
ARTICLE IN PRESS
Journal of Economic Dynamics & Control 32 (2008) 1212–1235
0165-1889/$ -

doi:10.1016/j

�Correspo
E-mail ad
www.elsevier.com/locate/jedc
Price stabilization using buffer stocks

George Athanasioua, Iasson Karafyllisb, Stelios Kotsiosa,�

aDepartment of Economics, University of Athens, 8 Pesmazoglou Street, 10559 Athens, Greece
bDepartment of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece

Received 29 September 2005; accepted 7 May 2007

Available online 29 May 2007
Abstract

The price stabilization problem is stated and solved for a nonlinear cobweb model with

government stocks. It is shown that if the storage capacity for the commodity is sufficiently

large then there exists a simple stabilization policy, called the ‘keep supply at equilibrium

(KSE)’ policy, such that the equilibrium price is a global attractor for the corresponding

closed-loop system. In addition, it is shown that if the government approximates the

equilibrium supply with the average supply, stabilization is guaranteed. We refer to this policy

as ‘keep supply at average (KSA)’.
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1. Introduction

The purpose of the present work can be summarized in the following points:
�
 We extend the nonlinear cobweb model literature by including government
intervention in the form of buffer stocks. We assume that in every period the
government buys or sells a certain quantity of the commodity in order to stabilize
the price.
see front matter r 2007 Elsevier B.V. All rights reserved.
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�
 Under the assumption of naive expectations for the producers, we derive an
analytical solution for the computation of the storage capacity of the stabilizing
authority, which is necessary for the stabilization of the price. In addition, we
compute the government’s cost of the buffer stock program.

�
 The solution to our problem is a feedback law, i.e., a rule which updates in every

period based on the information available in the previous period. We refer to this
policy rule as ‘keep supply at equilibrium (KSE)’. As expected, this law is proven
to be robust in modeling and measurement errors.

�
 We consider the case that the government uses average supply as an observable

proxy for the equilibrium level. We refer to this policy rule as ‘keep supply at
average (KSA)’ and we test its effectiveness.

�
 We show that the necessary storage capacity for a successful application of the

KSE and the KSA policies is usually a small percentage of the equilibrium supply.
Thus, at least in theory, the government can stabilize the commodity price by
releasing (or buying) small quantities of the commodity. However, as the degree
of nonlinearity of the supply function increases, the necessary storage capacity, as
a percentage of the equilibrium supply, increases too.

Nowadays, there is a large and increasing literature on the application of
mathematical control theory in economics, which has provided us with a very good
insight on our ability to control complex economic systems. One of the economic
applications of control theory is to the study of the problem of price stabilization
using various instruments as inputs. It is a well-known fact of economic reality that
commodity prices are extremely volatile (Deaton and Laroque, 1992). One of the
instruments for price stabilization, which is found frequently in the economic
literature, is the so-called buffer stock scheme. The basic function of such a program
is to store a certain amount of the commodity in boom periods, when the price is
low, and to release a certain amount of the stored commodity in bust periods, when
the price is high. Undoubtedly, there has been a lot of work over the past decades in
the specific field (e.g., Arzac, 1979; Newbery and Stiglitz, 1981; Wright and Williams,
1982; Miranda and Helmberger, 1988; Van Groenendaal and Vingerhoets, 1995;
Brennan, 2003) and important results have been derived. Given the existing
literature, we consider that recent developments in the field of mathematical control
theory for nonlinear systems (existence of Lyapunov functions, e.g., Jiang and
Wang, 2002; utilization of Lyapunov functions and difference inequalities, e.g.,
Lakshmikantham and Trigiante, 2002; difference equations given through a system-
theoretic framework, e.g., Sontag, 1998; attractor theory, e.g., Stuart and
Humphries, 1998; nonlinear feedback control stabilization, e.g., Tsinias et al.,
1989; Tsinias, 1989; Kotsios and Leventidis, 2004), can shed more light on the
analysis of the buffer stock mechanism. Following this branch of research, we
contribute to the economic literature by adopting a genuinely nonlinear approach,
using Lyapunov functions, in order to ensure global results for our model. The
motivation for this approach stems from the fact that even though in some cases the
initial conditions of an economic system are close to the steady state, in the presence
of small perturbations the system does not exhibit the desired behavior. In such cases
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a genuinely nonlinear approach can help the modeler to accomplish his scope by
providing a robust solution to his problem.

In the thirties, the observation of regularly recurring cycles in the production and
prices of particular commodities gave birth to the cobweb model (Ezekiel, 1938). The
model describes price fluctuations in a single market for a commodity that takes one
unit of time to produce. Thus, supply depends on the expectations of the producers
about next period’s price and market prices are driven by these expectations. When both
the demand and the supply curves are linear, then only three types of price dynamics can
occur: (i) convergence to a stable equilibrium (convergent fluctuation), (ii) convergence
to a period-2 cycle, the so-called ‘hog-cycle’ (continuous fluctuation) or (iii) exploding
oscillations (divergent fluctuation). However, these cases can hardly explain the
continued existence of irregular cycles in real markets. During the last 20 years, due to
the progress in nonlinear analysis, the cobweb literature flourished and models with
chaotic dynamic behavior appeared. For example, nonlinear cobweb models were
examined by Artstein (1983), Jensen and Urban (1984), Lichtenberg and Ujihara (1989),
Hommes (1991, 1994, 1998), Finkenstädt (1995), Boussard (1996), Gallas and Nusse
(1996), Onozaki et al. (2003), Chiarella and He (2003), Lasselle et al. (2005).

