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In this work characterizations of external notions of
output stability for uncertain time-varying systems
described by retarded functional differential equations
are provided. Particularly, characterizations by means
of Lyapunov and Razumikhin functions of (uniform)
Weighted Input-to-Output Stability are given. The
results of this work have been developed for systems
with outputs in abstract normed linear spaces in order
to allow outputs with no delay, with discrete or
distributed delay or functional outputs with memory.

Keywords: Lyapunov functionals, Razumikhin func-
tions, time-delay systems, input-to-output stability.

1. Introduction

The introduction of the notion of Input-to-State
Stability (ISS) in [30] for finite-dimensional systems
described by ordinary differential equations, led to an
exceptionally rich period of progress in mathematical
systems and control theory. The notion of ISS and its
characterizations given in [31,32] were proved to be
extremely useful for the expression of small-gain results
(see [2,7,8,9,14,19,36]) and for the construction of
robust feedback stabilizers (see for instance the text-
book [22]). The notion of ISS was extended to the
notion of Input-to-Output Stability (IOS) in [5,7,34,35]
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and to the non-uniform in time notions of ISS and
10S in [12—14] (which extended the applicability of ISS
to time-varying systems). Recently, semi-uniform
notions of ISS have been proposed in [25]. The notions
of ISS and IOS were recently proposed and char-
acterized for discrete-time systems (see [10,11,15]) as
well as to a wide class of systems with outputs (see [14]).
It is our belief that the notions of ISS and IOS have
become one of the most important conceptual tools for
the development of nonlinear robust stability and
control theory for a wide class of dynamical systems.
The importance of Retarded Functional Differ-
ential Equations (RFDEs) for engineering appli-
cations is well known (see for instance [4,23,26]). In
this work we develop characterizations of various
robust external stability notions for uncertain systems
described by RFDEs, including uniform and non-
uniform in time ISS and I0S. We provide necessary
and sufficient Lyapunov criteria based on functionals
for the Weighted Input-to-Output Stability for sys-
tems described by very general RFDEs (time-varying,
with time-varying non-commensurate discrete and
distributed time delays, uncertain). The obtained
results are general and can be applied to a wide range
of stability problems. The robust external stability
notions proposed in the present work are parallel to
the robust external stability notions used for finite-
dimensional systems. Thus, it is expected that the
results of the present paper will play an important role
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in mathematical systems and control theory for the
important case of systems described by RFDEs.
Particularly, exactly as in the finite-dimensional case,
the results of the present work can be used:

e for the proof of necessary and sufficient Lyapunov-
like conditions for the existence of feedback stabi-
lizers which guarantee the 10S property for the
corresponding closed-loop system,

e for the development of robust solutions to tracking
control problems (even in the case where the desired
trajectory is unbounded),

e for the proof of “adding an integrator” results (see for
instance [1,7,17,37,38] for the finite-dimensional case),

e in order to develop methodologies for feedback
construction for (time-varying) triangular systems,

e in order to develop Lyapunov redesign methodo-
logies for the construction of feedback stabilizers
which are robust with respect to control actuator
and measurement errors,

e for the proof of necessary and sufficient Lyapunov-
like conditions for the existence of observers which
are robust with respect to measurement errors.

Let DC R be a non-empty set, U C R" a non-
empty set with 0 € U and Y a normed linear space. We
denote by x(¢) with ¢ > 1y the unique solution of the
initial-value problem:

() = 0, T ), ()
Y(1) = H( T(1)x)
x(1) € Y(t)eY,dt)e D,u(t)e U (1.1)
with initial condition T,(#)x = xo € C°([—r,0]; R"),
where r >0 is a constant, T,(f)x:=x(t+6); 0 €
[~r,0] and the mappings f: R x CO([—r,0]; R") x
UxD— R" H:R" xC[-r,0]; R") — Y satisfy

S(1,0,0,d) = 0, H(z,0) = 0 for all (z,d) € R" x D. In
Section 3, we provide characterizations of the (uni-
form or non-uniform) Weighted IOS property for
systems of the form (1.1) under weak hypotheses,
which are usually satisfied in applications. The study
of the uniform ISS property for autonomous systems
described by RFDEs, was recently initiated in [28,39].
The important technical issues that arise in the study
of the case (1.1) are solved with a combination of the
Lyapunov-like characterization given in [21] and an
extension of the results in [27].

