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Necessary and sufficient conditions for the existence of
stabilizing feedback for control systems
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Weprove that the existence of a non-smooth control Lyapunov function is a necessary and
sufficient condition for the existence of an ordinary smooth time-varying feedback that
stabilizes an affine time-varying control system. Results concerning the non-affine case are
also provided.
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1. Introduction

In this paper we consider affine control systems of the form

ẋ = f (t, x) + g(t, x)u
(1.1)

x ∈ Rn, t � 0, u ∈ U

where f (t, x) andg(t, x) areC0 mappings onR+ × Rn , locally Lipschitz with respect
to x ∈ Rn , with f (t, 0) = 0 for all t � 0 andU ⊆ Rm is a convex set that contains
0 ∈ Rm . Our objective is to give necessary and sufficient conditions for the existence
of a C0 function k : R+ × Rn → U , with k(·, 0) = 0, k(t, x) being locally Lipschitz
with respect tox ∈ Rn , such that 0∈ Rn is globally asymptotically stable (GAS) for the
closed-loop system (1.1) with

u = k(t, x). (1.2)

Most of the existing works concerning feedback stabilization deal with uniform-in-time
global asymptotic stability (Artstein, 1983; Sontag, 1989; Tsinias, 1989) and the concept
of the control Lyapunov function (CLF, a framework introduced by E. D. Sontag) has
proved to be useful. Recently, it was proved that the existence of a continuous CLF is
a necessary and sufficient condition for the existence of a discontinuous feedback that
stabilizes an autonomous control system (Clarkeet al., 1997). Currently, many papers are
concerned with the issue of robustness for such control laws (Clarkeet al., 2000; Prieur,
2001). Moreover, in Rifford (2001) it was proved that the existence of a locally Lipschitz
CLF is equivalent to the existence of a stabilizing feedback of Krasovskii or Filippov type.

In this paper we are interested in non-uniform-in-time global asymptotic stability and
the paper is a continuation of recent papers that present properties and application of
this notion (see Karafyllis & Tsinias, 2003a,b,c; Karafyllis, 2002; Karafyllis & Tsinias,
2003). The notion of non-uniform-in-time global asymptotic stability was introduced

c© The Institute of Mathematics and its Applications 2003



38 I. KARAFYLLIS

in Karafyllis & Tsinias (2003a,b) and Lyapunov characterizations for this notion were
given in Karafyllis & Tsinias (2003b). In Karafyllis & Tsinias (2003b) we gave a set
of Lyapunov-like necessary and sufficient conditions for the existence of a time-varying
stabilizer of the form (1.2), for the caseU = Rn . Particularly, it was proved that the
existence of a time-varying stabilizer is equivalent to the existence of aC1 CLF or is
equivalent to the existence of a robust time-varying stabilizer. In this paper we relax the
regularity requirements of Karafyllis & Tsinias (2003b) and we show that the existence of
a time-varying stabilizer of the form (1.2) is equivalent to the existence of a lower semi-
continuous CLF (Theorem 2.8). This result implies that the main issue for the existence
of a time-varying feedback stabilizer is not the regularity of the CLF but the type of the
derivative used to express the ‘decrease condition’, i.e. the Lyapunov differential inequality.

In Section 4, we consider the special case of non-affine single-input control systems of
the form

ẋ = f (t, x) + g(t, x)a(t, x, u)
(1.3)

x ∈ Rn, t � 0, u ∈ R

where f (t, x) andg(t, x) areC0 mappings onR+ × Rn , locally Lipschitz with respect to
x ∈ Rn , with f (t, 0) = 0 for all t � 0. We establish a necessary and sufficient condition
(Proposition 4.1) for the existence of a time-varying stabilizer for (1.3), under some mild
assumptions concerning the nature of the functiona(·). The obtained result includes the
so-called ‘power-integrator’ case, namely the casea(t, x, u) = u p, where p is an odd
positive integer. The stabilization of such systems was recently investigated in Lin & Qian
(2000), Tsinias (1997).

In Section 5, we establish that all control systems that can be uniformly stabilized
by means of continuous time-varying feedback, can also be (non-uniformly) stabilized by
means of smooth time-varying feedback. Moreover, we discover the links between the
asymptotic behaviour of system

ẋ = f (t, x) + g(t, x)k̃(t, x, w)

ẇ = h(t, x, w)

x ∈ Rn, w ∈ Rl , t � 0

wherek̃ ∈ C0(R+ × Rn × Rl;U), h ∈ C0(R+ × Rn × Rl; Rl), and the existence of a
feedback state stabilizer for (1.1). By an immediate application of our main results we find
necessary and sufficient conditions for the existence of such a stabilizer (Proposition 5.6).

Webelieve that the results of this paper will be used in future research in order to prove
the connection of the existence of a time-varying stabilizer to the concept of asymptotic
controllability (appropriately modified) for general time-varying affine systems. Moreover,
since the value function of a solvable optimal control problem is usually proved to be lower
semi-continuous, we believe that the results of this paper will provide a link between the
existence of a time-varying stabilizer and the solvability of an optimal control problem.

Notation.

• Wedenote byCi (A; B) the class of functionsa : A → B, with continuous derivatives
of orderi � 0.
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• Wedenote byB the unit sphere ofRm .

• We denote byE the class of functionsµ ∈ C0(R+; R+) that satisfy
∫ +∞

0 µ(t)dt <

+∞ and limt→+∞ µ(t) = 0.

• We denote byK + the class of positiveC∞ functions defined onR+. We say that a
functionρ : R+ → R+ is positive definite ifρ(0) = 0 andρ(s) > 0 for all s > 0.
We say that a positive definite, increasing and continuous functionρ : R+ → R+ is
of classK∞ if lim s→+∞ ρ(s) = +∞.

• For a vector field f (t, x), which is defined onR+ × Rn and appears in the right-hand
side of a system of differential equations, we say thatf (·) is locally Lipschitz with
respect tox ∈ Rn if for every compactS ⊂ R+ × Rn there exists a constantL � 0
such that| f (t, x) − f (t, x)| � L|x − y| for all (t, x) ∈ S and(t, y) ∈ S.

• For a scalar functionv(t) we define the lower right-hand side Dini derivativeDv(t) :=
lim inf h→0+ v(t+h)−v(t)

h . For a lower semi-continuous functionV : R+ ×Rn → R, we

defineDV (t, x; v) := lim inf h→0+
w→v

V (t+h,x+hw)−V (t,x)
h .

• Let V : A → R be locally Lipschitz on an open setA ⊆ Rn . Then by Rademacher’s
theorem we know thatV (·) is Frechet differentiable a.e. onA. We denote byΩV ⊂ A
the set of all points whereV (·) fails to be differentiable.

• Let V : R+ × Rn → R be lower semi-continuous and let(t, x) ∈ R+ × Rn . We
denote by∂P V (t, x) the proximal subgradient ofV at (t, x) ∈ R+ × Rn (which may
be empty):(θ, ζ ) ∈ R × Rn belongs to∂P V (t, x) iff there existsσ andη > 0 such
that

V (τ, y) � V (t, x) + θ(τ − t) + 〈ζ, y − x〉 − σ |τ − t |2 − σ |y − x |2

for all (τ, y) ∈ R+ × Rn with |(τ − t, y − x)| < η. It is known from Theorem 3.1
in Clarkeet al. (1998) that the domain of∂P V , denoted byAV , is dense inR+ × Rn .
Furthermore, if∂P V (t, x) 	= ∅, it follows that sup{θ + 〈ζ, v〉; (θ, ζ ) ∈ ∂P V (t, x)} �
DV (t, x; v).

2. Definitions and main results for affine systems

DEFINITION 2.1 Let V : R+ × Rn → R be lower semi-continuous and bounded on a
neighbourhood of(t, x) ∈ R+ × Rn . Wedefine

V 0(t, x; v) = lim sup
(τ,y)→(t,x)
(τ,y)∈AV

w→v

sup{θ + 〈ζ, w〉; (θ, ζ ) ∈ ∂P V (τ, y)} (2.1)

The following lemma presents some elementary properties of this generalized
derivative. Notice that the function(t, x, v) → V 0(t, x; v) may take values in the extended
real number systemR∗ = [−∞, +∞].
LEMMA 2.2 LetV : R+ ×Rn → R be lower semi-continuous and let(t, x) ∈ R+ ×Rn .
Then
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(i) The function(t, x, v) → V 0(t, x; v) is upper semi-continuous at(t, x, v) ∈ R+ ×
Rn × Rn .

(ii) Let vi ∈ Rn with V 0(t, x; vi ) < +∞ (or V 0(t, x; vi ) > −∞) for i = 1, 2. Then it
holds that

V 0(t, x; λv1 + (1 − λ)v2) � λV 0(t, x; v1) + (1 − λ)V 0(t, x; v2), ∀λ ∈ (0, 1).
(2.2)

Moreover, letx(·) : [a, b) → Rn be anyC1 function defined on the non-empty interval
[a, b) ⊆ R+. Then it holds that

lim inf
h→0+

V (t + h, x(t + h)) − V (t, x(t))

h
� V 0(t, x(t); ẋ(t)), ∀t ∈ [a, b). (2.3)

Proof. (i) This is obvious sinceV 0(t, x; v) is the upper limit of a function defined
on a dense subset ofR+ × Rn × Rn .