In this paper we consider a nonlinear cobweb model with a piecewise linear supply
function and naive expectations. Under this setting, we examine the effect of
government intervention, in the form of buffer stocks, on the behavior of the
commodity price. Our analysis differs from the standard rational expectations
competitive storage model in that it assumes that supply is endogenous. More
specifically, in the deterministic cobweb model fluctuations arise because producers
(due to the production lag) are assumed to form expectations based upon time series
observations. Moreover, the complexity of the price fluctuations depends on the
nonlinearity of the demand and supply functions. On the other hand, under the
assumption of rational expectations, sustained oscillations arise only in the presence
of exogenous random shocks. Regarding economic policy in a cobweb setting,
Matsumoto (1998) examines the effect of government subsidies on output dynamics
in agricultural markets. He concludes that, although subsidies prevent explosive
output oscillations, they also cause bounded, highly irregular output fluctuations. He
and Westerhoff (2005) develop a behavioral commodity market model and explore
the effectiveness of price limiters. The main result of their paper is that simple price
limits reduce the variability of prices quite strongly but under the possibility of an
unsustainable buffer stock.

The remainder of this paper is organized as follows. In Section 2 a nonlinear
cobweb model is developed for a single commodity with government stocks and
naive expectations. The model is based on a piecewise linear S-shaped supply
function and takes into account the constraints which must be satisfied by the
stockpiling quantity. In Section 3 the reader is introduced to the price stabilization
problem where it is shown that if the storage capacity for the particular commodity
is sufficiently large then the KSE policy is successful (the equilibrium price is a global
attractor for the corresponding closed-loop system). Numerical studies are also
presented in Section 4, in which the efficiency of the KSE and the KSA policies is
tested. Finally the conclusions of the present work are given in Section 5.
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2. The cobweb model with Stocks

Let Dtþ1 be the demand and Stþ1 be the supply of the commodity, where Ptþ1 is
the actual price and Pe

tþ1 is the expected price, all at period tþ 1.
In order to keep the model as simple as possible, throughout the paper we assume

a linear, strictly decreasing, demand function given by

Dtþ1 ¼ a� bPtþ1; a; b40. (2.1)

In addition, we consider an S-shaped (monotonic) piecewise linear supply function
of the private sector (for economic considerations see Hommes, 1994, p. 319) given
by

Stþ1 ¼ gðPe
tþ1Þ, (2.2a)

gðPÞ ¼ maxf0;minfSM;�cþ dPgg; c; d;SM40, (2.2b)

where SM is the maximum supply of the commodity.
We assume that the government is responsible for the operation of a buffer

stock program for the commodity and that private stockpiling is negligible.
To make the analysis tractable we assume that the interest rate is zero and that there
are no inventory losses. In order to introduce stockpiling into our model we define
two variables: Qt is a state variable which denotes the government inventory at
period t and Gt is a control variable which denotes the quantity of the commodity
released to the market by the government at period tþ 1. When Gto0 then the
government actually buys and stores jGtj commodity units at period tþ 1.
Furthermore, the inventory must satisfy the following difference equation for all
periods:

Qtþ1 ¼ Qt � Gt. (2.3)

In a completely competitive market, closed to external trade, the market clearing
condition is described by

Dtþ1 ¼ Stþ1 þ Gt. (2.4)

In order to close the model, we consider, as a first approximation, the so-called naive
(or myopic) price expectations. According to this expectations scheme, producers are
assumed to expect the last observed price, i.e.,

Pe
tþ1 ¼ Pt. (2.5)

At first sight, this hypothesis seems implausible because it implies that producers do
not learn from experience. However, recent work on bounded rationality (e.g.,
Conlisk, 1996; Chavas, 2000; Hommes et al., 2007) recognizes the cost involved in
the process of gathering and processing information and argues that individuals may
form expectations based upon simple habitual rules of thumb instead of perfectly
optimal decision rules. Conlisk (1996) reports that psychology and economics
provide wide-ranging evidence that bounded rationality is important. In addition,
Chavas (2000) develops and estimates an econometric model of market prices in the
U.S. beef market. He finds that about 47% of beef producers behave in a way
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consistent with naive expectations. Furthermore, Hommes et al. (2007) conduct
cobweb experiments and show that within an unstable environment subjects are not
able to learn the rational expectations equilibrium price, but instead use simple
forecasting rules.

Taking into account (2.1)–(2.5), the unique solution of (2.4) gives the following
discrete-time control system:

Ptþ1 ¼ b�1ða� Gt � gðPtÞÞ,

Qtþ1 ¼ Qt � Gt,

maxfQt �QM;�gðPtÞgpGtpQt, (2.6)

where Ptþ1 is the output of the system, gðPtÞ is defined by (2.2b) and QM40 denotes
the government’s storage capacity for the particular commodity. Examination of
(2.6) shows that if a4QM þ SM then the above evolution equation defines a control
system with ðPt;QtÞ 2 ð0;þ1Þ � ½0;Q

M�, for all t. Observe that the cobweb model
(2.6) is nonlinear. The piecewise linear S-shaped supply function given in (2.2b) as
well as the constraints satisfied by the control variable Gt, explain the nonlinear
character of the model.

Moreover, it should be emphasized that the control system (2.6) is a deterministic
control system. However, in order to be able to capture uncertainties in the nominal
model (2.6) as well as random perturbations (e.g., demand shocks) we also
considered the system under the presence of additive noise, that is, the ‘perturbed’
system:

Ptþ1 ¼ b�1ða� Gt � gðPtÞ þ wtÞ,

Qtþ1 ¼ Qt � Gt,

maxfQt �QM;�gðPtÞgpGtpQt, (2.7)

where the noise term wt is normally distributed with mean zero and constant
standard deviation, for all t.
3. The price stabilization problem

In the absence of government intervention ðGt � 0Þ the corresponding dynamical
system (2.6) reduces to the standard cobweb model with a piecewise linear supply
function (the state variable Qt does not affect the system). In this case the price
behavior is described by the difference equation:

Ptþ1 ¼ hðPtÞ; Pt 2 ð0;þ1Þ, (3.1)
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where

hðPÞ :¼

a

b
if Pp

c

d
;

aþ c� dP

b
if

c

d
oPo

cþ SM

d
;

a� SM

b
if PX

cþ SM

d
:

8>>>>>><
>>>>>>:

(3.2)

