+hexp(—dxw), i=0,1,...
(18)

with initial condition x(0) = xo € ©.

Moreover, suppose that one of the following
statements hold:

(P2) There exist sets Q;CR", j=1,....N
with Q1 =0, Uy v=N", such that for
each je{2,..., N} the set Ué;}Qi is r-robustly
reachable from Q;CR" for system (1) with
constant control.

(P3) There exists a sequence of sets ;S R",
J=12,... with Q= G),Uj?’i]SZj = 0", such
that for each j€{2,3,...} the set U;;}Qi
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is r-robustly reachable from Q;CN" for system
(1) with constant control. Moreover, for each
compact KCR", there exists N€{2,3,...} such
that K € UY, ;.

If hypotheses (P1) and (P2) hold, then the equilibrium
point 0€R" of (1) under hypotheses (H1 and H2) is
robustly globally stabilisable by means of bounded
sampled-data control with positive sampling rate.
Moreover, if hypotheses (P1) and (P3) hold then the
equilibrium point 0 € W" of (1) under hypotheses (H1 and

H2) is robustly globally stabilisable by means of

sampled-data control with positive sampling rate.

Remark 3.2: Discussion of  hypothesis  (P1).
Hypothesis (P1) is a local hypothesis, which guarantees
the existence of a sampled-data feedback, which ‘works
effectively’ in the set ® C 90", There are many tools in
the literature that can be used for the verification of
hypothesis (P1) (see for instance Nesic et al. (1999);
Nesic and Teel (2004)). It should be emphasised that
sampled-data feedback designed by emulation is
expected to satisfy hypothesis (P1) for appropriate set
O CR".

Remark 3.3: Discussion of hypotheses (P2) and (P3).
Hypotheses (P2) and (P3) are hypotheses of global
nature. All tools presented in previous section can be
used in order to show the existence of appropriate sets
Q; CR". It should be emphasised that the role of non-
linearities in the verification of hypotheses (P2) and
(P3) is essential (contrary to hypothesis (P1), which as
a local hypothesis depends heavily on the linearisation
of system (1)). Finally, it should be observed that (P2)
and (P3) are very similar in nature, except that (P2)
involves a finite chain of sets whereas (P3) a countably
infinite chain. (P3) is a weaker assumption than (P2).

The following lemma can be used for the verifica-
tion of hypothesis (P1). Its proof can be found in the
Appendix.

Lemma 3.4: Consider system (1) under hypotheses
(H1 and H2) and suppose that there exists a locally
bounded mapping k:N" — U C R with k(O) =0,
a function y € Ko with | f(d, z,k(x))| < y(|z] + |x])
for all (d,z,x)e DxRX"xNR", a continuous positive
function p: Rt — R, a positive definite, continuously
differentiable and  radially  unbounded  function
V:R'— R, constants R, ¢ >0, M, L>0 such that
the following inequalities hold for all z € ®, x € ©® and
deD:

(z — )f(d, 2, k(x)) < LIz — xP+qlx> (19

sup{VV(z)f(d, z, 1€(x)) de D, M|z —x| < |z|}
< —p(V(2) (20)

where ©:={xeNR":V(x) < R}. Let x(t) denote the
solution of (18), initial ~condition x(0)=x,eR"
and corresponding to input (d, d) € Ly (Wt D)x
LineRFsRF). Then there exists o€ KL such that
hypothesis (P1) of Theorem 3.1 holds with kiR —
UCQ", ye Ky as above, O :={xeR" V(x) <R}
and for evely h>0 satisfying h<(1/2L) In(1 + (L/q)x
(/1 + M))) ), for the case L>0 or h<(1/2q)x
((1/(1 + M)))?, for the case L=0.

When additional regularity properties hold, then the
requirements of Lemma 3.4 are simplified.
The following lemma is proved in the Appendix and
exploits additional regularity properties for the feed-
back law and the right-hand side of system (1).

Lemma 3.5: Consider system (1) under hypotheses
(H1 and H2) and suppose that there exists a locally
Lipschitz mapping k : W' — U C R with k(O) =0 and
a positive definite, radially unbounded function
Ve AN\, such that for every pair of compact
sets SCR' WCU there exist constants C,K >0
satisfying the following inequalities:

sup lf(dv z, V) _f(ds X, Ll)| = C|Z - x| + C|u - V|,
deD
forall z,x € S,u,ve W (21)

sup{VV(z)f(a’, Z, /2(2)) de D} < —K|z]%,
forall ze S (22)

Then for every R > 0 there exists a continuous positive
Sfunction p:R"— RN and constants ¢ >0, M,L>0
such that inequalities (19), (20) hold with © :=
{x € M V(x) < R}. Moreover, there exists y € Koo such
that for every R >0 hypothesis (P1) of Theorem 3.1
holds with k : 0" — U CR" as above,® := {x € N":
V(x) < R} and appropriate o € KL, h > 0.

The rest of the section is devoted to the proof of
Theorem 3.1.

Proof of Theorem 3.1: Define recursively the follow-
ing sets by the following formulae:

Cl‘ = Q,’\B,‘_], B,' = Bi—l @) Ql‘, i>1 (213)

with
Ci=1=0, B=Q,=0 (21b)

Notice that B;=U,—;  ;Qu=Us—;.  ;C; for all i=
I,...,N. Let v;eU be the constant control that
guarantees property (Q) of Definition 2.4 for every
set Q; with i > 1. We define:

k(x)y=v; ifxeC;withi>1 (22a)
k(x) =k(x) ifxeC =0 (22b)
h = min{h, r} (22¢)
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If hypothesis (P3) holds then for each compact K C K",
there exists Ne{2,3,...} such that KCUY Q=
U/Ai Cj. Since k: R — U C R is locally bounded
and ©® is bounded, it follows that the mapping
k:N'"— U as defined by (22a,b) is locally bounded.
Moreover, if hypothesis (P2) holds then it follows that
the mapping k:0R"— U as defined by (22a,b) is
bounded.