(ii) Let v1, v2 ∈ Rn andλ ∈ (0, 1). Clearly, by Definition 2.1 we have

V 0(t, x; λv1 + (1 − λ)v2) =
lim sup

(τ,y)→(t,x)
(τ,y)∈AV

w→λv1+(1−λ)v2

sup

{
λθ+(1−λ)θ+λ

〈
ζ,

w−(1−λ)v2

λ

〉
+(1−λ)〈ζ, v2〉; (θ, ζ )∈∂P V (τ, y)

}

� lim sup
(τ,y)→(t,x)
(τ,y)∈AV

w→λv1+(1−λ)v2

[λa1(τ, y, w) + (1 − λ)a2(τ, y, w)]

where

a1(τ, y, w) := sup

{
θ +

〈
ζ,

w − (1 − λ)v2

λ

〉
; (θ, ζ ) ∈ ∂P V (τ, y)

}
a2(τ, y, v2) := sup{θ + 〈ζ, v2〉; (θ, ζ ) ∈ ∂P V (τ, y)}.

The previous inequality in conjunction with subadditivity of the upper limit shows that
(2.2) holds.

The proof of the last statement is made by contradiction. Suppose that there exists
l ∈ R, ε > 0 andt ∈ [a, b) such that

lim inf
h→0+

V (t + h, x(t + h)) − V (t, x(t))

h
� l

V 0(t, x(t); ẋ(t)) � l − 4ε.

Without loss of generality we may assume thatε < 1. Then by definitions of the upper
and lower limits and the fact thatx(·) : [a, b) → Rn is C1, we obtain the existence of
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0 < δ1 � δ2 � 1 such that

V (t + h, x(t + h)) � V (t, x(t)) + (l − 2ε)h ∀h ∈ [0, 2δ1) (2.4a)

θ + 〈ζ, w〉 � l − 3ε

∀(θ, ζ ) ∈ ∂P V (τ, y), ∀(τ, y, w) ∈ AV × Rn

with |(τ − t, y − x(t))| < 2δ2 and|w − ẋ(t)| < 2δ2 (2.4b)∣∣∣∣ x(t + h) − x(t)

h
ẋ(t)

∣∣∣∣ + |x(t + h) − x(t)| � δ2(1 − ε) ∀h ∈ [0, 2δ1). (2.4c)

Furthermore, by the mean value inequality (Clarkeet al., 1998, Theorem 2.6) we obtain
that for all(τ, y, t, x) ∈ R+ ×Rn ×R+ ×Rn and for allρ > 0, there exists(T, z) ∈ AV ,
λ ∈ [0, 1] and(θ, ζ ) ∈ ∂P V (T, z) with

V (τ, y) − V (t, x) < θ(τ − t) + 〈ζ, y − x〉 + ρ
(2.4d)|(T − λt − (1 − λ)τ, z − λx − (1 − λ)y)| < ρ

Applying the mean value inequality for the selectionτ = t + δ1, y = x(t + δ1), x = x(t)
andρ = δ1ε, we get from (2.4d) in conjunction with (2.4a) that there exists(T, z) ∈ AV

and(θ, ζ ) ∈ ∂P V (T, z) with

(l − 2ε)δ1 � V (t + δ1, x(t + δ1)) − V (t, x(t)) < θδ1 + 〈ζ, x(t + δ1) − x(t)〉 + δ1ε

|(T − t, z − x(t))| < δ1(1 + ε) + |x(t + δ1) − x(t)|. (2.4e)

Clearly, by virtue of (2.4c), (2.4e) and the facts thatε < 1, 0< δ1 � δ2 � 1, we conclude
that there exists(T, z) ∈ AV and(θ, ζ ) ∈ ∂P V (T, z) with

l − 3ε < θ +
〈
ζ,

x(t + δ1) − x(t)

δ1

〉

|(T − t, z − x(t))| < 2δ2 and

∣∣∣∣ x(t + δ1) − x(t)

δ1
− ẋ(t)

∣∣∣∣ < 2δ2

(2.4f)

which contradicts (2.4b). The proof is complete. �

The following corollary clarifies the relation between the generalized
derivative of Definition 2.1 and Clarke’s derivativeV 0(t, x; (1, v)) =
lim sup h→0+

(τ,y)→(t,x)

V (τ+h,y+hv)−V (τ,y)
h , when V (·) is Lipschitz around(t, x) ∈ R+ × Rn

(following the notation in Clarkeet al., 1998). It is known (Clarkeet al., 1998) that
Clarke’s derivative can be characterized by the following equality:

lim sup
h→0+

(τ,y)→(t,x)

V (τ + h, y + hv) − V (τ, y)

h
= lim sup

(τ,y)→(t,x)

DV (τ, y; v).

Using the results of Lemma 2.2, we can establish that for the case of locally Lipschitz
functions the generalized derivative of Definition 2.1 is identically equal to Clarke’s
derivative at the direction(1, v). Particularly, we have the following corollary.
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COROLLARY 2.3 Let V : R+ × Rn → R be lower semi-continuous and let(t, x) ∈
R+ × Rn . Then it holds that

DV (t, x; v) � V 0(t, x; v), ∀v ∈ Rn . (2.5a)

Moreover, ifV : R+×Rn → R is Lipschitz around(t, x) ∈ R+×Rn , then for allv ∈ Rn

it holds that

lim sup
h→0+

(τ,y)→(t,x)

V (τ + h, y + hv) − V (τ, y)

h
= V 0(t, x; v)

= lim sup
(τ,y)→(t,x)
(τ,y)∈AV

sup{θ + 〈ζ, v〉; (θ, ζ ) ∈ ∂P V (τ, y)}. (2.5b)

Wenext give the notion of the CLF. Moreover, our regularity requirements are minimal,
compared to the corresponding definitions given in Karafyllis & Tsinias (2003b), Rifford
(2001), Sontag (1989), Tsinias (1989).

DEFINITION 2.4 We say thatV : R+ × Rn → R+ is a CLF for system (1.1), ifV (·) is
lower semi-continuous onR+ × Rn and there exists functionW : R+ × Rn → R+ being
upper semi-continuous,a1, a2 ∈ K∞, β, γ ∈ K + with

∫ +∞
0 β(t)dt = +∞, µ ∈ E and

ρ : R+ → R+ being positive definite and lower semi- continuous, such that the following
inequalities hold:

a1(|x |) � V (t, x) � a2(γ (t)|x |), ∀(t, x) ∈ R+ × Rn (2.6)

inf
u∈U

V 0(t, x; f (t, x) + g(t, x)u) � −W (t, x) + β(t)µ

(∫ t

0
β(s)ds

)
,

∀(t, x) ∈ R+ × (Rn\{0}) (2.7)

W (t, x) � β(t)ρ(V (t, x)), ∀(t, x) ∈ R+ × Rn . (2.8)

Notice by virtue of Corollary 2.3 that, ifV (·) is locally Lipschitz onR+ × (Rn\{0}), then
inequality (2.7) can be expressed as

inf
u∈U

max
(θ,ζ )∈∂C V (t,x)

θ + 〈ζ, f (t, x) + g(t, x)u〉

� −W (t, x) + β(t)µ

(∫ t

0
β(s)ds

)
, ∀(t, x) ∈ R+ × (Rn\{0}) (2.7′)

where∂C V (t, x) denotes Clarke’s generalized gradient (Clarkeet al., 1998). WhenU(x) ⊆
U is a compact convex subset ofU ⊆ Rm that satisfies

inf
u∈U(x)

max
(θ,ζ )∈∂C V (t,x)

θ + 〈ζ, f (t, x) + g(t, x)u〉 � −W (t, x) + β(t)µ

(∫ t

0
β(s)ds

)
,

∀(t, x) ∈ R+ × (Rn\{0})
then using the Minimax Theorem (Aubin & Cellina, 1991), we can express this relation as

inf
u∈U(x)

θ + 〈ζ, f (t, x) + g(t, x)u〉 � −W (t, x) + β(t)µ

(∫ t

0
β(s)ds

)
,

∀(t, x) ∈ R+ × (Rn\{0}), (θ, ζ ) ∈ ∂C V (t, x)
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which is obviously weaker than the corresponding condition used in Rifford (2001).
Moreover, ifV (·) is C1 onR+ × (Rn\{0}), then inequality (2.7) can be expressed as

inf
u∈U

∂V

∂t
(t, x) + ∂V

∂x
(t, x)( f (t, x) + g(t, x)u)

� −W (t, x) + β(t)µ

(∫ t

0
β(s)ds

)
, ∀(t, x) ∈ R+ × (Rn\{0}). (2.7′′)

Wenext recall the notions of global asymptotic stability. Consider the system

ẋ = f (t, x), x ∈ Rn, t � 0 (2.9)

where f : R+ × Rn → Rn is measurable int � 0 and locally Lipschitz inx ∈ Rn ,
satisfying f (t, 0) = 0, for all t � 0. Let us denote its solution byx(t) initiated fromx0 at
time t0. Wesay that 0∈ Rn is (non-uniformly in time) GAS with respect to (2.9), if for any
initial (t0, x0), x(·), is defined for allt � t0 and the following conditions hold.

(P1) For anyε > 0 andT � 0, it holds that sup{|x(t)|; t � t0, |x0| � ε, t0 ∈ [0, T ]} <

+∞ and there exists aδ = δ(ε, T ) > 0, such that

|x0| � δ, t0 ∈ [0, T ] ⇒ sup
t�t0

|x(t)| � ε (stability).

(P2) For anyε > 0, T � 0 andR � 0, there exists aτ = τ(ε, T, R) � 0, such that

|x0| � R, t0 ∈ [0, T ] ⇒ sup
t�t0+τ

|x(t)| � ε (attractivity).

We say that 0∈ Rn is uniformly GAS (UGAS) with respect to (2.9), if for any initial
(t0, x0), x(·) is defined for allt � t0 and the following conditions hold.

(P1′) For everyε > 0, it holds that sup{|x(t)|; t � t0, |x0| � ε, t0 � 0} < +∞ and there
exists aδ = δ(ε) > 0, such that for allt0 � 0 it holds that

|x0| � δ ⇒ sup
t�t0

|x(t)| � ε (uniform stability).