The dynamics of the system without intervention were examined and the results
are summarized in Table 1 (for proofs of the statements made in Table 1, see
Appendix A). System (3.1) admits a unique equilibrium price, which is given by the
following equation:

Po ¼

a

b
if adpbc;

aþ c

bþ d
if SM4

ad � bc

bþ d
and ad4bc;

a� SM

b
if SMp

ad � bc

bþ d
:

8>>>>>><
>>>>>>:

(3.3)

Notice that if ad4bc in (3.2) then a=b is not an equilibrium price, demand is positive
and the producers are active in the market. Thus, in order to rule out the degenerate
case of no production we will assume that ad4bc. Furthermore, it is verified that
with naive expectations and a monotonic nonlinear supply curve, prices either
converge to a stable steady state or to a stable period-2 ‘hog-cycle’ (Hommes, 1998).
The relation between the introduction of piecewise linear functions and the
Table 1

The asymptotic behaviour of (3.1)

Cases Asymptotic behaviour

1. SM4
ad � bc

bþ d
and

d

b
o1 Po ¼

aþ c

bþ d
is globally asymptotically stable

2. SMp
ad � bc

bþ d
Po ¼

a� SM

b
is globally asymptotically stable

3. SM4
ad � bc

bþ d
and

d

b
X1

Period-2 solution:

(a) If SM4
ad � bc

b
P1 ¼

a

b
; P2 ¼

aþ c

b
�

ad

b2

(b) If
ad � bc

d
pSMp

ad � bc

b
P1 ¼

a

b
; P2 ¼

a� SM

b

(c) If SMo
ad � bc

d
P1 ¼

aþ c

b
þ

dðSM � aÞ

b2
; P2 ¼

a� SM

b
(d) If b ¼ d Infinite number of period-2 solutions:

P1 2
1

b
maxðc; a� SMÞ;

1

b
minða; cþ SMÞ

� �
arbitrary,

P2 ¼
aþ c

b
� P1



ARTICLE IN PRESS

G. Athanasiou et al. / Journal of Economic Dynamics & Control 32 (2008) 1212–12351218
appearance of cycles was investigated by Hicks (1950), Simonovits (1991), Hommes
et al. (1995).

Our first concern is to examine whether there is a stockpiling policy rule which
attempts to lead the commodity price to a predefined target price. We refer to this
problem as the tracking control problem and we define it as follows:

The tracking control problem for (2.6): Let P�40 be the desired price. Is
there a static feedback law (or price stabilization policy) f : ð0;þ1Þ�
½0;QM� ! ½�QM;QM�:

Gt ¼ fðPt;QtÞ (3.4)

such that the solution of the closed-loop system (2.6) with (3.4) satisfies
limt!þ1 Pt ¼ P� for all initial conditions ðP0;Q0Þ 2 ð0;þ1Þ � ½0;Q

M�?
The following lemma presents the necessary condition for solvability of the

tracking control problem.

Lemma 3.1. If the tracking control problem for (2.6) is solvable then the following

condition must hold:

P� ¼ Po,

where Po is the equilibrium price of the open-loop system (3.1) as given by (3.3).

Proof. See Appendix A. &

Lemma 3.1 indicates a major limitation imposed by the application of a price
stabilization policy: the price dynamics can only have a unique accumulation point,
which is no other than the equilibrium price. This important limitation may be used
to explain the failure of buffer stock policies: if the government tries to lead the
commodity price to values different from the equilibrium values, the buffer stock
policy will fail (Van Groenendaal and Vingerhoets, 1995; p. 259). Since the desired
price must coincide with the equilibrium price, we may state next the price
stabilization problem.

The price stabilization problem for (2.6): Is there a static feedback law (or price
stabilization policy) f : ð0;þ1Þ � ½0;QM� ! ½�QM;QM� given by (3.4) with
fðPo;QÞ ¼ 0 for all Q 2 ½0;QM�, such that the equilibrium set fðPo;QÞ;Q 2
½0;QM�g is a global attractor for the closed-loop system (2.6) with (3.4), i.e.,
limt!þ1 Pt ¼ Po for all initial conditions ðP0;Q0Þ 2 ð0;þ1Þ � ½0;Q

M�?
This problem is particularly interesting for Case 3 in Table 1, i.e., when

SM4ðad � bcÞ=ðbþ dÞ and d=bX1, since in this case the equilibrium set
fðPo;QÞ;Q 2 ½0;QM�g is not a global attractor without government intervention,
i.e., when Gt � 0.

In order to solve the problem we set:

Gt ¼ minfQt;maxfSo � gðPtÞ;Qt �QMgg, (3.5)

where So ¼ ðad � bcÞ=ðbþ dÞ is the equilibrium supply that corresponds to
the equilibrium price Po ¼ ðaþ cÞ=ðbþ dÞ and gðPtÞ is the estimated supply at
period tþ 1.
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The feedback law described by (3.5) is particularly simple and attempts to bring
the total quantity of the commodity available in the market at period tþ 1 (given by
Stþ1 þ GtÞ as close as possible to the equilibrium supply So. In the rest of the paper
we will refer to this policy rule as KSE. According to this policy rule, when the
difference between the equilibrium supply and available supply is positive then the
market runs short of the commodity and the government intervenes by selling a
certain quantity of the commodity. Of course the quantity released at period tþ 1
cannot exceed the quantity stored at period t. When the difference between the
equilibrium supply and the available supply is negative, then there is abundance of
the commodity and the government buys a certain quantity of the commodity. In
this case the purchased quantity at period tþ 1 cannot exceed the quantity QM �Qt

(i.e., the storage capacity at period tÞ.
Furthermore, formula (3.5) shows an important feature. For the implementation

of the KSE policy the government need to know four things: the inventory Qt, the
storage capacity QM, the equilibrium supply So and the supply of the private sector
gðPtÞ. Consequently, if the government can estimate the supply of the private sector
at any period, it is not necessary to know the exact functional form of gðPtÞ. The
following proposition provides criteria for the success of the KSE buffer stock
policy.

