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We prove that the existence of a non-smooth control Lyapunov function is a necessary and
sufficient condition for the existence of an ordinary smooth time-varying feedback that
stabilizes an affine time-varying control system. Results concerning the non-affine case are
also provided.

Keywords: time-varying feedback; affine control systems; global stabilization; Lyapunov
functions.

1. Introduction

In this paper we consider affine control systems of the form

x = f(t,x)+ g(t, x)u

xeRt>0ueld (1.1)

where f (t, x) andg(t, x) areC® mappings orfR* x %", locally Lipschitz with respect
tox € M", with f(t,0) = Oforallt > 0andly/ € ™M is a convex set that contains

0 € R®™M. Our objective is to give necessary and sufficient conditions for the existence
of aCO functionk : |t x |" — U, with k(-,0) = 0, k(t, x) being locally Lipschitz

with respect tax € 2", such that 0= R" is globally asymptotically stable (GAS) for the
closed-loop system (1.1) with

u = K(t, X). (1.2)

Most of the existing works concerning feedback stabilization deal with uniform-in-time
global asymptotic stability (Artstein, 1983; Sontag, 1989; Tsinias, 1989) and the concept
of the control Lyapunov function (CLF, a framework introduced by E. D. Sontag) has
proved to be useful. Recently, it was proved that the existence of a continuous CLF is
a necessary and sufficient condition for the existence of a discontinuous feedback that
stabilizes an autonomous control system (Claatka ., 1997). Currently, many papers are
concerned with the issue of robustness for such control laws (Céhdle 2000; Prieur,
2001). Moreover, in Rifford (2001) it was proved that the existence of a locally Lipschitz
CLF is equivalent to the existence of a stabilizing feedback of Krasovskii or Filippov type.

In this paper we are interested in non-uniform-in-time global asymptotic stability and
the paper is a continuation of recent papers that present properties and application of
this notion (see Karafyllis & Tsinias, 2003a,b,c; Karafyllis, 2002; Karafyllis & Tsinias,
2003). The notion of non-uniform-in-time global asymptotic stability was introduced
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in Karafyllis & Tsinias (2003a,b) and Lyapunov characterizations for this notion were
given in Karafyllis & Tsinias (2003b). In Karafyllis & Tsinias (2003b) we gave a set
of Lyapunov-like necessary and sufficient conditions for the existence of a time-varying
stabilizer of the form (1.2), for the cagé = R". Particularly, it was proved that the
existence of a time-varying stabilizer is equivalent to the existence ©f &LF or is
equivalent to the existence of a robust time-varying stabilizer. In this paper we relax the
regularity requirements of Karafyllis & Tsinias (2003b) and we show that the existence of
atime-varying stabilizer of the form (1.2) is equivalent to the existence of a lower semi-
continuous CLF (Theorem 2.8). This result implies that the main issue for the existence
of a time-varying feedback stabilizer is not the regularity of the CLF but the type of the
derivative used to express the ‘decrease condition’, i.e. the Lyapunov differential inequality.

In Section 4, we consider the special case of non-affine single-input control systems of
the form

X = f(t,x)+ g(t, x)a(t, x, u)

xXeR"t>0ueR (1.3)

where f (t, x) andg(t, x) areC® mappings oM™ x ", locally Lipschitz with respect to

x € RN, with f(t, 0) = Oforallt > 0. We establish a necessary and sufficient condition
(Proposition 4.1) for the existence of a time-varying stabilizer for (1.3), under some mild
assumptions concerning the nature of the funct¢n. The obtained result includes the
so-called ‘power-integrator’ case, namely the cage x, u) = uP, where p is an odd
positive integer. The stabilization of such systems was recently investigated in Lin & Qian
(2000), Tsinias (1997).

In Section 5, we establish that all control systems that can be uniformly stabilized
by means of continuous time-varying feedback, can also be (non-uniformly) stabilized by
means of smooth time-varying feedback. Moreover, we discover the links between the
asymptotic behaviour of system

x = f(t, %)+ g(t. OK(t, X, w)
w = h(t, X, w)
xeR" weR,t>0

wherek € CORT x R" x R': U), h e CORT x R x R M), and the existence of a
feedback state stabilizer for (1.1). By an immediate application of our main results we find
necessary and sufficient conditions for the existence of such a stabilizer (Proposition 5.6).
We believe that the results of this paper will be used in future research in order to prove
the connection of the existence of a time-varying stabilizer to the concept of asymptotic
controllability (appropriately modified) for general time-varying affine systems. Moreover,
since the value function of a solvable optimal control problem is usually proved to be lower
semi-continuous, we believe that the results of this paper will provide a link between the
existence of a time-varying stabilizer and the solvability of an optimal control problem.

Notation.

e Wedenote b)Ci (A; B) the class of functiona : A — B, with continuous derivatives
of orderi > 0.
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e Wedenote byB the unit sphere dR™.

e Wedenote by€ the class of functiong. € CO(9*; |™) that satisfy ;™™ w(t)dt <
+o0 and lim_, yoo u(t) = 0.

e We denote byK* the class of positivee™ functions defined ofi*. We say that a
functionp : T — KT is positive definite ifp(0) = 0 andp(s) > Ofor all s > 0.
We say that a positive definite, increasing and continuous fungtiod* — R* is
of classK  if lim g, 40 0(S) = +00.

e For avector field f (t, x), which is defined oPR™ x RR" and appears in the right-hand
side of a system of differential equations, we say thap is locally Lipschitz with
respect tax € R" if for every compaciS ¢ R+ x K" there exists a constaht > 0
suchthat f (t,x) — f(t,x)| < L|x —y|forall (t,x) € Sand(t,y) € S.

e Fora<alar functiorw(t) we define the lower right-hand side Dini derivatide (t) :=
liminfy_ o+ 2HN=2® For 5 lower semi-continuous function : |+ x R" — R, we
defineDV (t, x; v) := liminf_, o+ YHhXHhw)VEx)

w—v

e LetV : A — R belocally Lipschitz on an open sét C R". Then by Rademacher’s
theorem we know tha¥ (-) is Frechet differentiable a.e. ok We denote by, C A
the set of all points wher¥ (-) fails to be differentiable.

o LetV : Rt x ®" — R be lower semi-continuous and Iét x) € B/ x R". We
denote bydpV (t, x) the proximal subgradient &f at (t, x) € RT x R" (which may
be empty):(9, ¢) € R x R" belongs todp V (1, X) iff there existso andn > 0 such
that

V(oY) 2 VEX) +0 -+ y—X) —olt —t]2—aly — x[?

for all (z,y) € R+ x ®W" with |(t —t,y — X)| < n. It isknown from Theorem 3.1
in Clarkeet al. (1998) that the domain @fpV, denoted byAy, is dense ifR™ x R".
Furthermore, ibpV (t, X) # @, it follows that suf + (¢, v); (6, ¢) € IpV (L, X)} <
DV, x; v).

2. Definitions and main resultsfor affine systems

DEFINITION 2.1 LetV : Rt x R" — R be lower semi-continuous and bounded on a
neighbourhood oft, x) € R x R". We define

VO(t, x;v) = limsup sude + (¢, w); (6, ¢) € apV (z, )} (2.1)
(T,y)—>(t,%)
(r,y)eAv
w—v
The following lemma presents some elementary properties of this generalized
derivative. Notice that the functiof, x, v) — VO(t, x; v) may take values in the extended
real number syste®t* = [—o0, +00].

LEMMA 2.2 LetV : BT xR" — 7 be lower semi-continuous and Igt x) € R x R".
Then
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() The function(t, x, v) — VO(t, x; v) is upper semi-continuous &t x, v) € R+ x
R x RN,

(i) Letvi € R" with VO, x; vi) < +o00 (or VO, x; v) > —oo) fori =1,2. Thenit
holds that

VOt, x; vt + (1 — Vo) < AVOL, x; v1) + (1 — VO, x; v2), VA € (0, 1).
(2.2)

Moreover, letx(-) : [a, b) — 9" be anyC? function defined on the non-empty interval
[a, b) € ;3T. Then it holds that

i VRt ) — Vit xat))
h—0+ h

< VOt x(t); X(t)), Vtelab). (2.3)

Proof. (i) This is obvious since&/°(t, x; v) is the upper limit of a function defined
on a dense subset 5" x K" x R".