(P2′) For anyε > 0 andR � 0, there exists aτ = τ(ε, R) � 0, such that for allt0 � 0 it
holds that

|x0| � R ⇒ sup
t�t0+r

|x(t)| � ε (uniform attractivity).

The following lemma provides Lyapunov-like criteria for global asymptotic stability.
Its proof can be found in the Appendix.

LEMMA 2.5 Let V : R+ × Rn → R+ be lower semi-continuous onR+ × Rn and
suppose there exist functionsa1, a2 ∈ K∞, β, γ ∈ K + with

∫ +∞
0 β(t)dt = +∞, µ ∈ E

andρ ∈ C1(R+; R+) being positive definite, such that the following inequalities hold

a1(|x |) � V (t, x) � a2(γ (t)|x |), ∀(t, x) ∈ R+ × Rn (2.10)

V 0(t, x; f (t, x)) � −β(t)ρ(V (t, x)) + β(t)µ

(∫ t

0
β(s)ds

)
, ∀(t, x) ∈ S (2.11)
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where the setS is defined by

S :=
{
(t, x) ∈ R+ × Rn; a2(γ (t)|x |) � η

(∫ t

0
β(s)ds, 0, c

)}
(2.12)

for certain constantc > 0 andη(t, t0, η0) denotes the unique solution of the initial value
problem

η̇ = −ρ(η) + µ(t)
(2.13)

η(t0) = η0 � 0.

Suppose, furthermore, thatf ∈ C0(R+ ×Rn; Rn). Then 0∈ Rn is GAS for system (2.9).

The proof of Lemma 2.5 is based on the following comparison principle (Lemma 2.6)
as well as Corollary 2.7. Lemma 2.6 is a direct extension of the corresponding comparison
principle given in Khalil (1996) and its proof is given in the Appendix. The proof of
Corollary 2.7 is an immediate consequence of Lemma 5.2 in Karafyllis & Tsinias (2003b)
and is left to the reader.

LEMMA 2.6 (Comparison principle) Consider the scalar differential equation

ẇ = f (t, w)
(2.14)

w(t0) = w0

where f (t, w) is continuous int � 0 and locally Lipschitz inw ∈ J ⊆ R. Let [t0, T ) be
the maximal interval of existence of the solutionw(t) and suppose thatw(t) ∈ J for all
t ∈ [t0, T ). Let v(t) be a lower semi-continuous and right-continuous function that satisfies
the differential inequality

Dv(t) � f (t, v(t)), ∀t ∈ [t0, T ) (2.15)

Suppose, furthermore,

v(t0) � w0 (2.16a)

v(t) ∈ J, ∀t ∈ [t0, T ). (2.16b)

Thenv(t) � w(t), for all t ∈ [t0, T ).

COROLLARY 2.7 The solutionη(t, t0, η0) of the initial-value problem (2.13), withµ ∈ E
andρ ∈ C1(R+; R+) being positive definite, exists for allt � t0 and there exist a function
σ(·) ∈ K L and a constantM > 0 such that the following properties are satisfied for all
t0 � 0:

0 � η0 < η1 ⇒ η(t, t0, η0) < η(t, t0, η1), ∀t � t0 (2.17a)

0 � η(t, t0, η0) � σ(η0 + M, t − t0), ∀t � t0, ∀η0 � 0. (2.17b)

Weare now in a position to state our main result.

THEOREM 2.8 The following statements are equivalent:
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(i) There exists a CLF for (1.1) and an upper semi-continuous functionW : R+×Rn →
R+ such that (2.6), (2.7) and (2.8) are satisfied for some functionsa1, a2 ∈ K∞,
β, γ ∈ K + with

∫ +∞
0 β(t)dt = +∞, µ ∈ E andρ : R+ → R+ being lower

semi-continuous and positive definite.
(ii) There exists a functionk ∈ C∞(R+ × Rn;U), with k(·, 0) = 0, such that 0∈ Rn

is GAS for the closed-loop system (1.1) with (1.2).
(iii) There exists a functionk ∈ C0(R+ ×Rn;U), with k(·, 0) = 0, k(t, x) being locally

Lipschitz with respect tox ∈ Rn , such that 0∈ Rn is GAS for the closed-loop
system (1.1) with (1.2).

(iv) There exists a CLF for (1.1) of classC∞(R+×Rn) and a functionW : R+×Rn →
R+ with W (·, 0) = 0 of classC∞(R+ × Rn), such that (2.6)–(2.8) are satisfied for
some functionsa1, a2 ∈ K∞, γ ∈ K +, β(t) ≡ 1 ∈ K +, µ ≡ 0 ∈ E andρ(s) := s.

REMARK 2.9 We emphasize that Theorem 2.8 gives necessary and sufficient conditions
for the existence of an ordinary feedback stabilizer. This explains the difference in the
definition of the CLF with the definitions given in Clarkeet al. (1997, 2000), because in
these papers stabilization is achieved in a different way (see Clarkeet al., 1997, where the
difference is explained). Finally, notice that Corollary 5.4 in Karafyllis & Tsinias (2003b)
in conjunction with Theorem 2.8 implies that the existence of a CLF as defined in this
paper is a necessary and sufficient condition for the robust stabilization of (1.1), for the
caseU = Rm .

REMARK 2.10 Theorem 2.8 is also valid if in the definition of the CLF the following Dini
derivative is used:

V ′(t, x; v) := lim sup
(τ,y)→(t,x)

h→0+
w→v

V (τ + h, y + hw) − V (τ, y)

h
(2.18)

instead ofV 0(t, x; v). It can be proved that Lemma 2.2 holds for this construct. However,
we did not use it for two reasons:

(1) It is clear by definitions (2.1) and (2.18) that the following inequality can be
established:V 0(t, x; v) � V ′(t, x; v), for all (t, x, v) ∈ R+ × Rn × Rn .

(2) UsingV 0(t, x; v) we have shown clearly the difference between our definition of a
CLF and the one used in Clarkeet al. (1997). Particularly, the difference lies in the
operator lim sup(τ,y)→(t,x)

(τ,y)∈AV
w→v

used in the definition ofV 0(t, x; v).

3. Proof of Theorem 2.8

(i) implies (ii) Notice first that without loss of generality we may assume that the function
ρ involved in (2.8) is of classC1(R+; R+). If this is not the case then we can replaceρ by
anyC1 positive definite functioñρ that satisfies̃ρ(s) � ρ(s) for all s � 0. By Lemma 2.2,
we know thatV 0(t, x; v) is upper semi-continuous in(t, x, v) for all (t, x, v) ∈ R+ ×
Rn × Rn . Furthermore, without loss of generality we may assume that (2.7) holds for
certainµ ∈ E that satisfiesµ(t) > 0 for all t � 0. For convenience we define

φ(t) := β(t)µ

(∫ t

0
β(s)ds

)
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which is clearly a continuous function. We proceed by noticing some facts.

Fact I. For all (t0, x0) ∈ R+ × (Rn\{0}), there existsu0 ∈ U and a neighbourhood
N (t0, x0) ⊂ R+ × (Rn\{0}), such that

(t, x) ∈ N (t0, x0) ⇒ V 0(t, x; v)|v= f (t,x)+g(t,x)u0 � −W (t, x) + 8φ(t). (3.1)

Proof of Fact I. By virtue of (2.7) it follows that for all(t0, x0) ∈ R+ × (Rn\{0}), there
existsu0 ∈ U such that

V 0(t0, x0; ẋ)|ẋ= f (t0,x0)+g(t0,x0)u0 � −W (t0, x0) + 2φ(t0). (3.2)

SinceV 0(t, x; v) andW (t, x) are upper semi-continuous and sincef ∈ C0(R+×Rn; Rn),
g ∈ C0(R+ × Rn; Rn×m) , φ ∈ C0(R+; (0, +∞)), there exists a neighborhood
N (t0, x0) ⊂ R+ × (Rn\{0}) around(t0, x0) such that for all(t, x) ∈ N (t0, x0)

V 0(t, x; v)|v= f (t,x)+g(t,x)u0 � −W (t0, x0) + φ(t0)

W (t, x) � W (t0, x0) + φ(t0) (3.3)

φ(t0) � 2φ(t).

Therefore, (3.2) and (3.3) imply (3.1) for all(t, x) ∈ N (t0, x0).

Fact II. There exists a family of open sets(Ω j ) j∈J with Ω j ⊂ R+ × (Rn\{0}) for all
j ∈ J , which consists a locally finite open covering ofR+ × (Rn\{0}) and a family of
points(u j ) j∈J with u j ∈ U for all j ∈ J , such that

(t, x) ∈ Ω j ⇒ V 0(t, x; v)|v= f (t,x)+g(t,x)u j � −W (t, x) + 8φ(t). (3.4)

The proof of this fact is an immediate consequence of Fact I and the obvious inclusion
R+ × Rn ⊂ Rn+1.