Proposition 3.2. Consider the price stabilization problem under the hypotheses SM4So

and d=bX1. The equilibrium set fðPo;QÞ;Q 2 ½0;QM�g is a global attractor for the

closed-loop system (2.6) with (3.5) if and only if QM4R, where

R :¼ maxfR1;R2;R3;R4g, (3.6)

R1:¼min
d � b

d

� �
So;SM �

bþ d

d

� �
So

� �
,

R2:¼
d � b

d

� �
minfSo;SM � SogX0,

R3 :¼ min SM �
bþ d

d

� �
So;

bþ d

d

� �
So �

b

d
SM

� �
; R4 :¼

d � b

d

� �
ðSM � SoÞ.

Particularly, for every initial condition ðP0;Q0Þ 2 ð0;þ1Þ � ½0;Q
M� there exists T40

such that the solution of the price stabilization problem satisfies:

Pt ¼ Po; 8tXT (3.7)

Proof. See Appendix A. &

Remark. We call the quantity R the ‘critical storage capacity’. Moreover, R can be

computed analytically using (3.6). For the reasonable case of SMo2So,

minfR1;R2;R3;R4g ¼ SM � ðbþd
d
ÞSo and maxfR1;R2;R3;R4g ¼ ð

d�b
d
ÞðSM � SoÞ. Pro-

position 3.2 provides the sharpest characterization of the property of global
attractivity of the equilibrium point under (3.5). Clearly, if the storage capacity is

larger than the critical storage capacity, i.e., if QM4R, then the KSE policy is
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successful. Indeed, when QMpR the control action given by (3.5) is not able to
cancel the periodic orbits of the open-loop system. Table 2 provides non-trivial

period-2 solutions for the closed-loop system (2.6) with (3.5) and QMpR.

Consequently, if inequality QM4R is violated the equilibrium set is not a global
attractor.

The conclusions of Proposition 3.2 may be used in order to calculate the storage
cost needed for a successful stabilization policy (since the storage cost is directly
related to QMÞ. Notice that the result of Proposition 3.2 may be interpreted as a trade
off between the efficiency of the price stabilization policy and the storage cost. It
should be noted here that the total cost of the buffer stock policy includes also the
purchase cost, i.e., the cost of purchasing quantities of the commodity defined by

Total Purchase Cost up to period tþ 1 ¼ �
Xt

i¼0

GiPiþ1.

More specifically, if �
Pt

i¼0 GiPiþ140 then the government has a cost in order to
achieve price stabilization and if �

Pt
i¼0 GiPiþ1o0 then the government increase its

revenues from the function of the buffer stock program (storage cost is not
included). The total purchase cost up to period tþ 1 in general depends on the initial
conditions P0 and Q0. The evolution of the total purchase cost is crucial for the
success of the buffer stock policy. Thus, if the total purchase cost increases
(decreases) with time then the government has to increase (decrease) its spending in
order to achieve price stabilization. The dynamic behavior of the total purchase cost
will be studied in the next section.
Table 2

Non-trivial period-2 solutions for the closed-loop system (2.6) with (3.5) and QMpR

Cases Non-trivial period-2 solutions

max 0;So þ
b

d
ðSo � SMÞ

� �
pQMpR1 ðP1;Q1Þ ¼

a�QM

b
; 0

� �

ðP2;Q2Þ ¼
aþ cþQM

b
þ

dðQM � aÞ

b2
;QM

� �
0oQMpR2

ðP1;Q1Þ ¼ Po �
QM

d � b
; QM

� �

ðP2;Q2Þ ¼ Po þ
QM

d � b
; 0

� �
0pQMpR3

ðP1;Q1Þ ¼
a� SM þQM

b
;QM

� �

ðP2;Q2Þ ¼
a�QM

b
; 0

� �

max 0;SM � So bþ d

d

� �� �
pQMpR4 ðP1;Q1Þ ¼

a� SM þQM

b
;QM

� �

ðP2;Q2Þ ¼
aþ c�QM

b
�

dða� SM þQMÞ

b2
; 0

� �
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4. Numerical simulations

In this section we present numerical investigations for the dynamic behavior of the
price under the feedback law (3.5). We study the cobweb model developed in Section
2 for the following parameter values:

a ¼ 50; b ¼ 3,

c ¼ 10; d ¼ 4,

SM ¼ 25. (4.1)

Under this setting, the equilibrium price ðPoÞ is 8:5714 and the equilibrium supply
ðSoÞ is 24.2857. Notice that these parameter values ensure that the conditions for
positive price and demand, a4SM and ad4bc, respectively, are satisfied. Moreover,
it can be verified that the conditions SM4So and d=bX1 are satisfied and thus the
equilibrium price is not a global attractor for the nominal system (2.6) without
intervention (see Table 1).

Let us examine the effect of the KSE policy on the behavior of the price, for the
case of naive expectations. Under this expectation rule, the well-known phenomenon
of the ‘hog-cycles’ (Hommes, 1998) appears and it has been numerically verified that
this period-2 solution attracts every solution, starting from initial conditions that do
not coincide with the equilibrium price. Fig. 1 shows the period-2 cycle, where
P1 ¼ 8:33 and P2 ¼ 8:88.

Proposition 3.2 guarantees that price stabilization by means of buffer stocks is
feasible if QM exceeds R, where the constant R is determined by (3.6). In this case we
find that the critical storage capacity ðRÞ is 0.17857. Notice that the critical storage
capacity amounts to approximately only 0.73% of the equilibrium supply
ðSo ¼ 24:285Þ. Fig. 2 shows the price dynamics of (2.6) under the KSE rule (3.5),
QM ¼ 0:18, P0 ¼ 6:5, and Q0 ¼ 0. As expected by Proposition 3.2, the equilibrium
price is guaranteed to be the global attractor of this system. Moreover, we applied
(3.5) to the perturbed case (2.7), with additive noise term wt�Nð0; 0:1Þ, and the result
0 20 40 60 80 100
t

8.2

8.4

8.6

8.8

9

P t

Fig. 1. Price dynamics for cobweb model (2.6) without government intervention.
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Fig. 2. Price behavior for case (2.6) under the KSE policy rule (3.5).
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Fig. 3. Price behavior for case (2.7) under the KSE policy rule (3.5).
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Fig. 4. Total purchase cost for case (2.6) under the KSE policy rule (3.5).
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is depicted in Fig. 3. It is evident that the fluctuation of the price is more intense
when the government does not apply the KSE policy.