A major advantage of allowing the output to take
values in abstract normed linear spaces is that using
the framework of the case (1.1) we are in a position to
consider:

e outputs with no delays, e.g. Y(¢)=h(z,x(7)) with
Y=%R",
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e outputs with discrete or distributed delay, e.g.
Y(t) = h(x(t),x(t —r)) or Y(¢ f h(t,0,x(0))do
with Y = R*, =r

e functional outputs with memory, e.g. Y(¢)=
h(t,0,x(t+8)); 0 € [—r,0] or the identity output
Y(t) =T, ()x = x(t +0); 0 € [-r,0] with ¥ =°
([=r,0]; 9°).

Moreover, it should be emphasized that our
assumptions for (1.1) are very weak, since we do not
assume boundedness or continuity of the right-hand
side of the differential equation with respect to time or
a Lipschitz condition for f. Furthermore, we do not
assume that the disturbance set D C R’ is compact.

In Section 4, we develop Razumikhin conditions for
the stability notions introduced in previous sections.
The use of Razumikhin functions in the study of
qualitative properties of the solutions of time-delay
systems is emphasized in [4] (see also [6] for control
applications). Recently, in [39] a major observation
was established: Razumikhin theorems are ‘‘essen-
tially”” small-gain results. This idea is exploited in the
present work, in order to produce novel results that
are easily applicable.

Finally, in Section 5 we provide the concluding
remarks of this work.

Notations: Throughout this paper we adopt the fol-
lowing notations:

* Let I C R be an interval. By C°(I; ), we denote
the class of continuous functions on 7, which take
values in Q. By C'(I; Q), we denote the class of
functions on 7 with continuous derivative, which
take values in (.

* For a vector x € R" we denote by [x| its
usual Euclidean norm and by X’ its transpose. For
x € CO([-r,0);R") we define ||x||,:= en[laxo]|x(9)\.

c|—r,

* We denote by K* the class of positive C functions
defined on R*. We say that a function p : Rt — R+
is positive definite if p(0) =0 and p(s) >0 for
all s > 0. By K we denote the set of positive definite,
increasing and continuous functions. We say that
a positive definite, increasing and continuous

function p:R" = RT is of class K. if
‘lir+n p(s) = +o00. By KL we denote the set of all

continuous functions o = (s, 7) : R* x RT — R+
with the properties: (i) for each ¢ > 0 the mapping
o(-,1) is of class K ; (ii) for each s > 0, the mapping
o(s, - ) is non-increasing with zLITm o(s, 1) =0.

* Let U C R™ be a non-empty set with 0 € U. By
Byl0,r] :={u € Uj; |Jul <r} we denote the inter-
section of U C R with the closed sphere of radius
r>01in N, centered at 0 € U.
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* Let D C R’ be a non-empty set. By Mp we denote
the class of all Lebesgue measurable and locally
essentially bounded mappings d: R — D. By M)
we denote the class of all right-continuous map-
pings d: Rt — D, with the property that there
exists a countable set J; C R which is either finite
orJy={t!; k=1,..,00} with ¢ ., > t{ > 0forall
k =1,2,...and lim #{ = +o0, such that the mapping
t € R\J,; — d(t) € D is continuous.

* Letx:|a—r,b) — R withbd > a > —occand r > 0.
By T.(f)x we denote the “r-history” of x at time
t€la,b),ie, T(t)x :=x(t+0); 0 € [—r,0]. Notice
that 7,(¢)x € C°([-r,0]; R") if x is continuous.

* By || |ly, we denote the norm of the normed linear
space Y.

2. Main Assumptions and Preliminaries for
Systems Described by RFDEs

In this section we provide background material
needed for the study of systems described by RFDEs.
Although the results of this section are technical, they
play a fundamental role in the proofs of the main
results of the present work.

2.1. Main Assumptions for Systems Described by
RFDEs

Concerning systems of the form (1.1) the following
hypotheses will be valid throughout the text:

(S1) The mapping (x,u,d) — f(t, x,u,d) is continuous
for each fixed 7 > 0 and such that for every bounded
IC R* and for every bounded S C CO([-r,0]; R
x U, there exists a constant L > 0 such that:

(X(O) - y(O)),(f(t, Xy I/l,d) _f(t’ya u, d))

< L max |x(r) = y(r)f'= Ll ;

Viel, V(x,u,y,u) € SxS,VdeD

Hypothesis (S1) is equivalent to the existence of a
continuous function L : R™ x RT — R such that for
each fixed ¢ > 0 the mappings L(z, -) and L(-,¢) are
non-decreasing, with the following property:

(X(O) —y(O))’(f(l,x,u,d) _f(t>y>u,d))

< L(t, (6] A+l +Hu) 1> = 117
Y(t,x,y,d,u) € R x CO([-r,0]; R")

x CO([—r,0]; R") x D x U (2.1)

(S2) For every bounded Q C R* x CO([-r,0]; R") x U
the image set f(Q2 x D) C R" is bounded.
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(S3) There exists a countable set 4 C K", which is
either finite or A = {1 ; k=1,...,00} with #;4 >
tr >0 for all k= 1,2,... and lim ¢, = 400, such that
mapping (¢, x,u,d) € (R\A4) x CO([-r,0}; R") x
Ux D — f(t, x,u,d) is continuous. Moreover, for each
fixed (19, x,u,d) € R* x CO([—r,0]; R") x U x D, we
have lim f(t, x,u, d) = f(to, x, u, d).