Fact III. There exists aC∞(R+ × Rn;U) functionk(t, x) with k(·, 0) = 0 such that

V 0(t, x; v)|v= f (t,x)+g(t,x)k(t,x) � −W (t, x) + 8φ(t), ∀(t, x) ∈ S (3.5)

where the setS is defined in (2.12) for certain constantc > 0 andη(t, t0, η0) denotes the
unique solution of the initial value problem

η̇ = −ρ(η) + 8µ(t)

η(t0) = η0 � 0. (3.6)

Proof. By virtue of Fact II and standard partition of unity arguments, there exists a family
of functionsθ0 : R+ × Rn → [0, 1], θ j : R+ × Rn → [0, 1], with θ j (t, x) = 0 if
(t, x) 	∈ Ω j ⊂ R+ × (Rn\{0}) andθ0(t, x) = 0 if (t, x) ∈ S, θ0(t, x) + ∑

j θ j (t, x) being
locally finite andθ0(t, x) + ∑

j θ j (t, x) = 1 for all (t, x) ∈ R+ × Rn . We set

k(t, x) :=
∑

j

θ j (t, x)u j . (3.7)
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Notice that(t, 0) 	∈ Ω j for all j ∈ J and consequently by definition (3.7) we have
k(t, 0) = 0 for all t � 0. Since eachu j is a member of the convex setU and 0 ∈ U ,
it follows from (3.7) thatk(t, x) ∈ U for all (t, x) ∈ R+ × Rn . It also follows from (2.2)
and (3.7) that for all(t, x) ∈ S andJ ′(t, x) = { j ∈ J ; θ j (t, x) 	= 0}

V 0(t, x; v)|v= f (t,x)+g(t,x)k(t,x) = V 0(t, x; v)|v= ∑
i∈J ′(t,x)

θi (t,x)( f (t,x)+g(t,x)ui )

�
∑

i∈J ′(t,x)

θi (t, x)V 0(t, x; vi )|vi = f (t,x)+g(t,x)ui (3.8)

where the last inequality follows from the fact thatθ0(t, x) + ∑
j θ j (t, x) is locally finite

andV 0(t, x; vi )|vi = f (t,x)+g(t,x)ui < +∞ for all i ∈ J ′(t, x). Combining (3.4) with (3.8),
we have the desired (3.5).

Now consider the trajectoryx(t) of the solution of the closed-loop system (1.1) with
(1.2), namely

ẋ = f (t, x) + g(t, x)k(t, x). (3.9)

It follows from (2.8) and (3.9) that the following inequality holds:

V 0(t, x; f (t, x) + g(t, x)k(t, x)) � −β(t)ρ(V (t, x))

+8β(t)µ

(∫ t

0
β(s)ds

)
, ∀(t, x) ∈ S. (3.10)

Since 8µ(·) ∈ E, Lemma 2.5 and (3.10) guarantee that 0∈ Rn is GAS for (3.9).
(ii) implies (iii). This implication is obvious.
(iii) implies (iv). By Theorem 3.1 in Karafyllis & Tsinias (2003b) we have that there

exists aC∞ functionV (·), functionsa1, a2 ∈ K∞, γ ∈ K +, such that (2.6) is satisfied, as
well as the following inequality for all(t, x) ∈ R+ × Rn :

∂V

∂t
(t, x) + ∂V

∂x
(t, x) f (t, x) + ∂V

∂x
(t, x)g(t, x)k(t, x) � −V (t, x). (3.11)

It is clear that (2.7) and (2.8) are satisfied for

W (t, x) ≡ V (t, x), ∀(t, x) ∈ R+ × Rn

β(t) ≡ 1, ∀t � 0 (3.12)

µ(t) ≡ 0, ∀t � 0

ρ(s) = s, ∀s � 0.

(iv) implies (i). This implication is obvious.
The proof is complete. �

4. Some results on non-affine systems

The following proposition gives necessary and sufficient conditions for the existence of a
time-varying stabilizer for systems (1.3).
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PROPOSITION 4.1 Consider the system (1.3), wherea : R+ × Rn × R → R is a C0

function with a(t, x, 0) = 0 for all (t, x) ∈ R+ × Rn , which is locally Lipschitz with
respect to(x, u) and in such a way that there exist functionsa−1 : R+ × (Rn\{0}) ×
(R\{0}) → R, which is of classC∞(R+ × (Rn\{0}) × (R\{0})) andρ ∈ C∞(R+ ×
Rn; R+) such that

a
(

t, x, a−1(t, x, u)
)

= u, ∀(t, x, u) ∈ R+ × (Rn\{0}) × (R\{0}) (4.1)

|a(t, x, λu)| � ρ(t, x)|a(t, x, u)|, ∀(t, x, u) ∈ R+ × Rn × R, ∀λ ∈ [0, 1]. (4.2)

Then the following statements are equivalent:

(i) There exists aC0 function k(t, x) with k(t, 0) = 0 for all t � 0, which is locally
Lipschitz with respect tox , such that 0∈ Rn is GAS for the closed-loop system
(1.1) with (1.2).

(ii) There exists aC∞ function k̃ : R+ × Rn → R with k̃(t, 0) = 0 for all t � 0, such
that 0∈ Rn is GAS for (1.3) with

u = k̃(t, x). (4.3)

Proof (i) ⇒ (ii). Since system (1.1) is stabilizable by a locally Lipschitz time-varying
feedback law, then by Theorem 2.8, there exists aC∞ functionk : R+ × Rn → R with
k(t, 0) = 0 for all t � 0, such that 0∈ Rn is GAS with respect to (1.1) with

u = k̃(t, x). (4.4)

Furthermore, by Theorem 3.1 in Karafyllis & Tsinias (2003b), there exists aC∞ Lyapunov
function V : R+ × Rn → R+, a pair of K∞ functionsa1, a2 and a functionβ of class
K +, such that for all(t, x) ∈ R+ × Rn we have

a1(|x |) � V (t, x) � a2(β(t)|x |) (4.5a)
∂V

∂t
(t, x) + ∂V

∂x
(t, x) f (t, x) + ∂V

∂x
(t, x)g(t, x)k(t, x) � −V (t, x). (4.5b)

Let µ : R+ × Rn → (0, +∞) be a positiveC∞ function that satisfies for all(t, x) ∈
R+ × Rn :

µ(t, x) � V (t, x) + 2 exp(−t)

4

(
1 +

∣∣∣∣∂V

∂x
(t, x)g(t, x)

∣∣∣∣
) . (4.5c)

Let θ : R → [0, 1] be aC∞ function that satisfiesθ(s) = 1 for |s| � 1 andθ(s) = 0 for
|s| � 1

2. Notice that by (4.5b), (4.5c) we have

|k(t, x)| � µ(t, x) ⇒ ∂V

∂t
(t, x) + ∂V

∂x
(t, x) f (t, x) � −3

4
V (t, x) + 1

2
exp(−t). (4.5d)

Define

k̃(t, x) :=

θ

(
1 + ρ(t, x)

µ(t, x)
k(t, x)

)
a−1(t, x, k(t, x)) for k(t, x) 	= 0

0 for k(t, x) = 0
(4.6)
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whereρ(·) is the function involved in (4.2). Notice thatk̃ is a C∞ function that satisfies
k̃(t, 0) = 0 for |k(t, x)| � µ(t,x)

2(1+ρ(t,x))
.

Claim: For all (t, x) ∈ R+ × Rn it holds that

∂V

∂t
(t, x) + ∂V

∂x
(t, x) f (t, x) + ∂V

∂x
(t, x)g(t, x)a(t, x, k̃(t, x)) � −1

2
V (t, x) + exp(−t).

(4.7)

To prove the claim, consider the following cases.

(I) |k(t, x)| � µ(t,x)
1+ρ(t,x)

.

Then by definition (4.6) we have:a(t, x, k̃(t, x)) = k(t, x). Consequently for this
case (4.5b) implies (4.7).

(II) 0 < |k(t, x)| � µ(t,x)
1+ρ(t,x)

.

Sinceθ
(

1+ρ(t,x)
µ(t,x)

k(t, x)
)

� 1, by virtue of (4.1), (4.2) and definition (4.6) it follows

that |a(t, x, k̃(t, x))| � ρ(t, x)|k(t, x)| � µ(t, x). Clearly, by virtue of (4.5c) we
have

∂V

∂x
(t, x)g(t, x)a(t, x, k̃(t, x)) �

∣∣∣∣∂V

∂x
(t, x)g(t, x)

∣∣∣∣ |a(t, x, k̃(t, x))|

�
(

1 +
∣∣∣∣∂V

∂x
(t, x)g(t, x)

∣∣∣∣
)

µ(t, x)

� 1

4
V (t, x) + 1

2
exp(−t). (4.8)

Furthermore, in this case we have 0< |k(t, x)| � µ(t,x)
1+ρ(t,x)

� µ(t, x) and
consequently (4.5d) holds. Clearly, (4.5d) in conjunction with (4.8) implies (4.7).

(III) k(t, x) = 0.
In this case by definition (4.6) we havẽk(t, x) = 0 and consequently
a(t, x, k̃(t, x)) = 0. Clearly in this case (4.5b) implies (4.7).

Now consider the solutionx(t) of (1.3) withu = k̃(t, x), initiated at timet0 � 0 from
x0 ∈ Rn . Inequalities (4.5a) and (4.7) imply the following estimate

|x(t)| � a−1
1

(
exp

(
−1

2
(t − t0)

)
(2 + a2(β(t0)|x0|))

)
, ∀t � t0. (4.9)

Wedefine for all(t, t0, s) ∈ (R+)3 the continuous function

∆(s, t0, t) :=
{

a−1
1

(
exp

(
−1

2(t − t0)
)

(2 + a2(β(t0)s))
)

if t � t0

a−1
1 (2 + a2(β(t0)s)) if t < t0

whereβ(t) := max0�τ�t β(τ). Notice that by virtue of (4.9) and the definition above we
obtain

|x(t)| � ∆(|x0|, t0, t), ∀t � t0.

Using Lemma 2.5 in Karafyllis & Tsinias (2003a), we conclude that 0∈ Rn is GAS for
(1.3) withu = k̃(t, x).

(ii) ⇒ (i). Simply definek(t, x) := a(t, x, k̃(t, x)). The rest of proof is obvious. �
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EXAMPLE 4.2 Consider system (1.3) for the so-called ‘power-integrator’ case, i.e. the
casea(t, x, u) = u p, wherep is an odd positive integer, namely

ẋ = f (t, x) + g(t, x)u p

(4.10)
x ∈ Rn, t � 0, u ∈ R.