Fig. 4 shows the evolution of the total purchase cost for the nominal case (2.6)
under (3.5) with QM ¼ 0:18 and initial conditions P0 ¼ 6:5, Q0 ¼ 0. It is clear that
the total purchase cost is bounded from above and that the government must
subsidize the function of the stabilization program. The program is costly because on



ARTICLE IN PRESS

0 20 40 60 80 100
t

0

0.25

0.5

0.75

1

1.25

1.5

T
ot

al
 C

os
t

Fig. 5. Total purchase cost for case (2.7) under the KSE policy rule (3.5).
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the one hand the government buys a certain quantity of the commodity at a low
price, but on the other hand sells only a part of its inventory at a higher price. In
order to have some reference point for the total purchase cost, we calculated the
revenue at equilibrium, i.e., RVo ¼ PoSo ¼ 208:163. Clearly, the purchase cost
corresponds to a small percentage of RVo. Fig. 5 depicts the evolution of the total
purchase cost for the perturbed case (2.7) under (3.5) and the same values for
QM;P0;Q0, as in Fig. 3. Again, the government in general has a cost from the
operation of the stabilization program which is a small percentage of RVo.

Let us now examine the robustness of the KSE policy rule. To this purpose, we
consider the following cases:

4.1. Case 1: the keep supply at average policy rule

First, we consider that the government approximates the equilibrium supply ðSoÞ

by the average supply, i.e., the average of the last K observed supplied quantities,
expressed by

SA
t ¼

PK
j¼1 St�j

K
. (4.2)

Thus, we substitute in the feedback law (3.5) the equilibrium supply So with the
average supply SA

t :

Gt ¼ minfQt;maxfSA
t � gðPe

tþ1Þ;Qt �QMgg. (4.3)

We refer to this policy as KSA.
Fig. 6 shows the evolution of the price for the nominal case (2.6) under the

feedback law (4.3), for the parameter set (4.1), K ¼ 5, QM ¼ 0:18, and initial
conditions P0 ¼ 6:5;Q0 ¼ 0; fS0;S�1; . . . ;S�4g ¼ f16; 14; 10; 12; 14g. Fig. 8 depicts
the evolution of the price for K ¼ 10, QM ¼ 0:18 and initial conditions
P0 ¼ 6:5;Q0 ¼ 0; fS0;S�1; . . . ;S�9g ¼ f16; 14; 10; 12; 14; 10; 11; 8; 12; 14g. In both
cases, the price oscillations are mitigated by the application of the KSA policy
rule (compared with Fig. 1). Finally, Figs. 7 and 9 show the total purchase cost for
K ¼ 5 and 10, respectively. In both cases, it is evident that the government has a cost
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Fig. 6. Price behavior for case (2.6) under the KSA ðK ¼ 5Þ policy rule (4.3).
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Fig. 7. Total purchase cost for case (2.6) under the KSA ðK ¼ 5Þ policy rule (4.3).
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from the function of the stabilization program and that the total purchase cost is a
small percentage of the revenue at equilibrium ðRVo ¼ 208:163Þ (Figs. 7–9).
4.2. Case 2: hyperbolic tangent supply function

In this case the KSE and the KSA policies are tested for a strongly nonlinear
supply function. Following Hommes (1994) we consider a hyperbolic tangent supply
function given by

SðPeÞ ¼ 1þ tanhðgðPe � p̄ÞÞ ¼ 1þ
egðP

e�p̄Þ � e�gðP
e�p̄Þ

egðP
e�p̄Þ þ e�gðP

e�p̄Þ
, (4.4)

where the parameter g tunes the steepness of the S-shape and p̄ is the price
corresponding to the inflection point. In addition, we consider linear backward-
looking expectations with two lags (Collery, 1955; Hommes, 1998):

Pe
tþ1 ¼ lPt þ ð1� lÞPt�1, (4.5)

where l 2 ½0; 1� is a parameter determining the weights of the past two commodity
prices.
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Fig. 8. Price behavior for case (2.6) under the KSA ðK ¼ 10Þ policy rule (4.3).
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Fig. 9. Total purchase cost for case (2.6) under the KSA ðK ¼ 10Þ policy rule (4.3).
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The discrete-time control system related to the hyperbolic tangent supply function
is described by

Ptþ1 ¼ b�1ða� Gt � gðlPt þ ð1� lÞPt�1ÞÞ,

Qtþ1 ¼ Qt � Gt, (4.6)

maxfQt �QM;�gðPtÞgpGtpQt,

where gðlPt þ ð1� lÞPt�1Þ is defined by (4.4).
In order to investigate the dynamic behavior of the price we assume a new

parameter set, i.e., g ¼ 5, p̄ ¼ 1, a ¼ 2, b ¼ 0:8, l ¼ 0:59 and new initial conditions
fp0; p�1g ¼{0.6, 0.5}. Under this setting, the equilibrium price ðPoÞ is 1:0348, the
equilibrium supply ðSoÞ is 1:17218, the maximum supply (SMÞ is 1.99 and the
equilibrium revenue ðRVoÞ is 1:2129. In the absence of intervention the model has a
strange attractor (Hommes, 1998) which is depicted in Fig. 10. Fig. 11 shows the
price dynamics for the system under consideration when Gt � 0. Fig. 12 shows that
the application of the KSE policy with QM ¼ 1:4 manages to suppress the fluctuation
of the price. Notice that in this case the government’s storage capacity (QMÞ exceeds
the equilibrium supply ðSoÞ. Fig. 13 shows that under the KSE policy the
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Fig. 10. Phase plane for cobweb model (4.6) with (4.4), without government intervention.
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Fig. 11. Price dynamics for cobweb model (4.6) with (4.4), without government intervention.
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Fig. 12. Price dynamics for case (4.6) with (4.4) under the KSE policy rule (3.5).
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government profits from the function of the stabilization program. This remarkable
feature must not encourage the reader since a high storage capacity is related to a
high storage cost. A more detailed analysis is needed in order to include storage
costs.

Finally, we explored the effectiveness of the KSA policy rule (4.3) with the
hyperbolic tangent supply function (4.4) and QM ¼ 1:4. The initial conditions for the
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Fig. 13. Total purchase cost for case (4.6) with (4.4) under the KSE policy rule (3.5).
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Fig. 14. Price dynamics for case (4.6) with (4.4) under the KSA ðK ¼ 20Þ policy rule (4.3).
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Fig. 15. Total purchase cost for case (4.6) with (4.4) under the KSA ðK ¼ 20Þ policy rule (4.3).
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price and the supply are fp0; p�1g ¼ f0:6; 0:5g and fS0; . . . ;S�19g ¼
f0:02; 1:99; 1:06; 0:08; 1:97; 0:91; 0:24, 1:98; 0:53; 1:37; 1:78; 0:01; 1:99; 1:11; 0:06, 1:98;
0:97; 0:16; 1:99; 0:71g, respectively. Fig. 14 shows the evolution of the price for
K ¼ 20, where it is evident the success of the KSA rule. Moreover, Fig. 15 shows that
the operation of the stabilization program for K ¼ 20, is costly for the government.
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Notice that the total cost is in general lower than the equilibrium revenue
ðRVo ¼ 1:2129Þ, but their difference is relatively small.
5. Conclusions

In the present work a nonlinear cobweb model is developed for a single
commodity with stocks and naive expectations. The model is based on a piecewise
linear S-shaped supply function and takes into account the constraints which must
be satisfied by the government stockpiling. It is shown that if the storage capacity for
the particular commodity is sufficiently large (greater than the ‘critical storage
capacity’) then the KSE policy is successful (the equilibrium price is a global
attractor for the corresponding closed-loop system). Moreover, formulae for the
computation of the ‘critical storage capacity’ are provided. The results indicate a
trade off between the efficiency of the price stabilization policy and the storage cost.

The main result of the present work (Proposition 3.2) may be used in order to
calculate the storage cost needed for a successful stabilization policy by means of
buffer stocks. Numerical studies are also presented, which test the effectiveness of the
KSE policy rule. Furthermore, we considered a policy rule where the government
uses average supply as an observable proxy for the equilibrium level. We refer to this
policy rule as KSA and we test its effectiveness.

Our work has certain limitations that must be overcome in order to provide a
more complete analysis on the function of buffer stocks. Thus, future research
should include private storage, other expectation rules, heterogeneous producers,
discounting and international trade. In addition, the analysis could be extended to
include more complicated price stabilization policies (possibly time-varying).
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Appendix A

We first perform a state transformation for model (2.6) in order to ease the
derivation of the price dynamics. To this purpose, it is convenient to introduce the

dimensionless variables: xt ¼ a�1bPt�1; yt ¼ a�1Qt and the dimensionless constants:

r ¼ b�1d40, c1 ¼ ðadÞ�1bco1, c2 ¼ ðadÞ�1bSMod�1b, c3 ¼ a�1QM. Thus the
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control system (2.6) expressed in state space form and in dimensionless coordinates is
given by the following discrete-time control system:

xtþ1 ¼ 1� f 1ðxtÞ � f 2ðxt; yt; utÞ;

ytþ1 ¼ yt � f 2ðxt; yt; utÞ;

ðxt; ytÞ 2 ð0;þ1Þ � ½0; c3�; ut 2 R;

(A1)

where

f 1ðxÞ:¼r maxf0;minfc2; x� c1gg,

f 2ðx; y; uÞ:¼minfy;maxfu; y� c3;�f 1ðxÞgg.

The variable ut is directly related to the quantity of the commodity released
to the market by the government at period tþ 1 and is the control input
of the system (i.e., ut can be manipulated in order to achieve a certain control
objective).

Notice that f 2ðx; y; 0Þ ¼ 0 for all ðx; yÞ 2 ð0;þ1Þ � ½0; c3�. There exists an
equilibrium set for the case ut � 0 (the so-called open-loop system) given by

ðx; yÞ ¼ ðxo; yÞ,

where y 2 ½0; c3� is arbitrary and

xo ¼

1þ rc1

1þ r
if c1 þ c241� c2r;

1� c2r if c1 þ c2p1� c2r:

8<
: (A2)

For the case of no government intervention (i.e., ut � 0Þ the corresponding
dynamical system (A1) is one-dimensional and is given by the difference equation:

xtþ1 ¼ hðxtÞ; xt 2 ð0;þ1Þ, (A3)

where

hðxÞ :¼ 1� f 1ðxÞ ¼

1 if xpc1;

1þ c1r� r x if c1oxoc1 þ c2;

1� c2r if xXc1 þ c2:

8><
>: (A4)

A.1. Proof of statements made in Table 1

We consider the following cases:
Case 1: If c1 þ c241� c2r then c1oxooc1 þ c2 (notice that c1o1Þ and

consequently there exists an open neighborhood around xo where h is continuously
differentiable (in fact linear). Thus local asymptotic stability of the unique
equilibrium point may be checked using linear theory, which demands jh0ðxoÞjo1
for local asymptotic stability of the equilibrium point or equivalently:

ro1. (A5)

However, it may be shown that the equilibrium point is globally asymptotically
stable. We prove this fact by considering the Lyapunov function V ðxÞ :¼ðx� xoÞ

2. It
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Table A1

The asymptotic behavior of (A3) for Case 3

Cases Period-2 solution

(a) c1 þ c241 x1 ¼ 1; x2 ¼ 1� rð1� c1Þpc1
(b) 1Xc1 þ c2 and c1 þ rc2X1 x1 ¼ 1; x2 ¼ 1� rc2pc1
(c) c1 þ rc2o1 x1 ¼ 1� rð1� c1Þ þ r2c2Xc1 þ c2; x2 ¼ 1� rc2oc1 þ c2
(d) r ¼ 1 There is an infinite number of non-trivial period-2 solutions:

x1 2 ðmaxfc1; 1� c2g;minf1; c1 þ c2gÞ arbitrary,

x2 ¼ 1þ c1 � x1
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is a matter of simple but tedious calculations to show that, under hypothesis (A5),
the following inequality holds:

V ðhðxÞÞoV ðxÞ for all x 2 ð0;þ1Þ; xaxo,

which according to Corollary 3.3 in Jiang and Wang (2002), implies global
asymptotic stability of the equilibrium point.