(i) Let v, v2 € R"anda € (0, 1). Clearly, by Definition 2.1 we have

i —(A-x
lim sup SuD{/\9+(1—x)9+,\<;,u>
(T,y)— (t.%x) A

(r.y)€AY
w—>Av1+(1—1)v2

< limsup  [rau(r, y, w) + (1 — Vao(z, y, w)]
(T,y)—>(t,x)

(T.y)eAVY
w—>Av1+(1—1)v2

+(1=2)(¢, v2); (6, §) €dpV (T, y)}

where
a(r,y, w):= SUP{9 + <§, w> 0,¢) € 0pV(z, Y)}
ag(t, Y, v2) :=supd + (¢, v2); (8, ¢) € pV (T, Y)}.

The previous inequality in conjunction with subadditivity of the upper limit shows that
(2.2) holds.

The proof of the last statement is made by contradiction. Suppose that there exists
| € R, ¢ > 0andt € [a, b) such that

iming VLD XE D) =V, x(®) S
h—0t h
VO, x(t); x(t)) < | — 4e.

Without loss of generality we may assume thak 1. Then by definitions of the upper
and lower limits and the fact that(-) : [a,b) — $R" is C1, we obtain the existence of
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0 < 81 < 82 < 1such that

V(t+h,xt+h) >V, xt)+d—-2)h Vhe [0, 25) (2.4a)
0+ (¢, w) <l —3¢
v(@,¢) e dpV(r,y), VY(r,y,w)e Ay x ®R"
with [(z —t, y — X(1))| < 282 and|w — X(t)] < 25, (2.4b)
X(t + h) — x(t)

5 X()| + [x(t +h) — x(®)| < 82(1—¢) Vhe[0,26).  (2.4c)

Furthermore, by the mean value inequality (Claekal., 1998, Theorem 2.6) we obtain
that for all(z, y, t, X) € RT x R" x BT x R" and for allp > 0, there exist§T, z) € Ay,
A € [0, 1) and(8, ¢) € 9pV (T, ) with

Vi, y) -Vt x) <@ -0+ y—x)+p

(T—M—A=N1,2—Ax—1L=2y)| <p (2.4d)

Applying the mean value inequality for the selectioa-=t + 81, y = X(t + 81), X = X(t)
andp = d81¢, we get from (2.4d) in conjunction with (2.4a) that there exifisz) € Ay
and(®, ¢) € 9pV(T, 2) with

(I —26)81 < V(t + 81, X(t +81)) — V(t, X(1)) < 081 + (¢, X(t + 81) — X(t)) + 816
(T —t,z—X(1))| < 81(1+ &) + [X(t + 81) — X(1)]. (2.4e)

Clearly, by virtue of (2.4c), (2.4e) and the facts that 1, 0 < §1 < §2 < 1, we conclude
that there exist$T, z) € Ay and(@, ¢) € 9pV (T, z) with

| — 3¢ <9_+_<§7 w>
t+46 1 t (2.40)
(T —t, z— x(t)| < 26, and M —X()| < 25,
1
which contradicts (2.4b). The proof is complete. O

The following corollary clarifies the relation between the generalized
derivative of Definiton 2.1 and Clarke’s derivativeVO(t, x; (1, v)) =
limsup g+ LCHYIWVEY \whenV(.) is Lipschitz aroundt, x) € Rt x %"

(T.y)—>(t,%)
(following the notation in Clarkeet al., 1998). It is known (Clarkest al., 1998) that

Clarke’s derivative can be characterized by the following equality:

V(t+h,y+hv)—V(r,y)

lim sup N = limsup DV (z,Vy;v).
( g)»o(t " (T,y)—~ (%)
7,¥)— (1,

Using the results of Lemma 2.2, we can establish that for the case of locally Lipschitz
functions the generalized derivative of Definition 2.1 is identically equal to Clarke’s
derivative at the directiofil, v). Particularly, we have the following corollary.
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COROLLARY 2.3 LetV : BT x R" — R be lower semi-continuous and Iét x) e
RT x R". Then it holds that

DV, x; v) < VOt, x;v), Vv e R (2.5a)

Moreover, ifV : BT x BR" — Ris Lipschitz aroundt, X) € R x R", then for allv € R"
it holds that

V(t+h,y+hv)—V(r,y)

limsup = Vo(t, X; V)
h—0t h
(T,y)—~>(t,x)
= limsup supé + (¢, v); (0,¢) € 3pV(z,Y)}. (2.5b)
(z,y)—(1,X)
(t.y)eAv

We next give the notion of the CLF. Moreover, our regularity requirements are minimal,
compared to the corresponding definitions given in Karafyllis & Tsinias (2003b), Rifford
(2001), Sontag (1989), Tsinias (1989).

DEFINITION 2.4 Wesay thatV : BT x R" — Rt is a CLF for system (1.1), i¥/(-) is
lower semi-continuous oft™ x R" and there exists functiow : R x R" — KT being
upper semi-continuousy, ay € Ky, 8, ¥ € KT with f0+°°ﬂ(t)dt = +oo, u € € and

o Rt — R being positive definite and lower semi- continuous, such that the following
inequalities hold:

ar(Ix)) < V(t,x) <ax(y(®)x), V(t, x)eRt xR" (2.6)
t
inf VO, x; f(t, %)+ g(t, x)u) < —W(t, X) + B (f ﬂ(s)ds) ,
ueld 0
Y(t, x) € R x (R"\{0}) (2.7)
W(t, x) = BMp(V(t, X)), V(X)) eRT xR (2.8)

Notice by virtue of Corollary 2.3 that, ¥ (-) is locally Lipschitz orfR* x (R™\{0}), then
inequality (2.7) can be expressed as

inf max 6 L f(t, x t.x)u
ueld (0.£)edcV (. x) + {8, T, X) +9g(t, x)u)

t
< -W(t, x) + B(Ou (/ ﬂ(S)dS), V(t, x) € R x (R"\{0}) (2.7)
0

wheredcV (t, x) denotes Clarke’s generalized gradient (Clatka ., 1998). Wheri/(x) C
U is a compact convex subseti@fC R™ that satisfies

t
. -
ueIZIj{]Zx) <e,;>233\)/(a,x>9 + (¢, f(t, ) +g(t, x)u) < -W(, X) +BM0u (/O ﬁ(S)dS> ,

Y(t, x) € R x (R"\{0})

then using the Minimax Theorem (Aubin & Cellina, 1991), we can express this relation as

t
inf 6+ (¢, f(t,x)+g(t, x)u) < -W(t, x) + Bt (/ ﬁ(S)dS),
ueld (x) 0

Y(t, x) € R x (R"\{0}), (0, ¢) € dcV (L, X)
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which is obviously weaker than the corresponding condition used in Rifford (2001).
Moreover, ifV(-) is Ct on R x (%3"\{0}), then inequality (2.7) can be expressed as

inf ﬂ(t x)—i—ﬂ(t X)(f(t, xX) + g(t, X)u)
ued ot ax ’ gtt,

t
< W x) + B(Hu (/ ,3(S)dS> V(X)) € RE x (RM\(0)). 2.7)
0
We next recall the notions of global asymptotic stability. Consider the system
x=f@t,x), xeR"t>0 (2.9)

where f : BT x R" — 2" is measurable in > 0 and locally Lipschitz inx € R",
satisfying f (t, 0) = 0, for allt > 0. Let us denote its solution by(t) initiated fromxg at
timeto. Wesay that Oc R" is (non-uniformly in time) GASwith respect to (2.9), if for any
initial (to, Xo), X(-), isdefined for allt > tg and the following conditions hold.