1=t
(S4) Foreverye > 0,1 € R", there exists § := §(e, 1) >
0 such that sup{ |[f(7,x,u,d)| ; Te R* ,de D, uc U,
|7 —t| +||x|,+u] <6} <e.
(S5) The mapping u — f(t,x,u,d) is Lipschitz on
bounded sets, in the sense that for every bounded /C
R" and for every bounded S C%([—r,0];R") x U,
there exists a constant Ly > 0 such that:

lf(taxvuvd) _f(taxa Vvd)| S Lu|1/l—V|,
Viel, V(x,u,x,v)€SxS,VdeD

Hypothesis (S5) is equivalent to the existence of a
continuous function Ly : KT x R — KT such that
for each fixed >0 the mappings Ly(z, -) and
Ly(-,1) are non-decreasing, with the following

property:

1, %, u,d) — f{t, x,v,d)|

< Lo(t, [Ixl A+ ful +[v]) fu = vl

Y(t,x,d,u,v) € RT x CO([-r,0]; R")
xDxUxU

X

(2.2)

(S6): U is a positive cone, i.e., forallu € Uand A\ > 0
it follows that (Au) € U.

(S7) The mapping H(t,x) is Lipschitz on bounded
sets, in the sense that for every bounded 7 C R and
for every bounded S € C°([-r,0]; R"), there exists a
constant Lz > 0 such that:

1H (2, x) = H(r,»)ly< La (|t =7+ [Ix = y1,),
V(t,7) e Ix I, V¥(x,y) €SxS (2.3)

Hypothesis (S7) is equivalent to the existence of a
continuous function Ly : R x KT — R such that
for each fixed ¢ > 0 the mappings Ly(z, -) and Ly( -, 1)
are non-decreasing, with the following property:

|H(t,x)—H(7,p)|ly < L (max{z, 7}, |[x[|,+[[»]],)
(le=7l+lx=yl,)
V(t,1,x,3) €RT X R x CO([—r,0]; R")

x CO([=r,0]; R™) (2.4)

Using hypotheses (S1—-7) above, Theorem 2.1 in [4]
(and its extension given in paragraph 2.6 of the same
book) and Theorem 3.2 in [4], we may conclude that
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for every (to, xo,d,u) € R x CO([~r,0]; R") x Mpx
My there exists fmax € (fo, +00], such that the unique
solution x(7) of (1.1) with initial condition T, (#y)x =
xo is defined on [t) — r, fmax) and cannot be further
continued. Moreover, if fn.x < +oo then we must
necessarily have limsup|x(¢)] = +oco. We denote by

=10,
&(t, 19, X0; u,d) the “r-history” of the unique solution
of (1.1), i.e., o(t,19,x0;u,d) := T,(t)x, with initial
condition T,(f)x = x¢ corresponding to (d,u) €
Mp x My. Moreover, the following inequality holds for
every pair (-, 1, Xo; 4, d) : 10, £) — CO([—r,0]; "),
é( -, o, yo; u, d) [t0,£..) — C°([=r,0]; R") of solu-
tions of (I.1) with initial conditions T, (7)x = xo,
T.(t)y = yo, corresponding to the same (d, u) e Mpx
My and for all € [to, 1;) with #; = min{r}

9 (2,10, x0;u,d) — (1,10, y0;u,d)|,
<|[xo—yoll,exp(L(#,a(1))(1—1))

| H(t,6(1,t0,x03u,d)) — H(t, (2,10, y0;u,d)) ||y
<Lu(t,a(1))|lxo—yoll,exp(L(t,a(1))(t —to))

a(t)= sup (|lo(t,10,x0;u,d)],

T€ty,1]

Hé(t 10, y0:u,d)|], ) + sup |u(7)]

TE(t0,1]

max 7 de }

(2.5)

2.2. Important Notions for Systems Described by
RFDEs

An important property for systems of the form (1.1)
is Robust Forward Completeness (RFC) from an
external input (see [14,18,19]). This property will be
used extensively in the following sections of the
present work. Notice that the notion of Robust
Forward Completeness (RFC) from the input u € My,
coincides with the notion of Robust Forward
Completeness (RFC) for systems without external
inputs (see [21]).