Case 2: If c1 þ c2p1� c2r then we notice that hðxÞXc1 þ c2 for all x 2 ð0;þ1Þ.
Thus for every initial condition x0 2 ð0;þ1Þ we obtain

xt ¼ xo for all tX2. (A6)

Thus the equilibrium point xo ¼ 1� c2r is a global attractor for system (A3). In fact,
in this case the phenomenon of finite-time stability appears as (A6) shows (i.e., the
equilibrium point is approached in finite time).

Case 3: If c1 þ c241� c2r and rX1, the dynamics of the nominal system (A3)
present the well-known phenomenon of the ‘hog-cycles’. For the nonlinear case (A3)
the ‘hog-cycles’ can be given explicitly (Table A1).

Clearly, the existence of a non-trivial period-2 solution excludes the possibility of
the existence of an equilibrium point, which is a global attractor, i.e., the
corresponding price equilibrium point xo ¼ ð1þ rc1Þ=ð1þ rÞ is not a global
attractor.

A.2. Proof of Lemma 3.1

By virtue of (A1) and continuity of the function f 1, it follows that the limit
limt!þ1 f 2ðxt; yt;fðxt; ytÞÞ exists and is given by

lim
t!þ1

f 2ðxt; yt;fðxt; ytÞÞ ¼ 1� x� � f 1ðx
�Þ.

The above equality implies that limt!þ1 ðytþ1 � ytÞ ¼ x� � 1þ f 1ðx
�Þ. If x� � 1þ

f 1ðx
�Þ40 then we obtain limt!þ1 yt ¼ þ1, which contradicts the constraint

yt 2 ½0; c3�. On the other hand, if x� � 1þ f 1ðx
�Þo0 then we obtain

limt!þ1 yt ¼ �1, which again contradicts the constraint yt 2 ½0; c3�. Thus we must
necessarily have x� � 1þ f 1ðx

�Þ ¼ 0 and consequently the desired price x�40
coincides with xo, the unique equilibrium price of the open-loop system (A3) defined
by (A2). The proof is complete. &
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A.3. Proof of Proposition 3.2

Consider the price stabilization problem for (A1) under the hypotheses c1 þ

c241� c2r and rX1. If c34R, where

R :¼ maxfR1;R2;R3;R4g. (A7)

R1:¼minfð1� r�1Þð1� xoÞ; c1 þ c2r� 1g;

R2:¼ðr� 1Þminfxo � c1; c1 þ c2 � xogX0;

R3:¼minfc1 þ c2r� 1; 1� c1 � c2g;

R4:¼ðrþ 1Þ�1 minfrðxo þ c2r� 1Þ; ðr� 1Þðc1 þ c2 þ c2r� 1Þg,

then the equilibrium set fðxo; yÞ; y 2 ½0; c3�g is a global attractor for the closed-loop
system (A1) with ut ¼ 1� xo � f 1ðxðtÞÞ. Particularly, for every initial condition
ðx0; y0Þ 2 ð0;þ1Þ � ½0; c3� there exists T40 such that the solution of (A1) with ut ¼

1� xo � f 1ðxtÞ satisfies

xt ¼ xo; 8tXT . (A8)

Notice that

f 2ðx; y; 1� xo � f 1ðxÞÞ ¼ minfy;maxfy� c3; 1� xo � f 1ðxÞgg,

1� f 1ðxÞ � f 2ðx; y; 1� xo � f 1ðxÞÞ

¼

1� f 1ðxÞ � yþ c3 if yþ f 1ðxÞ41� xo þ c3;

xo if 1� xopyþ f 1ðxÞp1� xo þ c3;

1� f 1ðxÞ � y if yþ f 1ðxÞo1� xo;

8>><
>>:

y� f 2ðx; y; 1� xo � f 1ðxÞÞ

¼

c3 if yþ f 1ðxÞ41� xo þ c3;

y� 1þ xo þ f 1ðxÞ if 1� xopyþ f 1ðxÞp1� xo þ c3;

0 if yþ f 1ðxÞo1� xo;

8>><
>>:

f 1ðxÞ ¼

0 if xpc1;

�c1rþ r x if c1oxoc1 þ c2;

c2r if xXc1 þ c2:

8><
>:

Making use of the above equalities in conjunction with hypotheses yt 2 ½0; c3�, c1 þ

c241� c2r and rX1, it can be shown that

xtþ1 ¼ 1þ c1r� rxt þ c3 � yt and ytþ1 ¼ c3

if ðxt; ytÞ 2 B1 :¼fx
o þ r�1ðc3 � yÞoxoc1 þ c2g, ðA9Þ
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xtþ1 ¼ 1� c2rþ c3 � yt and ytþ1 ¼ c3

if ðxt; ytÞ 2 B2 :¼fxXc1 þ c2 and y41� xo þ c3 � c2rg, ðA10Þ

xtþ1 ¼ 1� yt and ytþ1 ¼ 0

if ðxt; ytÞ 2 B3 :¼f0oxpc1 and yo1� xog, ðA11Þ

xtþ1 ¼ 1þ c1r� rxt � yt and ytþ1 ¼ 0

if ðxt; ytÞ 2 B4 :¼fc1oxoxo � r�1yg, ðA12Þ

xtþ1 ¼ xo if ðxt; ytÞ 2 B5 ¼ ð0;þ1Þ � ½0; c3�
[4
i¼1

Bi

 !-
. (A13)