(P1) Foranye > OandT > 0, it holds that sufix(t)|;t > to, |Xo] < &,190 € [0, T]} <
+o00 and there exists &= §(¢, T) > 0, such that

[Xol < 8,10 € [0, T] = sup|x(t)| < & (stability).
t>tg

(P2) Foranys > 0,T > 0andR > 0, there exists a = (¢, T, R) > 0, such that

IXol < R,ito € [0, T1= sup [X(t)| < ¢ (attractivity).
t>to+t

We say that Oe R" is uniformly GAS (UGAS) with respect to (2.9), if for any initial
(to, Xo0), X(-) is defined for alt > tg and the following conditions hold.

or everys > 0, it holds that sufix(t)|; t > to, |Xo| < &, tp > 0} < +o0 and there
(P1) F 0, it holds th Ax(t)] [Xol 0} dth
exists as = §(¢) > 0, such that for altyg > 0 it holds that

[Xol < & = sup|x(t)| < & (uniform stability).
t>to

(P2) Foranye > 0andR > 0, there exists @ = t(e, R) > 0, such that for alty > 0 it
holds that

Xol < R= sup |x(1)] < ¢ (uniform attractivity).
t>to+r

The following lemma provides Lyapunov-like criteria for global asymptotic stability.
Its proof can be found in the Appendix.

LEMMA 2.5 LetV : Rt x ®R" — MR be lower semi-continuous o+ x K" and
suppose there exist functions, a; € Ky, 8, y € KT with f0+°°,8(t)dt =+4oo,u €&
andp € C1(M+t; |) being positive definite, such that the following inequalities hold

ar(Ix)) < V(t, %) < a(y®Ix)), VYt x) € R x R (2.10)

t
VOt x; f(t,x) < —BMp(V(t,X) + Bt (./o ﬁ(S)dS), v(t,x) € S$(2.11)
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where the se§is defined by

t
S:= {(t, x) € R x R ax(y ()|X]) > 1 (f B(s)ds, 0, c)} (2.12)
0

for certain constant > 0 and(t, tg, no) denotes the unique solution of the initial value
problem

n=—p@ + unl)

n(to) = no = 0. (2.13)

Suppose, furthermore, théte CO(9+ x |"; ™). Then Oe R" is GAS for system (2.9).

The proof of Lemma 2.5 is based on the following comparison principle (Lemma 2.6)
as well as Corollary 2.7. Lemma 2.6 is a direct extension of the corresponding comparison
principle given in Khalil (1996) and its proof is given in the Appendix. The proof of
Corollary 2.7 is an immediate consequence of Lemma 5.2 in Karafyllis & Tsinias (2003b)
and is left to the reader.

LEMMA 2.6 (Comparison principle) Consider the scalar differential equation

w= f(t,w)
2.14

w(to) = wo (214)

where f (t, w) is continuous irt > 0 and locally Lipschitz inw € J C R. Let [tg, T) be

the maximal interval of existence of the solutiefit) and suppose thab(t) € J for all

t € [to, T). Letw(t) be alower semi-continuous and right-continuous function that satisfies

the differential inequality

Du(t) < f(t,v(t)), Vtelto, T) (2.15)

Suppose, furthermore,
v(to) < wo (2.16a)
v(t) € J, Vteltg, T). (2.16b)

Thenv(t) < w(t),forallt € [tg, T).

COROLLARY 2.7 The solutiony(t, tg, no) of the initial-value problem (2.13), with € €
andp € CL(®R+; |T) being positive definite, exists for dll> tg and there exist a function
o(-) € KL and a constan¥ > 0 such that the following properties are satisfied for all
to = 0O:

0<no <n1= n(t to,no) <n(t,to,n1), Vt=>to (2.17q)
0< n(t,to,no) <o(no+ M,t—tg), Vt>tg, Vno=D0. (2.17b)

We are now in a position to state our main result.

THEOREM 2.8 The following statements are equivalent:
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(i) There exists a CLF for (1.1) and an upper semi-continuous fungiomi™ xR" —
T such that (2.6), (2.7) and (2.8) are satisfied for some functena, € Koo,
B,y € Kt with [ Bt)dt = +oo, 1 € € andp : R — R* being lower
semi-continuous and positive definite.

(i) There exists a functiok € C®(RT x B"; U), with k(-, 0) = 0, such that 0= R"
is GAS for the closed-loop system (1.1) with (1.2).

(i) There exists a functiok € CORt x R U), with k(-, 0) = 0, k(t, X) being locally
Lipschitz with respect toc € R", such that 0e R" is GAS for the closed-loop
system (1.1) with (1.2).

(iv) There exists a CLF for (1.1) of cla&™ (R x ;") and a functiolW : BT x R" —
R+ with W(-, 0) = 0 of classC>® (Rt x "), such that (2.6)—(2.8) are satisfied for
some functionsy, a € Koo, y e KT, 8t) =1 e KT, u=0¢ £ andp(s) :=s.

REMARK 2.9 We emphasize that Theorem 2.8 gives necessary and sufficient conditions
for the existence of an ordinary feedback stabilizer. This explains the difference in the
definition of the CLF with the definitions given in Clarleeal. (1997, 2000), because in
these papers stabilization is achieved in a different way (see Giagke 1997, where the
difference is explained). Finally, notice that Corollary 5.4 in Karafyllis & Tsinias (2003b)
in conjunction with Theorem 2.8 implies that the existence of a CLF as defined in this
paper is a necessary and sufficient condition for the robust stabilization of (1.1), for the
caseld = RM.

REMARK 2.10 Therem 2.8 is also valid if in the definition of the CLF the following Dini
derivative is used:

V/(t, x; v) ;= limsup V@ +hy+hw) —V(,y)

(.y)— (%) h
h—0t

w—v

(2.18)

instead ofVO(t, x; v). It can be proved that Lemma 2.2 holds for this construct. However,
we did not use it for two reasons:

(1) It is clear by definitions (2.1) and (2.18) that the following inequality can be
establishedVO(t, x; v) < V/(t, x; v), for all (t, X, v) € RT x R" x R".

(2) UsingVO(t, x; v) we have shown clearly the difference between our definition of a
CLF and the one used in Clarkeal. (1997). Particularly, the difference lies in the
operator lim sup.y)—t.x) used in the definition 0¥ °(t, x; v).

(T,y)eAv

w—>v

3. Proof of Theorem 2.8

(i) implies (ii) Notice first that without loss of generality we may assume that the function
p involved in (2.8) is of clas€1(MT; 921). If this is not the case then we can repladay
anyC1 positive definite functiors that satisfies (s) < p(s) foralls > 0. By Lemma 2.2,

we know thatVO(t, x; v) is upper semi-continuous ift, x, v) for all (t, x,v) € R+ x

R" x R". Furthermore, without loss of generality we may assume that (2.7) holds for
certainu € £ that satisfiegc(t) > Ofor all t > 0. For convenience we define

t
o) :=pMu </n; ﬂ(s)ds)
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which is clearly a continuous function. We proceed by noticing some facts.

Factl. For all (tg, Xo) € BT x (R"\{0}), there existaug € U and a neighbourhood
N (to, xo) € R x (|R"\{0}), such that

(t, x) € N(to, xo) = VO(t, x; V) v=f (t,x)+gt0ug < —W(L, X) + 8 (1). (3.1)

Proof of Fact |. By virtue of (2.7) it follows that for all(tg, Xg) € SR x (;R™\{0}), there
existsug € U such that

VO(tOv Xo; X)'X:f(to,X0)+g(to,X0)U0 < _W(tOv XO) + 2¢ (to) (32)

SinceVO(t, x; v) andW(t, x) are upper semi-continuous and sirfce CO(9i+ xR"; |"),
g € COMt x RN MMM | ¢ e COMRT; (0, +00)), there exists a neighborhood
N (to, Xo) € R x (|R"\{0}) around(tg, Xg) such that for allt, x) € A (tg, Xo)

VO, x; Vo= t,x)+gt,xue < —W(to, Xo) + ¢ (to)
W(t, x) < W(to, Xo) + ¢ (to) (3.3)
¢ (to) < 2p(1).

Therefore, (3.2) and (3.3) imply (3.1) for atl, x) € N (tg, Xo).

Fact Il. There exists a family of open set®j)jcj with 2; C R x (R"\{0}) for all
j € J, which consists a locally finite open covering®8f- x (R™\{0}) and a family of
points(uj)jey with uj e ¢/ for all j € J, such that

(t,x) e Qj = Vo(t» X; U)|v:f(t,x)+g(t,x)uj < =W(t, x) + 8o (1). (3.4)

The proof of this fact is an immediate consequence of Fact | and the obvious inclusion
Rt x BN mn—t—l.

Fact Ill. There exists £ (Rt x R"; U) functionk(t, x) with k(-, 0) = 0 such that
VO, X; 0) o=t t.x) gt okt < —W(E, X) +8p (1), V(t,x) e S (3.5)

where the seSis defined in (2.12) for certain constant- 0 andn(t, tg, o) denotes the
unique solution of the initial value problem

n=—p) +8u()

n(to) = no = 0. (3.6)
Proof. By virtue of Fact Il and standard partition of unity arguments, there exists a family
of functionsfp : RT x R" — [0, 1], 0 : BT x R" — [0, 1], with 9j(t, x) = O if
(t,x) € 2; C RT x (R"M\{0}) anddo(t, x) = 0if (t, X) € S, Oo(t, X) + > 0j(t, x) being
locally finite anddo(t, X) + >_; 0} (t, x) = 1forall (t, x) € RT x R". We set

K(t. x) := Y0 (t. x)u;. (3.7)
j
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Notice that(t, 0) ¢ 2; for all j € J and consequently by definition (3.7) we have
k(t, 0) = Ofor allt > 0. Since eaclu; is a member of the convex sitand O e U,

it follows from (3.7) thatk(t, x) € U for all (t, x) € R x R". It dlso follows from (2.2)
and (3.7) that for allt, x) € SandJ'(t, x) = {j € J; 9j(t, x) # 0}

0 . 0 .
VI, X5 v)lo=f e x0+at okt = VX V= S g0 (ft0+gt.ou)
ied/(t,x)

< Y G0V X V)=t a0t (3.8)
ied/(t,x)
where the last inequality follows from the fact titatt, x) + Zj 0j (t, x) is locally finite
andVOt, x; V)=t t,0+gt,0u < +oo foralli e J'(t, x). Combining (3.4) with (3.8),
we have the desired (3.5).

Now consider the trajectory(t) of the solution of the closed-loop system (1.1) with
(1.2), namely

X = f(,x)+ g, X)k(t, x). (3.9
It follows from (2.8) and (3.9) that the following inequality holds:
VOt x: f(t. ) + g(t, k(X)) < =BV (t, X))
+8B(tH)u (/Ot ﬂ(s)ds) , Y, x)eS (3.10)

Since 8.(-) € £, Lemma 2.5 and (3.10) guarantee that R" is GAS for (3.9).

(ii) implies (iii). This implication is obvious.

(iii) implies (iv). By Theorem 3.1 in Karafyllis & Tsinias (2003b) we have that there
exists aC* functionV (-), functionsas, ap € Koo, y € K™, such that (2.6) is satisfied, as
well as the following inequality for alit, x) € R x R":

v v v
S ©X) + G0 F(LX) + - (€ 0g(E XK(E X) < =V(T,X). (3.11)

Itis clear that (2.7) and (2.8) are satisfied for
W(t, x) = V(t, X), V(t, x)eR" xR"
Bt)y=1 Vvt>=0 (3.12)
wt) =0, Vt>=0
p(S)=s, Vs=>0.

(iv) implies (i). This implication is obvious.
The proof is complete. d

4. Some results on non-affine systems

The following proposition gives necessary and sufficient conditions for the existence of a
time-varying stabilizer for systems (1.3).
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PROPGSITION 4.1 Consider the system (1.3), whese: it x " x R — R is aCO
function witha(t, x, 0) = 0 for all (t,x) € Rt x R", which is locally Lipschitz with
respect to(x, u) and in such a way that there exist functicars! : R+ x (5R"\{0}) x
(R\{0})) — %R, which is of classC®(RT x (R"\{0}) x (R\{0})) andp € C®(RT x
MM ®’T) such that

a (t, x,a~l(, x, U)) =u, Y xueR"x RN\0) x (R\{0)  (4.1)
la(t, x, Au)| < p(t, ¥)lact, x, u)|, VY, x,u) e R xR xR, Viel0, 1. (4.2)
Then the following statements are equivalent:

() There exists a9 functionk(t, x) with k(t, 0) = O for all t > 0, which is locally
Lipschitz with respect t, such that Oc R" is GAS for the closed-loop system
(1.1) with (1.2).

(i) There exists & functionk : R x |" — R with k(t, 0) = O forall t > 0, such
that 0 2R" is GAS for (1.3) with

u = K(t, x). (4.3)

Proof (i) = (ii). Since system (1.1) is stabilizable by a locally Lipschitz time-varying
feedback law, then by Theorem 2.8, there exis&>afunctionk : RT x RN — R with
k(t, 0) = Oforallt > 0, such that G R" is GAS with respect to (1.1) with

u =k, x). (4.4)

Furthermore, by Theorem 3.1 in Karafyllis & Tsinias (2003b), there exi€t¥d.yapunov
functionV : |R™ x R" — RT, apair of K, functionsaz, a, and a functiorg of class
K™, such that for allt, x) € R x 5" we have

ap(Ix) < V(t, x) < a(B1)[x]) (4.52)

A% Vv Y —
W(t’ X) + W(t’ x) f (t, X) + W(t’ X)g(t, x)k(t, x) < =V (t, x). (4.5b)

Let u : Rt x R" — (0, +00) be a positiveC> function that satisfies for allt, x) €
Rt x ®R™

Letd : R — [0, 1] be aC* function that satisfieg@(s) = 1for |s| > 1 andéd(s) = O for
Is| < 3. Notice that by (4.5b), (4.5c) we have

V(t, X) + 2exp(—t)

(4.5¢)
oV
4 (1 + ‘a—x(t, X)g(t, X)

u(t, x) <

_ WY, IV 3 1
K01 < it %) = S (03 + (0 (80 < =Vt X) + 5 exp(—). (4.50)

Define
1+ pt,X)— 1 — _
Kt %) = 0 (7M(t, ” k(t, x)) a—(t, x, k(t, x)) fork(t,x) #0 4.6)
0 fork(t,x) =0
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wherep(-) is the function involved in (4.2). Notice thétis aC> function that satisfies

k(t, 0) = 0for [k(t, )| < 5t

Claim: Forall (t, x) € R x R" it holds that

—(t x)+ﬂ(t x) f(t, x) + ﬂ(t X)g(t, x)a(t, x, k(t, x)) < —}V(t X) + exp(—t)
ot X F g HOTEX 09 0al X KE0) S =3V '

4.7)
To prove the claim, consider the following cases.

() Kt 01> 4535 )
Then by definition (4.6) we havex(t, x, k(t, X)) = K(t, x). Consequently for this
case (4.5b) implies (4.7).

(1) 0 < |k(t, x)| < 1i/(3t(t)f)><)'

Sinces (%R(t, x)) < 1, by virtue of (4.1), (4.2) and definition (4.6) it follows

that |a(t, x, k(t, X))| < p(t, ¥)|k(t, )| < wu(t, x). Clearly, by virtue of (4.5c) we
have

AY4 - AV .

<1+ ﬂ(t X)g(t, X)
= ax 9

)M(t, X)

1 1
< ZV(t, X) + > exp(—t). (4.8)

Furthermore, in this case we have 9 |k, x)| < £&X_ < ,(t, x) and

X Tip(,
consequently (4.5d) holds. Clearly, (4.5d) in conjunction wft% (4.8) implies (4.7).

(I ke, x) = i
In this case by definition (4.6) we havk(t,x) = 0 and consequently
a(t, x, k(t, x)) = 0. Clearly in this case (4.5b) implies (4.7).

Now consider the solutior(t) of (1.3) withu = k(t, x), initiated at timetg > 0 from
Xo € R". Inequalities (4.5a) and (4.7) imply the following estimate

1
x| < a{l <exp<—§(t - to)> 2+ az(ﬂ(to)IXol))> , YVt =to. (4.9)
We define for all(t, tg, s) € (| 1)3 the continuous function

a (exp(- 3t ) @+ 2(Bts)) ft>1to
a; t 2 + a(B(t0)9) if t < to

whereg(t) := maxpg- <t B(). Notice that by virtue of (4.9) and the definition above we
obtain

A(s, tg, t) = {

IX(H)] < A(lXol, to, 1), ¥Vt > to.
Using Lemma 2.5 in Karafyllis & Tsinias (2003a), we conclude that 0t" is GAS for
(2.3) withu = k(t, x). N
(i) = (i). Simply definek(t, x) := a(t, x, k(t, x)). The rest of proof is obvious. O
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ExamPLE 4.2 Consider system (1.3) for the so-called ‘power-integrator’ case, i.e. the
casea(t, x, u) = uP, wherep is an odd positive integer, namely

x = f(t,x)+ g, xuP

xeR"t>0,ueR (4.10)

Clearly we have

lact, X, Au)| = APJulP < JulP = |a(t, x, u)|, V(, X, u) e RT x R" xR, Ve[, 1]
(4.11)

and consequently (4.2) is satisfied foit, X) = 1. Moreover, we define

a~L(t, x, u) := sgnu)|ul® (4.12)

which is of classC*(fR\{0}) and notice that (4.1) also holds. Therefore, by virtue of
Proposition 4.1 we conclude that (4.10) is stabilizable at zero if and only if (1.1) is
stabilizable at zero.