Definition 2.1: We say that (1.1) under hypotheses
(S1-7) is robustly forward complete (RFC) from the
input u € My if for every s > 0, T > 0, it holds that

Sup{ ||¢(t0 + 53 fo, Xo; U, d)“r?
uc MBL:[O,S]a € c [Oa T] ) ||X0||r§ S,
thel0,T,deMp} <+oo

In order to study the asymptotic properties of the
solutions of systems of the form (1.1), we will use
Lyapunov functionals and functions. Therefore,
certain notions and properties concerning functionals
are needed. Let x € CO([—r,0]; M") and V: R x
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CO([=r,0]; ®") — R. By Ej(x;v), where 0 <h<r
and v € R" we denote the following operator:

v x(0)+(@O+h)y for —h<6<0
Eh(X,v).—{ X(9+h) for —rSQS_h
(2.6)

and we define

VO(t,x;v)
V(t+h,Ey(x; hy)—TV(t
— limsup ( +1, /(X,V)+ y) ( 7X)
h—0" h
)?HO,}’GCO([*I',O];‘R”)
2.7)

The class of functionals which are ““almost Lipschitz
on bounded sets” is introduced in [21] and is used
extensively in the present work. For reasons of com-
pleteness we repeat the definition here.

Definition 2.2: We say that a continuous functional V" :
R x CO[—r,0; R") — R is “almost Lipschitz on
bounded sets”, if there exist non-decreasing functions
M:R" =R PR =R G:RY — [1,+00) such
that for all R > 0, the following properties hold:

(P1) For every x,y € {x € C°([=r,0; R") ; ||x]|,< R},
it holds that:

[V(t,y) = V(1,x)] < M(R) |ly — x]|,, Vi € [0, R]
(P2) For every absolutely continuous function x : [—r, 0]
— R" with ||x||,< R and essentially bounded derivative,
it holds that:

V(t4+hx) ~ V(.| <hP(R) (1+ sup |x<7>|>,

—r<7r<0

for all 7€[0,R]and oghsl/G(RJr sup IX(T)I>

—r<7<0

If the continuous functional ¥V : R x CO([—r,0]; R")
— R, is “almost Lipschitz on bounded sets” then the
derivative 1°(t,x;v) defined by (2.7) is simplified in
the following way:

V(t, x)

. V(t+ h, Ep(x;v)) —
VO(1, x;v) == lim sup e+ h(xh V)
h—0+

The following definition introduces an important
relation between output mappings. The equivalence
relation defined next, will be used extensively in the
following sections of the present work (see also [21]).

Definition 2.3: Suppose that there exists a continuous
mapping h : [—r,+00) x R" — R with h(t,0) = 0 for
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all t > —r and functions ay,a; € K, such that a,(|h(t,
x(0)) < [[H(,x)|ly < az( S[up ]lh(t+9, X(G))|> for
Oe[—r,0

all (t,x) € R* x CO[~r,0]; R"). Then we say that
H:R" x C[—-r,0]; ") — Y is equivalent to the
finite-dimensional mapping h.

For example the identity output mapping H(¢, x) =
x € C°([-r,0]; ") is equivalent to finite-dimensional
mapping A7, x) = x € R".

2.3. Useful Technical Results

The following lemma presents some elementary
properties of the generalized derivative given above.
Its proof is almost identical with Lemma A.1 in [21]
and is omitted.

Lemma 2.4: Let V:R" x CO([-r,0]; R") — R and
let x € CO[tg — 1, tmax); ") @ solution of (1.1) under
hypotheses (S1-7) corresponding to certain (d,u) €
Mp X My, where tmay € (ty,+00] is the maximal
existence time of the solution. Then it holds that

limsup 7~ (V(t + h, T,(t + h)x) — V(t, T,(1)x))
h—0+

< V1, T.(t)x; DT x(1)), a.e. on [ty, tmax) (2.8)

where DV x(t) = hlirg WY (x(t + h) — x()). Moreover,
if (d,u) € Mp x My then (2.8) holds forall t € [ty, tmax)-

The following results are direct extensions of the
similar results in [27]. Their proofs are almost identical
with the proof of Lemma A.2 and Lemma A.3 in [21]
and are omitted. More specifically, the proof of
Lemma 2.6 utilizes inequality (2.5), which guarantees
continuity of the solution with respect to the initial
conditions.