Clearly we have

|a(t, x, λu)| = λp|u|p � |u|p = |a(t, x, u)|, ∀(t, x, u) ∈ R+ × Rn × R, ∀λ ∈ [0, 1]
(4.11)

and consequently (4.2) is satisfied forρ(t, x) ≡ 1. Moreover, we define

a−1(t, x, u) := sgn(u)|u| 1
p (4.12)

which is of classC∞(R\{0}) and notice that (4.1) also holds. Therefore, by virtue of
Proposition 4.1 we conclude that (4.10) is stabilizable at zero if and only if (1.1) is
stabilizable at zero.

5. Comments on the issue of stabilization by means of time-varying feedback

Using the main result in Bacciotti & Rosier (2001) we may establish that all control
systems that can be uniformly stabilized by means of continuous time-varying feedback
can also be (non-uniformly) stabilized by means of smooth time-varying feedback.
Specifically, consider the system

ẋ = f (t, x, u)
(5.1)

x ∈ Rn, t � 0, u ∈ U
whereU ⊆ Rm is a convex set with 0∈ U , f (·) ∈ C0(R+ × Rn × Rm; Rn) is locally
Lipschitz with respect to(x, u) with f (t, 0, 0) = 0 for all t � 0. Then we have the
following proposition.

PROPOSITION 5.1 Suppose that there exists a functionk̃ ∈ C0(R+ × Rn;U), such that
0 ∈ Rn is UGAS for the closed-loop system (5.1) withu = k̃(t, x). Then there exists
a function k ∈ C∞(R+ × Rn;U), with k(·, 0) = 0, such that 0∈ Rn is GAS for the
closed-loop system (5.1) withu = k(t, x).

Proof. Using Theorem 4.5 in Bacciotti & Rosier (2001), there exists aC∞ Lyapunov
function V : R+ × Rn → R+, and a pair ofK∞ functionsa1, a2 such that for all
(t, x) ∈ R+ × Rn we have

a1(|x |) � V (t, x) � a2(|x |) (5.1a)

∂V

∂t
(t, x) + ∂V

∂x
(t, x) f (t, x, k̃(t, x)) � −V (t, x). (5.1b)

Following the proof of Lemma 2.7 in Karafyllis & Tsinias (2003c), we may conclude that
there exists a pair ofK∞ functionsa3, a4 and a functionκ(·) ∈ K + such that for all
(t, x) ∈ R+ × Rn we have

∂V

∂t
(t, x) + ∂V

∂x
(t, x) f (t, x, k̃(t, x) + v) � −V (t, x) + a3(|x |)a4(κ(t)|v|). (5.2)
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Wedefine the continuous, positive functions

θ(t, s) :=




exp(−t)

a3(1)
if 0 � s � 1

exp(−t)

a3(s)
if s > 1

γ (t, s) := 1

κ(t)
a−1

4 (θ(t, s)) (5.3)

and notice that by virtue of inequality (5.2) and definitions (5.3) we obtain

|u − k̃(t, x)| � γ (t, |x |) ⇒ ∂V

∂t
(t, x) + ∂V

∂x
(t, x) f (t, x, u) � −V (t, x) + exp(−t).

(5.4)

By standard partition of unity arguments, we obtain the existence of a functionk ∈
C∞(R+ × Rn;U), with k(·, 0) = 0, such that∣∣∣k(t, x) − k̃(t, x)

∣∣∣ � γ (t, |x |),
∀(t, x) ∈ S := {

(t, x) ∈ R+ × Rn; a2(|x |) � (t + 1) exp(−t)
}

. (5.5)

The rest is a consequence of Lemma 2.5. �

The question that arises is, does the converse of Proposition 5.1 hold? The answer to
this question is negative, as the following example shows. There exist systems that can be
(non-uniformly) stabilized by means of a smooth time- varying feedback and cannot be
uniformly stabilized by means of a continuous time-varying feedback.

EXAMPLE 5.2 Consider the system

ẋ = exp(t)x + y

ẏ = u (5.6)

(x, y) ∈ R2, u ∈ R, t � 0.

Suppose that there exists a functionk̃ ∈ C0(R+ × R2; R), with k̃(·, 0, 0) = 0, such
that 0 ∈ R2 is UGAS for the closed-loop system (5.6) withu = k̃(t, x, y). Then there
exists a functiona(·) ∈ K∞ such that for every trajectory(x(t), y(t)) of the closed-loop
system (5.6) withu = k̃(t, x, y), initiated at timet0 � 0 from (x0, y0) ∈ R2, the following
estimate holds

|(x(t), y(t))| � a(|(x0, y0)|), ∀t � t0. (5.7)

Let s > 0 be apositive constant and consider any trajectory(x(t), y(t)) of the closed-loop
system (5.6) withu = k̃(t, x, y), initiated at timet0 � 0 from (x0, y0) = (s, 0). Clearly
the set

N := {t � t0; exp(t)x(t) + y(t) < 0} (5.8)
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cannot be empty (because otherwise we would haveẋ(t) � 0 for all t � t0 and
consequently lim inft→+∞ |x(t)| � s > 0, which contradicts our assumptions). Let

T := inf{t ∈ N }. (5.9)

In other wordsT is the first time that we havėx(t) � 0. Notice that due to our assumptions
we haveT > t0 and furthermore by continuity of the solution we obtain: exp(T )x(T ) =
−y(T ). Moreover, sincėx(t) � 0, for all t ∈ [t0, T ], we have|x(T )| = x(T ) � s. By
virtue of these observations and inequality (5.7) we obtain√

1 + exp(2t0)s �
√

1 + exp(2T )|x(T )| = |(x(T ), y(T ))| � a(s).

The latter inequality implies that for allt0 � 0 wemust have
√

1 + exp(2t0) � a(s)
s , which

obviously cannot hold. Thus there is no functionk̃ ∈ C0(R+ ×R2; R), with k̃(· 0, 0) = 0,
such that 0∈ R2 is UGAS for the closed-loop system (5.6) withu = k̃(t, x, y). On the
other hand, there exists a functionk ∈ C∞(R+×R2; R), with k(·, 0, 0) = 0, such that 0∈
R2 is (non-uniformly in time) GAS for the closed-loop system (5.6) withu = k(t, x, y).
To see this, consider the function

V (t, x, y) := 3 exp(2t)x2 + 1

2
(y + 2 exp(t)x)2. (5.10)

Clearly,V (·) is of classC∞(R+ × R2) and satisfies the estimate

1

4
(x2 + y2) � V (t, x, y) � 6 exp(2t)(x2 + y2). (5.11)

It is obvious that the following estimates hold:

y 	= −2 exp(t)x ⇒
inf

u∈R

(
∂V

∂t
(t, x, y) + ∂V

∂x
(t, x, y)(exp(t)x + y) + ∂V

∂y
(t, x, y)u

)
= −∞ (5.12a)

y = −2 exp(t)x ⇒
inf

u∈R

(
∂V

∂t
(t, x, y) + ∂V

∂x
(t, x, y)(exp(t)x + y) + ∂V

∂y
(t, x, y)u

)

= −2(exp(t) − 1)V (t, x, y) � − V (t, x, y)

1 + V 2(t, x, y)
+ exp(−t). (5.12b)

Thus, by virtue of (5.11), (5.12a) and (5.12b),V (·) is a CLF for (5.6) and satisfies (2.6)–
(2.8) with a1(s) = 1

4s2, a2(s) = 6s2, γ (t) = exp(t), β(t) ≡ 1, ρ(s) = s
1+s2 , µ(t) =

exp(−t) andW (t, x, y) = ρ(V (t, x, y)). Consequently, Theorem 2.8 implies the existence
of a functionk ∈ C∞(R+ × R2; R), with k(·, 0, 0) = 0, such that 0∈ R2 is (non-
uniformly in time) GAS for the closed-loop system (5.6) withu = k(t, x, y).

However, notice that for the above example the dynamics of the system are time-
varying and not bounded with respect tot � 0. We do not know if the converse
of Proposition 5.1 holds for autonomous control systems. This is an open problem in
mathematical control theory.
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At this point, we emphasize the fact that for Proposition 5.1, it is not required that the
uniform stabilizerk̃ ∈ C0(R+ × Rn;U) vanishes at zero. However, for uniform global
asymptotic stability it is necessary that 0∈ Rn is an equilibrium point for (5.1): namely,
we must havef (t, 0, k̃(t, 0)) = 0 for all t � 0. This requirement may be guaranteed by
the structure of the vector fieldf (·) ∈ C0(R+ ×Rn ×Rm; Rn), as the following example
shows.

EXAMPLE 5.3 Consider the system

ẋ = x + xu
(5.13)

x ∈ R, u ∈ [−2, 0].

Notice that the feedback lawu = k̃(t, x) := −2, globally uniformly asymptotically
stabilizes the equilibrium pointx = 0 of system (5.13). Moreover, system (5.13) cannot
be stabilized by a continuous time invariant feedbackk̃(t, x) = k̃(x) that vanishes at zero.
By virtue of Proposition 5.1 there exists a functionk ∈ C∞(R+ × R; [−2, 0]), with
k(·, 0) = 0, such thatx = 0 is GAS for the closed-loop system (5.13) withu = k(t, x).
For example, the following feedback law:

k(t, x) :=
{

− exp(t)x2 if exp(t)x2 � 2

−2 if exp(t)x2 > 2
(5.14)

is locally Lipschitz onR+ × R, taking values in[−2, 0] with k(·, 0) = 0. Moreover, if
we defineV (x) = 1

2x2 then immediate calculations show that

V̇ |(5,13) � −ρ(V (x)) + 1

2
exp(−t), ∀(t, x) ∈ R+ × R (5.15)

whereρ(s) := 2min{s, s2}. Thus by virtue of Lemma 2.5, the feedback law given by
(5.14) globally asymptotically stabilizesx = 0 for (5.13).