We next claim that there exists a function x € K,
with | f(d, z,k(x))| < «(|z| + |x|) for all (d,z,x)e
D x 9" x R" and a function o € KL such that estimate
(6) holds for all (x¢,d,d)e N x LN D)x
L (RF: M) and 7> 0 for the solution x(t) of (7) with
initial condition x(0) = xo and corresponding to inputs
(d,d) € Li5,(RT; D) x L, (RF; RwH).

Notice that by virtue of hypotheses (P1), (H2) the
function N 3 s— &(s):=sup{|f(d, z, k(x))|: |z] + |x| <
s,d € D} is a non-decreasing, locally bounded function
which satisfies «(s) < y(s) for s>0 sufficiently small
and |f(d,z, k(x))| < &(|z| + |x|) for all (d,z,x)e D x
N x N". It turns out that £ can be bounded from above
by the K, function « defined by «(s) := s+ (1/s) x
/; 2 K(w)dw for s > 0 and «(0) =0. Consequently, there
exists a function « € K, with |f(d, z, k(x))| <
k(|z| + |x]) for all (d, z, x) € D x R" x R".

In order to show the existence of a function o € KL
such that estimate (6) holds for all (xy,d,d) e
R x Ly (M D) x Lig (VT 9%F) and >0 for the
solution x(#) of (7) with initial condition x(0)=xo
and corresponding to inputs (d, d ) € Li.(\F; D)x
Lo (0T 9F), we need to show the following things:

e for every s > 0, it holds that
sup |Ix(t)|; £ 0,1x| < 5,(d.d)

e Lt D) x gt oih} < +oo

loc

(Robust Lagrange Stability)

e for every & >0 there exists a §:=3(¢) >0
such that:

sup {[x(0)l £ 2 0, x| <, (d,d)
e L2 (9 D) x L2 (9 \)ﬁ)} <¢
(Robust Lyapunov Stability)

e for every >0 and s>0, there exists a
7 := (g, 5) > 0, such that:

sup {IX(t)I; t>1,|xl <s, (d, a7)

eLn O D) x st oh] <.

(Uniform Attractivity)

The above properties guarantee the existence of
a function o € KL such that estimate (6) holds for all
(x0,d, d) €N x Lp (Mt D) x Lis.(RT; MY) and >0
for the solution x(7) of (7) with initial condition
x(0)=x¢ and corresponding to inputs (d,d) €
Lise(MF; D) x Lis (M5 0+). Indeed, we may define
o(s, 1) = sup{|x(§)| E>1,|x0|<s,(d, d)eLlOC(‘R+ D)x
TN} for all s, 1>0. By defining 6(s, 1) :=
o(s,0) for all s >0, 7e[—1,0), the desired o € KL can be
defined by  o(s, 1) = sexp(—0) + (1/s) [1 | [ x
o(&,wydédw forall 1>0,s > 0and o(0,1)=0 forall > 0.

Since the solution of (7) with x(0) = x, correspond-
ing to inputs (d,d) € L (RF; D) x L. (RT; |) coin-
cides with the solution of (18) with same initial
condition corresponding to inputs (d, d /) € Ly,
(R D) x Lis. (W \F) with  d(r) = d(t) + In(h/h),
follows that Robust Lyapunov Stability is an immedi—
ate consequence of hypothesis (P1) (notice that ® C K"
contains a neighbourhood of 0 € "). Thus, we are left
with the proofs of Robust Lagrange Stability and
Uniform Attractivity.

Let s>0 and consider the closed ball {x € N
|x| < s}. By virtue of hypothesis (P3) (or hypothesis (P2))
there exists N € {2,3,...} such that {x € W" |x| < s} C
U_/Aile. Let ¢;>0 and the functions «;, b; that
guarantee property (Q) of Definition 2.4 for every €;
with 7> 1 and let a(s) := max,__nyais), b(s):=
max;—.. n bi(s), ¢:=max,—p__nyc¢;.. Robust Lagrange
Stability and Uniform Attractivity will be shown with
the help of the following fact, which is shown in the
Appendix.

Fact: Letde Liv (s %) and n(c?) = {1, 71,72, ...}
(the set of sampling times), where 79=0 and 7,1 =
7; + hexp(—d(t;)) for i>0. If x(t;)e Cy for certain
ke{2,...,N}, then for every de Ly (%" D) there
exists e n(d)N[t, i+ c+b(|x(t)])+r] and me
{1,...,k—1} such that x(t) € C,,. Moreover, |x(?)| <
a(|x(z;)|) for all ¢ €[z, 7).

Since {x € N": |x|] <5} S Uiy NCr and C; =0,
the above fact implies that for every (xo,d,gl ) €
{x € N" |x| < s} x L. (MF; D) x L (M5 RT) the solu-
tion x(¢) of (7) w1th initial condition x(0)=x, and
corresponding to  (arbitrary) inputs (d,d) €

Line(F: D) x Ly (RF; RY), satisties x(7) € © for cer-
tain e yr(d) N[0, Nc + Nb(a™)(|xo])) + Nr]  and
Ix()] < a™(|xo|) for all t€[0,7], where o) =
aoao---oa. By virtue of (17), it follows that
—_————

loc

N times .
|x(1)] < a(a™)(|x¢|), t — 1) for all ¢ > 7. The properties
of the KL functions in conjunction with the previous
estimate of the solution imply the Uniform Attractivity
property. Moreover, we have |x(7)| < o(a™¥)(|xo]),0),
for all >0 (Uniform Lagrange Stability). The proof
is complete. U
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4. Examples and applications

In this section, a number of examples are presented,
which illustrate how the main result of the present
work (Theorem 3.1) can be used for the construction of
robust sampled-data feedback stabilisers.

Example 4.1: We consider again the perturbed jet
engine system (9). Here, we intend to prove that the
perturbed jet engine system (9) is robustly globally
stabilisable by means of bounded sampled-data control
with positive sampling rate. The proof will exploit
Theorem 3.1.

Consider the function

1 1
V(x) = Ex% +5 (x2 + 5x1)° (23)

which is obtained by applying the backstepping
procedure to the uncertain control system (9).
Notice that the set A ={(x1,x2) e N> |x2] <1,
|x;|] <4} is a subset of O ={xeR%: V(x)<
(457/2) + e} for all € > 0. Consequently, Examples
26 and 2.8 show that the sets Q4=
{(x1,x) € R xy = 1), Q3={(x1,x2) € R xp < —1},
Q) = {(x1,x2) € W% |xz] < 1}, Q = O, satisfy hypo-
thesis (P2) of Theorem 3.1. We next show that the
hypotheses of Lemma 3.5 are fulfilled for the function
V defined by (23).