Lemma 2.5: Let V: R x CO([-r,0]; R") — R be a
Sfunctional which is almost Lipschitz on bounded sets and
let x € CO[tg — 1, tmax); R") @ solution of (1.1) under
hypotheses (S1-7) corresponding to certain (d,u) €
Mp x My with initial condition T,(ty)x = xo € C!
([-r,0];R"), where tmax € (to,+00] is the maximal
existence time of the solution. Then for every
T € (to, tmax), the mapping [to, T ] — V(t, T,(1)x) is
absolutely continuous.

Lemma 2.6: Suppose that there exist mappings [ :
R x CO([—r,0;; R") — R, B : R x R x CO([—r,0];
R x O = R, where © C Mp x My, with the following
properties:

(i) for each (t,ty,d,u) € RT x K" x O, the mappings
x — Bi(t,x),x — Ba(t, to, x,d,u) are continuous,
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(i) there exists a continuous function M : Rt x RT —
R such that for all T, s >0

SuP{ﬁZ(lo + 57 1o, Xo, da Ll), Sup‘u(T”

t>0

<s5,6€10,T], xo € CO([—V,O];ER"),

Ixoll, < s, 20 €10, 7], (du) €© } < M(T,s)

(i) for every (to,xo,d,u) € Rt x C'([~r,0; R") x ©
the solution x(t) of (1.1) with initial condition
T,(to)x = xo corresponding to input (d,u) € ©
satisfies:

,@1([7 Tr(l)X) S ﬂZ(ta l(),X(),d, u)7VI Z to (29)

Moreover, suppose that one of the following prop-
erties holds:

(iv) sup{ 1T, (t0+E)x|l,; sug)|u(7')| <s5,£€[0,7], xo€
>

CO=r 01, [[xoll, <5, 10€[0,7) ()€ b <-+oc
forall T,s>0

(V) there exist functions a € Ky, u € K* and a con-
stant R > 0 such that a(u(t)|x(0)|) < Bi(t,x) + R
Sor all (t,x) € R" x CO([—r,0]; R")

Then for every (to, xXo,d,u) € R x CO([—r,0]; R")x ©
the solution x(t) of (1.1) with initial condition
T.(t9)x = xo corresponding to input (d,u) € © exists
for all t > ty and satisfies (2.9).

The following technical small-gain lemma will be
used in the proofs of our main results. It is a direct
corollary of Theorem 1 in [36] and is closely related to
Lemma A.1 in [7].

Lemma 2.7: For every o € KL and a € K with a(s) < s
for all s >0, there exists ¢ € KL with the following
property: if y : [to, t1) — R, u: Rt — R are locally
bounded functions and M > 0 a constant such that the
Sfollowing inequality holds for all t € [ty, 1)):

y(1) <

10<E<1

( sup y<T>> ; ulr) }
E<r<t

then the following estimate holds for all t € [ty, t1):

sup u(r) }

tH<t<t

inf max {O'(M, 1—¢&);

(2.10)

(1) §max{&(M, t—1t);

(2.11)

Finally, we end this section by presenting a compar-
ison lemma, which provides a ‘“fading memory”
estimate for an absolutely continuous mapping. The
proof of Lemma 2.8 is given in [20].
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Lemma 2.8: For each positive definite locally Lipschitz
Sfunction p : R — R there exists a function o of class
KL, with o(s,0) =s for all s >0 with the following
property: ify : [to, t1] — R is an absolutely continuous
function, u: R — R* is a locally bounded mapping
and I C [ty, 1] a set of Lebesgue measure zero such that
(1) is defined on [to, t;)\I and such that the following
implication holds for all t € [ty, t)\I:

() zu() = yt) < —ply(1)) (2.12)
then the following estimate holds for all t € [ty, 1]:
y(1) < max { o(y(to), t—10),
sup o(u(s), l—s)} (2.13)
to<s<t

3. Input-to-Output Stability (I0S) and its
Equivalent Characterizations

In this section we introduce the reader to the notion
of non-uniform and uniform Weighted Input-to-
Output Stability (IOS) for systems described by
RFDESs and we provide estimates for the solutions of
such systems. Notice that the notion of I0OS is an
“External Stability” property since it is applied to
systems which operate under the effect of external
non-vanishing perturbations.