Next we consider the following problem: Suppose that system (1.1) is dynamically
stabilizable. Is system (1.1) stabilizable by a state feedback of the form (1.2)? In order to
answer this question, we first have to give the precise definition of dynamic stabilization.

DEFINITION 5.4 We say that (1.1) is dynamically stabilizable if there exist functionsk̃ ∈
C0(R+×Rn×Rl;U), h ∈ C0(R+×Rn×Rl; Rl), with k̃(t, 0, 0) = 0 andh(t, 0, 0) = 0
for all t � 0, k̃(t, x, w) andh(t, x, w) being locally Lipschitz with respect to(x, w) such
that the origin(x, w) = (0, 0) ∈ Rn × Rl is GAS for the system

ẋ = f (t, x) + g(t, x)k̃(t, x, w)

ẇ = h(t, x, w) (5.16)

x ∈ Rn, w ∈ Rl , t � 0.

If system (1.1) is dynamically stabilizable, then by virtue of Theorem 2.8, there exists
a functionΨ(·) ∈ C1(R+ ×Ω; R+), whereΩ := (Rn\{0})×Rl , functionsa1, a2 ∈ K∞,
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β, γ ∈ K + with
∫ +∞

0 β(s)ds = +∞, µ ∈ E andρ(·) ∈ C0(R+; R+) being positive
definite such that

a1(|(x, w)|) � Ψ(t, x, w) � a2(γ (t)|(x, w)|), ∀(t, x, w) ∈ R+ × Rn × Rl (5.17a)
∂Ψ
∂t

(t, x, w) + ∂Ψ
∂x

(t, x, w)( f (t, x) + g(t, x)k̃(t, x, w)) + ∂Ψ
∂w

(t, x, w)h(t, x, w)

� −β(t)ρ(Ψ(t, x, w)) + β(t)µ

(∫ t

0
β(s)ds

)
for all (t, x, w) ∈ R+ × Ω . (5.17b)

The following Lemma shows the existence of a locally Lipschitz functionV (·) : R+ ×
Rn → R+, that can be regarded ‘almost’ as a CLF for (1.1). Its proof can be found in the
Appendix.

LEMMA 5.5 Consider the function defined as

V (t, x) := inf
w∈Rl

Ψ(t, x, w). (5.18)

Then V (·) : R+ × Rn → R+ is continuous everywhere, locally Lipschitz onR+ ×
(Rn\{0}) and satisfies

a1(|x |) � V (t, x) � a2(γ (t)|x |), ∀(t, x) ∈ R+ × Rn (5.19a)

DV (t, x; v) � min
w∈M(t,x)

(
∂Ψ
∂t

(t, x, w) + ∂Ψ
∂x

(t, x, w)v

)
,

∀(t, x, v) ∈ R+ × (Rn\{0}) × Rn (5.19b)

V 0(t, x, v) � −β(t)ρ(V (t, x)) + β(t)µ

(∫ t

0
β(s)ds

)

+ max
w∈M(t,x)

(
∂Ψ
∂x

(t, x, w)(v − f (t, x) − g(t, x)k̃(t, x, w))

)
for all (t, x, v) ∈ R+ × (Rn\{0}) × Rn (5.19c)

where the set-valued map

M(t, x) := {w ∈ Rl : V (t, x) = Ψ(t, x, w)} (5.20)

is non-empty, with compact images and upper semi-continuous.

The existence ofV (·) with the above properties cannot guarantee the existence of a
function k ∈ C0(R+ × Rn;U), with k(·, 0) = 0, k(t, x) being locally Lipschitz with
respect tox ∈ Rn , such that 0∈ Rn is GAS for the closed-loop system (1.1) with (1.2).
However, a necessary and sufficient condition for the existence of a state stabilizer is that
the set-valued mapM(t, x), as defined by (5.20), is a singleton. Specifically, we have the
following proposition.

PROPOSITION 5.6 The following statements are equivalent:
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(i) There exists a functionk ∈ C0(R+ ×Rn;U), with k(· , 0) = 0, k(t, x) being locally
Lipschitz with respect tox ∈ Rn such that 0∈ Rn is GAS for the closed-loop
system (1.1) with (1.2).

(ii) System (1.1) is dynamically stabilizable and there exist functionsΨ(·) ∈ C∞(R+ ×
Rn; R+), a1, a2 ∈ K∞, γ ∈ K +, k̃ ∈ C∞(R+ × Rn × Rl;U), h ∈ C∞(R+ ×
Rn × Rl; Rl) with k̃(t, 0, 0) = 0 and h(t, 0, 0) = 0 for all t � 0, such that
inequalities (5.17a), (5.17b) hold for all(t, x, w) ∈ R+ × Rn × Rl with ρ(s) := s,
µ(t) ≡ 0, β(t) ≡ 1. Moreover, the set-valued mapM(t, x), asdefined by (5.20), is
asingleton.

(iii) There exist functionsΨ(·) ∈ C1(R+ × Ω; R+), a1, a2 ∈ K∞, β, γ ∈ K + with∫ +∞
0 β(t)dt = +∞, k̃ ∈ C0(R+×Ω;U), h : R+×Ω → Rl being locally bounded,

µ ∈ E and ρ(·) ∈ C0(R+; R+) being positive definite, such that inequalities
(5.17a), (5.17b) hold. Moreover, the set-valued mapM(t, x), as defined by (5.20),
is a singleton.

Proof (i) ⇒ (ii). Notice that by virtue of the equivalence of statements (ii) and (iii) of
Theorem 2.8, we may suppose thatk ∈ C∞(R+ × Rn;U). By virtue of Theorem 3.1 in
Karafyllis & Tsinias (2003b) there exists a functionV (·) ∈ C∞(R+ ×Rn; R+), functions
ã1, ã2 ∈ K∞, γ̃ ∈ K + such that for all(t, x) ∈ R+ × Rn we have

ã1(|x |) � V (t, x) � ã2(γ̃ (t)|x |) (5.21a)
∂V

∂t
(t, x) + ∂V

∂x
(t, x)( f (t, x) + g(t, x)k(t, x)) � −V (t, x). (5.21b)

Define for allw ∈ Rl

Ψ(t, x, w) := V (t, x) + 1

2
|w|2

k̃(t, x, w) := k(t, x) (5.22)

h(t, x, w) := −w

and notice that inequalities (5.17a), (5.17b) are satisfied withρ(s) := s, β(t) ≡ 1 ∈ K +,

µ(t) ≡ 0 ∈ E anda1(s) := min
{

ã1
( s

2

)
, 1

8s2
}
, a2(s) := ã2(s) + 1

2s2, γ (t) := γ̃ (t) + 1.

Moreover, the set-valued mapM(t, x), as defined by (5.20), is a singleton, since we have
M(t, x) = {0 ∈ Rl}.
(ii) ⇒ (iii). This implication is obvious.

(iii) ⇒ (i). Let V (·) : R+×Rn → R+ be the locally Lipschitz function onR+×(Rn\{0})
defined by (5.18). Clearly, upper semi-continuity ofM(t, x) implies the existence of a
continuous functionϕ : R+ ×Rn → Rl such thatM(t, x) = {ϕ(t, x)}. Clearly, by virtue
of (5.19c), for all(t, x) ∈ R+ × (Rn\{0}) we have

inf
u∈U

V 0(t, x; f (t, x) + g(t, x)u) � V 0(t, x; f (t, x) + g(t, x)k̃(t, x, ϕ(t, x)))

� −β(t)ρ(V (t, x)) + β(t)µ

(∫ t

0
β(s)ds

)
.

ThusV (·) : R+ ×Rn → R+ is a CLF for (1.1). The rest is a consequence of Theorem 2.8.
�
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REMARK 5.7 Notice that statement (iii) can be replaced by the weaker hypothesis that
instead of (5.17b) the following inequality holds for all(t, x, w) ∈ R+ × Ω :

∂Ψ
∂t

(t, x, w) + ∂Ψ
∂x

(t, x, w)( f (t, x) + g(t, x)k̃(t, x, w)) + ∂Ψ
∂w

(t, x, w)h(t, x, w)

� −β(t)ρ(V (t, x)) + β(t)µ

(∫ t

0
β(s)ds

)
(5·17b)

whereV (·) is defined by (5.18).