Moreover, since c1 þ c241� c2r which directly implies c1oxooc1 þ c2 (notice that
c1o1Þ, it follows that the following implications hold:

ðxt; ytÞ 2 B1 [ B2 ) ðxtþ1; ytþ1Þ 2 B3 [ B4 [ B5, (A14)

ðxt; ytÞ 2 B3 [ B4 ) ðxtþ1; ytþ1Þ 2 B1 [ B2 [ B5, (A15)

ðxt0 ; yt0
Þ 2 B5 ) xt ¼ xo; 8tXt0 þ 1. (A16)

In order to show (A8) it suffices to show that for every initial condition ðx0; y0Þ 2

ð0;þ1Þ � ½0; c3� there exists TX0 such that ðxT ; yT Þ 2 B5. The proof will be made by
contradiction. Suppose on the contrary that there exists initial condition ðx0; y0ÞeB5

such that ðxt; ytÞeB5 for all tX0. Without loss of generality we may assume that
ðx0; y0Þ 2 B1 [ B2 (since if ðx0; y0Þ 2 B3 [ B4 then by virtue of (A15) we would have
ðx1; y1Þ 2 B1 [ B2 and then consider the solution with initial condition ðx1; y1Þ 2

B1 [ B2 which also satisfies ðxt; ytÞeB5 for all tX0Þ. By virtue of implications (A14)
and (A15) we must have:

ðxt; ytÞ 2 B1 [ B2 if t is even and ðxt; ytÞ 2 B3 [ B4 if t is odd. (A17)

Moreover, by virtue of (A9–13) we obtain

yt ¼ 0 if tX1 is even and yt ¼ c3 if tX1 is odd. (A18)

By virtue of (A9–13), (A17–18) we must also have

xooxo þminfr�1c3; c1 þ c2 � xogpxt if tX2 is even. (A19)

Next we show that there exists d40 such that

xtþ2pxt � d for all even integers tX2. (A20)

Thus we obtain a contradiction, since (A19) in conjunction with (A20) and the fact
that xtp1 for all tX1 will give

xo þminfr�1c3; c1 þ c2 � xogpx2þ2kp1� kd for all integers kX1,

which cannot hold for kX1þ d�1 � d�1xo � d�1 minfr�1c3; c1 þ c2 � xog.
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Consequently, the rest part of proof is devoted to the determination of the
constant d40 that satisfies (A20). For all ðxt; 0Þ 2 B1 [ B2, it can be shown that:

Case I: If xo þ r�1ðxo þ c3 � c1Þpxtoc1 þ c2 and c3o1� xo then xtþ2 ¼ 1� c3.
Case II: If xo þ r�2ðrþ 1Þc3oxtoc1 þminfc2; r�1ð1þ c3 � c1Þg then xtþ2 ¼ xoþ

r2ðxt � xoÞ � ðrþ 1Þc3.
Case III: If xtXc1 þ c2 and c3o1� xo and c3pc1 þ c2r� 1 then xtþ2 ¼ 1� c3.
Case IV: If xtXc1 þ c2 and c1 þ c2r� 1oc3oðrþ 1Þ�1rðxo þ c2r� 1Þ then

xtþ2 ¼ 1þ c1r� rþ c2r2 � ðrþ 1Þc3.
Case V: If none of the above holds then xtþ2 ¼ xo.
If Case I is possible (i.e., if c3o1� xo and c3oc1 þ rc2 � 1Þ then by virtue of the

inequality c34R1 we must necessarily have c34ð1� r�1Þð1� xoÞ and consequently
(A20) holds with d :¼ð1þ r�1Þðxo þ c3Þ � ð1þ r�1c1Þ40.

If Case II is possible (i.e., if c3orðxo � c1Þ and c3oðrþ 1Þ�1r2ðc1 þ c2 � xoÞÞ then
by virtue of the inequality c34R2 we must necessarily have c34ðr� 1Þminfxo �

c1; c1 þ c2 � xog and consequently (A20) holds with d :¼ð1þ rÞc3 � ð1þ rÞ

ðr� 1Þminfc1 þ c2 � xo; c1 þ r�1ð1þ c3 � c1Þ � xog40.
If Case III is possible (i.e., if c3o1� xo and c3pc1 þ rc2 � 1Þ then by virtue of the

inequality c34R3 we must necessarily have c341� c1 � c2 and consequently (A20)
holds with d :¼ c1 þ c2 þ c3 � 140.

If Case IV is possible (i.e., if c1 þ c2r� 1oc3oðrþ 1Þ�1rðxo þ c2r� 1ÞÞ then by
virtue of the inequality c34R4 we must necessarily have c34ðrþ 1Þ�1ðr� 1Þðc1 þ
c2 þ c2r� 1Þ and consequently (A20) holds with d :¼ð1þ rÞc3 þ ðr� 1Þð1� c1�

c2 � c2rÞ40.
If two or more cases are possible then the constant d40 that satisfies (A20) may be

selected as the minimum of the corresponding constants given for each case. Thus
property (A8) is proved.

Property (A8) implies that the o-limit set of the bounded set ½1� rc2; 1� � ½0; c3� is
the equilibrium set fxog � ½0; c3�. Moreover, notice that for every initial
condition ðx0; y0Þ 2 ð0;þ1Þ � ½0; c3� we have ðx1; y1Þ 2 ½1� rc2; 1� � ½0; c3�.
By virtue of Definitions 1.7.1, 1.8.4 and Theorem 1.7.2 in Stuart and
Humphries (1998), we conclude that the equilibrium set fxog � ½0; c3� is a global
attractor for the closed-loop system (A1) with ut ¼ 1� xo � f 1ðxtÞ. The proof is
complete. &
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