Definition 3.1: We say that (1.1) under hypotheses
(S1-7) satisfies the Weighted Input-to-Output Stabi-
lity property (WIOS) firom the input u € My with gain
~v € K and weight 5 € K", if (1.1) is robustly forward
complete (RFC) from the input u € My and there exist
Sfunctions o € KL, € K*, such that for all (d,u) €
Mp x My, (ty,xo) € R x C°([—r,0]; R") the solution
x(t) of (1.1) with T.(ty)x = xo corresponding to
(d,u) € Mp x My satisfies the following estimate for
all t > ty:

”H(Z’ TI(Z)X)”Y < max { U(ﬁ(ZO)HXOHr L= ZO) )

sup 7(5(T)IM(T))} (3-1)

<7<t

Moreover,

(i) if B(t) =1, then we say that (1.1) satisfies the
Uniform Weighted Input-to-Output Stability
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property (UWIOS) from the input u € My with
gain v € K and weight § € K",

(i) if6(r) = 1, thenwe say that (1.1) satisfies the Input-
to-Output Stability property (10S) from the input
u € My withgain~y € K,

(i) i B(tr) = 6(t) = 1, then we say that (1.1) satisfies
the Uniform Input-to-Output Stability property
(UIOS) from the input u € M with gain v € K,

@) if [, < 1 H () ly for all (1,x) € R+ CO([—r,0]:
R"), then we say that (1.1) satisfies the Weighted
Input-to-State Stability property (WISS) firom
the input uc My with gain v K and weight
6eKT,

W) i< H )y for all (1.x) €R* x CO([=r0];
R") and B(t)=1, then we say that (1.1) satisfies
the Uniform Weighted Input-to-State Stability
property (UWISS) from the input uc My with
gain v K and weight 6€ K",

(i) if [xl|, < [ (1, ) |y for all (1,x) € R x CO([=r,0]:
R") and 6(t)=1, then we say that (1.1) satisfies
the Input-to-State Stability property (ISS) from
the input uc My with gain v€ K|

(vi) if [¥]1, < [ (1, ) |y for all (1,x)€ R x CO([—r,0];
R") and B(1)=6(1)=1, then we say that (1.1)
satisfies the Uniform Input-to-State Stability
property (UISS) from the input uc M with gain
V€K,

It should be emphasized that for periodic systems
estimate (3.1) leads to a simpler estimate. We say that
(1.1) under hypotheses (S1-7) is T—periodic, if there
exists 7> 0 such that f(t+ T, x,u,d) = f(t,x,u,d)
and H(t + T,x) = H(t,x) for all (¢,x,u,d) € R* x C°
([-r,0]; R") x U x D. Lemma 2.19 and Lemma 2.20
in [19] show that if system (1.1) is 7—periodic and
satisfies the WIOS property with gain + and weight ¢
from the input u € My, then system (1.1) satisfies the
UWIOS property from the input u € My with gain ~
and weight 6, where 6(7) := max{6(s) ; s € [0,1] }.

We are now in a position to state characterizations
for the WIOS property for time-varying uncertain
systems. The proof of the following theorem is pro-
vided in the Appendix. For the definition of non-
uniform in time Robust Global Asymptotic Output
Stability (RGAOS), see the companion paper [21].

Theorem 3.2: The following statements are equivalent
for system (1.1) under hypotheses (S1-7):

(a) System (1.1) is robustly forward complete (RFC)
from the input u € My and there exist functions o €
KL, B, € K"',pe K such that that for all
(dﬂ/l) eEMpx My, (lo,Xo) eRT x CO([—}QO];Q{”)
the solution x(t) of (1.1) with T,(tp)x = xo
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corresponding to (d,u) € Mp x My satisfies the
following estimate for all t > ty:

[H(2, T:(1)x)

ly
< max { a(B(t) ||xoll, , t—1t0)

sup o(p(o(r) [u(r)), 1= 7) }

to<T<t

(3.2)

(b) System (1.1) satisfies the WIOS property from the
input u € My.

(¢) There exist a locally Lipschitz function 0 € K,
functions ¢, € KT such that the following system
is non-uniformly in time RGAOS with disturbances
(d/, d) S MA.'

x(1) =f<z, T,(t)x,w

Y(1) = H(t, T.(1)x)

d’(z»d(r));
(3.3)

where A := By[0,1] x D, H(t,x) := (H(t,x), u(1)x) €
Y x CO([~r,0];R").