The derivative of " along the trajectories of system
(9) is expressed by the following equality for all
(d,x) e[—1, 17> x K%

3 1
VV(X)|:d1x1 +§d2X% —QX? +X2]
u

3 1
=X <d1x1 —i—zdzx% - Exf +x2>

15 5
+ (x2+5x7) x (u+ Sdyxi +7d2X% —Ex‘? + 5X2>

Using the inequalities (3/2)dhx} < (1/4)xT + (9/4)x7,
Slxil1x2 + 5x1] < (1/4)x3 +25(x2 + 5x1)%, (15/2)x7 x
|2 + Sx1] < (1/4)x} + (225/4)(x2 + 5x1)’, we obtain
the following inequality for all (4, x) e[ — 1, 1]* x %%

3 1
VV(x)|:d1x1 +§d2x% —Exf +xz:|
u

3 11
< —EX% —?(Xz + 5x1)2
5
+ (x2 + 5x1)<u+421x1 —Exf + 89x2)
(24)

We define k(x) := —421x; — 89x; 4 (5/2)x> and we
notice that by virtue of inequality (24), the hypotheses of
Lemma 3.5 are fulfilled. Consequently, for every R > 0,

hypothesis (P1) of Theorem 3.1 holds with lg(x) =
—421x; —89x2 + (5/2)x{, ©:={x €N V(x) <R}
and appropriate o0 € KL, h > 0.

It follows from Theorem 3.1 that the perturbed
jet engine system (9) is robustly globally stabilisable by
means of bounded sampled-data control with positive
sampling rate. Since Theorem 3.1 is proved construc-
tively, a bounded sampled-data feedback can be
suggested.  Particularly, following the proof
of Theorem 3.1, the following discontinuous
feedback law:

5
k(x) = —421x; — 89x, + Exf,

. 457
ifxeC, = {x e N V(x) < T—i—e},
k(x)=0, ifxeC = {(xl,xz) €N x| <1,

4
V(x) zﬁ—i-e},
2

kx)=1, ifxeCy= {(xl,xz) €N xy < —l,

V(x) Zﬂ+s},

2

k(x)=—-1, ifxeC = {(xl,xz) eRix, > 1,

4
V(x) > %—i—e}

is a robust sampled-data feedback stabiliser for system
(9) for all e >0. In Figures 1-3 it is shown the
evolution of the states for the closed-loop system (9)
with

u(t) = k(x(t)), t et tiy1)
T0=0, Ty =17+ heXp(—d(Ti)),
i=0,1,... (25)

The parameters h, ¢ were selected to be h=¢e=
0.001 and the initial state is x1(0)=10, x»(0)=2.

104

0 , ‘ ‘ ‘
D 0.5 1 15 t 2
_57
X2
_10,
-154

Figure 1. The evolution of the states of the closed-loop
system (9) with (25) corresponding to inputs d(f) = d(t) = 0,
d>(1)=1.
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Figures 1-3 show the evolution of the states of the
closed-loop system (9) with (25) corresponding to the
triplets of inputs d,())=0 dy(t)=1 d(1) =0, di(1)=1,
()= sin(r), d)=0 and di()=1, d()=1,
d(t) = |sin(¢)|, respectively. It is clear that in all cases
the closed-loop system presents fast convergence of the
states to the equilibrium point. The sampling time t;
(i=0,1,2,...) that the state trajectory enters the set
O = {x € R% V(x) < (457/2) + ¢} is the time where the
derivative x,(f) presents an abrupt jump (from the
value —1 to a negative value with large absolute value).

It should be emphasised that other feedback laws
can be constructed (using different control Lyapunov
functions from the quadratic one that we used in this
work).

Example 4.2: This example illustrates the use of
Theorem 3.1 for the construction of a globally stabili-
sing sampled-data feedback. Consider the scalar system:

X=a(x)+u

, (206)
x e N, ue (—o00,0]

where a : 9t — N is a locally Lipschitz function with
a(0)=0 and a(x) >0 for all x#£0. We claim that
system (26) satisfies hypotheses (P1), (P3) and conse-
quently, (by virtue of Theorem 3.1) it is robustly

10+

X2

Figure 2. The evolution of the states of the closed-loop
system (9) with (25) corresponding to inputs d;(1)=1,
dy(1) = sin(1), d(t) = 0.

-5

-10 -

—-15 4

Figure 3. The evolution of the states of the closed-loop
system (9) with (25) corresponding to inputs d;(1)=1,
dr(t)y=1, d(t) = |sin(?)].

globally stabilisable by means of sampled-data control
with positive sampling rate.

In order to show the validity of hypothesis (P1),
define ® =(—00,2), h:=(1/(L+ 1)) and

. 0 for x € (—o0, 0]
k(x) := (27)
—(L+1)x forx>0

where L > 0 is the Lipschitz constant that satisfies
a(x) < Lx, Vxe]0,2] (28)

The solution of x = a(x)+ lg(xo) starting at x(0)=
X0 €(0,2) satisfies x(f)<x, as long as the solution
exists, since by virtue of (28) we have a(xg)—
(L+ 1)xg < —xg < 0. Moreover, as long as the solution
satisfies x(¢)>0, it holds that —(L + 1)xy < x < —Xy,
which  directly implies (1 — (L + 1)t)xo < x(1) <
(1 — 0)xo. A simple contradiction argument shows that
0<x()<(1—10)xy for all tre€]0,h]. Consequently,
x(1) € ® and |x(1)| < exp(—0)|xo|, for all 7e[0,A]
Working by induction it can be shown that for all
d € LS (MF; MF) the solution of X(7) = a(x(1)) + k(x(z7)),
T = T+ hexp(—d(t;) starting at  x(0)=xy € (0,2)
satisfies x(¢) € ® and |x(?)| < exp(—1)|xol, for all > 0.

On the other hand, the solution of X = a(x) + k(xo)
starting at x(0) =x, < 0 satisfies xo < x(r) <0 for all
t>0. Consequently, it holds that (d/d7)|x(?)| =
—a(—|x(t)]) for all +>0 and Lemma 4.4 in Lin,
Sontag and Wang (1996) implies the existence of
o€ KL with o(o(s, 1), 7)=0(s,t+7) for all s, t, 7>0
such that |x(7)| < o(|xo|,7) for all r>0. Working
inductively, it can be shown that for all
delpy (M %t)  the  solution  of  X()=
a(x(?)) + k(x(7;)), Tix1 = v + hexp(—d(z;)) starting at
x(0)=x( < 0 satisfies x(r) € ® and |x(?)| < o(|xol, 1),
for all 1> 0.

Therefore, hypothesis (P1) holds for system (26).

We next show that hypothesis (P3) holds as well.
Consider the sets ) = =[j—1,j]forj=2,3,....
We W111 show that for all j= 2 3,...and r > 0, the set
U’ 1S2; € N is r-robustly reachable from the set €; C N
for system (26) with constant control. Notlce that
UZl Q=0 for j=2 and U_|Q; = (—o0,j— 1] for

Jj=3. Let vy = —1 —max;_j<<; a(s) and consider the

solution of x=a(x)+v;, with initial condition
x(0)=xp€;. As long as the solution exists, the
following inequalities hold: x>, and x(7)<x,.
Consequently, it holds that x¢+ v, <x(7) < X,.
A simple contradiction argument shows that the
solution exists for all >0 and satisfies |x(7)| <
exp(1)(lxol + g(2Ix0l)), where g(s) = s + maxo<y<, a(x)
(a functlon of class K,). For j> 3, the fact that the set
U’ 182 = (—00,j — 1] is r-robustly reachable from the
set SZ_ C N can be shown by following the procedure in
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the proof of Lemma 2.7 (with A(x)=x). For j=2, the
fact that the set Uﬁ;}Q,- = (—o090,2) is r-robustly reach-
able from the set €2; € % can be shown by the fact that
the solution satisfies x(7) < xq for all # > 0.

Thus, system (26) is robustly globally stabilisable
by means of sampled-data control with positive
sampling rate. A possible selection of the feedback is:

k(x) = k(x), for x € (—o0,2)

k(2) = —1 — max a(s)
1<s<2

k(x)=—1-— _max a(s), forxe(j—1,j], j=3
j=lsssj
where lg(x) is defined by (27) and 2=1/(L + 1) where
L > 0 is the Lipschitz constant that satisfies (28).

Example 4.3: Consider the bilinear control system
X=Ax+Bu+uCix+ -+ u,Cp,x

" L oam (29)
xeNW', u=C(u,...,uy) €N

where A4, C,,...,C,,eR"", BeR"™" are constant
matrices. We assume the following:

(A1) There exists " = (uj,...,u}) N
such that the matrix (4 + u;Ci + -+ +u,Cy)
is Hurwitz.

(A2) The pair of matrices (A, B) is stabili-
sable. Particularly, there exist KeR"™",
a symmetric, positive definite matrix
PeR™", constants ¢ >0 and R > (x*) Px*,
where  x* = (4 +ufCy + -+ u*,C,) " Bu,
such that max{x'P(4 +BK)x+> (X K'g;)x
X'PCix +¢|x|>: x € W', x'Px < R} <0, where
g, =(0,0,...,00 e, g,:=(0,1,...,0) €
R, g, =1(0,0,...,1) e R

We next utilise the result of Theorem 3.1 in order to
show that system (29) is robustly globally stabilisable
by means of bounded sampled-data control with
positive sampling rate. A possible selection of the
bounded sampled-data feedback stabiliser is:

k(x) = Kx, for xe€®:={xeR: xXPx<R}
k(x)=u*, for x¢@©,

where K€ R, P e R"™" are the matrices involved in
hypothesis (A2) and u* = (uj,...,u}) €N is the
vector involved in hypothesis (Al). First, notice that
by using hypothesis (A2) and performing simple
computations we are in a position to guarantee that
the requirements of Lemma 3.4 hold with k(x) := Kx,
v(s) :=(|A4| + |BK|)s +us’>, WV(z):=2Pz, L:=|A|+
(3/2ub, q = (1/2ub, M = 27" |Pub, p(s) = e|P|"'s,
where ¢ > 0 is the constant involved in hypothesis
(A2) and p:=)"",|gKIICil, b:=max{|x|:x € N",
x'Px < R}. Consequently, hypothesis (P1) of

Theorem 3.1 holds with © :={x € W": X'Px < R}.
Moreover, hypothesis (P2) of Theorem 3.1 holds with
N=2, Q =0, Q="" for every r > 0. Indeed, by
virtue of hypothesis (A1) above, it follows that system
(32) with u=wu* has a compact global attractor
(namely the set 4:={x*}). Consequently, Lemma 2.9
implies that for every 8, r > 0 the §-neighbourhood of
ACR", N(4,6) :={x e R": |x — x*| < 8} is r-robustly
reachable from 9" for system (29) with constant
control. The reader should notice that since
R > (x*) Px*, there exists § > 0 sufficiently small such
that N(A4,8) :={x e R |x —x*| <8} C O :={x e N
x'Px < R}. Therefore, for every r > 0 the set Q) = @
is r-robustly reachable from Q,=R" for system (29)
with constant control (namely, the control u=u*).

As a more specific example we consider the bilinear
system:

X1 =xo+u X2 =x2+u(l +x1 +x2)
x=(x1,x2) € R, u=(u,ur) € R’ (30)

which corresponds to the form (29) with

0 1 1 0
A: P} B: >
o) o=lo )

0 0
C) =0 e R, CzZ[ ]
11
Hypothesis (A1)  holds  with  u* =(0,-2).
The reader can verify that hypothesis (A2) is satisfied
as well with

1 [1 0 } [kl 0 } 1
P=— , K=-— , R>—
200 M 0 kp 2
and appropriate ¢ > 0 for sufficiently large M > 0,
ki, k» > 0. Notice that x* = (—1,0)" € R

Example 4.4: Continuous stirred microbial bioreac-
tors, often called chemostats, cover a wide range of
applications; specialised ‘pure culture’ biotechnological
processes for the production of specialty chemicals
(proteins, antibiotics etc.) as well as large-scale
environmental technology processes of mixed cultures
such as wastewater treatment. The dynamics of the
chemostat is often adequately represented by a simple
dynamic model involving two state variables, the
microbial biomass x and the limiting organic substrate
s (Smith and Waltman 1995). For control purposes, the
dilution rate D >0 is considered as the manipulated
input. A general model for microbial growth on
a limiting substrate in a chemostat is of the form:

X = (u(s) — D)x

S:D(So—s)—yl

Xx/s

(31

pls)x
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where S is the feed substrate concentration, wu(s) is the
specific growth rate and Y, > 0 is a biomass yield
factor. The specific growth rate function p:R" — R+
is a non-negative, globally Lipschitz, smooth, bounded
function which satisfies ©(0)=0 and wu(s) € (0, imax]
for all s > 0. The state space of system (31) is the
positively invariant set (0, +00)* C %*. For a constant
value of the dilution rate Dy > 0, we assume the exist-
ence of an equilibrium point (s, x,) € (0, Sp) x(0, +00)
with pu(ss) = D, and x;= Y, {(So — 5,). The need for the
stabilisation of the equilibrium point is explained in
Karafyllis et al. (2008) for the case of non-monotone
specific growth rate functions (but see also references
therein). Here we consider the global stabilisation
problem for the equilibrium point (s, x,) € (0, Sp) x
(0, +00) by means of bounded sampled-data control with
positive sampling rate. First, we perform the following
transformation:

x| = ln(%); Xy = ln<si); D = D" (32)

System (31) under transformation (32) is expressed by
the following system:

X1 = ulsse™) — p(ss)e"
Xy = plse)e(Qe — 1) — uls,e®)Q — e ™2 (33)
x=(x1,x2) €eRZueh
where Q := (Syp/s;) > 1. We will show that hypotheses

(P1) and (P2) of Theorem 3.1 hold for system (33) by
establishing the following facts:

Fact 1: There exists v € N sufficiently small, such
that the dynamical system (33) with wu(f)=v has
a compact global attractor 4 C R>.

Fact 2: For every R > 0, there exist a constant h>0
and a function o€ KL such that the following
estimate holds for all (xo,d) € {x € %% |x]> < 2R} x
Liw (T 9F) and 1> 0:

[x(0)] < o(lxol, 1),  x(7) € {x € R |x)*> < 2R}, (34)

where x(7) denotes the solution of the system (33) with:

mozmeﬁfﬂﬁ@mammmﬂ,reMmﬂ)
(ss)

10=0, T =1+ hexp(—d(w)),
i=0,1,... (35)

with initial condition x(0) = x, € {x € %’ |x|> < 2R}.

Indeed, by selecting R > 0 sufficiently large, we can
guarantee that N(4,¢) C 2, for certain ¢ > 0, where
Q ={xeR” x> <2R} and AcCR’ is the compact

global attractor, whose existence is guaranteed by
Fact 1. Consequently, Lemma 2.9 implies that for
every r > 0 the set ©; = {x e N’ |x| < R} is r-robustly
reachable from €2, =N for system (33) with constant
control. Therefore, hypothesis (P2) of Theorem 3.1
holds for system (33). Fact 2 implies that hypothesis
(P1) of Theorem 3.1 holds as well for system (33) with
O ={xeNR* x|’ < 2R} and

lg(x) :=1In (,LL(SSCXp(Xz)) exp(x; )) )
n(ss)

Hence, Theorem 3.1 guarantees that system (33) is
robustly globally stabilisable by means of bounded
sampled-data control with positive sampling rate.

A possible selection of the bounded sampled-data
feedback stabiliser is:

Mmzmcﬁf@@@mmMQ,
JED)

for x € ® := {x € R |x|* < 2R}
k(x)=v, forx¢®

where v € 9 is the input value involved in Fact 1.
The reader may verify that the requirements of
Lemma 3.5 hold with

k(x) := In (M exp(x1)>
1 (S5)
and V(x) = (1/2)x? + (1/2)x3. Therefore, Fact 2 is a
direct consequence of Lemma 3.5.
Thus we are left with the proof of Fact 1. Let ¢ > 0
sufficiently small (3¢ < Q —1) and v € % such that

2u(ss) exp(v) < 5_im u(S) (36)

For every xo= (x19, X20) € i there exists fmax > 0 such
that the solution of (33) with u(f)=v and initial
condition (x(0), x2(0)) = xo = (10, X20) € N> exists for
all ¢ € [0, tmax). Using the fact that u(s) >0 for all s>0
and differential equations (33),we obtain for all
1 € [0, tmax):

(Q = 1)e"? 420 = o(1 — ™)
+ €7Dt((Q _ l)exl() + €X20) (3721)

Q+(Q — l)e-‘fm _|_eX2<1
0-1

xlo—Dl§x1(1)51n< > (37b)

x2(1) <In(Q+e (€™ — Q) < max{xx, In(Q)}  (37¢)

where D = u(S,)e’. Notice that the upper bound in
(37b) is a direct consequence of (37a), the lower bound
in (37b) is obtained from the differential inequality
X; > —D and inequality (37c) is a consequence of
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inequalities (37a,b). Exploiting (37a) and differential
equations (33), we get the following differential equa-
tion for all 7 € [0, tax):

%exz(t) _ (D _ M(SXQXZ(t))) (Q _ e-\’z(f))
+(5:020)eP(Q— (@~ e —e™) (38)

Since ©(0)=0, D > 0, it follows from continuity of
wiRt — R that for every xo=(x0,Xx20) €N there
exists Smin(X0) € (0, (Sp/2)] such that:

n(S) for all S € [0, Smin(x0)], (39)

D
S,
8 exp(|xol)

Notice that inequality (39) in conjunction with
differential equation (38) implies that (d/d7)e®? >
(5/16)DQ  for all x; < In((Smin(x0))/ss). Therefore,
the globally Lipschitz function Y(¢) = min(x,(?),
(Smin(x0)/s5)) satisfies limsup,_ o+ [(Y(z + 1) — Y(2))/
h] >0 forall 7€]0,#nax). Thus the mapping
t— Y(f) is non-decreasing; hence Y(¢)> Y(0) for all
t €0, tmax)- By distinguishing the cases x(f) >
ln[(Smin(xO))/Sx] and X2(1)< ln[(Smin(XO))/Ss] in
conjunction with Y(f)> Y(0) and definition Y(7) =
min(x,(7), In(Smin(x0)/ss)) we obtain for all ¢ € [0, tyax):

x2(8) > min(xzo, IH(M>> (40)

s

Estimates (37b,c) and (40) guarantee that for every
Xo = (X10, X20) € R the solution of (33) with u(¢) = v and
initial  condition  (x1(0), x2(0)) = xo = (10, X20) € N>
exists for all 1> 0 (i.e. fpax = +00).

Since u(0)=0, D > 0, it follows from continuity of
wiRT — RT that there exists S™e (0, s,) such that:

D
w(S) < EX forall S €[0,57] (41)
We next show that for every xo=(xq,X2) €N’ the

solution of (33) with u(f)=v and initial condition
(x1(0), x2(0)) = xo € N satisfies:

() = 1n(§),

forall r> D! 1n<

p ) spo-n W

Let t; := D' In(4pumaxe™! /D) and notice that by
virtue of (38) we get (d/dr)e™?>(D — u(S;e™ ")) x
(0 — 2 — [(D(Q — 1))/4] for all > t,. If in addition
s < S~ holds then (d/d7)e™*” > [(D(Q — 1))/4]. Using
the previous differential inequality and following
the same arguments as in the proof of Lemma 2.7,

4Mmax€x(J|) 45~

we may conclude that (42) holds. A direct consequence
of (37a) and (42) is the following inequality:

v D S
() < ln(Q— i (1 +4umax> “0- l)ss)’

4“ elxo\ 4S_
_1 max
forallt> D 1n< D ) +SSD(Q -1)

It should be emphasised that inequality (37c) implies
that if xyp < In(Q) then x3(¢) <In(Q) for all >0.
On the other hand, if x5 > In(Q) then T :=
sup{t > 0: ming<.<, x2(7r) > In(Q)} > 0.  Differential
equation (33) in conjunction with the left-hand side
inequality (37b), inequality (37c) implies the diff-
erential inequality (d/dne™® < D(Q — ") — uyin(x)x
(Q — De¥o=Pt for all te[0,T), where pmin(xo):=
min{u(S), So < S < s, + Sp} The previous differ-
ential inequality implies Q < ™) < Q + exp(—D1) x
[ — O — umin(Q — 1)e*r] forall ¢ € [0, T'). Clearly,
we must have T <[(max{0,e™ — O})/(Umin X
(Q — 1)e™)]. Continuity of the solution implies
x2(T)=In(Q). Exploiting inequality (37c) (with initial
time 7" < max{0,e" — O}/(Umin(x0)(Q — 1)e™*)  we
obtain:

(43)

max{0,e* — Q}
Mmin(XO)(Q - ])exm
Moreover, it follows from (36) and (38) that the
following implication holds for the solution of (33)
with u(f)=v and initial condition (x1(0),x»(0))=
X0 = (X109, X20) € R*:

If x2(&) < In(Q — 2¢) for certain
£> max{O, D! ln(%axQ>}
eD

then x(7) < In(Q — 2¢) for all t > & (45)

x2(¢) <In(Q), forallz>

(44)

Implication (45) follows from the differential inequality
(d/dne™” < —eD + pmaxe 2’0, which holds for all
X3 € [In(Q — 3e), In(Q — ¢)] and is a direct consequence
of (36) and (38). Notice that forz>¢&>
max{0, D' In[(2umaxR)/eD]} and x; € [In(Q — 3¢),
In(Q — ¢)] we obtain (d/dr)e™® < —(1/2)eD.

Finally, we claim that for every xo = (x}0, X20) € %>
the solution of (33) with u(f)=v and initial condition
(x1(0), x2(0)) = xo € R satisfies:

x2(f) < In(Q — 2¢), forall

t> D24+ ilelel+Df(xo):| + f(xo) (46a)

where
[ , 1ol ( plol
T(X()) :=maxj0, D—l In <2MmaxQ> e (e + Q) }

eD ' (Q - l)/"min(XO)
(46b)
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The proof of this claim is made by contradiction.
Suppose that there exists xo € > and

6 3 ~ ~
t=D" [2 o1 _8 i e*O'*DT(XO)] + T(x0)

such that the solution of (33) with u(7)=v and initial
condition (x1(0), x5(0)) = xo satisfies
x2(1) > In(Q — 2¢). By virtue of (44) and (45) it is
clear that x(7) € (In(Q — 2¢), In(Q)] for all
t e [T(xo),7]. By virtue of (33) and (36) we obtain
x1(t) > D for all T€ [T(xo), 7], which in conjunction
with the left-hand side inequality (37b) implies:

exp(x1(1)) = exp(xip — 2D T(x9) + D1),
for all € [T(xo), 1] (47)

Notice that (33) in conjunction with (36), (47) and the
fact xy(7) € (In(Q — 2¢),In(Q)] for all e [T(xop),1],
implies  that (d/dr)e™ < 2eD — (0 — 1) x
De*10=2DT0)+Dt for all 1 € [T(xo), {]. The previous
differential inequality implies Q —2¢ < ™ < Q+
26D(t — T(xp)) — (Q — 1)eX02PTe0) (Pt . DPTw0)),
Since 1 — T(xg) = D™'[2+ (6¢/Q — Del* !PT, the
previous inequality gives a contradiction (since we
get 2eD(t — T(x))—(Q — 1)e*102PT00) (D1 — PT0x0)) <
—2¢).