EXAMPLE 5.8 Suppose that 0∈ Rn × Rl is GAS for the linear system

ẋ = A(t)x + B(t)(k1(t)x + k2(t)w)

ẇ = C1(t)x + C2(t)w (5.23)

x ∈ Rn, w ∈ Rl , t � 0

where A(·), B(·), k1(·), k2(·), C1(·), C2(·) are matrices of dimensionsn × n, n × m,
m × n, m × l, l × n, l × l, respectively, whose elements are continuous functions. Then
Proposition 2.3 in Karafyllis & Tsinias (2003) guarantees the existence of aC1 positive

definite matrixP(t) :=
[

P1(t)
PT

2 (t)
P2(t)
P3(t)

]
(T denotes transposition) and a function

β(·) ∈ K + with
∫ +∞

0 β(t)dt = +∞ such that for the quadratic Lyapunov function
Ψ(t, x, w) := xT P1(t)x +2xT P2(t)w +wT P3(t)w and for all(t, x, w) ∈ R+ ×Rn ×Rl

it holds that

Ψ(t, x, w) � |x |2 + |w|2 (5.24a)
∂Ψ
∂t

(t, x, w) + ∂Ψ
∂x

(t, x, w)(A(t)x + B(t)k1(t)x + B(t)k2(t)w)

+∂Ψ
∂w

(t, x, w)(C1(t)x + C2(t)w) � −2β(t)Ψ(t, x, w). (5.24b)

Moreover, the set-valued mapM(t, x), as defined by (5.20), is a singleton, since we have
M(t, x) = {−P−1

3 (t)PT
2 (t)x}. Thus, by virtue of Proposition 5.6 there exists a function

k ∈ C0(R+ × Rn; Rm), with k(·, 0) = 0, k(t, x) being locally Lipschitz with respect to
x ∈ Rn such that 0∈ Rn is GAS for the following system:

ẋ = A(t)x + B(t)k(t, x)

x ∈ Rn, t � 0. (5.25)

Moreover, notice that the functionV (·), as defined by (5.18), satisfies

V (t, x) := xT (P1(t) − P2(t)P−1
3 (t)PT

2 (t))x � |x |2 (5.26)

and that we can actually stabilize the system using the linear feedback law,

k(t, x) := (k1(t) − k2(t)P−1
3 (t)PT

2 (t))x . (5.27)

We conclude that if a linear time-varying system can be dynamically stabilized by linear
integrators and feedback then it can also be statically stabilized by a linear state time-
varying feedback.



CONDITIONS FOR THE EXISTENCE OF STABILIZING FEEDBACK 57

6. Conclusions

In this paper we show that the existence of a time-varying stabilizer for an affine control
system is equivalent to the existence of a lower semi-continuous CLF. This result shows
that the main issue for the existence of a time-varying feedback stabilizer is not the
regularity of the CLF but the type of the derivative used to express the ‘decrease condition’,
i.e. the Lyapunov differential inequality. Some results about non-affine control systems are
also given, which include the so-called ‘power-integrator’ case.
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Appendix

Proof of Lemma 2.5 First, notice that as long asx(t) exists,t → x(t) is aC1 function. Since
V (t, x) is lower semi-continuous, it follows thatt → V (t, x(t)) is a lower semi-continuous
function as long asx(t) exists. We proceed by observing the following facts

Fact I. Suppose that(t, x(t)) ∈ S for all t ∈ [a, b). Then it holds that

DV (t, x(t)) �V 0(t, x(t); ẋ(t)) �−β(t)ρ(V (t, x(t))) + β(t)µ

(∫ t

0
(s)ds

)
, ∀t ∈ [a, b).

(A.1)

This fact can be shown easily using Lemma 2.2, inequality (2.11), Definition 2.1 and the
fact thatẋ(t) = f (t, x(t)).

Fact II. Suppose that(t, x(t)) ∈ S for all t ∈ [a, b). Then the functiont → V (t, x(t)) is
right-continuous for allt ∈ [a, b).

To prove this fact notice that, as long asx(t) exists, the functionη(t) := V (t, x(t)) −∫ t
0 β(τ)µ

(∫ τ

0 β(s)ds
)

dτ is lower semi-continuous and by virtue of (A.1) it satisfies the
following differential inequality for allt ∈ [a, b):

Dη(t) = DV (t, x(t)) − β(t)µ

(∫ t

0
β(s)ds

)
� 0. (A.2)

Thus by Lemma 6.3 in Bacciotti & Rosier (2001), it follows thatη(t) is non-increasing.
This implies for allt ∈ [a, b) andh � 0 sufficiently small, such thatt + h ∈ [a, b):

V (t + h, x(t + h)) � V (t, x(t)) +
∫ t+h

t
β(τ)µ

(∫ τ

0
β(s)ds

)
dτ . (A.3)

Inequality (A.3) in conjunction with the lower semi-continuity ofV (t, x(t)) implies right-
continuity.

Fact III. Suppose that(t, x(t)) ∈ S for all t ∈ [a, b). Then the following estimate holds:

V (t, x(t)) � η

(∫ t

0
β(s)ds,

∫ a

0
β(s)ds, V (a, x(a))

)
, ∀t ∈ [a, b). (A.4)

This fact is an immediate consequence of Facts I–II and Lemma 2.6 (comparison principle).
Let [t0, T ) denote the maximal interval of existence of the solution of (2.9). We define

the following disjoint sets:

A+ :=
{

t ∈ [t0, T ); a2(γ (t)|x(t)|) > η

(∫ t

0
β(s)ds, 0, c

)}
(A.5)

A− :=
{

t ∈ [t0, T ); a2(γ (t)|x(t)|) � η

(∫ t

0
β(s)ds, 0, c

)}
(A.6)



CONDITIONS FOR THE EXISTENCE OF STABILIZING FEEDBACK 59

wherec > 0 and η(t, t0, η0) are defined in (2.12) and (2.13), respectively. Obviously
[t0, T ) = A+ ∪ A−. Notice that by virtue of definitions (2.12) and (A.5) ift ∈ A+ then
(t, x(t)) ∈ S. Moreover, notice that the setA+\(A+ ∩ {t0}) is open. ThusA+\(A+ ∩ {t0})
is either empty or it decomposes into a finite number or a denumerable infinity of open and
disjoint intervals(ak, bk) with ak < bk . Whent0 ∈ A+ we obviously have the latter case.
Wedistinguish the following cases.

Case A. t0 	∈ A+ and A+\(A+ ∩ {t0}) is not empty. In this case the setA+\(A+ ∩ {t0})
decomposes into a finite number or a denumerable infinity of open and disjoint intervals
(ak, bk) with ak < bk for k = 1, . . . . Furthermore, by continuity of the solutionx(t) it
follows that(ak, x(ak)) ∈ S and thus(t, x(t)) ∈ S for all t ∈ [ak, bk). Clearly, by Fact III,
the following estimate will hold:

V (t, x(t)) � η

(∫ t

0
β(s)ds,

∫ ak

0
β(s)ds, V (ak, x(ak))

)
, ∀t ∈ [ak, bk). (A.7)

The fact thatak 	∈ A+ implies thatak ∈ A−, and consequently by virtue of (2.10) and
definition (A.6) we have

V (ak, x(ak)) � η

(∫ ak

0
β(s)ds, 0, c

)
. (A.8)

Using Property (2.17a) in conjunction with (A.7) and (A.8) gives the following estimate:

V (t, x(t)) � η

(∫ t

0
β(s)ds,

∫ ak

0
β(s)ds, η

(∫ ak

0
β(s)ds, 0, c

))

= η

(∫ t

0
β(s)ds, 0, c

)
, ∀t ∈ [ak, bk). (A.9)

When t 	∈ [ak, bk), it follows that t ∈ A− and consequently by virtue of (2.10) and
definition (A.6) we have

V (t, x(t)) � η

(∫ t

0
β(s)ds, 0, c

)
, ∀t 	∈ [ak, bk). (A.10)

Estimates (A.9) and (A.10) provide the following estimate:

V (t, x(t)) � η

(∫ t

0
β(s)ds, 0, c

)
, ∀t ∈ [t0, T ). (A.11)

Case B. The setA+\(A+ ∩{t0}) is empty. In this case we havet0 	∈ A+ and consequently
it follows that A− = [t0, T ). Therefore by virtue of (2.10) and definition (A.6) we have
that estimate (A.11) holds.

Case C. t0 ∈ A+ andA+\(A+ ∩ {t0}) is not empty. In this case there exists a timeb > t0
and an open set̃A such thatA+ = [t0, b) ∪ Ã. For t ∈ [t0, b) it follows that(t, x(t)) ∈ S
and thus by Fact III we obtain the estimate:

V (t, x(t)) � η

(∫ t

0
β(s)ds,

∫ t0

0
β(s)ds, V (t0, x0)

)
, ∀t ∈ [t0, b). (A.12)
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For the caseb = T , the estimate above holds for allt ∈ [t0, T ). For the caseb < T , we
haveb 	∈ A+ and thus we may repeat the analysis in cases A and B for the rest of the
interval.

The analysis above shows that in any case the following estimate holds:

V (t, x(t)) � η

(∫ t

0
β(s)ds,

∫ t0

0
β(s)ds, V (t0, x0)

)
+ η

(∫ t

0
β(s)ds, 0, c

)
, ∀t ∈ [t0, T ).

(A.13)

Furthermore, by virtue of Corollary 2.7, there exist a functionσ(·) ∈ K L and a constant
M > 0 such that

V (t, x(t)) � 2σ

(
V (t0, x0) + c + M,

∫ t

t0
β(s)ds

)
, ∀t ∈ [t0, T ). (A.14)

A standard contradiction argument in conjunction with (A.14) shows thatT = +∞. Thus
estimate (A.14) holds for allt � t0. We define for all(t, t0, s) ∈ (R+)3 the continuous
function

∆(s, t0, t) :=

a−1

1

(
2σ

(
a2(γ (t0)s) + c + M,

∫ t

t0
β(s)ds

))
if t � t0

a−1
1 (2σ(a2(γ (t0)s) + c + M, 0)) if t < t0

whereγ (t) := max0�τ�t γ (τ). Notice that by virtue of (2.10), (A.14) and the definition
above we obtain

|x(t)| � ∆(|x0|, t0, t), ∀t � t0.

Using Lemma 2.5 in Karafyllis & Tsinias (2003a), we conclude that 0∈ Rn is GAS for
(2.9). The proof is complete.