(d) There exist a Lyapunov functional V :R"x
CO([~r,0]; R") — R, which is almost Lipschitz on
bounded  sets, functions ay, ar, az of class
Ky, 3, 6,1 of class K* such that:

ar([|1H(2,x) [y +p ()| x],) < V(2,x) <@ (B(2)]]x]],),
V(t,x) €RT x CO([—r,0;R") (3.4)

Vo(th;f(tvx’ uvd)) < _V(Z’ X) + a3<6(t)|u‘)a
Y(t,x,u,d) € R x CO([—r,0; R") x Ux D
(3.5)

(e) System (1.1) is RFC from the input u € My and
there exist a Lyapunov functional V:R' x
CO[~r,0]; R") — KT, which is almost Lipschitz on
bounded sets, functions a,, a, C of class K, 3, 6 of
class Kt and a locally Lipschitz positive definite
function p : RY — R such that:

ar([H(z, x)[ly) < V(,x) < a(B@0)]x],),

Y(t,x) € R x CO([-r,0]; R") (3.6)
VO([,x;f([7x7 u,d)) < —p(V(t,x)),

for all(t, x,u,d) € R x C°([~r,0]; R")

x U x D with ((6(2)|u]) < V(¢,x) (3.7)

(f) System (1.1) is RFC from the input u € My and
system (1.1) with u= 0 is non-uniformly in time
RGAOS with disturbances d € Mp.
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Moreover,

i) if H:R"xC([~r,0]; R") — Y is equivalent
to the finite-dimensional continuous mapping h :
[—r,+00) X R" — R then inequality (3.6) in the
above statement (e) can be replaced by the follow-
ing inequality:

a( [h(t,x(0))]) < V(z,x) < a(B)||x,),
Y(t,x) € RT x C([-r,0]; R") (3.8)
ii) if there exist functions p € Ky, € K™ and a con-
stant R >0 such that p(u(t)|x(0)]) < ||H(t, x)y
+R for all (t,x) € R" x CO([~r,0]; R") then the
requirement that (1.1) is RFC from the input u €
My is not needed in statement (a) above.

iii) if there exist functions p € Ky, u € Kt and a con-
stant R > 0 such that p(u(1)|x(0)]) < V(t,x) + R
for all (t,x) € R* x CO([~r,0]; R") then the
requirement that (1.1) is RFC from the input u €
My is not needed in statement (e) above.

In order to obtain characterizations of the UIOS
property, we need an extra hypothesis for system (1.1).
(S8) There exists a constant R>0 and a
function @ € K, such that the inequality x|, <
Lé%HH(l‘, ¥)|ly) +R holds for all (7,x)€ R x
([=r, 0 ®").

Hypothesis (S8) holds for the important case of the
output map H(z,x) :=d(x(9),T); 6 € [-r,0], where
' € R" is a compact set which contains 0 € R" and
d(x,T') denotes the distance of the point x € R"
from the set I' C R". Notice that it is not required that
I' ¢ R" is positively invariant for (1.1) with u = 0.

Hypothesis (S8) allows us to provide character-
izations for the UIOS property for periodic uncer-
tain systems. The proof of the following theorem
is given in the Appendix. For the definition of Uni-
form Robust Global Asymptotic Output Stability
(URGAOS), see the companion paper [21].

Theorem 3.3: Suppose that system (1.1) under hypo-
theses (S1-8) is T— periodic. The following statements
are equivalent:

(a) There exist functions o € KL, p € K, such that for all
(d,u) € Mp x My, (to,x0) € R x CO([—r,0]; R")
the solution x(t) of (1.1) with T.(t9)x = xo corre-
sponding to (d,u) € Mpx My, satisfies the following
estimate for all t > ty:

1H (2, T,()x)[ly

< max{a( Ixoll, , t—1t0)

sup o(p([u(r)l), 1~7)}

ty<t<t

(b) System (1.1) satisfies the UIOS property.
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(¢) There exists a locally Lipschitz function 0 € K,
such that 0 € CO([—r,0;R") is URGAOS with
disturbances (d',d) € M for the system:

x(t) = f(t, T.(0)x, (| H(e, To(0)x) | y)d' (1), d(1));
Y(t) = H(1, T,(1)x) (3.10)

where A := By[0, 1] x D.

(d) There exist a T— periodic Lyapunov functional
VR x CO[—r,0]; ") — R*, which is almost
Lipschitz on bounded sets, functions a, , a; , as of
class K., such that:

a([[H(zx)]ly) < V(1 x) < ax([[x],),

V(t,x) € R x CO([—r,0]; R") (3.11)

V()(Z’ X;f<l, X, U, d)) < _V(Z7 X) +a3(|u|)7
Y(t,x,u,d) € R x CO([—r,0]; R") x U x D
(3.12)

(e) There exist a Lyapunov functional V : R* x C°
([=7,0]; ") — R*, which is almost Lipschitz on
bounded sets, functions a, , a, , ¢ of class K., and
a locally Lipschitz positive definite function p :
R — R such that:

ar([H(z, x)[ly) < V(1 x) < ax([lx]],),

Y(t,x) € RT x CO([=r,0]; R") (3.13)