5. Commentson theissue of stabilization by means of time-varying feedback

Using the main result in Bacciotti & Rosier (2001) we may establish that all control
systems that can be uniformly stabilized by means of continuous time-varying feedback
can also be (non-uniformly) stabilized by means of smooth time-varying feedback.
Specifically, consider the system

X = f(t,x,u)
xeR"t>0ueld
wherel{ € ?®™ is a convex set with & U/, f(-) € CORT x R x KM, R") is locally

Lipschitz with respect tax, u) with f(t, 0, 0) = Oforallt > 0. Then we have the
following proposition.

(5.1)

PROPGSITION 5.1 Suppose that there exists a functioe CO(R* x RR"; i), such that

0 € M" is UGAS for the closed-loop system (5.1) with= K(t, x). Then there exists
afunctionk € C®(Rt x R®"; U), with k(-,0) = 0, such that Oc R" is GAS for the

closed-loop system (5.1) with = k(t, x).

Proof. Using Theorem 4.5 in Bacciotti & Rosier (2001), there existS°d Lyapunov
functionV : Rt x ®M" — MT, and a pair ofK,, functionsa;, a, such that for all
(t, X) € R x R" we have

ar(Ixh) < V(t, x) < a(|x|) (5.1a)
Y

v 3
S 0+ 0 ft x Kt ) < -Vt x). (5.1b)

Following the proof of Lemma 2.7 in Karafyllis & Tsinias (2003c), we may conclude that
there exists a pair oK, functionsag, a4 and a functiork (-) € K¥ such that for all
(t, X) € BT x ®’" we have

%(t, X) + E;—\;(t, x) f(t, X, K(t, X) +v) < =V (t, X) + ag(IxDaa(k (O[v).  (5.2)
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We define the continuous, positive functions

e)i((l)t) ifo<s<1
o(t,s) :=
ezg((;)t) ifs>1
_ 1
y(t,s) = K(t)a4 0(t,s) (5.3)

and notice that by virtue of inequality (5.2) and definitions (5.3) we obtain

~ AY4 aVv
(5.4)

By standard partition of unity arguments, we obtain the existence of a funktien
C®(RT x R"; U), with k(-, 0) = 0, such that

ket 0 = Rt, 0| < vt XD,
V(t,x) € S:= {(t,x) € BT x RN ax(|x]) > (t + 1) exp(—t)}. (5.5)
The rest is a consequence of Lemma 2.5. O

The question that arises is, does the converse of Proposition 5.1 hold? The answer to
this question is negative, as the following example shows. There exist systems that can be
(non-uniformly) stabilized by means of a smooth time- varying feedback and cannot be
uniformly stabilized by means of a continuous time-varying feedback.

EXAMPLE 5.2 Consider the system

X =expt)x+y
y=u (5.6)
(X, y) e R, ueR,t>0.

Suppose that there exists a functione CO(R* x R2; ), with k(-, 0, 0) = 0, such
that 0 € 22 is UGAS for the closed-loop system (5.6) with= k(t, x, y). Then there
exists a functioma(-) € Ko such that for every trajectorgk(t), y(t)) of the closed-loop
system (5.6) withu = k(t, x, y), initiated at timetp > 0 from (Xo, Yo) € 2, the following

estimate holds

[(x(1), ()| < a(|(xo, Yo)I), Vt > to. (5.7)

Lets > O be apositive constant and consider any trajectorit), y(t)) of the closed-loop
system (5.6) withu = Kk(t, x, y), initiated at timetg > 0 from (Xo, Yo) = (S, 0). Clearly
the set

N = {t > to: expit)X(t) + y(t) < 0} (5.8)
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cannot be empty (because otherwise we would haitg > O for all t > ty and
consequently liminf, ;o [x(t)| > s > 0, which contradicts our assumptions). Let

T :=inf{t e N}. (5.9)

In other wordsT is the first time that we have(t) < 0. Notice that due to our assumptions
we haveT > tg and furthermore by continuity of the solution we obtain: @Xx(T) =
—y(T). Moreover, sincex(t) > 0, for allt € [tg, T], we have|x(T)| = X(T) > s. By
virtue of these observations and inequality (5.7) we obtain

V1+exp2to)s < v/1+exp2T)[x(T)| = |(x(T), y(T))| < a().

The latter inequality implies that for & > 0 we must have,/1 + exp(2to) < 22, which

obviously cannot hold. Thus there is no functioe CO(R* x }R2; ,1), with k(- 0, 0) = 0,
such that Oc 932 is UGAS for the closed-loop system (5.6) with= k(t, X, y). Onthe
other hand, there exists a functibre C® (Rt x RZ; ), with k(-, 0, 0) = 0, such that G
22 is (non-uniformly in time) GAS for the closed-loop system (5.6) with= K(t, X, ).
To see this, consider the function

V(t, X, y) = 3exp2t)x? + %(y + 2 expt)x)>. (5.10)
Clearly,V (-) is of classC® (Rt x %?) and satisfies the estimate
%(x2 +y?) < V(t, x, y) < 6exp2t)(x? + y?). (5.11)
It is obvious that the following estimates hold:
y # —2expt)x =
u'?g; (%(t, X, y) + %(t, X, Y)(expt)x +y) + %(t, X, y)u> =—oo (5.12a)
y=—-2expt)x =

inf ﬂ(tx )+ﬂ(tx Y(expt)x + )+ﬂ(tx u
S\ o O T XY ooy ey

u
V(t, X,¥Y)

= —2expt) — DV X y) < — 5

+ exp(—t). (5.12b)
Thus, by virtue of (5.11), (5.12a) and (5.12W/)(-) is a CLF for (5.6) and satisfies (2.6)—
(2.8) withay(s) = 357, ax(s) = 652, y (1) = expit), B(t) = 1, p(s) = T, ut) =
exp(—t) andW(t, x, y) = p(V (1, X, y¥)). Consequently, Theorem 2.8 implies the existence
of a functionk € C®(®Rt x |2 R), with k(-,0, 0) = 0, such that 0 %2 is (non-
uniformly in time) GAS for the closed-loop system (5.6) with= k(t, X, y).

However, notice that for the above example the dynamics of the system are time-
varying and not bounded with respect to> 0. We do not know if the converse
of Proposition 5.1 holds for autonomous control systems. This is an open problem in
mathematical control theory.
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At this point, we emphasize the fact that for Proposition 5.1, it is not required that the
uniform stabilizerk € CO(Rt x R"; U) vanishes at zero. However, for uniform global
asymptotic stability it is necessary that0R" is an equilibrium point for (5.1): namely,
we must havef (t, 0, k(t, 0)) = 0for allt > 0. This requirement may be guaranteed by
the structure of the vector fieltl(-) € CO(R+ x R" x R™; R"), asthe following example
shows.

ExXAMPLE 5.3 Consider the system

X=X+ Xu
x e R, ue[-2 0] (5.13)
Notice that the feedback law = k(t,x) := —2, globally uniformly asymptotically
stabilizes the equilibrium point = 0 of system (5.13). Moreover, system (5.13) cannot
be stabilized by a continuous time invariant feedblagk x) = k(x) that vanishes at zero.
By virtue of Proposition 5.1 there exists a functiine C®(R+ x R; [—2, 0]), with
k(-,0) = 0, such thax = 0 is GAS for the closed-loop system (5.13) with= Kk(t, x).

For example, the following feedback law:

—expit)x? if exp(t)x? < 2

5.14
-2 if exp(t)x? > 2 (.14)

K(t, X) := :

is locally Lipschitz onR™ x R, taking values if—2, 0] with k(-, 0) = 0. Moreover, if
we defineV (x) = %xz then immediate calculations show that

. 1
Visas < —p(V(0) + S exp-t),  Y(t.x) € RF xR (5.15)

where p(s) := 2min{s, s2}. Thus by virtue of Lemma 2.5, the feedback law given by
(5.14) globally asymptotically stabilizes= 0 for (5.13).

Next we consider the following problem: Suppose that system (1.1) is dynamically
stabilizable. Is system (1.1) stabilizable by a state feedback of the form (1.2)? In order to
answer this question, we first have to give the precise definition of dynamic stabilization.

DEFINITION 5.4 We say that (1.1) is dynamically stabilizable if there exist functikrs
CORT xR xR U), h e CORT xR xR ; |, with k(t, 0, 0) = 0andh(t, 0, 0) =0
forallt > 0,k(t, x, w) andh(t, x, w) being locally Lipschitz with respect t, w) such
that the origin(x, w) = (0, 0) € R" x R' is GAS for the system

x = f(t, %)+ g(t, XK, X, w)
w = h(t, X, w) (5.16)
xeR"weNR t>o0.

If system (1.1) is dynamically stabilizable, then by virtue of Theorem 2.8, there exists
afunction ¥ () € CL(R* x 2; ®T), where2 := (R"\{0}) x R, functionsay, ay € Koo,
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B.y € K* with [;7 B(s)ds = +o0, u € € andp() e COF; :\) being positive
definite such that

ar(|(x, w)) < UL, X, w) < a(y®|x, w)), ¥, x,w)eR" xR x R! (5.17a)

v v - v
- (X w) + —— (€ X, w) (£ (4 x) + g(t, K, X, w)) + ——(t, X, wh(t, X, w)
at ax dw

t
< —BOp (¥t X, w)) + BMOu </0 ﬁ(S)dS>
for all (t, x, w) € Rt x 0. (5.17b)

The following Lemma shows the existence of a locally Lipschitz funcliqr) : R x
A" — MT, that can be regarded ‘almost’ as a CLF for (1.1). Its proof can be found in the
Appendix.

LEMMA 5.5 Consider the function defined as

V(t,x) = inf ¥(t,x, w). (5.18)
weR!

ThenV () : Rt x R" — Rt is continuous everywhere, locally Lipschitz &t x
(M™M\{0}) and satisfies

ar(Ix]) < V(t,x) <ax(y®Ix]), V(t,x) e RT x K" (5.19a)
DV(t,x;v) < min (g(t, X, w) + H(t, X, w)v) ,
weM(t,x) \ ot aX
Y(t, X, v) € RT x R"M\{0}) x R" (5.19b)

t
VO(t, X, v) < —BMp(V(L, X)) + B (./o ﬁ(S)dS)

+  max (Mj(t x, w)(v — f(t, %) — g(t, )k(t, x )))
— (L X, w)(v — s - s , X, W
weM(t,x) \ X 9

for all (t, x, v) € RT x (R"\{0}) x K" (5.19¢)
where the set-valued map
M, x) ={weR Vi, x)= ¥, X, w) (5.20)
is non-empty, with compact images and upper semi-continuous.

The existence ol (-) with the above properties cannot guarantee the existence of a
functionk € CO(M*+ x |™; U), with k(-,0) = 0, k(t, x) being locally Lipschitz with
respect tax € R", such that Oc R" is GAS for the closed-loop system (1.1) with (1.2).
However, a necessary and sufficient condition for the existence of a state stabilizer is that
the set-valued map(t, x), as defined by (5.20), is a singleton. Specifically, we have the
following proposition.

PrRoPOsITION 5.6 The following statements are equivalent:



CONDITIONS FOR THE EXISTENCE OF STABILIZING FEEDBACK 55

() There exists a functiok € CO(Rt x R™; 1), with k(- , 0) = 0, k(t, X) being locally
Lipschitz with respect tox € 2" such that 0e " is GAS for the closed-loop
system (1.1) with (1.2).

(i) System (1.1) is dynamically stabilizable and there exist functiéng € C® (R x
R M), ag, a2 € Koo, ¥y € KT, k € CORT x R" x R U), h € CPRT x
RN x R R\ with kt, 0, 0) = 0andh(, 0, 0) = Ofor allt > 0, such that
inequalities (5.17a), (5.17b) hold for &tl, x, w) € |t x ®|" x KR! with p(s) :=s,
u(t) =0, 8(t) = 1. Moreover, the set-valued maplt(t, x), asdefined by (5.20), is
asingleton.

(i) There exist functions?(-) € CY(Rt x 2;®1), aj, a» € Ko, B,y € KT with
Jo7%° B®dt = +oo,k € COMF x2;U), h : R+ x 2 — R being locally bounded,
nw € £ andp() e COM*; R®t) being positive definite, such that inequalities
(5.17a), (5.17b) hold. Moreover, the set-valued mef1t, x), as defined by (5.20),
is a singleton.

Proof (i) = (ii). Notice that by virtue of the equivalence of statements (ii) and (iii) of
Theorem 2.8, we may suppose that C®(R™ x R"; I). By virtue of Theorem 3.1 in
Karafyllis & Tsinias (2003b) there exists a functidi(-) € C®(R™ x R"; R|RT), functions

a1, 8y € Koo, 7 € KT such that for allt, x) € Rt x R" we have

ay(Ix]) < V(t, x) < @y ®Ix) (5.21a)

%(t, X) + Z;—\)i(t, X)(f(t, X) + g(t, XK(t, X)) < =V (i, X). (5.21b)

Define for allw € !
1
Pt X w) = V(LX) + Sl

k(t, x, w) := Kk(t, X) (5.22)
ht, X, w) == —w

and notice that inequalities (5.17a), (5.17b) are satisfied migh := s, 8(t1) = 1 € KT,
w(t) =0 e £ anday(s) := min {él (3). %sz}, ax(s) := ax(s) + %sz, y() ==yt + 1.
Moreover, the set-valued map1(t, x), asdefined by (5.20), is a singleton, since we have
M(t, x) ={0e R

(ii) = (iii). This implication is obvious.

(i) = (). Let V(") : BT xR" — KT be the locally Lipschitz function off ™ x (R"\{0})
defined by (5.18). Clearly, upper semi-continuity M. (t, x) implies the existence of a

continuous function : R x R" — R! such thatM(t, X) = {¢(t, x)}. Clearly, by virtue
of (5.19c¢), for all(t, x) € R+ x (]R™"\{0}) we have

inLVO(t, x; f(t, %) + g, xu) < VO, x; f(t,x) + g(t, K, X, ¢(t, X))
ue
t
<=BMp(V(, X))+ BM)u (/0 ﬂ(S)dS) .

ThusV (-) : BT xR" — R+ isa CLF for (1.1). The rest is a consequence of Theorem 2.8.
O
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REMARK 5.7 Notice that statement (iii) can be replaced by the weaker hypothesis that
instead of (5.17b) the following inequality holds for & x, w) € R x 2

ov ov - oV
—(t, X, w) + —(t, x, w)(f(t, x) + g(t, X)K(, X, w)) + —(t, X, w)h(t, X, w)
ot X ow

t
< =BV, X)) + B </0 ﬁ(S)dS> (517b

whereV (-) is defined by (5.18).

EXAMPLE 5.8 Suppose that @ " x ' is GAS for the linear system

X = A()X + B() (ki (D)X + ka(H)w)
w = C1(t)x + Co(Hw (5.23)
xeR weRr t>0

where A(+), B(), ki(+), k2(-), C1(-), C2(-) are matrices of dimensions x n, n x m,

mxn,mx I, xn,| x|, respectively, whose elements are continuous functions. Then
Proposition 2.3 in Karafyllis & Tsinias (2003) guarantees the existence@f positive

definite matrixP(t) := [ I:E;'lr((tt)) :Z;Eg
B() € KT with f0+°°ﬂ(t)dt = oo such that for the guadratic Lyapunov function
T(t, X, w) = X" PLt)x+2xT Po(t)w + wT P3(t)w and for all(t, x, w) € R+ x R" x R!

it holds that

] (" denotes transposition) and a function

T(t, X, w) = X%+ |w|? (5.24a)
W v
S¢ X w) + o (X W) (ADX + BOKi DX + BOka(t)w)

+%(t, X, w)(C1 ()X + Co(Hw) < —28(1) ¥ (t, X, w). (5.24b)

Moreover, the set-valued map1(t, x), asdefined by (5.20), is a singleton, since we have
M(t, X) = {—Pejl(t)PzT (t)x}. Thus, by virtue of Proposition 5.6 there exists a function
k € CORt x MM |\™), with k(-, 0) = 0, k(t, x) being locally Lipschitz with respect to
x € K" such that 0= R" is GAS for the following system:

X = A)X + BOK(, X)
xeR", t>0. (5.25)

Moreover, notice that the functiovi(-), as defined by (5.18), satisfies
V(t, %) = xT(PLt) — Pa()P3 (0P (t)x > Ix|? (5.26)
and that we can actually stabilize the system using the linear feedback law,
k(t, x) := (ka(t) — k(D) P3 H (1) PJ (D)x. (5.27)

We conclude that if a linear time-varying system can be dynamically stabilized by linear
integrators and feedback then it can also be statically stabilized by a linear state time-
varying feedback.
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6. Conclusions

In this paper we show that the existence of a time-varying stabilizer for an affine control

system is equivalent to the existence of a lower semi-continuous CLF. This result shows
that the main issue for the existence of a time-varying feedback stabilizer is not the
regularity of the CLF but the type of the derivative used to express the ‘decrease condition’,
i.e. the Lyapunov differential inequality. Some results about non-affine control systems are
also given, which include the so-called ‘power-integrator’ case.
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Appendix

Proof of Lemma 2.5 First, notice that as long agt) exists,t — x(t) is aC! function. Since
V (t, X) is lower semi-continuous, it follows that— V (t, x(t)) is a lower semi-continuous
function as long ag(t) exists. We proceed by observing the following facts

Fact I. Suppose thatt, x(t)) € Sforallt € [a, b). Then it holds that
t

DV (t, x(t)) <VO(t, x(1); X(1)) <—B®p(V (L, (1)) + Bt)u (/ (S)dS), vt € [a, b).
0
(A.1)

This fact can be shown easily using Lemma 2.2, inequality (2.11), Definition 2.1 and the
fact thatx(t) = f(t, x(t)).

Fact [l. Suppose thatt, x(t)) € Sfor allt € [a, b). Then the function — V (t, x(t)) is
right-continuous for alt € [a, b).

To prove this fact notice that, as long »g) exists, the functiom(t) := V(t, x(t)) —
f; B(t)u (fy B(s)ds) dr is lower semi-continuous and by virtue of (A.1) it satisfies the
following differential inequality for alt € [a, b):

t
Dn(t) = DV (t, x()) — B®)u ( /0 ﬂ(S)dS) <o. (A.2)

Thus by Lemma 6.3 in Bacciotti & Rosier (2001), it follows that) is non-increasing.
This implies for allt € [a, b) andh > 0 sufficiently small, such that+ h € [a, b):

t+h T
V(t +h, x(t + h)) < V(t, (1) + BT </o ﬁ(s)ds) dr. (A.3)
t

Inequality (A.3) in conjunction with the lower semi-continuity \éft, x(t)) implies right-
continuity.

Fact Ill. Suppose thatt, x(t)) € Sforallt € [a, b). Then the following estimate holds:

t a
V(t, x(1) <7 (/ B(s)ds, f B(s)ds, V(a, X(a))> , Vtelab). (A.4)
0 0
This factis an immediate consequence of Facts I-Il and Lemma 2.6 (comparison principle).

Let [to, T) denote the maximal interval of existence of the solution of (2.9). We define
the following disjoint sets:

t
At = {t € [to, T): a(y OIXM®]) > n (fo B(s)ds, 0, C)} (A.5)

t
A= {t € [to, T a2(y MIXM®) < 7n (/0 B(s)ds, O, C)} (A.6)
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wherec > 0 andn(t, tg, no) are defined in (2.12) and (2.13), respectively. Obviously
[to, T) = AT U A~. Notice that by virtue of definitions (2.12) and (A.5)tife A* then

(t, X(1)) € S. Moreover, notice that the sét™\ (AT N {to}) is open. ThusAt\ (A* N {tg})

is either empty or it decomposes into a finite number or a denumerable infinity of open and
disjoint intervals(ag, bx) with ax < bx. Whentg € A* we obviously have the latter case.
We distinguish the following cases.

CaseA. tg ¢ AT and AT\ (A" N {tg}) is not empty. In this case the sat\ (A" N {to})
decomposes into a finite number or a denumerable infinity of open and disjoint intervals
(ak, by) with ax < bx for k = 1,.... Furthermore, by continuity of the solutior(t) it
follows that(ax, x(ax)) € Sand thugt, x(t)) € Sfor allt € [ak, bk). Clearly, by Fact lll,

the following estimate will hold:

t ax
V(t,X(t))<n<fo ﬂ(S)ds,fo ﬂ(S)ds,V(ak,X(ak))), vt € [ak, by). (A7)

The fact thatay ¢ At implies thatax € A~, and consequently by virtue of (2.10) and
definition (A.6) we have

ak
V(@ X (@) < 1 ( [O B(s)ds, 0, c) . (A8)

Using Property (2.17a) in conjunction with (A.7) and (A.8) gives the following estimate:

t ak ak
V(t, x1) <n <f ﬂ(S)ds,f p(s)ds, (/ B(s)ds, 0, C))
0 0 0

t
=n<f B(s)ds, 0, C), vt € [a, bi). (A.9)
0

Whent ¢ [ak, by), it follows thatt € A~ and consequently by virtue of (2.10) and
definition (A.6) we have

t
V(t, x(t) <n (/ B(s)ds, 0, c), vt ¢ [ak, by). (A.10)
0

Estimates (A.9) and (A.10) provide the following estimate:

t
V(t, X(1) < n(/ B(s)ds, 0, c), vt € [to, T). (A.11)
0

Case B. The setA™\ (AT N{tg}) is empty. In this case we hatg¢ AT and consequently
it follows that A= = [to, T). Therefore by virtue of (2.10) and definition (A.6) we have
that estimate (A.11) holds.

Case C. to € AT andA*\(A* N {to}) is not empty. In this case there exists a time to
and an open seA such thatA™ = [tg, b) U A. Fort € [to, b) it follows that (t, x(t)) € S
and thus by Fact Ill we obtain the estimate:

t 1
V(t,x(t))gn(/ B(s)ds, Oﬁ(s)ds,V(to,xo)), vt € [to, b). (A.12)
0 0
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Forthe caséb = T, the estimate above holds for alke [tg, T). For the casd < T, we
haveb ¢ AT and thus we may repeat the analysis in cases A and B for the rest of the
interval.

The analysis above shows that in any case the following estimate holds:

t t t
V(t, x(1) < 7’/(/ B(s)ds, Oﬂ(S)dS, V(to, Xo)) + n(f B(s)ds, O, C) , Vielt, T).
0 0 0

(A.13)

Furthermore, by virtue of Corollary 2.7, there exist a functigqn) € KL and a constant
M > 0 such that

t
V(t, x(t)) < 20 <V(to, Xo) +C+ M, ﬁ(s)ds) , Vtelty, T). (A.14)
to
A standard contradiction argument in conjunction with (A.14) showsThat +oco. Thus

estimate (A.14) holds for atl > to. We define for all(t, tg, s) € (931)2 the continuous
function

t

a;t <20 <az(7(to)8) +c+ M, f ﬁ(S)dS)> ift>to
to

a; (20 (a2(7(10)s) + ¢+ M, 0)) ift <to

A(s, tg, t) =

wherey () := maxg <t ¥ (). Notice that by virtue of (2.10), (A.14) and the definition
above we obtain

IX()] < A(lXol, to, 1),  Vt > to.
Using Lemma 2.5 in Karafyllis & Tsinias (2003a), we conclude that &" is GAS for
(2.9). The proof is complete.

Proof of Lemma 2.6: Consider the scalar differential equation

7=f(t,2)+ A

A.15
Z(to) = wo ( )

where is a positive constant. On any compact interita) t1] C [to, T), we conclude
from Theorem 2.6 in Khalil (1996) that for eveey > 0 there existsy > 0 such that if
0 < 1 < é then (A.7) has a unique solutiat, 1) defined ortg, t1] and satisfies

1z(t, A) — w(t)| <&, Ve [to, tal. (A.16)

Fact I. v(t) < z(t, A), forallt € [to, t1).

This fact is shown by contradiction. Suppose that there ekiststg, t1) such that(t) —
z(t,») > 0. Clearly, the functiom(t) := v(t) — z(t, A) is lower semi-continuous and
therefore the set

At = {r € (1o, tp) : m(z) > O} (A.17)

is open and non-empty. Ths"™ decomposes into a finite number or a denumerable infinity
of open and disjoint intervaléy, bx) with ax < bk. Sinceax ¢ AT and consequently
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we havev(ak) < z(ak, 2). On the other hand, for every non-increasing sequengce €
(ak, bi)}72, with 7j k — ax, we obtain

v(7i k) — v(@ak) > z(tik, A) — Z(ak, 7). (A.18)

This implies

Du(ay) = liminf 2K~ V(@)

i—o00 Tik — 3k

> 2(a, A) = f(a, z(ak, 1)) + A. (A.19)

Moreover, the functiomn(t) := v(t) — z(t, A) is right-continuous and by definition (A.17)
we obtainv(ax) > z(ak, A). Thus we havev(ax) = z(ak, A). Then using (A.19) we get

Duv(aw) = f(ak, v(ak) + A > f(ak, v(a)
which contradicts (2.15).

Fact Il. v(t) < w(t), forallt € [tg, t1).

Again, this claim may be shown by contradiction. Suppose that there existsto, t1)
with v(@) > w(a) and set = %(v(a) —w(a)) > 0. Furthermore, let > 0 be slected in
such a way that (A.16) is satisfied with this particular selectios 5f0. Then we obtain

v(@) =v@ —w@ +w@ =2+w@ —z(a,Ar)+z@ ) > e+ z@, >\
which contradicts Fact I.

Fact Ill. v(t) < w(t), forallt € [tg, T).

Suppose the contrary: there existg (tg, T) with v(a) > w(a). Lett; :=a+ % for
the case of finitel ort; := a + 1 for the casel = +o0. Clearly, by Fact Il we have a
contradiction. The proof is complete. O

Proof of Lemma 5.5: Define
8(t,x) := a; (ax(y (OIX]) + 1) (A.20)

whereay, a € Ko, y € KT are the functions involved in (5.17a) and notice thay
is a continuous, positive function. By virtue of inequality (5.17a) and definition (5.18) we
obtain:

ar(|x)) < V(t,x) < ¥(t, %, 0 <a(y®x]), ¥, x) € R x R". (A.21)

Clearly, inequality (A.21) establishes (5.19a). Definitions (5.18), (A.20) and inequalities
(5.17a), (A.21) imply that

V(t, X) = min(inf{ ¥ (t, X, w); [w| < 8, X)}, Inf{¥(t, X, w); lw| > 8, X)})
= min(inf{ ¥ (t, X, w); [w| < §(t, X)}, inflar(Jw)); |w] > 8(t, X)})
> min(inf{ ¥ (t, x, w); lw| < 8(t, X)}, 2V (t, X) + 1).
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The latter inequality and continuity of () gives

V(t,x)= min ¥, X, w). (A.22)
[w|<S(t, %)

Moreover, it follows that the set-valued mat(t, x) c R, as defined by (5.20), is strict
and bounded. By virtue of (5.19a) and definition (5.20) it follows that fot al 0, we
have

M(t, 0) = {0}. (A.23)

We next establish tha¥/ (-) is locally Lipschitz onfRT x (]R"\{0}). Let A C R+ x
(M™\{0}) be a non-empty convex compact set and define

r := max §(t, x A.24
(nax, t, x) (A.24)

L= max{

oY oy

Let (t,x), (r,y) € Aandwg,xy € M(t, X), wiry € M(z,y). We hawe, by virtue of
(A.22), (A.24) and (A.25) that

V(T, y) - V(ta X) = W(T, y’ w(r,y)) - W(t, X, w(t,X)) g W(f, y7 w(t,X)) - W(t, X, w(t,X))

Low
= / W(t + At — 1), X+ Ay —X), w(t,x))d)\.(l’ —1
0

+Al%§a+xa—4xx+xw—xxw¢mmuy—m
<Lz =t + 1y —xD.
Reversing the roles at, x) and(z, y) we get
VT, y) = VU < L(r =t +]y=x]D, V(. x),(z.y) €A (A.26)

This establishes that (-) is locally Lipschitz ori™ x (53™\{0}). It is also continuous on
R+ x RN, since continuity ak = 0 isguaranteed by (5.19a) wilNi(t, 0) = 0. Moreover,
by continuity of V(-) on Rt x R", (A.23) and definition (5.20) it follows that for all
(t,x) € RT x R" the setM(t, x) c R is compact.

Next we establish (5.19b). We have for @l x, v) € BT x (RM\{0}) x R" andw €
M(t, X)

V(t+h,x+hv) —V(,x)
h
/ J—
W(t—}-h,x—i—hv,hw) Q(t’x’w);w’eM(t—i—h,X—i—hv)}

Ut+h x+hv,w) — ¥, X, ov ov
(+h, X+ hw, w) — ¥ w=ﬁﬂxm+5¢xwv

DV (t, x; v) = liminf
h—0t

= liminf
h—0t

< liminf
h—0+ h
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which establishes inequality (5.19b). We continue the proof by establishing the following
claim.

Claim. The set-valued map(t, x), asdefined by (5.20), is upper semi-continuous.

Proof of Claim. It suffices to prove that for evergt, x) € R+ x " and for everye > 0
there exist$ > 0 such that

T —t|+]y—X| <8 = M(t,y) C M(t,X) +¢B. (A.27)

The proof will be made by contradiction. Suppose the contrary: there gkistsc SR x

RN ande > 0, such that for als > 0, there existszt, y) € (t, X) + §B andw € M(z, y)
with [w — w'| > ¢, for all w’ € M(t, x). Clearly, this implies the existence of a sequence
{(tn, Yn, wn)}32 4 With (zn, Yn) — (L, X), wn € M(tn, Yn) and|wn — w'| > e, for all

w' € M(t,x) andn = 1,2.... On the other hand, since is bounded, it contains a
convergent subsequeneg — w € M(t, X). By continuity of V(-) and ¥ (-), we have

V(mk, Yk) — V(t, X)
V(tk, Yx) = ¥ (tk, Yk, wk) = ¥ (1, X, ).

Consequently, we must havé(t, x) = ¥ (t, x, w), which, by virtue of definition (5.20)
implies thatw € M(t, X), acontradiction.

We finish the proof by proving inequality (5.19c). L&t x, v) € T x (R"\{0}) x
RN, Making use of the continuity properties of the majps), g(-), o(-), V(-), u(-), B(),
inequalities (5.17b) and (5.19b), as well as the fact that fowadl M (z, y) it holds that
8% (z,y, w) = 0, we obtain

VOt x; v) = lim sup DV(z,y; v)
(T,y)—(t.X)

ov

< limsup min{
at

ov
(r,y, w) + — (1, X, w)v; w' € M(x, y)}
(T.Y)— (%) X

< limsup min{—ﬂ(f),o(w(f,y,w’))+ﬂ(f)u</ ﬂ(S)dS>
(T.y)=>(x) 0

+at, x, r,y,w) : w e M(z, y)}

t
<—ﬁ(t)p(V(t,x))+ﬁ(t)u</ ﬂ(s)ds>+ limsup min{a(t, X, 7, y, w'); w e M(z, y)}
0 (T,y)—(t,X)

(A.28)

where

/ BW / i /
ait, x, .y, w) = W(T’ y, w)(v — f(t, x) — g, xk(r,y, w))
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Notice that by continuity of%(-), k(-) and upper semi-continuity of the set-valued map
M(t, x), for everye > 0 there exist$ > 0 such that

T —t|+|ly—Xl <8, w e M(t,y) =
ow / - /
a_X(Ta Yy, w )(v - f(ts X) - g(tv X)k(f, y.w ))

< max{%—f(t, x, w)(v — f(t, %) — g(t, Ok(t, X, w)); w € M(t, x)} + &.(A.29)

Combining (A.28) and (A.29) we obtain (5.19c). The proof is complete. O