Proof of Lemma 2.6: Consider the scalar differential equation

ż = f (t, z) + λ
(A.15)

z(t0) = w0

whereλ is a positive constant. On any compact interval[t0, t1] ⊂ [t0, T ), we conclude
from Theorem 2.6 in Khalil (1996) that for everyε > 0 there existsδ > 0 such that if
0 < λ < δ then (A.7) has a unique solutionz(t, λ) defined on[t0, t1] and satisfies

|z(t, λ) − w(t)| < ε, ∀t ∈ [t0, t1]. (A.16)

Fact I. v(t) � z(t, λ), for all t ∈ [t0, t1).
This fact is shown by contradiction. Suppose that there existst ∈ (t0, t1) such thatv(t) −
z(t, λ) > 0. Clearly, the functionm(t) := v(t) − z(t, λ) is lower semi-continuous and
therefore the set

A+ := {τ ∈ (t0, t1) : m(τ ) > 0} (A.17)

is open and non-empty. ThusA+ decomposes into a finite number or a denumerable infinity
of open and disjoint intervals(ak, bk) with ak < bk . Sinceak 	∈ A+ and consequently
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we havev(ak) � z(ak, λ). On the other hand, for every non-increasing sequence{τi,k ∈
(ak, bk)}∞i=1 with τi,k → ak , weobtain

v(τi,k) − v(ak) > z(τi,k, λ) − z(ak, λ). (A.18)

This implies

Dv(ak) = lim inf
i→∞

v(τi,k) − v(ak)

τi,k − ak
� ż(ak, λ) = f (ak, z(ak, λ)) + λ. (A.19)

Moreover, the functionm(t) := v(t) − z(t, λ) is right-continuous and by definition (A.17)
we obtainv(ak) � z(ak, λ). Thus we havev(ak) = z(ak, λ). Then using (A.19) we get

Dv(ak) � f (ak, v(ak)) + λ > f (ak, v(ak))

which contradicts (2.15).

Fact II. v(t) � w(t), for all t ∈ [t0, t1).
Again, this claim may be shown by contradiction. Suppose that there existsa ∈ (t0, t1)
with v(a) > w(a) and setε = 1

2(v(a) − w(a)) > 0. Furthermore, letλ > 0 be selected in
such a way that (A.16) is satisfied with this particular selection ofε > 0. Then we obtain

v(a) = v(a) − w(a) + w(a) = 2ε + w(a) − z(a, λ) + z(a, λ) > ε + z(a, λ)

which contradicts Fact I.

Fact III. v(t) � w(t), for all t ∈ [t0, T ).
Suppose the contrary: there existsa ∈ (t0, T ) with v(a) > w(a). Let t1 := a + T −a

2 for
the case of finiteT or t1 := a + 1 for the caseT = +∞. Clearly, by Fact II we have a
contradiction. The proof is complete. �

Proof of Lemma 5.5: Define

δ(t, x) := a−1
1 (2a2(γ (t)|x |) + 1) (A.20)

wherea1, a2 ∈ K∞, γ ∈ K + are the functions involved in (5.17a) and notice thatδ(·)
is a continuous, positive function. By virtue of inequality (5.17a) and definition (5.18) we
obtain:

a1(|x |) � V (t, x) � Ψ(t, x, 0) � a2(γ (t)|x |), ∀(t, x) ∈ R+ × Rn . (A.21)

Clearly, inequality (A.21) establishes (5.19a). Definitions (5.18), (A.20) and inequalities
(5.17a), (A.21) imply that

V (t, x) = min(inf{Ψ(t, x, w); |w| � δ(t, x)}, inf{Ψ(t, x, w); |w| > δ(t, x)})
� min(inf{Ψ(t, x, w); |w| � δ(t, x)}, inf{a1(|w|); |w| > δ(t, x)})
� min(inf{Ψ(t, x, w); |w| � δ(t, x)}, 2V (t, x) + 1).
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The latter inequality and continuity ofΨ(·) gives

V (t, x) = min
|w|�δ(t,x)

Ψ(t, x, w). (A.22)

Moreover, it follows that the set-valued mapM(t, x) ⊂ Rl , as defined by (5.20), is strict
and bounded. By virtue of (5.19a) and definition (5.20) it follows that for allt � 0, we
have

M(t, 0) = {0}. (A.23)

We next establish thatV (·) is locally Lipschitz onR+ × (Rn\{0}). Let A ⊂ R+ ×
(Rn\{0}) be a non-empty convex compact set and define

r := max
(t,x)∈A

δ(t, x) (A.24)

L := max

{∣∣∣∣∂Ψ
∂t

(t, x, w)

∣∣∣∣ +
∣∣∣∣∂Ψ
∂x

(t, x, w)

∣∣∣∣ ; (t, x) ∈ A, |w| � r

}
. (A.25)

Let (t, x), (τ, y) ∈ A andw(t,x) ∈ M(t, x), w(τ,y) ∈ M(τ, y). We have, by virtue of
(A.22), (A.24) and (A.25) that

V (τ, y) − V (t, x) = Ψ(τ, y, w(τ,y)) − Ψ(t, x, w(t,x)) � Ψ(τ, y, w(t,x)) − Ψ(t, x, w(t,x))

=
∫ 1

0

∂Ψ
∂t

(t + λ(τ − t), x + λ(y − x), w(t,x))dλ(τ − t)

+
∫ 1

0

∂Ψ
∂x

(t + λ(τ − t), x + λ(y − x), w(t,x))dλ(y − x)

� L(|τ − t | + |y − x |).
Reversing the roles of(t, x) and(τ, y) we get

|V (τ, y) − V (t, x)| � L(|τ − t | + |y − x |), ∀(t, x), (τ, y) ∈ A. (A.26)

This establishes thatV (·) is locally Lipschitz onR+ × (Rn\{0}). It is also continuous on
R+ × Rn , since continuity atx = 0 isguaranteed by (5.19a) withV (t, 0) = 0. Moreover,
by continuity of V (·) on R+ × Rn , (A.23) and definition (5.20) it follows that for all
(t, x) ∈ R+ × Rn the setM(t, x) ⊂ Rl is compact.

Next we establish (5.19b). We have for all(t, x, v) ∈ R+ × (Rn\{0}) × Rn andw ∈
M(t, x)

DV (t, x; v) = lim inf
h→0+

V (t + h, x + hv) − V (t, x)

h

= lim inf
h→0+

{
Ψ(t + h, x + hv, w′) − Ψ(t, x, w)

h
; w′ ∈ M(t + h, x + hv)

}

� lim inf
h→0+

Ψ(t + h, x + hv, w) − Ψ(t, x, w)

h
= ∂Ψ

∂t
(t, x, w) + ∂Ψ

∂x
(t, x, w)v
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which establishes inequality (5.19b). We continue the proof by establishing the following
claim.

Claim. The set-valued mapM(t, x), as defined by (5.20), is upper semi-continuous.

Proof of Claim. It suffices to prove that for every(t, x) ∈ R+ × Rn and for everyε > 0
there existsδ > 0 such that

|τ − t | + |y − x | < δ ⇒ M(τ, y) ⊂ M(t, x) + εB. (A.27)

The proof will be made by contradiction. Suppose the contrary: there exists(t, x) ∈ R+ ×
Rn andε > 0, such that for allδ > 0, there exists(τ, y) ∈ (t, x) + δB andw ∈ M(τ, y)

with |w − w′| � ε, for all w′ ∈ M(t, x). Clearly, this implies the existence of a sequence
{(τn, yn, wn)}∞n=1 with (τn, yn) → (t, x), wn ∈ M(τn, yn) and |wn − w′| � ε, for all
w′ ∈ M(t, x) andn = 1, 2 . . . . On the other hand, sincewn is bounded, it contains a
convergent subsequencewk → w 	∈ M(t, x). By continuity ofV (·) andΨ(·), we have

V (τk, yk) → V (t, x)

V (τk, yk) = Ψ(τk, yk, wk) → Ψ(t, x, w).

Consequently, we must haveV (t, x) = Ψ(t, x, w), which, by virtue of definition (5.20)
implies thatw ∈ M(t, x), acontradiction.

We finish the proof by proving inequality (5.19c). Let(t, x, v) ∈ R+ × (Rn\{0}) ×
Rn . Making use of the continuity properties of the mapsf (·), g(·), ρ(·), V (·), µ(·), β(·),
inequalities (5.17b) and (5.19b), as well as the fact that for allw ∈ M(τ, y) it holds that
∂Ψ
∂w

(τ, y, w) = 0, we obtain

V 0(t, x; v) = lim sup
(τ,y)→(t,x)

DV (τ, y; v)

� lim sup
(τ,y)→(t,x)

min

{
∂Ψ
∂t

(τ, y, w′) + ∂Ψ
∂x

(τ, x, w′)v; w′ ∈ M(τ, y)

}

� lim sup
(τ,y)→(t,x)

min

{
−β(τ)ρ(Ψ(τ, y, w′)) + β(τ)µ

(∫ τ

0
β(s)ds

)

+a(t, x, τ, y, w′) : w′ ∈ M(τ, y)

}

�−β(t)ρ(V (t, x))+β(t)µ

(∫ t

0
β(s)ds

)
+ lim sup

(τ,y)→(t,x)

min{a(t, x, τ, y, w′); w′ ∈M(τ, y)}
(A.28)

where

a(t, x, τ, y, w′) := ∂Ψ
∂x

(τ, y, w′)(v − f (t, x) − g(t, x)k̃(τ, y, w′))
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Notice that by continuity of∂Ψ
∂x (·), k̃(·) and upper semi-continuity of the set-valued map

M(t, x), for everyε > 0 there existsδ > 0 such that

|τ − t | + |y − x | < δ, w′ ∈ M(τ, y) ⇒
∂Ψ
∂x

(τ, y, w′)(v − f (t, x) − g(t, x)k̃(τ, y, w′))

� max

{
∂Ψ
∂x

(t, x, w)(v − f (t, x) − g(t, x)k̃(t, x, w)); w ∈ M(t, x)

}
+ ε. (A.29)

Combining (A.28) and (A.29) we obtain (5.19c). The proof is complete. �


