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This work proposes a notion of robust reachability of one set from another set under constant control. This
notion is used to construct a control strategy, involving sequential set-to-set reachability, which guarantees
robust global stabilisation of non-linear sampled data systems with positive sampling rate. Sufficient conditions
for robust reachability of one set from another under constant control are also provided. The proposed method
is illustrated through a number of examples, including the study of the sampled-data stabilisation problem of the
chemostat.
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1. Introduction

Given the finite-dimensional continuous-time system:

_xðtÞ ¼ f ðdðtÞ, xðtÞ, uðtÞÞ

dðtÞ 2 D � <l, xðtÞ 2 <n, uðtÞ 2 U � <m
ð1Þ

where the vector field f :D�<n�U!<n is contin-
uous, u(t) represents the control input and d(t)

unknown disturbances or model uncertainty.
Consider now a state feedback law u¼ k(x) to be

applied to system (1) in discrete time, under zero-order
hold with sampling period h:

uðtÞ ¼ kðxð�iÞÞ on the interval ½�i, �i þ hÞ,

i ¼ 0, 1, 2, . . . ð2Þ

The resulting closed-loop system is the following
hybrid system:

_xðtÞ ¼ f ðdðtÞ, xðtÞ, kðxð�iÞÞÞ, t 2 ½�i, �iþ1Þ

�iþ1 ¼ �i þ h, i ¼ 0, 1, 2, . . . ð3Þ

and the question is how to select the state feedback
function k(x) for desirable stability characteristics of (3).

There is a large body of literature concerning the
above very important and very challenging problem

of designing sampled-data feedback stabilisers.
In particular, the following lines of attack have

been pursued to derive stability results (see also the
detailed discussion in review article Monaco and
Normand-Cyrot (2001)):

. making use of numerical approximations
of the solution of the open-loop system

e.g. in the work of Nesic, Teel and others

(Nesic, Teel and Kokotovic 1999; Nesic, Teel

and Sontag 1999; Nesic and Teel 2001; Laila,

Nesic and Teel 2002; Nesic and Angeli 2002;

Nesic and Laila 2002; Grune and Nesic 2003;

Zaccarian, Teel and Nesic 2003; Kellett, Shim

and Teel 2004; Nesic and Teel 2004; Laila and

Astolfi 2005; Nesic and Grune 2005).

The results obtained in this way lead to

a systematic procedure for the construction

of practical, semi-global feedback stabilisers

and provide a list of possible reasons that

explain the occasional failure of sampled-data

control mechanisms. Recent research takes

into account performance and robustness

issues as well (Grune and Nesic 2003; Kellet

et al. 2004; Khalil 2004; Nesic and Teel 2004).
. exploiting special characteristics of the system

such as homogeneity (Grune 1999, 2000),

global Lipschitz conditions (Herrmann,

Spurgeon and Edwards 1999) or linear struc-

ture with uncertainties (Bernstein and Hollot

1989).
. making use of Linear Matrix Inequalities

(Ye, Michel and Hou 1998; Mancilla-

Aguilar, Garcia and Troparevsky 2000; Hu

and Michel 2000a, b), Lyapunov inequalities

(Carnevale, Teel and Nesic 2007) or small-

gain theorems (Karafyllis and Jiang 2007) in

the context of hybrid systems.
. considering the closed-loop system as

a discrete-time system (see for instance

Monaco and Normand-Cyrot (1988);
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Artstein and Weiss (2005), as well as Monaco

and Normand-Cyrot (1988) which establishes

a unified representation for sampled-data

systems and discrete-time systems with analy-

tic dynamics). Recent work has established

results that characterise the inter-sample

behaviour of the solutions based on the

behaviour of the solution of the discrete-time

system (Nesic et al. 1999).
. considering the closed-loop system under zero

order-hold as a time-delay system. This

approach was recently explored in the context

of linear systems theory (Fridman, Seuret and

Richard 2004; Fridman, Shaked and Suplin

2005) and non-linear systems theory

(Karafyllis and Kravaris 2007).

It should be mentioned here that the possibility of

using state-dependent sampling period h(x)4 0 has

recently emerged in the literature (see the classical

works in Clarke, Ledyaev, Sontag and Subbotin

(1997); Sontag (1999) and the links with sampled-

data stabilisability given in Grune (1999) in connection

with the study of asymptotic controllability of non-

linear systems. Notice that the main results in Clarke

et al. (1997); Sontag (1999) (and Theorem 9.3.1 in

Grune (1999)) lead to semi-global practical stabilisa-

tion for the case of sampling schedules with positive

sampling rate.
It is important to point out that the above very

important research results do not provide conditions

for global asymptotic stability for general non-linear

sampled-data systems (usually only semi-global prac-

tical stability properties are established or global

stability for limited classes of systems; exceptions are

the articles Carnevale et al. (2007); Karafyllis and Jiang

(2007); Karafyllis and Kravaris (2007).
The goal of the present work is the development

of a design methodology to guarantee robust

global asymptotic stability for system (3), where the

sampled-data feedback is applied with zero-order

hold and positive sampling rate. Our proposed

approach has been motivated by the following

considerations:

(i) When a continuous-time controller is designed

for the continuous-time system (1) and subse-

quently is implemented under sample-and-

hold discretisation, the sampled-data control

system does not inherit the properties of the

continuous-time control system. For example,

global closed-loop asymptotic stability in

continuous time will not, in general, be

preserved under the emulation controller:

closed-loop stability will, in general, become
local.

(ii) If the foregoing emulation design or any other
sampled-data controller design guarantees
a domain of attraction that is too small in
size for a particular application, the immediate
question that arises concerns the possibility of
extending the control strategy for the purpose
of enlargement of the domain of attraction.
When the system’s initial condition is outside
the guaranteed domain of attraction under
a given controller, is it possible to find
a strategy that can bring the system inside?

To be able to address the latter question, some
intuitive considerations would be helpful, before
a mathematical formulation is developed. In order to
drive the system’s state to the given target set, the
simplest choice of control input that could be tried is
constant control. If constant control cannot take the
system inside the target set, it will still be able to take it
somewhere else. From there, another constant value of
the control input can be tried out and, if it still does not
hit the target, still another constant control input, etc.,
until the target set is reached.

The intuitive idea of using different feedback laws
in different regions of the state space has appeared
recently in the literature. For example, in Behrens and
Wirth (2001) the authors exploit null asymptotic
controllability of the system and its linearisation in
order to obtain a piecewise constant patchy feedback
(applied continuously; not under zero-order hold) that
brings all Caratheodory (not Filippov) solutions into
a feedback invariant neighbourhood of the origin and
a sampled-data feedback (applied in the feedback
invariant neighbourhood of the origin) which guaran-
tees local exponential stability. Reachability properties
of the control system were also exploited in Section
12.1 (Feedback Stabilisation of Regular Systems) of
the book Colonius and Kliemann (2000; pp. 434–449)
in order to construct measurable feedback laws which
are applied continuously (not under zero-order hold)
and guarantee global practical stabilisation (see also
the references of Colonius and Kliemann (2000)).

The present work will provide a mathematical
formulation of the foregoing intuitive idea of sequen-
tial reachability from one region of state space to
another, ultimately reaching the target attractor.
The goal will be to develop and prove conditions
under which this intuitive idea will lead to robust
global asymptotic stability for the closed-loop system
(Theorem 3.1). In this direction, a new notion of
reachability of one set from another under constant
control will be proposed (Definition 2.4) and
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subsequently, this notion will be utilised to establish
the main stability results that involve a chain of
reachable sets. Simple sufficient conditions to test
reachability of one set from another will also be
derived (Lemma 2.7 and Lemma 2.9). Finally, the
proposed method will be applied to a number of
illustrative examples. Example 4.1 will study the
simplified Moore–Greitzer model of a jet engine with
no stall, which was recently studied in Nesic and Grune
(2005). Example 4.2 considers an important class of
one-dimensional control systems, where a globally
stabilising non-linear sampled-data feedback law is
constructed by means of Theorem 3.1. The important
class of bilinear systems will be studied in Example 4.3,
where the results of Theorem 3.1 lead to a concrete
sampled-data stabilisation algorithm by means of
bounded feedback. The problem of sampled-data
stabilisation of the chemostat will be solved in
Example 4.4. The resulting control algorithm will not
rely on any monotonicity assumption on the specific
growth rate (Smith and Waltman 1995; Karafyllis,
Kravaris, Syrou and Lyberatos 2008) and is directly
applicable for practical implementation.

Whenever applicable, the proposed control method
has very desirable features, including that

. it guarantees global asymptotic stability for
the closed-loop system,

. it guarantees robustness to perturbations of
the sampling schedule,

. it provides means to determine the maximum
allowable sampling period,

. is not limited to special cases where the
solution map is available,

. is not limited to special cases where the non-
linear term is homogeneous or globally
Lipschitz.

No other existing method can guarantee all of the
above at the same time.

On the other hand, even though the proposed
methodology is conceptually very simple, its applica-
tion to a specific control problem requires further
work, based on knowledge of the dynamics of the
open-loop system under constant input (not necessarily
the solution map), in order to come up with a concrete
control strategy in a specific application. This will be
illustrated in the examples of x 4, including the two
important engineering applications of a jet engine
system and the chemostat.

Notations: Throughout this article we adopt the
following notations:

. For a vector x2<n we denote by jxj its usual
Euclidean norm and by x0 its transpose.

. We say that a non-decreasing continuous
function � :<þ!<þ is of class N if �(0)¼ 0.
We say that a function � :<þ!<þ is positive
definite if �(0)¼ 0 and �(s)4 0 for all s4 0.
For the definitions of the classes K and K1,
see Khalil (1996; p. 135). By KL we denote the
set of all continuous functions �¼ �(s, t) :
<
þ
�<

þ
!<

þ with the properties: (i) for
each t� 0 the mapping �(�, t) is of class K;
(ii) for each s� 0, the mapping �(s, �) is non-
increasing with limt!þ1 �ðs, tÞ ¼ 0.

. Let D�<l be a non-empty set. By L1locð<
þ;DÞ

we denote the class of all Lebesgue measurable
and locally bounded mappings d :<þ!D.
Notice that members of L1locð<

þ;DÞ are func-
tions d :<þ!D which are defined pointwise
and not equivalent classes of functions.

. Let A�<n be a non-empty set. For every
"4 0 we define the "-neighbourhood of A
by NðA, "Þ :¼ fy 2 <n: distð y,AÞ5 "g, where
distð y,AÞ ¼ inffjy� xj: x 2 Ag.

. By Cj(A) (Cj(A;�)), where j� 0 is a non-
negative integer, A�<n, we denote the class of
functions (taking values in ��<m) that have
continuous derivatives of order j on A.

. For every scalar continuously differentiable
function V : <n! <,rV(x) denotes the gradi-
ent ofV at x2<n, i.e. rV(x)¼ ((@V/@x1)(x), . . . ,
(@V/@xn)(x)). We say that a function
V :<n!<þ is positive definite if V(x)4 0
for all x 6¼ 0 and V(0)¼ 0. We say that a
continuous function V :<n!<þ is radially
unbounded if the following property holds:
‘for every M4 0 the set {x2<n:V(x)�M} is
compact’.