Using (42), (43), (46a) and (37a), we conclude that
for every xo=(x10,X20) € %2 the solution of (33) with
u(f)=v and initial condition (x1(0),x(0)) = x, € R
satisfies:

In <i;> < x2(f) < In(Q — 2¢) (48a)

DS

1n<Q8_ 1) <x1(9)

_ 0 D S~
=In (Q —1 (1 +4Mmax> “(0- l)s.y) (486)

4 maxe!™! N 48~
D ssD(Q — 1)’

for all

t> max{D_l ln(

D! ll’l(Q), D! |:2 + 6e 1e|~\’(>+DT(x0)i| 4 T(X())}
&

By virtue of Theorem 1.1 in Temam (1998; p. 23), the
w-limit set of the absorbing set:

£ 0 D N
o= [IH<Q— 1)’ln(Q— i (1 +4umax> “o- 1)ss)}
X |:1n (%), In(Q — 28)j|

is a compact global attractor 4 C ) for the dynamical
system (33) with u(¢f) =v. Moreover, by virtue of (37a)

and Lemma 3.1 in Khalil (1996, p. 114), it follows that
the inclusion

" {(xl’x” < [m(g=s) m(eE (1)
~@o)) < () me-20]

(Q—De" e = Q}

holds for the compact global attractor 4 C %> of the
dynamical system (33) with u(t)=v.

5. Concluding remarks

A novel notion of robust reachability of one set from
another set under constant control is proposed in the
present work. This notion is used to construct a control
strategy, involving sequential set-to-set reachability,
which guarantees robust global stabilisation of non-
linear sampled data systems with positive sampling rate.
Sufficient conditions for robust reachability of one set
from another under constant control are also provided.

Whenever applicable, the proposed sampled-data
feedback design methodology based on the main result
of the present work (Theorem 3.1), has very desirable
features, including that it:

e provides a simple formula for a stabilising
sampled-data feedback,

e guarantees global asymptotic stability for the
closed-loop system,

e guarantees robustness to perturbations of the
sampling schedule,

e provides means to determine the maximum
allowable sampling period,

e is not limited to special cases where the
solution map is available,

e isnot limited to special cases where the non-linear
term is homogeneous or globally Lipschitz.

No other sampled-data feedback design methodology
available in the literature can provide all the above
features simultaneously. On the other hand, the
proposed methodology requires further work, based
on knowledge of the dynamics of the system, in order
to come up with a concrete control strategy in
a specific application. This was accomplished in §4
in two important engineering applications, a jet engine
system and the chemostat. Future research can provide
guidelines to expand the range of practical applicability
of the proposed theory for the development of concrete
control strategies.
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Appendix

Proof of Lemma 3.4: Lemma 4.4 in Lin et al. (1996),
guarantees the existence of a continuous function o of class
KL, with o(s,0) = for all s >0 which satisfies (3/d t)o(s, 1) =
—p(o(s,t)) for all s, >0 with the following property: if
y:lto, t1]— R is an absolutely continuous function and
IC|[to, ;] a set of Lebesgue measure zero such that y() is
defined on [#y, #;]\/ and such that the following differential
inequality holds for all € [to, 11]\I

(1) = —p(¥(0) (A1)

then the following estimate holds for all 7 €7, #;]:

(1) < a(y(to), 1 = t0) (A2)

Actually, the statement of Lemma 4.4 in Lin et al. (1996)
does not guarantee that o is continuous or that o(s, 0) = for
all >0, but a close look at the proof of Lemma 4.4 in Lin
et al. (1996) shows that this is the case when p:RT — RT is
a positive definite continuous function.  _

Let Xy € 9, xo#0eR", (d,d) e L5, (Wt; D)x
Liw (T 91). The solution x(7) of (7) with k=k, h="h
exists locally and satisfies x(7) € ® and M|x(7) — xo| < |x(?)]
for ¢t>0 sufficiently small. Let 1 =hexp(—d(0))
and T :=sup{t € [0, 71): maxXp<,<; XV(x(7)) < R, maXp<,<
(M|x(t) — xo|—|x(7)]) < 0} > 0. Notice that the previous
definition of 7" combined with (19) and (20) gives:

d
q; V) = —p(V(x(®)) and

dr
a.e. forr€[0,7) (A3)

d /1
@ (5 (1) — Xo|2> < LIx(t) = Xl + glxo

Consequently, by virtue of (A1), (A2) and (A3) we obtain the
following inequalities which hold for all 1€[0, T']:

V(x(1)) <o(V(x0),1) and |x(f) —xo| < |X0|\/@

for thecase L > 0 (A4)

or
V(x(1)) < o(V(xp),t) and

[x(2) — x0| < |x0l+/2qt for the case L =10 (AS)

By using (A4), (A5) in conjunction with the inequality |xo| <

|x(¢) — xo| + |x(7)|, we obtain the following inequalities which
hold for all €0, T']:

V(x(1)) < o(V(x0),f) and
Vqexp(2Lt) — 1) O
VL - /q(exp2Lr) — 1)

for the case L > 0 (A6)

[x() = xo| <

or
V(x(1) < o(V(x0).1) and

[x(1) — x| < i |x(7)] for the case L =0 (A7)

1 —-2qt
Notice that sincer < T < 7, < h=h < (1/2L)In(1 + (L/q) x
[1/(1 + M), for the case L>0 or t<T<1 <h=h<
(1/2¢)(1/(1 4+ M))* for the case L =0, we conclude that

M Va(exp(2Lt) — 1) <1 qexp(ZLt) -1 <1
VL - /qexpLty—1) L

for the case L > 0 or M(y/2qt/1 — /2qt) < 1, /2qt < 1 for
the case L=0. Consequently, combining the previous

inequalities with (A4)—(A7), we obtain the following estimate
for the solution x(¢) of (7) with k = k, h = h, which holds for
all €0, T]:

V(x(0) < 0(V(x0), 1) and  MIx(1) = xo| < [x(0)|

A simple contradiction argument shows that the above
estimate holds for all t€[0,7;] (i.e. T=1t;). Notice that
estimate V(x(7)) < o( V(xo), 1) holds for the case xq =0 as well.