2. Main assumptions and notions for sampled-data

systems

In the present work we study control systems of the
form (1) under the following hypotheses:

(H1) f(d, x, u) is continuous with respect to
(d, x, u)2D�<n�U and such that for every
bounded S�<n�U there exists constant
L� 0 such that

ðx� yÞ 0ð f ðd,x, uÞ � f ðd, y, uÞÞ � Ljx� yj2

8ðx, u, d Þ 2 S�D, 8ð y, u, d Þ 2 S�D
ð4Þ

Hypothesis (H1) is a standard continuity
hypothesis and condition (4) is often used in
the literature instead of the usual local
Lipschitz hypothesis for various purposes
and is called a ‘one-sided Lipschitz condition’
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(see, for example, Stuart and Humphries

(1998; p. 416) and Fillipov (1988; p. 106)).
Notice that the ‘one-sided Lipschitz condition’
is weaker than the hypothesis of local Lipschitz

continuity of the vector field f(d, x, u) with
respect to x2<n. It is clear that hypothesis
(H1) guarantees that for every ðx0, d, uÞ 2 <

n�

L1locð<
þ;DÞ � L1locð<

þ;U Þ, there exists a unique
solution x(t) of (1) with initial condition
x(0)¼ x0 corresponding to inputs ðd, uÞ 2
L1locð<

þ;DÞ � L1locð<
þ;U Þ.

(H2) There exist a function a 2 K1 such that

j f ðd, x, uÞj � aðjxj þ jujÞ,

8ðu, d, xÞ 2 U�D�<n ð5Þ

Hypothesis (H2) guarantees that 02<n is an

equilibrium point for (1) and is automatically
satisfied if D�<l is compact and f(d, 0, 0)¼ 0
for all d2D.

We next provide a definition of robust global stabi-
lisability of (1) by means of bounded sampled-data
control with positive sampling rate, which will be used

in subsequent developments.

Definition 2.1: We say that the equilibrium point
02<n of (1) under hypotheses (H1 and H2) is robustly
globally stabilisable by means of sampled-data control

with positive sampling rate, if there exists a locally
bounded mapping k :<n!U�<m with k(0)¼ 0 (the
feedback function), a function � 2 K1 with

j f(d, z, k(x)) j � �(jzj þ jxj) for all (d, z, x)2D�
<
n
�<

n, a constant h4 0 (the maximum allowable
sampling period) and a function � 2KL such that the

following estimate holds for all ðx0, d, ~d Þ 2 <n�

L1locð<
þ;DÞ � L1locð<

þ;<þÞ and t� 0:

jxðtÞj � � x0j j, tð Þ ð6Þ

where x(t) denotes the solution of the system:

_xðtÞ¼ fðdðtÞ,xðtÞ,kðxð�iÞÞÞ, t2 ½�i,�iþ1Þ

�0¼ 0, �iþ1¼ �iþhexpð� ~dð�iÞÞ, i¼ 0,1, . . .
ð7Þ

with initial condition x(0)¼ x0.

We say that the equilibrium point 02<n of (1)
under hypotheses (H1 and H2) is robustly globally

stabilisable by means of bounded sampled-data control
with positive sampling rate, if the feedback function
k :<n!U�<m is bounded.

Remark 2.2:

(a) In this work, the closed-loop system (7) will be
regarded as a hybrid system, that produces for

each x02<
n and for each pair of measurable and

locally bounded inputs d :<þ!D,
~d : <þ ! <þ, the absolutely continuous func-
tion t!x(t)2<n, produced by the following
algorithm:

Step i:

(i) Given �i, calculate �iþ1 using the equation
�iþ1 ¼ �i þ h expð� ~dð�iÞÞ,

(ii) Compute the state trajectory x(t), t2 [�i, �iþ1)
as the solution of the differential equation
_xðtÞ ¼ f ðdðtÞ, xðtÞ, kðxð�iÞÞÞ,

(iii) Calculate x(�iþ1) using the equation xð�iþ1Þ ¼
limt!��

iþ1
xðtÞ.

Hybrid systems of the form (7) were considered in
Karafyllis (2007a, b). Particularly, it was shown that
under hypotheses (H1 and H2) and the hypotheses of
Definition 2.1, the hybrid system (7) is an autonomous
system which satisfies weak semi-group property, the
‘Boundedness Implies Continuation’ property and for
which 02<n is a robust equilibrium point for system
(7) from the input ~d 2 L1locð<

þ;<þÞ (Karafyllis 2007a).
Moreover, the existence of a function � 2KL
that satisfies (6) is equivalent to requiring Uniform
Robust Global Asymptotic Stability for the closed-
loop system (7).

(b) Under hypothesis (H2) and the assumption
that k :<n!U�<m is a locally bounded map-
ping with k(0)¼ 0, the assumption that there
exists � 2 K1 with j f(d, z, k(x))j � �(jzj þ jxj)
for all (d, z, x)2D�<n�<n is automatically
satisfied if the mapping k :<n!U�<m is
continuous at x¼ 0.

Remark 2.3: The reader should notice that the
sampling period is allowed to be time-varying.
The factor expð� ~dð�iÞÞ � 1, with ~dðtÞ � 0 some non-
negative function of time, is an uncertainty factor in
the end-point of the sampling interval. Proving robust
global stabilisability of (1) by bounded sampled-data
feedback with positive sampling rate will guarantee
stability of the closed-loop system (7) for all sampling
schedules with �iþ1� �i� h (robustness to perturba-
tions of the sampling schedule). To understand the
importance of robustness to perturbations of the
sampling schedule, consider the following situation.
Suppose that hardware limitations restrict the sam-
pling period to be 1s. If we manage to design
a sampled-data feedback law with h(x)	 r� 2s, then
the application of the feedback control will guarantee
stability properties for the closed-loop system even if
we ‘miss measurements’ or if we have ‘delayed measur-
ements’ (e.g., due to improper operation of the sensor).
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In such a case robustness to perturbations of the
sampling schedule becomes critical. The introduction
of the factor expð� ~dð�iÞÞ � 1 is a mathematical way
of introducing perturbations to the sampling
schedule; however, it is not unique. Other ways of
introducing perturbations of the sampling schedule can
be considered.

We next propose a notion of reachability of one set
from another set for control systems of the form (1),
which is going to be utilised for the construction of
sampled-data feedback stabilisers in the following
section.

Definition 2.4: Consider system (1) under hypotheses
(H1 and H2) and let r4 0 be a constant. A set A�<n

is r-robustly reachable from a set ��<n for system (1)
with constant control if there exist v2U, c� 0
and functions a : <þ ! <þ being non-decreasing and
b2N with the following property:

(Q) For every x0 2 �, d 2 L1locð<
þ;DÞ, there

exists T(d, x0)2 [0, cþ b(jx0j)] such that the
solution of (1) with u(t)	 v, initial condition
x(0)¼ x0 corresponding to d 2 L1locð<

þ;DÞ
exists for all t2 [0,T(d, x0)þ r] and satisfies:

(i) jx(t) j � a(jx0j), for all t2 [0,T(d, x0)þ r]
(ii) x(t)2A, for all t2 [T(d, x0),T(d, x0)þ r]
(iii) xðtÞ 2 �, for all t2 [0,T(d, x0)]

Remark 2.5: It should be emphasised that r-robust
reachability of a set with constant control is a much
stronger property than simple reachability as defined in
Sontag (1998, pp. 81–84):

(a) property (Q)-(ii) requires that the solution
remains in the reachable set for at least time r
for all possible disturbances,

(b) property (Q)-(i) requires that the solution
remains uniformly bounded for all possible
disturbances and for initial conditions in
a specified compact set of the state space,

(c) property (Q) requires that the time needed
in order to reach the set A�<n is uniformly
bounded for all possible disturbances and for
initial conditions in a specified compact set of
the state space.

Notice that if A�<n is r-robustly reachable
from ��<n for system (1) with constant control then
every set B�<n with A�B is r-robustly
reachable from ��<n for system (1) with constant
control.

Example 2.6: Consider the simplified Moore–
Greitzer model of a jet engine with no stall presented

in Krstic, Kanellakopoulos and Kokotovic (1995),

described by the planar system:

_x1 ¼
3

2
x21 �

1

2
x31 þ x2

_x2 ¼ u

x ¼ ðx1, x2Þ
0
2 <2, u 2 <

ð8Þ

The sampled-data stabilisability properties of the jet

engine system were studied in in Nesic and Grune (2005),

where it was shown that system (8) can be practically,

semi-globally stabilised by sampled-data control with

positive sampling rate. Here we study the perturbed

version of the jet engine system, i.e. the system:

_x1 ¼ d1ðtÞx1 þ
3

2
d2ðtÞx

2
1 �

1

2
x31 þ x2

_x2 ¼ u

x ¼ ðx1, x2Þ
0
2 <2, u 2 <,

d ¼ ðd1ðtÞ, d2ðtÞÞ 2 ½�1, 1

2

ð9Þ

In this example, we show that the set �2¼ {(x1, x2)2

<
2: jx2j � 1} is r-robustly reachable from the set �3¼

{(x1,x2)2<
2:x2��1} and from the set �4¼ {(x1,x2)2

<
2: x2� 1} for system (9) with constant control

and r¼ 1.
To prove reachability of �2 from �4, let v¼�1 and

notice that the solution x(t) of (9) with initial condition

x0 ¼ ðx10, x20Þ
0
2 �4 satisfies x2(t)¼x20� t for all t� 0

such that the solution of (9) exists. Moreover, we have:

d

dt
x21ðtÞ
� �

¼ 2d1ðtÞx
2
1ðtÞþ 3d2ðtÞx

3
1ðtÞ�x41ðtÞþ 2x1ðtÞx2ðtÞ

� 8x21ðtÞþx22ðtÞ

The above differential inequality in conjunction with

the fact that x2(t)¼ x20� t gives x21ðtÞ � ðx
2
10 þ ð1=8Þ �

max�2½0,t
ðx20 � �Þ
2
Þ expð8þ 8jx0jÞ for all t2 [0, 1þ jx0j].

Consequently, the solution of (9) exists for all t 2

½0, 1þ jx0j
. It follows that:

xðtÞ
�� �� � x0j j þ max

�2½0,t

x20 � �j j

� �
exp 4þ 4 x0j jð Þ,

for all t 2 0, 1þ x0j j½ 
 ð10Þ

Next we show that property (Q) of Definition 2.4 holds

with c :¼ 0, bðsÞ :¼ s 2 N, aðsÞ :¼ 2s expð4þ 4sÞ 2 N and

T(d,x0)¼ x20� 1. Indeed, we have x(t)2�2 for all t2

[T(d, x0),T(d, x0)þ 1], x(t)2�4 for all t2 [0,T(d, x0)],

where T(d, x0)¼ x20� 1. Moreover, we have T(d,x0)�

cþ b(jx0j), where c:¼ 0 and bðsÞ :¼ s 2 N. Finally,

from (10) we also obtain jx(t) j � a(jx0j) for all

t2 [0,T(d, x0)þ 1], where aðsÞ :¼ 2s expð4þ 4sÞ.
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Similarly, we can prove that the set �2¼

{(x1, x2)2<
2: jx2j � 1} is r-robustly reachable from

the set �3¼ {(x1, x2)2<
2: x2��1} for system (9)

with constant control and r¼ 1. Particularly, using

the same arguments we can show that property (Q) of

Definition 2.4 holds with v¼ 1, c :¼ 0, bðsÞ :¼ s 2 N,

aðsÞ :¼ 2s expð4þ 4sÞ 2 N and T(d, x0)¼x20þ 1.
The following simple lemma provides sufficient

conditions for r-robust reachability of sets with

constant control. More specifically, given a positively

invariant set ��<n for system (1), we present

conditions for the construction of an appropriate

subset A � �, which is r-robustly reachable from

��<n for system (1) with constant control for every

r4 0. The following lemma will be used in the

examples of the present work.

Lemma 2.7: Consider system (1) under hypotheses

(H1 and H2) and suppose that there exists a set

��<n, a continuously differentiable function

h : <n! < and constants v2U, R� 0, �4 0 such that

fx 2 �: hðxÞ � Rg 6¼ Ø and

sup
d2D

rhðxÞf ðd, x, vÞ � ��,

for all x 2 � with hðxÞ � R ð11Þ

Moreover, suppose that there exist functions a1, a2 2 K1
and constants, p, G� 0, such that for every x0 2 �, d 2

L1locð<
þ;DÞ, the solution of (1) with u(t)	 v and initial

condition x(0)¼ x0 exists for all t� 0 and satisfies

xðtÞ 2 �, a1ðjxðtÞjÞ � ðGþ a2ðjx0jÞÞ expðptÞ for all t� 0.

Then for every r4 0, the set A :¼�\ {x2<n: h(x)�R}

is r-robustly reachable from ��<n for system (1) with

constant control.

Proof: Let r4 0. Notice that inequality (11) guaran-

tees that the set A :¼�\ {x2<n: h(x)�R} is positively

invariant for system (1) with u(t)	 v. Consequently, if

x02A then x(t)2A for all t� 0 and d 2 L1locð<
þ;DÞ.

Let arbitrary x0 2 �, with h(x0)4R, d 2 L1locð<
þ;DÞ

and consider the solution of (1) with u(t)	 v and initial

condition x(0)¼x0. Define the set ft � 0 : xðtÞ =2Ag.
Clearly this set is non-empty (since

0 2 ft � 0 : xðtÞ =2Ag). We next claim that supft � 0 :

xðtÞ =2Ag � ��1ðhðx0Þ � RÞ. Suppose that this is not

the case. Then there exists t4 ��1(h(x0)�R) with

h(x(t))4R. Since A :¼�\ {x2<n: h(x)�R} is posi-

tively invariant for system (1) with u(t)	 v, this implies

that h(x(�))4R for all � 2 [0, t]. Consequently, it

follows from (11) that ðd=d�Þhðxð�ÞÞ � ��, a.e. on

[0, t]. Thus we obtain h(x(t))� h(x0)� �t, which com-

bined with the hypothesis t4 ��1(h(x0)�R) gives

h(x(t))�R, a contradiction.

Thus, for every x0 2 �, d 2 L1locð<
þ;DÞ there exists

time T(d, x0)� 0 with Tðd, x0Þ � �
�1 maxf0, hðx0Þ � Rg

such that x(t)2A, for all t2 [T(d,x0),T(d, x0)þ r].

Furthermore, inequality Tðd, x0Þ � �
�1 maxf0,

hðx0Þ � Rg implies T(d, x0)� cþ b(jx0j), where bðsÞ :¼

��1ðmaxjxj�s maxf0, hðxÞ � Rg �maxf0, hð0Þ � RgÞ 2 N
and c :¼ ��1 maxf0, hð0Þ � Rg � 0. By virtue of the

hypotheses of the lemma, jx(t)j � a(jx0j), for all

t2 [0,T(d, x0)þ r], where aðsÞ :¼ a�11 ðexpð pðcþ rÞ þ

pbðsÞÞðGþ a2ðsÞÞÞ. Consequently, all requirements of

Definition 2.4 hold and the set A :¼�\ {x2<n:

h(x)�R} is r-robustly reachable from ��<n for

system (1) with constant control. The proof is

complete. œ

The following example illustrates how Lemma 2.7

can be used for the establishment of r-robust reach-

ability of sets with constant control.

Example 2.8: Consider again the perturbed jet engine

system (9). In this example, we show that for every r4 0

the set A¼ {(x1,x2)2<
2: jx2j � 1, jx1j � 4} is r-robustly

reachable from the set �2¼ {(x1,x2)2<
2: jx2j � 1} for

system (9) with constant control. Define �¼�2,

hðxÞ ¼ x21 and v¼ 0. Notice that the solution x(t) of (9)

with initial condition x0 ¼ ðx10, x20Þ
0
2 �2 satisfies

x2(t)¼x202 [� 1, 1] for all t� 0 such that the solution

of (9) exists. Moreover, we have:

d

dt
x21ðtÞ
� �

¼ 2d1ðtÞx
2
1ðtÞ þ 3d2ðtÞx

3
1ðtÞ � x41ðtÞ

þ 2x1ðtÞx2ðtÞ � 8x21ðtÞ þ x22ðtÞ

The above differential inequality in conjunction with

the fact that x2(t)¼ x20 gives x
2
1ðtÞ � ðx

2
10 þ ð1=8Þx

2
20Þ �

expð8tÞ for all t� 0. Consequently, the solution of (9)

exists for all t� 0 and satisfies xðtÞ 2 � and

xðtÞ
�� �� � 2 x0j j expð4tÞ, for all t � 0 ð12Þ

Moreover, notice that

sup
d2½�1,1
2

2d1x
2
1 þ 3d2x

3
1 � x41 þ 2x1x2 � �7,

for all x 2 � with hðxÞ � 16 ð13Þ

It follows from (12), (13) that the hypotheses of

Lemma 2.7 hold with a1(s) :¼ s, a2(s) :¼ 2s, p¼ 4, G¼ 0,

�¼ 7 and R :¼ 16. Consequently for every r4 0 the set

A :¼�\ {x2<n: h(x)� 16} is r-robustly reachable

from ��<n for system (9) with constant control.

Notice that A¼ {(x1, x2)2<
2: jx2j � 1, jx1j � 4}.

Finally, we end this section with a result that

provides links between r-robust reachability of sets

with constant control and attractor theory for systems

without disturbances. Particularly, we show that for
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every ", r4 0 an "-neighbourhood of a compact

global attractor is r-robustly reachable from <
n.

Consequently, knowledge of the dynamics of a control

system under constant input may be used for the

construction of r-robustly reachable sets.

Lemma 2.9: Let U�<m with 02U and consider the

control system:

_xðtÞ ¼ f ðxðtÞ, uðtÞÞ

xðtÞ 2 <n, uðtÞ 2 U
ð14Þ

where f is a locally Lipschitz vector field with f(0)¼ 0.

Suppose that there exists v2U such that the dynamical

system (14) with u(t)	 v has a compact global attractor

A�<n. Then for every ", r4 0 the "-neighbourhood of

A�<n, NðA, "Þ (see notations) is r-robustly reachable

from <n for system (14) with constant control.

Proof: Let x(t, x0) denote the solution of (14) with

u(t)	 v and initial condition x(0)¼ x0. Since A�<n is

a global attractor, for every ",R4 0 there exists

T(",R)� 0 such that the following implication holds

(Stuart and Humphries 1998, p. 166):

‘if x0j j � R then xðt, x0Þ 2 N ðA, "Þ for all t � Tð",RÞ’

ð15Þ

Let g :<þ!<þ be defined by g(s) :¼T(", kþ 1)þ

(s� k)(T(", kþ 2)�T(", kþ 1)) for s2 [k, kþ 1) and

every non-negative integer k. Clearly, g :<þ!<þ is

continuous with gðsÞ � minfTð", ½s
 þ 1Þ,Tð", ½s
 þ 2Þg,

where [s] is the integer part of s� 0. Define c :¼ g(0)

and bðsÞ :¼ maxfgð yÞ � gð0Þ : y 2 ½0, s
g. Clearly, b 2 N
with g(s)� cþ b(s) for all s� 0.

Let x02<
n and consider the solution of (14) with

u(t)	 v and initial condition x(0)¼ x0. By virtue of

implication (15), there exists T(x0)� 0 such that

xðt, x0Þ 2 NðA, "Þ for all t�T(x0). Moreover, Tðx0Þ �

minfTð", ½jx0j
 þ 1Þ, Tð", ½jx0j
 þ 2Þg, where [jx0j]

is the integer part of jx0j and consequently, we obtain

T(x0)� g(jx0j)� cþ b(jx0j). Consequently, require-

ments (ii), (iii) of Property (Q) of Definition 2.4 hold.
We next show that requirement (i) of Property (Q)

of Definition 2.4 holds as well for appropriate a 2 N.

Since A�<n is bounded, there exists M4 0 such that

NðA, "Þ � �BM, where �BM denotes the closed sphere in

<
n of radius M4 0, centred at 02<n. Consequently,

by virtue of implication (15), we obtain for all s� 0:

sup xðt, x0Þ
�� ��: t � 0, x0j j � s
� �
� max sup xðt, x0Þ

�� �� : t 2 ½0,Tð", sÞ
, x0j j � s
� �

,
�

sup xðt, x0Þ
�� ��: t � Tð", sÞ, x0j j � s
� ��
� max sup xðt, x0Þ

�� ��: t 2 ½0,Tð", sÞ
, x0j j � s
� �

,M
� �

:

By virtue of continuity of the mapping <þ�<n3

(t, x0)!jx(t, x0)j 2<
þ and compactness of the set

fðt, x0Þ 2 <
þ � <n: t 2 ½0,Tð", sÞ
, jx0j � sg, it follows

that supfjxðt, x0Þj: t 2 ½0,Tð", sÞ
, jx0j � sg5 þ1.

Therefore, for all s� 0, it holds that aðsÞ :¼ supfjxðt, x0Þj:

t � 0, jx0j � sg5 þ1. By definition we have:

xðt, x0Þ
�� �� � a ðjx0jÞ; for all ðt,x0Þ 2 <

þ � <n ð16Þ

It follows from (16) that requirement (i) of Property

(Q) of Definition 2.4 holds as well. The proof is

complete. œ

3. Main results

Our main result is presented below. Theorem 3.1 is an

existing result for (bounded) sampled-data feedback.

The reader should notice that Theorem 3.1 does not

guarantee continuity of the sampled-data feedback

stabiliser.

Theorem 3.1: Consider system (1) under hypotheses

(H1 and H2) and suppose the following:

(P1) There exist a locally bounded mapping
~k : <n! U � <m with ~kð0Þ ¼ 0, a bounded

open set ��<n which contains a neighbour-

hood of 02<n, a function � 2 K1 with

j f ðd, z, ~kðxÞÞj � �ðjzj þ jxjÞ for all (d, z, x)2

D�<n�<n, a constant ~h4 0 and a function

� 2KL such that the following estimate

holds for all ðx0, d, �d Þ 2 �� L1locð<
þ;DÞ�

L1locð<
þ;<þÞ and t� 0:

xðtÞ
�� �� � � x0j j, tð Þ, xðtÞ 2 � ð17Þ

where x(t) denotes the solution of the system:

_xðtÞ ¼ f dðtÞ, xðtÞ, ~kðxð�iÞÞ
	 


, t 2 ½�i, �iþ1Þ

�0 ¼ 0, �iþ1 ¼ �i þ ~h exp � �dð�iÞ
� �

, i ¼ 0, 1, . . .

ð18Þ

with initial condition xð0Þ ¼ x0 2 �.

Moreover, suppose that one of the following

statements hold:

(P2) There exist sets �j�<
n, j¼ 1, . . . ,N

with �1 ¼ �, [j¼1, . . . ,N �j¼<
n, such that for

each j2 {2, . . . ,N} the set [j�1i¼1�i is r-robustly

reachable from �j�<
n for system (1) with

constant control.
(P3) There exists a sequence of sets �j�<

n,

j ¼ 1, 2, . . . with �1 ¼ �,[1j¼1�j ¼ <
n, such

that for each j2 {2, 3, . . .} the set [j�1i¼1�i
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is r-robustly reachable from �j�<
n for system

(1) with constant control. Moreover, for each

compact K�<n, there exists N2 {2, 3, . . .} such

that K � [Nj¼1�j.

If hypotheses (P1) and (P2) hold, then the equilibrium

point 02<n of (1) under hypotheses (H1 and H2) is

robustly globally stabilisable by means of bounded

sampled-data control with positive sampling rate.

Moreover, if hypotheses (P1) and (P3) hold then the

equilibrium point 02<n of (1) under hypotheses (H1 and

H2) is robustly globally stabilisable by means of

sampled-data control with positive sampling rate.

Remark 3.2: Discussion of hypothesis (P1).

Hypothesis (P1) is a local hypothesis, which guarantees

the existence of a sampled-data feedback, which ‘works

effectively’ in the set ��<n. There are many tools in

the literature that can be used for the verification of

hypothesis (P1) (see for instance Nesic et al. (1999);

Nesic and Teel (2004)). It should be emphasised that

sampled-data feedback designed by emulation is

expected to satisfy hypothesis (P1) for appropriate set

��<n.

Remark 3.3: Discussion of hypotheses (P2) and (P3).

Hypotheses (P2) and (P3) are hypotheses of global

nature. All tools presented in previous section can be

used in order to show the existence of appropriate sets

�j�<
n. It should be emphasised that the role of non-

linearities in the verification of hypotheses (P2) and

(P3) is essential (contrary to hypothesis (P1), which as

a local hypothesis depends heavily on the linearisation

of system (1)). Finally, it should be observed that (P2)

and (P3) are very similar in nature, except that (P2)

involves a finite chain of sets whereas (P3) a countably

infinite chain. (P3) is a weaker assumption than (P2).
The following lemma can be used for the verifica-

tion of hypothesis (P1). Its proof can be found in the

Appendix.

Lemma 3.4: Consider system (1) under hypotheses

(H1 and H2) and suppose that there exists a locally

bounded mapping ~k : <n ! U � <m with ~kð0Þ ¼ 0,

a function � 2 K1 with j f ðd, z, ~kðxÞÞj � �ðjzj þ jxjÞ
for all (d, z, x)2D�<n�<n, a continuous positive

function � :<þ!<þ, a positive definite, continuously

differentiable and radially unbounded function

V :<n!<þ, constants R, q4 0, M, L� 0 such that

the following inequalities hold for all z 2 �, x 2 � and

d2D:

ðz� xÞ0f ðd, z, ~kðxÞÞ � L z� xj j2þq xj j2 ð19Þ

sup rVðzÞf d, z, ~kðxÞ
	 


: d 2 D,M z� xj j � zj j
n o
� �� VðzÞð Þ ð20Þ

where � :¼ {x2<n:V(x)5R}. Let x(t) denote the
solution of (18), initial condition x(0)¼ x02<

n

and corresponding to input ðd, ~d Þ 2 L1locð<
þ;DÞ�

L1locð<
þ;<þÞ. Then there exists � 2KL such that

hypothesis (P1) of Theorem 3.1 holds with ~k : <n!

U � <m, � 2 K1 as above, � :¼ fx 2 <n: VðxÞ5Rg
and for every ~h4 0 satisfying ~h5ð1=2LÞ lnð1þ ðL=qÞ�
ðð1=ð1þMÞÞÞ2Þ, for the case L4 0 or ~h5 ð1=2qÞ �
ðð1=ð1þMÞÞÞ2, for the case L¼ 0.

When additional regularity properties hold, then the
requirements of Lemma 3.4 are simplified.
The following lemma is proved in the Appendix and
exploits additional regularity properties for the feed-
back law and the right-hand side of system (1).

Lemma 3.5: Consider system (1) under hypotheses
(H1 and H2) and suppose that there exists a locally
Lipschitz mapping ~k : <n! U � <m with ~kð0Þ ¼ 0 and
a positive definite, radially unbounded function
V2C2(<n;<þ ), such that for every pair of compact
sets S�<n,W�U there exist constants C,K4 0
satisfying the following inequalities:

sup
d2D

jf ðd, z, vÞ � f ðd, x, uÞj � Cjz� xj þ Cju� vj,

for all z, x 2 S, u, v 2W ð21Þ

sup rVðzÞf d, z, ~kðzÞ
	 


: d 2 D
n o

� �K zj j2,

for all z 2 S ð22Þ

Then for every R4 0 there exists a continuous positive
function � :<þ!<þ and constants q4 0, M,L� 0
such that inequalities (19), (20) hold with � :¼
fx 2 <n: VðxÞ5Rg. Moreover, there exists � 2 K1 such
that for every R4 0 hypothesis (P1) of Theorem 3.1
holds with ~k : <n! U � <m as above,� :¼ fx 2 <n:
VðxÞ5Rg and appropriate � 2KL, ~h4 0.

The rest of the section is devoted to the proof of
Theorem 3.1.

Proof of Theorem 3.1: Define recursively the follow-
ing sets by the following formulae:

Ci ¼ �inBi�1, Bi ¼ Bi�1 [�i, i4 1 ð21aÞ

with

C1 ¼ �1 ¼ �, B1 ¼ �1 ¼ � ð21bÞ

Notice that Bi¼[k¼i,. . .,i �k¼[k¼i,. . .,iCk for all i¼
1, . . . ,N. Let vi2U be the constant control that
guarantees property (Q) of Definition 2.4 for every
set �i with i4 1. We define:

kðxÞ ¼ vi if x 2 Ci with i4 1 ð22aÞ

kðxÞ ¼ ~kðxÞ if x 2 C1 ¼ � ð22bÞ

h ¼ minf ~h, rg ð22cÞ
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If hypothesis (P3) holds then for each compact K�<n,

there exists N2 {2, 3, . . .} such that K � [Nj¼1�j ¼

[Nj¼1Cj. Since ~k : <n! U � <m is locally bounded

and � is bounded, it follows that the mapping

k :<n!U as defined by (22a, b) is locally bounded.

Moreover, if hypothesis (P2) holds then it follows that

the mapping k :<n!U as defined by (22a, b) is

bounded.
We next claim that there exists a function � 2 K1

with j f ðd, z, kðxÞÞj � �ðjzj þ jxjÞ for all (d, z, x)2

D�<n�<n and a function � 2KL such that estimate

(6) holds for all ðx0, d, ~d Þ 2 <n � L1locð<
þ;DÞ�

L1locð<
þ;<þÞ and t� 0 for the solution x(t) of (7) with

initial condition x(0)¼ x0 and corresponding to inputs

ðd, ~d Þ 2 L1locð<
þ;DÞ � L1locð<

þ;<þÞ.
Notice that by virtue of hypotheses (P1), (H2) the

function <þ 3 s! ~�ðsÞ :¼supfj f ðd, z, kðxÞÞj: jzj þ jxj �
s, d 2 Dg is a non-decreasing, locally bounded function

which satisfies ~�ðsÞ � �ðsÞ for s� 0 sufficiently small

and j f ðd, z, kðxÞÞj � ~�ðjzj þ jxjÞ for all (d, z, x)2D�

<
n
�<

n. It turns out that ~� can be bounded from above

by the K1 function � defined by �ðsÞ :¼ sþ ð1=sÞ �R 2s
s ~�ðwÞdw for s4 0 and �(0)¼ 0. Consequently, there

exists a function � 2 K1 with j f ðd, z, kðxÞÞj �

�ðjzj þ jxjÞ for all (d, z, x)2D�<n�<n.
In order to show the existence of a function � 2KL

such that estimate (6) holds for all ðx0, d, ~d Þ 2

<n � L1locð<
þ;DÞ � L1locð<

þ;<þÞ and t� 0 for the

solution x(t) of (7) with initial condition x(0)¼ x0
and corresponding to inputs ðd, ~d Þ 2 L1locð<

þ;DÞ�

L1locð<
þ;<þÞ, we need to show the following things:

. for every s4 0, it holds that

sup
n
jxðtÞj; t � 0, x0j j � s, ðd, ~d Þ

2 L1locð<
þ;DÞ � L1locð<

þ;<þÞ
o
5 þ1

ðRobust Lagrange StabilityÞ

. for every "4 0 there exists a � :¼ �ð"Þ4 0

such that:

sup
n
jxðtÞj; t � 0, x0j j � �, d, ~d

	 

2 L1locð<

þ;DÞ � L1locð<
þ;<þÞ

o
� "

ðRobust Lyapunov StabilityÞ

. for every "4 0 and s� 0, there exists a

� :¼ �ð", sÞ � 0, such that:

sup
n
jxðtÞj; t � �, x0j j � s, d, ~d

	 

2 L1locð<

þ;DÞ � L1locð<
þ;<þÞ

o
� ":

ðUniform AttractivityÞ

The above properties guarantee the existence of

a function � 2KL such that estimate (6) holds for all

ðx0, d, ~d Þ 2 <n � L1locð<
þ;DÞ � L1locð<

þ;<þÞ and t� 0
for the solution x(t) of (7) with initial condition

x(0)¼ x0 and corresponding to inputs ðd, ~d Þ 2
L1locð<

þ;DÞ � L1locð<
þ;<þÞ. Indeed, we may define

~�ðs, tÞ :¼ supfjxð�Þj; � � t, jx0j� s, ðd, ~d Þ2L1locð<
þ;DÞ�

L1locð<
þ;<þÞg for all s, t� 0. By defining ~�ðs, tÞ :¼

~�ðs, 0Þ for all s� 0, t2 [�1, 0), the desired � 2KL can be

defined by �ðs, tÞ ¼ s expð�tÞ þ ð1=sÞ
R t
t�1

R 2s
s �

~�ð�,wÞd� dw for all t� 0, s4 0 and �(0, t)¼ 0 for all t� 0.
Since the solution of (7) with x(0)¼ x0 correspond-

ing to inputs ðd, ~d Þ 2 L1locð<
þ;DÞ � L1locð<

þ;<þÞ coin-
cides with the solution of (18) with same initial

condition corresponding to inputs ðd, �d Þ 2 L1loc
ð<þ;DÞ � L1locð<

þ;<þÞ with �dðtÞ ¼ ~dðtÞ þ lnð ~h=hÞ, it

follows that Robust Lyapunov Stability is an immedi-
ate consequence of hypothesis (P1) (notice that ��<n

contains a neighbourhood of 02<n). Thus, we are left

with the proofs of Robust Lagrange Stability and
Uniform Attractivity.

Let s� 0 and consider the closed ball fx 2 <n:

jxj � sg. By virtue of hypothesis (P3) (or hypothesis (P2))
there exists N2 {2, 3, . . .} such that fx 2 <n: jxj � sg �

[Nj¼1�j. Let ci� 0 and the functions ai, bi that
guarantee property (Q) of Definition 2.4 for every �i

with i4 1 and let aðsÞ :¼ maxi¼2,...,N aiðsÞ, bðsÞ :¼

maxi¼2,...,N biðsÞ, c :¼ maxi¼2,...,N ci. Robust Lagrange

Stability and Uniform Attractivity will be shown with

the help of the following fact, which is shown in the
Appendix.

Fact: Let ~d 2 L1locð<
þ;<þÞ and 	ð ~d Þ :¼ f�0, �1, �2, . . .g

(the set of sampling times), where �0¼ 0 and �iþ1 ¼
�i þ h expð� ~dð�iÞÞ for i� 0. If x(�i)2Ck for certain
k2 {2, . . . ,N}, then for every d 2 L1locð<

þ;DÞ there

exists � 2 	ð ~d Þ \ ½�i, �i þ cþ bðjxð�iÞjÞ þ r
 and m2
{1, . . . , k� 1} such that x(�)2Cm. Moreover, jxðtÞj �

aðjxð�iÞjÞ for all t2 [�i, �].
Since fx 2 <n: jxj � sg � [k¼1,...,NCk and C1 ¼ �,

the above fact implies that for every ðx0, d, ~d Þ 2

fx 2 <n: jxj � sg � L1locð<
þ;DÞ � L1locð<

þ;<þÞ the solu-

tion x(t) of (7) with initial condition x(0)¼x0 and
corresponding to (arbitrary) inputs ðd, ~d Þ 2

L1locð<
þ;DÞ � L1locð<

þ;<þÞ, satisfies xð�Þ 2 � for cer-
tain � 2 	ð ~d Þ \ ½0,NcþNbðaðN Þðjx0jÞÞ þNr
 and

jxðtÞj � aðN Þðjx0jÞ for all t2 [0, �], where aðN Þ ¼
a � a � � � � � a|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

N times

. By virtue of (17), it follows that

jxðtÞj � �ðaðN Þðjx0jÞ, t� �Þ for all t � �. The properties
of the KL functions in conjunction with the previous

estimate of the solution imply the Uniform Attractivity
property. Moreover, we have jxðtÞj � �ðaðN Þðjx0jÞ, 0Þ,
for all t� 0 (Uniform Lagrange Stability). The proof
is complete. œ
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4. Examples and applications

In this section, a number of examples are presented,

which illustrate how the main result of the present

work (Theorem 3.1) can be used for the construction of

robust sampled-data feedback stabilisers.

Example 4.1: We consider again the perturbed jet

engine system (9). Here, we intend to prove that the

perturbed jet engine system (9) is robustly globally

stabilisable by means of bounded sampled-data control

with positive sampling rate. The proof will exploit

Theorem 3.1.
Consider the function

VðxÞ ¼
1

2
x21 þ

1

2
x2 þ 5x1ð Þ

2 ð23Þ

which is obtained by applying the backstepping

procedure to the uncertain control system (9).

Notice that the set A ¼ fðx1, x2Þ 2 <
2: jx2j � 1,

jx1j � 4g is a subset of � ¼ fx 2 <2: VðxÞ5
ð457=2Þ þ "g for all "4 0. Consequently, Examples

2.6 and 2.8 show that the sets �4 ¼

fðx1, x2Þ 2 <
2: x2 � 1g, �3¼fðx1, x2Þ 2 <

2: x2 � �1g,

�2 ¼ f ðx1, x2Þ 2 <
2: jx2j � 1g, �1 ¼ �, satisfy hypo-

thesis (P2) of Theorem 3.1. We next show that the

hypotheses of Lemma 3.5 are fulfilled for the function

V defined by (23).
The derivative of V along the trajectories of system

(9) is expressed by the following equality for all

(d,x)2 [�1, 1]2�<2:

rVðxÞ d1x1þ
3

2
d2x

2
1�

1

2
x31þx2

u

" #

¼ x1 d1x1þ
3

2
d2x

2
1�

1

2
x31þx2

� �

þ x2þ5x1ð Þ� uþ5d1x1þ
15

2
d2x

2
1�

5

2
x31þ5x2

� �
Using the inequalities ð3=2Þd2x

3
1 � ð1=4Þx

4
1 þ ð9=4Þx

2
1,

5jx1jjx2 þ 5x1j � ð1=4Þx
2
1 þ 25ðx2 þ 5x1Þ

2, ð15=2Þx21�
jx2 þ 5x1j � ð1=4Þx

4
1 þ ð225=4Þðx2 þ 5x1Þ

2, we obtain

the following inequality for all (d, x)2 [� 1, 1]2�<2:

rVðxÞ d1x1 þ
3

2
d2x

2
1 �

1

2
x31 þ x2

u

" #

� �
3

2
x21 �

11

4
x2 þ 5x1ð Þ

2

þ x2 þ 5x1ð Þ uþ 421x1 �
5

2
x31 þ 89x2

� �
ð24Þ

We define ~kðxÞ :¼ �421x1 � 89x2 þ ð5=2Þx
3
1 and we

notice that by virtue of inequality (24), the hypotheses of

Lemma 3.5 are fulfilled. Consequently, for every R4 0,

hypothesis (P1) of Theorem 3.1 holds with ~kðxÞ :¼
�421x1 � 89x2 þ ð5=2Þx

3
1, � :¼ fx 2 <n: VðxÞ5Rg

and appropriate � 2KL, ~h4 0.
It follows from Theorem 3.1 that the perturbed

jet engine system (9) is robustly globally stabilisable by
means of bounded sampled-data control with positive
sampling rate. Since Theorem 3.1 is proved construc-
tively, a bounded sampled-data feedback can be
suggested. Particularly, following the proof
of Theorem 3.1, the following discontinuous
feedback law:

kðxÞ ¼ �421x1 � 89x2 þ
5

2
x31,

if x 2 C1 ¼ x 2 <2: VðxÞ5
457

2
þ "

� 
,

kðxÞ ¼ 0, if x 2 C2 ¼

�
ðx1, x2Þ 2 <

2: x2j j � 1,

VðxÞ �
457

2
þ "


,

kðxÞ ¼ 1, if x 2 C3 ¼

�
ðx1, x2Þ 2 <

2: x2 5 �1,

VðxÞ �
457

2
þ "


,

kðxÞ ¼ �1, if x 2 C1 ¼

�
ðx1, x2Þ 2 <

2: x2 4 1,

VðxÞ �
457

2
þ "


is a robust sampled-data feedback stabiliser for system
(9) for all "4 0. In Figures 1–3 it is shown the
evolution of the states for the closed-loop system (9)
with

uðtÞ ¼ kðxð�iÞÞ, t 2 ½�i, �iþ1Þ

�0 ¼ 0, �iþ1 ¼ �i þ h exp � ~dð�iÞ
	 


,

i ¼ 0, 1, . . . ð25Þ

The parameters h, " were selected to be h¼ "¼
0.001 and the initial state is x1(0)¼ 10, x2(0)¼ 2.

–15

–10

–5

0

5

10

0.5

x1

x2

0 1 1.5 t 2

Figure 1. The evolution of the states of the closed-loop
system (9) with (25) corresponding to inputs d1ðtÞ ¼ ~dðtÞ 	 0,

d2(t)	1.
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Figures 1–3 show the evolution of the states of the

closed-loop system (9) with (25) corresponding to the

triplets of inputs d1(t)	 0 d2(t)	 1 ~dðtÞ 	 0, d1(t)	 1,

d2ðtÞ ¼ sinðtÞ, ~dðtÞ 	 0 and d1(t)	 1, d2(t)	 1,
~dðtÞ ¼ jsinðtÞj, respectively. It is clear that in all cases

the closed-loop system presents fast convergence of the

states to the equilibrium point. The sampling time �i
(i ¼ 0, 1, 2, . . .) that the state trajectory enters the set

� ¼ fx 2 <2: VðxÞ5 ð457=2Þ þ "g is the time where the

derivative _x2ðtÞ presents an abrupt jump (from the

value �1 to a negative value with large absolute value).
It should be emphasised that other feedback laws

can be constructed (using different control Lyapunov

functions from the quadratic one that we used in this

work).

Example 4.2: This example illustrates the use of

Theorem 3.1 for the construction of a globally stabili-

sing sampled-data feedback. Consider the scalar system:

_x ¼ aðxÞ þ u

x 2 <, u 2 ð�1, 0

ð26Þ

where a : < ! < is a locally Lipschitz function with

a(0)¼ 0 and a(x)4 0 for all x 6¼ 0. We claim that

system (26) satisfies hypotheses (P1), (P3) and conse-

quently, (by virtue of Theorem 3.1) it is robustly

globally stabilisable by means of sampled-data control
with positive sampling rate.

In order to show the validity of hypothesis (P1),
define �¼ (�1, 2), ~h :¼ ð1=ðLþ 1ÞÞ and

~kðxÞ :¼
0 for x 2 ð�1, 0


�ðLþ 1Þx for x4 0

(
ð27Þ

where L4 0 is the Lipschitz constant that satisfies

aðxÞ � Lx, 8x 2 ½0, 2
 ð28Þ

The solution of _x ¼ aðxÞ þ ~kðx0Þ starting at x(0)¼
x02 (0, 2) satisfies x(t)� x0 as long as the solution
exists, since by virtue of (28) we have a(x0)�
(Lþ 1)x0��x05 0. Moreover, as long as the solution
satisfies x(t)� 0, it holds that �ðLþ 1Þx0 � _x � �x0,
which directly implies ð1� ðLþ 1ÞtÞx0 � xðtÞ �
ð1� tÞx0. A simple contradiction argument shows that
0� x(t)� (1� t)x0 for all t 2 ½0, ~h
. Consequently,

xðtÞ 2 � and jxðtÞj � expð�tÞjx0j, for all t 2 ½0, ~h
.
Working by induction it can be shown that for all
�d 2 L1locð<

þ;<þÞ the solution of _xðtÞ ¼ aðxðtÞÞþ ~kðxð�iÞÞ,
�iþ1 ¼ �i þ ~h expð� �dð�iÞÞ starting at x(0)¼x02 (0, 2)
satisfies xðtÞ 2 � and jxðtÞj � expð�tÞjx0j, for all t� 0.

On the other hand, the solution of _x ¼ aðxÞ þ ~kðx0Þ
starting at x(0)¼ x05 0 satisfies x0� x(t)� 0 for all
t� 0. Consequently, it holds that ðd=dtÞjxðtÞj ¼
�að�jxðtÞjÞ for all t� 0 and Lemma 4.4 in Lin,
Sontag and Wang (1996) implies the existence of
� 2KL with �(�(s, t), �)¼�(s, tþ �) for all s, t, �� 0
such that jxðtÞj � �ðjx0j, tÞ for all t� 0. Working
inductively, it can be shown that for all
�d 2 L1locð<

þ;<þÞ the solution of _xðtÞ ¼
aðxðtÞÞ þ ~kðxð�iÞÞ, �iþ1 ¼ �i þ ~h expð� �dð�iÞÞ starting at
x(0)¼ x05 0 satisfies xðtÞ 2 � and jxðtÞj � �ðjx0j, tÞ,
for all t� 0.

Therefore, hypothesis (P1) holds for system (26).
We next show that hypothesis (P3) holds as well.

Consider the sets �1 ¼ �, �j¼ [ j� 1, j ] for j ¼ 2, 3, . . ..
We will show that for all j ¼ 2, 3, . . . and r4 0, the set
[
j�1
i¼1�i � < is r-robustly reachable from the set �j � <

for system (26) with constant control. Notice that

[
j�1
i¼1 �i ¼ � for j¼ 2 and [j�1i¼1�i ¼ ð�1, j� 1
 for

j� 3. Let vj ¼ �1�maxj�1�s�j aðsÞ and consider the
solution of _x ¼ aðxÞ þ vj with initial condition
x(0)¼ x02�j. As long as the solution exists, the
following inequalities hold: _x � vj and x(t)� x0.
Consequently, it holds that x0þ tvj� x(t)� x0.
A simple contradiction argument shows that the
solution exists for all t� 0 and satisfies jxðtÞj �
expðtÞðjx0j þ gð2jx0jÞÞ, where gðsÞ ¼ sþmax0�x�s aðxÞ
(a function of class K1). For j� 3, the fact that the set
[
j�1
i¼1�i ¼ ð�1, j� 1
 is r-robustly reachable from the

set �j � < can be shown by following the procedure in

–14

–8

–2

4

10

0.50 1 1.5 t 2

x2

x1

Figure 2. The evolution of the states of the closed-loop
system (9) with (25) corresponding to inputs d1(t)	 1,
d2ðtÞ ¼ sinðtÞ, ~dðtÞ 	 0.

–15

–10

–5

0

5

10

0.50 1 1.5 t 2

x2

x1

Figure 3. The evolution of the states of the closed-loop
system (9) with (25) corresponding to inputs d1(t)	 1,
d2(t)	 1, ~dðtÞ ¼ jsinðtÞj.
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the proof of Lemma 2.7 (with h(x)¼ x). For j¼ 2, the
fact that the set [j�1i¼1�i ¼ ð�1, 2Þ is r-robustly reach-
able from the set �j � < can be shown by the fact that
the solution satisfies x(t)5 x0 for all t4 0.

Thus, system (26) is robustly globally stabilisable
by means of sampled-data control with positive
sampling rate. A possible selection of the feedback is:

kðxÞ ¼ ~kðxÞ, for x 2 ð�1, 2Þ

kð2Þ ¼ �1� max
1�s�2

aðsÞ

kðxÞ ¼ �1� max
j�1�s�j

aðsÞ, for x 2 ð j� 1, j
, j � 3

where ~kðxÞ is defined by (27) and h¼ 1/(Lþ 1) where
L4 0 is the Lipschitz constant that satisfies (28).

Example 4.3: Consider the bilinear control system

_x ¼ Axþ Buþ u1C1xþ � � � þ umCmx

x 2 <n, u ¼ ðu1, . . . , umÞ
0
2 <m ð29Þ

where A, C1, . . . ,Cm2<
n�n, B2<n�m are constant

matrices. We assume the following:

(A1) There exists u� ¼ ðu�1, . . . , u�mÞ 2 <
m

such that the matrix ðAþ u�1C1 þ � � � þ u�mCmÞ

is Hurwitz.
(A2) The pair of matrices (A,B) is stabili-
sable. Particularly, there exist K2<m�n,
a symmetric, positive definite matrix
P2<n�n, constants "4 0 and R4 ðx�Þ0Px�,
where x� ¼ ðAþ u�1C1 þ � � � þ u�mCmÞ

�1Bu�,
such that maxfx0PðAþBKÞxþ

Pm
i¼1ðx

0K0giÞ�
x0PCixþ " xj j

2: x 2 <n, x0Px � Rg � 0, where
g01 :¼ ð1, 0, . . . , 0Þ 2 <m, g02 :¼ ð0, 1, . . . , 0Þ 2
<m, . . . , g0m :¼ ð0, 0, . . . , 1Þ 2 <m.

We next utilise the result of Theorem 3.1 in order to
show that system (29) is robustly globally stabilisable
by means of bounded sampled-data control with
positive sampling rate. A possible selection of the
bounded sampled-data feedback stabiliser is:

kðxÞ ¼ Kx, for x 2 � :¼ fx 2 <n: x0Px5Rg

kðxÞ ¼ u�, for x =2�,

where K2<m�n, P2<n�n are the matrices involved in
hypothesis (A2) and u� ¼ ðu�1, . . . , u�mÞ 2 <

m is the
vector involved in hypothesis (A1). First, notice that
by using hypothesis (A2) and performing simple
computations we are in a position to guarantee that
the requirements of Lemma 3.4 hold with ~kðxÞ :¼ Kx,
�ðsÞ :¼ðjAj þ jBKjÞsþ
s2, VðzÞ :¼z0Pz, L :¼jAj þ
ð3=2Þ
b, q :¼ ð1=2Þ
b, M ¼ 2"�1jPj
b, �ðsÞ :¼ "jPj�1s,
where "4 0 is the constant involved in hypothesis
(A2) and 
 :¼

Pm
i¼1 jg

0
iKjjCij, b :¼maxfjxj :x 2 <n,

x0Px � Rg. Consequently, hypothesis (P1) of

Theorem 3.1 holds with � :¼ fx 2 <n: x0Px5Rg.

Moreover, hypothesis (P2) of Theorem 3.1 holds with

N¼ 2, �1 ¼ �, �2¼<
n for every r4 0. Indeed, by

virtue of hypothesis (A1) above, it follows that system

(32) with u	 u* has a compact global attractor

(namely the set A :¼{x*}). Consequently, Lemma 2.9

implies that for every �, r4 0 the �-neighbourhood of

A�<n, NðA, �Þ :¼ fx 2 <n: jx� x�j5 �g is r-robustly

reachable from <
n for system (29) with constant

control. The reader should notice that since

R4 ðx�Þ0Px�, there exists �4 0 sufficiently small such

that NðA, �Þ :¼ fx 2 <n: jx� x�j5 �g � � :¼ fx 2 <n:

x0Px5Rg. Therefore, for every r4 0 the set �1 ¼ �

is r-robustly reachable from �2¼<
n for system (29)

with constant control (namely, the control u	 u*).
As a more specific example we consider the bilinear

system:

_x1 ¼ x2 þ u1 _x2 ¼ x2 þ u2ð1þ x1 þ x2Þ

x ¼ ðx1,x2Þ
0
2 <2, u ¼ ðu1, u2Þ

0
2 <2 ð30Þ

which corresponds to the form (29) with

A ¼
0 1

0 1

� �
, B ¼

1 0

0 1

� �
,

C1 ¼ 0 2 <2�2, C2 ¼
0 0

1 1

� �
:

Hypothesis (A1) holds with u� ¼ ð0,�2Þ0.

The reader can verify that hypothesis (A2) is satisfied

as well with

P ¼
1

2

1 0

0 M

� �
, K ¼ �

k1 0

0 k2

� �
, R4

1

2

and appropriate "4 0 for sufficiently large M4 0,

k1, k24 0. Notice that x� ¼ ð�1, 0Þ0 2 <2.

Example 4.4: Continuous stirred microbial bioreac-

tors, often called chemostats, cover a wide range of

applications; specialised ‘pure culture’ biotechnological

processes for the production of specialty chemicals

(proteins, antibiotics etc.) as well as large-scale

environmental technology processes of mixed cultures

such as wastewater treatment. The dynamics of the

chemostat is often adequately represented by a simple

dynamic model involving two state variables, the

microbial biomass x and the limiting organic substrate

s (Smith and Waltman 1995). For control purposes, the

dilution rate D� 0 is considered as the manipulated

input. A general model for microbial growth on

a limiting substrate in a chemostat is of the form:

_x ¼ ð
ðsÞ �DÞx

_s ¼ DðS0 � sÞ �
1

Yx=s

ðsÞx

ð31Þ
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where S0 is the feed substrate concentration, 
(s) is the
specific growth rate and Yx/s4 0 is a biomass yield
factor. The specific growth rate function 
 :<þ!<þ

is a non-negative, globally Lipschitz, smooth, bounded
function which satisfies 
(0)¼ 0 and 
ðsÞ 2 ð0,
max


for all s4 0. The state space of system (31) is the
positively invariant set (0,þ1)2�<2. For a constant
value of the dilution rate Ds4 0, we assume the exist-
ence of an equilibrium point (ss, xs)2 (0,S0)�(0,þ1)
with 
(ss)¼Ds and xs¼Yx/s(S0� ss). The need for the
stabilisation of the equilibrium point is explained in
Karafyllis et al. (2008) for the case of non-monotone
specific growth rate functions (but see also references
therein). Here we consider the global stabilisation
problem for the equilibrium point (ss, xs)2 (0,S0)�
(0,þ1) by means of bounded sampled-data control with
positive sampling rate. First, we perform the following
transformation:

x1 ¼ ln
x

xs

� �
; x2 ¼ ln

s

ss

� �
; D ¼ Dse

u ð32Þ

System (31) under transformation (32) is expressed by
the following system:

_x1¼
 sse
x2ð Þ�
ðssÞe

u

_x2¼
ðssÞe
uðQe�x2 �1Þ�
 sse

x2ð ÞðQ�1Þex1�x2

x¼ðx1,x2Þ
0
2<2,u2<

ð33Þ

where Q :¼ ðS0=ssÞ4 1. We will show that hypotheses
(P1) and (P2) of Theorem 3.1 hold for system (33) by
establishing the following facts:

Fact 1: There exists v 2 < sufficiently small, such
that the dynamical system (33) with u(t)	 v has
a compact global attractor A�<2.

Fact 2: For every R4 0, there exist a constant ~h4 0
and a function � 2KL such that the following
estimate holds for all ðx0, �d Þ 2 fx 2 <2: jxj2 5 2Rg�
L1locð<

þ;<þÞ and t� 0:

jxðtÞj � �ðjx0j, tÞ, xðtÞ 2 fx 2 <2: jxj2 5 2Rg, ð34Þ

where x(t) denotes the solution of the system (33) with:

uðtÞ ¼ ln

 ss expðx2ð�iÞÞð Þ


 ssð Þ
expðx1ð�iÞÞ

� �
, t 2 ½�i, �iþ1Þ

�0 ¼ 0, �iþ1 ¼ �i þ ~h expð� �dð�iÞÞ,

i ¼ 0, 1, . . . ð35Þ

with initial condition x(0)¼ x02 {x2<
2: jxj25 2R}.

Indeed, by selecting R4 0 sufficiently large, we can
guarantee that NðA, "Þ � �1 for certain "4 0, where
�1¼ {x2<2: jxj25 2R} and A�<2 is the compact

global attractor, whose existence is guaranteed by

Fact 1. Consequently, Lemma 2.9 implies that for

every r4 0 the set �1¼ {x2<2: jxj5R} is r-robustly

reachable from �2¼<
2 for system (33) with constant

control. Therefore, hypothesis (P2) of Theorem 3.1

holds for system (33). Fact 2 implies that hypothesis

(P1) of Theorem 3.1 holds as well for system (33) with

�¼ {x2<2: jxj25 2R} and

~kðxÞ :¼ ln

ðss expðx2ÞÞ


ðssÞ
expðx1Þ

� �
:

Hence, Theorem 3.1 guarantees that system (33) is

robustly globally stabilisable by means of bounded

sampled-data control with positive sampling rate.

A possible selection of the bounded sampled-data

feedback stabiliser is:

kðxÞ ¼ ln

ðss expðx2ÞÞ


ðssÞ
expðx1Þ

� �
,

for x 2 � :¼ fx 2 <2: jxj2 5 2Rg

kðxÞ ¼ v, for x =2�

where v 2 < is the input value involved in Fact 1.
The reader may verify that the requirements of

Lemma 3.5 hold with

~kðxÞ :¼ ln

ðss expðx2ÞÞ


ðssÞ
expðx1Þ

� �
and VðxÞ ¼ ð1=2Þx21 þ ð1=2Þx

2
2: Therefore, Fact 2 is a

direct consequence of Lemma 3.5.
Thus we are left with the proof of Fact 1. Let "4 0

sufficiently small (3"5Q� 1) and v 2 < such that

2
ðssÞ expðvÞ � min
S0�3"ss�S�S0


ðS Þ ð36Þ

For every x0¼ (x10, x20)2<
2 there exists tmax 4 0 such

that the solution of (33) with u(t)	 v and initial

condition (x1(0), x2(0))¼ x0¼ (x10,x20)2<
2 exists for

all t 2 ½0, tmaxÞ. Using the fact that 
(s)� 0 for all s� 0

and differential equations (33), we obtain for all

t 2 ½0, tmaxÞ:

ðQ� 1Þex1ðtÞ þ ex2ðtÞ ¼ Qð1� e�DtÞ

þ e�DtððQ� 1Þex10 þ ex20Þ ð37aÞ

x10�Dt� x1ðtÞ� ln
QþðQ�1Þex10þ ex20

Q�1

� �
ð37bÞ

x2ðtÞ � lnðQþ e�Dtðex20 �QÞÞ �maxfx20, lnðQÞg ð37cÞ

where D¼
(Ss)e
v. Notice that the upper bound in

(37b) is a direct consequence of (37a), the lower bound

in (37b) is obtained from the differential inequality
_x1 � �D and inequality (37c) is a consequence of
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inequalities (37a, b). Exploiting (37a) and differential

equations (33), we get the following differential equa-

tion for all t 2 ½0, tmaxÞ:

d

dt
ex2ðtÞ ¼ D�
ðsse

x2ðtÞÞ
� �

Q� ex2ðtÞ
� �

þ
 sse
x2ðtÞ

� �
e�DtðQ�ðQ�1Þex10 � ex20Þ ð38Þ

Since 
(0)¼ 0, D4 0, it follows from continuity of


 :<þ!<þ that for every x0¼ (x10, x20)2<
2 there

exists Sminðx0Þ 2 ð0, ðS0=2Þ
 such that:


ðS Þ �
D

8 expðjx0jÞ
, for all S 2 ½0,Sminðx0Þ
, ð39Þ

Notice that inequality (39) in conjunction with

differential equation (38) implies that ðd=dtÞex2ðtÞ �
ð5=16ÞDQ for all x2 � lnððSminðx0ÞÞ=ssÞ. Therefore,

the globally Lipschitz function YðtÞ ¼ minðx2ðtÞ,

ðSminðx0Þ=ssÞÞ satisfies lim suph!0þ ½ðYðtþ hÞ � YðtÞÞ=
h
 � 0 for all t 2 ½0, tmaxÞ. Thus the mapping

t!Y(t) is non-decreasing; hence Y(t)�Y(0) for all

t 2 ½0, tmaxÞ. By distinguishing the cases x2ðtÞ �

ln½ðSminðx0ÞÞ=ss
 and x2ðtÞ5 ln½ðSminðx0ÞÞ=ss
 in

conjunction with Y(t)�Y(0) and definition YðtÞ ¼

minðx2ðtÞ, lnðSminðx0Þ=ssÞÞ we obtain for all t 2 ½0, tmaxÞ:

x2ðtÞ � min x20, ln
Sminðx0Þ

ss

� �� �
ð40Þ

Estimates (37b, c) and (40) guarantee that for every

x0¼ (x10, x20)2<
2 the solution of (33) with u(t)	 v and

initial condition (x1(0),x2(0))¼ x0¼ (x10, x20)2<
2

exists for all t� 0 (i.e. tmax ¼ þ1).
Since 
(0)¼ 0, D4 0, it follows from continuity of


 :<þ!<þ that there exists S�2 (0, ss) such that:


ðS Þ �
D

2
, for all S 2 ½0,S�
 ð41Þ

We next show that for every x0¼ (x10, x20)2<
2 the

solution of (33) with u(t)	 v and initial condition

(x1(0), x2(0))¼x02<
2 satisfies:

x2ðtÞ � ln
S�

ss

� �
,

for all t � D�1 ln
4
maxe

jx0j

D

� �
þ

4S�

ssDðQ� 1Þ
ð42Þ

Let t1 :¼ D�1 lnð4
maxe
jx0j=DÞ and notice that by

virtue of (38) we get ðd=dtÞex2ðtÞ �ðD� 
ðSse
x2ðtÞÞÞ �

ðQ� ex2ðtÞÞ � ½ðDðQ� 1ÞÞ=4
 for all t� t1. If in addition

sse
x2�S� holds then ðd=dtÞex2ðtÞ �½ðDðQ� 1ÞÞ=4
:Using

the previous differential inequality and following

the same arguments as in the proof of Lemma 2.7,

we may conclude that (42) holds. A direct consequence
of (37a) and (42) is the following inequality:

x1ðtÞ � ln
Q

Q�1
1þ

D

4
max

� �
�

S�

ðQ�1Þss

� �
,

for all t�D�1 ln
4
maxe

jx0j

D

� �
þ

4S�

ssDðQ�1Þ
ð43Þ

It should be emphasised that inequality (37c) implies
that if x20 � lnðQÞ then x2ðtÞ � lnðQÞ for all t� 0.
On the other hand, if x20 4 lnðQÞ then T :¼
supft � 0 : min0���t x2ð�Þ4 lnðQÞg4 0. Differential
equation (33) in conjunction with the left-hand side
inequality (37b), inequality (37c) implies the diff-
erential inequality ðd=dtÞex2ðtÞ � D Q� ex2ðtÞ

� �
� 
minðx0Þ�

ðQ� 1Þex10�Dt for all t 2 ½0,T Þ, where 
minðx0Þ :¼
min 
ðS Þ,

�
S0 � S � sse

x20 þ S0g The previous differ-
ential inequality implies Q5 ex2ðtÞ � Qþ expð�DtÞ �
½ex20 �Q� 
minðQ� 1Þex10 t
 for all t 2 ½0,T Þ: Clearly,
we must have T � ½ðmaxf0, ex20 �QgÞ=ð
min�

ðQ� 1Þex10Þ
. Continuity of the solution implies
x2(T )¼ In(Q). Exploiting inequality (37c) (with initial
time T � maxf0, ex20 �Qg=ð
minðx0ÞðQ� 1Þex10 ) we
obtain:

x2ðtÞ � lnðQÞ, for all t�
maxf0,ex20 �Qg


minðx0ÞðQ�1Þex10
ð44Þ

Moreover, it follows from (36) and (38) that the
following implication holds for the solution of (33)
with u(t)	 v and initial condition (x1(0), x2(0))¼
x0¼ (x10, x20)2<

2:

If x2ð�Þ � ln Q� 2"ð Þ for certain

� � max 0,D�1 ln
2
maxQ

"D

� �� 
then x2ðtÞ � lnðQ� 2"Þ for all t � � ð45Þ

Implication (45) follows from the differential inequality

ðd=dtÞex2ðtÞ � �"Dþ 
maxe
�DtQ, which holds for all

x2 2 ½lnðQ� 3"Þ, lnðQ� "Þ
 and is a direct consequence
of (36) and (38). Notice that for t � � �
maxf0,D�1 ln½ð2
maxRÞ="D
g and x2 2 lnðQ� 3"Þ,½

lnðQ� "Þ
 we obtain ðd=dtÞex2ðtÞ � �ð1=2Þ"D .
Finally, we claim that for every x0¼ (x10, x20)2<

2

the solution of (33) with u(t)	 v and initial condition
(x1(0), x2(0))¼ x02<

2 satisfies:

x2ðtÞ � ln Q� 2"ð Þ, for all

t � D�1 2þ
6"

Q� 1
ejx0jþD

~Tðx0Þ

� �
þ ~Tðx0Þ ð46aÞ

where

~Tðx0Þ :¼ max 0,D�1 ln
2
maxQ

"D

� �
,

ejx0jðejx0j þQÞ

ðQ� 1Þ
minðx0Þ

� 
ð46bÞ
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The proof of this claim is made by contradiction.
Suppose that there exists x02<

2 and

t � D�1 2þ
6"

Q� 1
ejx0jþD

~Tðx0Þ

� �
þ ~Tðx0Þ

such that the solution of (33) with u(t)	 v and initial
condition (x1(0), x2(0))¼x0 satisfies
x2ðtÞ4 lnðQ� 2"Þ. By virtue of (44) and (45) it is
clear that x2ð�Þ 2 ðlnðQ� 2"Þ, lnðQÞ
 for all
� 2 ½ ~Tðx0Þ, t
. By virtue of (33) and (36) we obtain
_x1ð�Þ � D for all � 2 ½ ~Tðx0Þ, t
, which in conjunction
with the left-hand side inequality (37b) implies:

expðx1ð�ÞÞ � expðx10 � 2D ~Tðx0Þ þD�Þ,

for all � 2 ½ ~Tðx0Þ, t
 ð47Þ

Notice that (33) in conjunction with (36), (47) and the
fact x2ð�Þ 2 ðlnðQ� 2"Þ, lnðQÞ
 for all � 2 ½ ~Tðx0Þ, t
,
implies that ðd=d�Þex2ð�Þ � 2"D� ðQ� 1Þ �
Dex10�2D

~Tðx0ÞþD� for all � 2 ½ ~Tðx0Þ, t
. The previous
differential inequality implies Q� 2"5 ex2ðtÞ � Qþ
2"Dðt � ~Tðx0ÞÞ � ðQ � 1Þex10�2D

~Tðx0ÞðeDt � eD
~Tðx0ÞÞ.

Since t� ~Tðx0Þ � D�1½2þ ð6"=Q� 1Þejx0jþD
~Tðx0Þ
, the

previous inequality gives a contradiction (since we
get 2"Dðt� ~Tðx0ÞÞ�ðQ� 1Þex10�2D

~Tðx0Þ ðeDt � eD
~Tðx0ÞÞ �

�2").
Using (42), (43), (46a) and (37a), we conclude that

for every x0¼ (x10, x20)2<
2 the solution of (33) with

u(t)	 v and initial condition (x1(0),x2(0))¼ x02<
2

satisfies:

ln
S�

ss

� �
� x2ðtÞ � lnðQ� 2"Þ ð48aÞ

ln
"

Q�1

� �
� x1ðtÞ

� ln
Q

Q�1
1þ

D

4
max

� �
�

S�

ðQ�1Þss

� �
ð48bÞ

for all

t � max D�1 ln
4
maxe

jx0j

D

� �
þ

4S�

ssDðQ� 1Þ
,

�

D�1 ln
Q

"

� �
, D�1 2þ

6"

Q� 1
ejx0jþD

~Tðx0Þ

� �
þ ~Tðx0Þ


:

By virtue of Theorem 1.1 in Temam (1998; p. 23), the
!-limit set of the absorbing set:

B¼ ln
"

Q�1

� �
, ln

Q

Q�1
1þ

D

4
max

� �
�

S�

ðQ�1Þss

� �� �

� ln
S�

ss

� �
, ln Q�2"ð Þ

� �
is a compact global attractor A�<2 for the dynamical
system (33) with u(t)	 v. Moreover, by virtue of (37a)

and Lemma 3.1 in Khalil (1996, p. 114), it follows that
the inclusion

A �

(
ðx1,x2Þ 2 ln

"

Q� 1

� �
, ln

Q

Q� 1
1þ

D

4
max

� ���

�
S�

ðQ� 1Þss

��
� ln

S�

ss

� �
, ln Q� 2"ð Þ

� �
:

ðQ� 1Þex1 þ ex2 ¼ Q

)

holds for the compact global attractor A�<2 of the
dynamical system (33) with u(t)	 v.

5. Concluding remarks

A novel notion of robust reachability of one set from
another set under constant control is proposed in the
present work. This notion is used to construct a control
strategy, involving sequential set-to-set reachability,
which guarantees robust global stabilisation of non-
linear sampled data systems with positive sampling rate.
Sufficient conditions for robust reachability of one set
from another under constant control are also provided.

Whenever applicable, the proposed sampled-data
feedback design methodology based on the main result
of the present work (Theorem 3.1), has very desirable
features, including that it:

. provides a simple formula for a stabilising
sampled-data feedback,

. guarantees global asymptotic stability for the
closed-loop system,

. guarantees robustness to perturbations of the
sampling schedule,

. provides means to determine the maximum
allowable sampling period,

. is not limited to special cases where the
solution map is available,

. is not limited to special cases where the non-linear
term is homogeneous or globally Lipschitz.

No other sampled-data feedback design methodology
available in the literature can provide all the above
features simultaneously. On the other hand, the
proposed methodology requires further work, based
on knowledge of the dynamics of the system, in order
to come up with a concrete control strategy in
a specific application. This was accomplished in x 4
in two important engineering applications, a jet engine
system and the chemostat. Future research can provide
guidelines to expand the range of practical applicability
of the proposed theory for the development of concrete
control strategies.
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Appendix

Proof of Lemma 3.4: Lemma 4.4 in Lin et al. (1996),
guarantees the existence of a continuous function � of class
KL, with �(s, 0)¼ s for all s� 0 which satisfies ð@=@ tÞ�ðs, tÞ ¼
��ð�ðs, tÞÞ for all s, t� 0 with the following property: if
y : [t0, t1]!<

þ is an absolutely continuous function and
I� [t0, t1] a set of Lebesgue measure zero such that _yðtÞ is
defined on [t0, t1]\I and such that the following differential
inequality holds for all t2 [t0, t1]\I:

_yðtÞ � ��ð yðtÞÞ ðA1Þ

then the following estimate holds for all t2 [t0, t1]:

yðtÞ � �ð yðt0Þ, t� t0Þ ðA2Þ

Actually, the statement of Lemma 4.4 in Lin et al. (1996)
does not guarantee that � is continuous or that �(s, 0)¼ s for
all s� 0, but a close look at the proof of Lemma 4.4 in Lin
et al. (1996) shows that this is the case when � :<þ!<þ is
a positive definite continuous function.

Let x0 2 �, x0 6¼ 02<n, ðd, ~d Þ 2 L1locð<
þ;DÞ�

L1locð<
þ;<þÞ. The solution x(t) of (7) with k 	 ~k, h ¼ ~h

exists locally and satisfies xðtÞ 2 � and MjxðtÞ � x0j � jxðtÞj
for t4 0 sufficiently small. Let �1 ¼ h expð� ~dð0ÞÞ

and T :¼ supft 2 ½0, �1Þ : max0���t�Vðxð�ÞÞ5R, max0���t
ðMjxð�Þ � x0j�jxð�ÞjÞ5 0g4 0. Notice that the previous

definition of T combined with (19) and (20) gives:

d

dt
VðxðtÞÞ � �� VðxðtÞÞð Þ and

d

dt

1

2
jxðtÞ � x0j

2

� �
� LjxðtÞ � x0j

2 þ qjx0j
2,

a:e: for t 2 ½0,T Þ ðA3Þ

Consequently, by virtue of (A1), (A2) and (A3) we obtain the
following inequalities which hold for all t2 [0,T ]:

VðxðtÞÞ � �ðVðx0Þ,tÞ and jxðtÞ�x0j � jx0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
expð2LtÞ�1

L

r
for the caseL40 ðA4Þ

or
VðxðtÞÞ � �ðVðx0Þ, tÞ and

jxðtÞ � x0j � jx0j
ffiffiffiffiffiffiffi
2qt

p
for the case L ¼ 0 ðA5Þ

By using (A4), (A5) in conjunction with the inequality jx0j �
jxðtÞ � x0j þ jxðtÞj, we obtain the following inequalities which
hold for all t2 [0,T ]:

VðxðtÞÞ � �ðVðx0Þ, tÞ and

jxðtÞ � x0j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðexpð2LtÞ � 1Þ

pffiffiffiffi
L
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðexpð2LtÞ � 1Þ

p jxðtÞj

for the case L4 0 ðA6Þ

or

VðxðtÞÞ � �ðVðx0Þ, tÞ and

jxðtÞ � x0j �

ffiffiffiffiffiffiffi
2qt
p

1�
ffiffiffiffiffiffiffi
2qt
p jxðtÞj for the case L ¼ 0 ðA7Þ

Notice that since t � T � �1 � h ¼ ~h5 ð1=2LÞ lnð1þ ðL=qÞ�
½1=ð1þMÞ
2Þ, for the case L4 0 or t � T � �1 � h ¼ ~h5
ð1=2qÞð1=ð1þMÞÞ2 for the case L¼ 0, we conclude that

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q exp 2Ltð Þ � 1ð Þ

pffiffiffiffi
L
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q exp 2Ltð Þ � 1ð Þ

p 5 1,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
exp 2Ltð Þ � 1

L

r
5 1

for the case L4 0 or Mð
ffiffiffiffiffiffiffi
2qt
p

=1�
ffiffiffiffiffiffiffi
2qt
p
Þ5 1,

ffiffiffiffiffiffiffiffi
2q t
p

5 1 for
the case L¼ 0. Consequently, combining the previous
inequalities with (A4)–(A7), we obtain the following estimate
for the solution x(t) of (7) with k 	 ~k, h ¼ ~h, which holds for
all t2 [0,T ]:

VðxðtÞÞ � �ðVðx0Þ, tÞ and MjxðtÞ � x0j5 jxðtÞj

A simple contradiction argument shows that the above
estimate holds for all t2 [0, �1] (i.e.T¼ �1). Notice that
estimateVðxðtÞÞ � �ðVðx0Þ, tÞ holds for the case x0¼ 0 as well.
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Using induction and the semi-group property for �, we
obtain for all non-negative integers i:

VðxðtÞÞ � �ðVðx0Þ, tÞ, for all t 2 ½�i, �iþ1
 ðA8Þ

Since V :<n!<þ is a positive definite, continuously
differentiable and radially unbounded function, there exist
functions a1, a2 2 K1 such that a1ðjxjÞ � VðxÞ � a2ðjxjÞ, for
all x2<n (Lemma 3.5,Khalil (1996, p. 138)). The conclusion
of Lemma 3.2 is an immediate consequence of (A8), the
previous inequality and the properties of KL functions.
The proof is complete. œ

Proof of Lemma 3.5: Let R4 0 (arbitrary) and notice that
since V2C2(<n;<þ ) is radially unbounded, it follows that
the set � :¼ f x 2 <n: VðxÞ5R g is bounded. Let S�<n be a
convex compact set with fx 2 <n: jxj � 2jzj , z 2 � g � S and
let the compact set W :¼ f ~kðxÞ : x 2 S g � U. Let C,K4 0 be
the constants that satisfy inequalities (21), (22) for z, x2S,
u, v2W and let G� 0 be the Lipschitz constant for ~k :
<n ! U � <m on the compact S�<n, i.e. G� 0 satisfies
j ~kðzÞ � ~kðxÞj � Gjz� xj for all z, x2S. Notice that by virtue
of (21) we get for all z 2 �, x 2 � and d2D:

ðz� xÞ0f ðd, z, ~kðxÞÞ

¼ ðz� xÞ0ð f ðd, z, ~kðxÞÞ � f ðd, x, ~kðxÞÞÞ þ ðz� xÞ0f ðd, x, ~kðxÞÞ

� Cjz� xj2 þ ðz� xÞ0f ðd, x, ~kðxÞÞ

� Cþ
1

2

� �
jz� xj2 þ

1

2
j f ðd, x, ~kðxÞÞj2 ðA9Þ

Inequality (21) and the fact that ~kð0Þ ¼ 0 implies:

sup
d2D

j f d, x, ~kðxÞ
	 


j � Cð1þ GÞjxj, for all x 2 S ðA10Þ

By virtue of (A9), (A10), we conclude that inequality (19)
holds with L :¼ Cþ ð1=2Þ and q :¼ ð1=2ÞC2ð1þ GÞ2. Since
V2C2(<n;<þ ), there exists a constant B� 0 such that
jrVðzÞj � Bjzj for all z2S. Moreover, notice that if z 2 �
and M� 1 then every x2<n with Mjz� xj � jzj belongs to
the compact set S�<n. Consequently, we get from (21) and
(22) for all z 2 � and M � 1þ 2ðBCG=KÞ:

sup
n
rVðzÞf d, z, ~kðxÞ

	 

: d 2 D,Mjz� xj � jzj

o
¼ sup

n
rVðzÞf d, z, ~kðzÞ

	 

þ rVðzÞ

	
f d, z, ~kðxÞ
	 


� f d, z, ~kðzÞ
	 



: d 2 D,Mjz� xj � jzj
o

� sup
n
� Kjzj2 þ jrVðzÞjCj ~kðxÞ � ~kðzÞj: Mjz� xj � jzj

o
� sup

n
� Kjzj2 þ BCGjzkz� xj: Mjz� xj � jzj

o
� � K�

BCG

M

� �
jzj2 � �

K

2
jzj2

The above inequality shows that inequality (20)
holds for the continuous, positive definite function
�ðsÞ :¼ Ks

2ð1þBÞ ðsinceVðzÞ � Bjzj2 for all z 2 S Þ.

Finally, we notice that the existence of a function
� 2 K1 with j f ðd, z, ~kðxÞÞj � �ðjzj þ jxjÞ for all
(d, z, x)2D�<n�<n, follows directly from (21) and the
fact that ~k : <n ! U � <m with ~kð0Þ ¼ 0 is locally
Lipschitz. The proof is complete. œ

Proof of fact in the proof of Theorem 3.1: Let ðd, ~d Þ 2
L1locð<

þ;DÞ � L1locð<
þ;<þÞ and x(�i)2Ck with k4 1 (arbi-

trary). By virtue of definition (21) it follows that x(�i)2�k.
Let vk2U be the constant control that guarantees property
(Q) of Definition 2.4 with � replaced by �k and A ¼
[k�1i¼1 �i ¼ Bk�1. The solution of (7) on [�i, �iþ1] coincides with
the solution of (1) with u(t)	 vk, same initial conditions and
corresponding to the same input d 2 L1locð<

þ;DÞ.
Let Tðd, xð�iÞÞ 2 ½0, cþ bðjxð�iÞjÞ
 the time involved in

property (Q) of Definition 2.4. Since limp!1 �iþp ¼ þ1
(Karafyllis 2007a), there exists integer p� 0 such that
�iþpþ1� �i4T(d, x(�i))��iþp� �i. We claim that there exists
non-negative integer q� pþ 1 such that x(�iþq)2Cs for
some s5 k. Notice that an immediate consequence of the
claim is that �iþq � �iþpþ1 � �iþp þ r � �i þ Tðd, xð�iÞÞ þ
r � �i þ cþ bðjxð�iÞjÞ þ r.

By virtue of property (Q) of Definition 2.4 and
since �iþ1� �iþ r, the solution of (7) exists for all
t2 [�i, �iþ1] and satisfies jxðtÞj � aðjxð�iÞjÞ, for all
t2 [�i, �iþ1]. In order to prove the above claim we
distinguish the following cases:

(a) T(d, x(�i))4 �iþ1� �i. In this case, we have x(�iþ1)2
�k�Bk. Since Bk ¼ [s¼1,...,k Cs, it follows that there
exists s2 {1, . . . , k} such that x(�iþ1)2Cs.

(b) T(d, x(�i))� �iþ1� �i. Since �iþ1� �i� r, in this case
there exists m2 {1, . . . , k� 1} such that x(�iþ1)2
�m�Bm. Since Bm¼[s¼1,. . .,mCs, there exists s5 k
such that x(�iþ1)2Cs.

In every case we obtain the existence of s2 {1, . . . , k} such
that x(�iþ1)2Cs. However, if x(�iþ1)2Ck��k, then
T(d, x(�i))4 �iþ1� �i and thus we can guarantee that
property (Q) of Definition 2.4 holds with T(d, x(�iþ1))¼
T(d, x(�i))� (�iþ1� �i). Furthermore, since �iþ2� �iþ1� r, the
solution of (7) exists for all t2 [�i, �iþ2] and satisfies
jxðtÞj � aðjxð�iÞjÞ, for all t2 [�i, �iþ2]. By distinguishing cases
(similarly as above), we conclude that there exists s2
{1, . . . , k} such that x(�iþ2)2Cs.

However, if x(�iþ2)2Ck, then T(d, x(�iþ1))4 �iþ2� �iþ1
and thus we can guarantee that property (Q) of Definition
2.4 holds with T(d, x(�iþ2))¼T(d, x(�iþ1))� (�iþ2� �iþ1)¼
T(d, x(�i))� (�iþ2� �i). Furthermore, since �iþ3� �iþ2� r,
the solution of (7) exists for all t2 [�i, �iþ3] and satisfies
jxðtÞj � aðjxð�iÞjÞ, for all t2 [�i, �iþ3].

Continuing in the same way, we conclude that there
exists non-negative integer q� p such that x(�iþq)2Cs

for some s2 {1, . . . ,k� 1}, because otherwise we would have
T(d,x(�iþpþ1))¼T(d,x(�i))� (�iþpþ1� �i)5 0 (a contradiction).
Moreover, the solution of (7) satisfies jxðtÞj � aðjxð�iÞjÞ,
for all t2 [�i, �iþq]. The proof is complete. œ
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