16:17 5 June 2009

[ HEAL- Li nk Consortiun] At:

Downl oaded By:

772 1. Karafyllis and C. Kravaris

Using induction and the semi-group property for o, we
obtain for all non-negative integers i:

V(x(1)) < o(V(xo),t), forallze [z, ti] (A8)

Since V:R\"— 9" is a positive definite, continuously
differentiable and radially unbounded function, there exist
functions ay, ay € Ky such that a;(|x]) < V(x) < ax(|x]), for
all x e N" (Lemma 3.5, Khalil (1996, p. 138)). The conclusion
of Lemma 3.2 is an immediate consequence of (AS), the
previous inequality and the properties of KL functions.
The proof is complete. U

Proof of Lemma 3.5: Let R > 0 (arbitrary) and notice that
since Ve C*(M"; M) is radially unbounded, it follows that
the set ® := {x € W™ V(x) < R} is bounded. Let SCR" be a
convex compact set with {x € R": |x| <2|z],z€ ®} C S and
let the compact set W := {k(x): x€ S} C U. Let C,K > 0 be
the constants that satisfy inequalities (21), (22) for z, x€ S,
u, ve W and let G>0 be the Lipschitz constant for k:
N — U C N on the compact SCHR", i.e. G>0 satisfies
|k(z) k(x)l < G|z — x| for all z, x € S. Notice that by virtue
of (21) we get for all z€ ®, x € ® and de D:

(z —x)/(d, z,k(x))
= (z = XV (f(d, 2, k(x)) — f(d, x, k(x))) + (z — X)f(d, x, k(x))
<Clz—xP+(z - x)’f(d, x, k(x))
<c+ 1)|z x4 g (xR (A9)
Inequality (21) and the fact that 15(0) = 0 implies:

sup |f(d, X, k~(x))| <C(1+G)x|, forallxeS (A10)
deD

By virtue of (A9), (A10), we conclude that inequality (19)
holds with L :=C+(1/2) and ¢ := (1/2)C*(1 + G)*. Since
Ve Cz(m”; MT), there exists a constant B>0 such that
[VV(z)| < BJz| for all ze S. Moreover, notice that if z € ©
and M >1 then every x € X" with M|z — x| < |z| belongs to
the compact set S CR". Consequently, we get from (21) and
(22) for all z € ® and M > 1 4+ 2(BCG/K):

sup {VV(z)f(d, Z, IE(x)) deD,Mz—x| < |z|}
— sup {v V(z)f(d, z, /€(z)) F V() (f(d, z, /€(x))

—f(d,z k(z))): de D, Mz —x| < |z|}

< sup{ = KJzP> + VI CIR) — KL MIz = x| < 121
< sup{ K|zI> + BCG|z||z — x|: M|z — x| < |z|}

BCG K
<- (K——)H 2|z|2

The above inequality shows that inequality (20)
holds for the continuous, positive definite function
p(s) = 2(1+B) (since V(z) < Blz|*for all z € S).

Finally, we notice that the existence of a function
y € Koo With |f(d z,k(x))| < y(lz| + |x]) for all
(d,z,x)e D x K" , follows directly from (21) and the
fact that k: %" — Ug\)i’” with £(0)=0 is locally
Lipschitz. The proof is complete. (I

Proof of fact in the proof of Theorem 3.1: Let (d,d) e
Lim (Rt D) x LS. (RT; |Y) and x(x) € Cp with k> 1 (arbi-
trary). By v1rtue of deﬁnition (21) it follows that x(t;) € ;.
Let v, € U be the constant control that guarantees property
(Q) of Definition 2.4 with Q replaced by €, and 4 =
UKS!Q; = By_;. The solution of (7) on [; 7;11] coincides with
the solution of (1) with u(f) = vy, same initial conditions and
corresponding to the same input d € L{5, (W; D).

Let T(d, x(t;)) € [0, ¢ 4+ b(]x(7;)|)] the time involved in
property (Q) of Definition 2.4. Since lim,_, o 7y, = +00
(Karafyllis 2007a), there exists integer p>0 such that
Tippr1 — T > T(d, x(1))>7iy, — 7;. We claim that there exists
non-negative integer ¢ <p-+1 such that x(r;,) e C, for
some s < k. Notice that an immediate consequence of the
claim is that Ty < Tiypr1 < Tp +7 < 7 + T(d, x(1;)) +
r <t 4 c+ b(|x(t)|) +r.

By virtue of property (Q) of Definition 2.4 and
since 1, <t1;+r, the solution of (7) exists for all
telt, 1]  and  osatisfies  [x(7)| < a(|x(z;)]), for all
telt,tip1]. In order to prove the above claim we
distinguish the following cases:

(a) T(d, x(z;)) > t;41 — t;. In this case, we have x(t;) €
Q. C By. Since By = Ui,k Cs, it follows that there
exists s€{1,...,k} such that x(z,,) € C.

(b) T(d, x(t;)) <ty — 1; Since 1,4 — 7; <r, in this case
there exists me{l,...,k—1} such that x(z; )€
Q,, € B,,. Since B,,=U,_; . ,C, there exists s <k
such that x(t;4,) € C..

In every case we obtain the existence of se{l,...,k} such
that x(t;.1)€C,. However, if x(t;,)€CrCQy, then
7(d,x(t;)) > t;,1—1; and thus we can guarantee that
property (Q) of Definition 2.4 holds with T(d, x(t;1)) =
T(d, x(t;)) — (ti41 — t;). Furthermore, since 7;,, — ;41 <r, the
solution of (7) exists for all re[r,7;,] and satisfies
|x(0)| < a(|x(t))]), for all ¢ €([r; t;15]. By distinguishing cases
(similarly as above), we conclude that there exists se€
{1,...,k} such that x(t;;,) € C..

However, if x(t;12) € Cx, then T(d, x(t;11)) > Tiyo — Tip1
and thus we can guarantee that property (Q) of Definition
2.4 holds with T(d, x(t;42)) = T(d, X(t;11)) — (Tiy2 — Tig1) =
T(d, x(z;)) — (t;42 — t;). Furthermore, since t;,3—1,,0=<r,
the solution of (7) exists for all 7€([r;, 7;43] and satisfies
[x(0)| = a(lx(z)l), for all 7 €[z, Tiy3].

Continuing in the same way, we conclude that there
exists non-negative integer g<p such that x(t.,) e C;
for some se{l,...,k— 1}, because otherwise we would have
T(d, X(Tiyps1) = T(d, X(1;)) — (Tiypy1 — T2) < 0 (a contradiction).
Moreover, the solution of (7) satisfies |x(7)| < a(|x(z;)|),
for all t €[z;, 7;4,]. The proof is complete.