Vo(tv X;f(l‘, X, U, d)) S _p( V(ta X)),

for all (t,x,u,d) € R* x C°([-r,0]; R")

x U x D with ((|u]) < V(z,x) (3.14)
Finally, if H: R" x C*([~r,0]; R") — Y is equivalent
to the finite-dimensional continuous T— periodic map-
ping h: [—r,+00) x R" — NP then inequalities (3.11),
(3.13) in the above statements (d) and (e), respecti-
vely, can be replaced by the following inequality:

ar(|a(1,x(0))) < V(t,x) < ax(|Ix],),

Y(t,x) € R x CO([=r,0]; R") (3.15)
Remark 3.4: A statement like (e) of Theorem 3.3 was
extensively used as a tool of proving the UISS property
for autonomous time-delay systems in [28]. Moreover,
Sontag and Wang formulated 10S in [34,35] for con-
tinuous-time  finite-dimensional ~systems using an
estimate of the form (3.1) with 3(t) = 6(t) = 1. On the
other hand, estimates of the form (3.9) (“fading
memory estimates’’) were first used by Praly and
Wang in [29] for the formulation of exp-1SS and by L.
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Grune in [2,3] for the formulation of Input-to-State
Dynamical ~ Stability (ISDS) with H(t,x) = x,
B(t) = ~(1r) = 1, which was proved to be qualitatively
equivalent to (3.1) for finite-dimensional continuous-
time systems.

The following theorem provides sufficient
Lyapunov-like conditions for the (U)WIOS property.
The proof of implications (¢)=-(a) of Theorem 3.2 and
(e)=-(a) of Theorem 3.3 are based on the result of
Theorem 3.5, which gives quantitative estimates of the
solutions of (1.1) under hypotheses (S1—7). The gain
functions and the weights of the WIOS property can
be determined explicitly in terms of the functions
involved in the assumptions of Theorem 3.5.

Theorem 3.5: Consider system (1.1) under hypotheses
(S1-7) and suppose that there exist a Lyapunov
Sfunctional V:R" x CO([—r,0]; R") — R*, which is
almost Lipschitz on bounded sets, functions a , ¢ of
class Ky, , 6 of class Kt and a locally Lipschitz
positive definite function p : R* — R such that:

V(t,x) < a(B(0)]lx],). (2, x) € RT
x CO([—r,0]; R") (3.16)
VO, x:f(t xu,d) < —p(V(1,x)),
for all (¢,x,u,d) € R x C°([-r,0]; R")

x U x D with ¢(6(1)|u]) < V(¢,x) (3.17)

Moreover, suppose that one of the following holds:

a) system (1.1) is RFC from the input u € My

b) there exist functions p € Ky, € K and a con-
stant R > 0 such that p(u(1)|x(0)]) < V(t,x) + R
for all (t,x) € R x CO([—r,0]; R")

Then system (1.1) is RFC from the input u € My and
there exist a function o € KL with o(s,0) =s for all s> 0,
such that that for all (du)e Mpx My, (to,xo)€
R x CO([—r,0];R") the solution x(t) of (1.1) with
T,(to)x =xo corresponding to (d,u) € Mp x My, satis-
fies the following estimate for all t > ty:

V(t, T,(1)x)
< max { a(a(B(0)xoll,) 1 —10) ,
sup O(C(é(T) u(T)]) , [_T) }

<7<t

(3.18)

Finally,

(i) if there exist a function a, of class K. such that
ar(|[H(t,x)||y) < V(t,x) for all (t,x)€ R x C°
([-r,0]; R"), then system (1.1) satisfies the WIOS
property from the input u € My with gain ~(s) :=
ay'(¢(s)) and weight 6. Moreover, if in addition it
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holds that B(t) = 1, then system (1.1) satisfies the
UWIOS property from the input u € My with gain
v(s) == a; ' (¢(s)) and weight 6.

(i) if H: R x C([~r,0]; ") — Y is equivalent to
the finite-dimensional continuous mapping h:
[—r,+00) X R" — R’ and there exist functions
ai , ay of class Ky such that a,(|h(t,x(0))]) <

V(tvx)v ”H(tvx)”Y < @
0c|—r,0]

for all (t,x) € R x C° ([~r,0]; R") then system

(1.1) satisfies the WIOS property from the

input u € My with gain ~(s) := a>(a;' ({(s))) and

weight 6.

sup |A(1+ 90, x(0))|>

The following example presents an autonomous
time-delay system, which satisfies the UWIOS prop-
erty and does not satisfy the UIOS property. The
analysis is performed with the help of Theorem 3.2
and Theorem 3.5.

Example 3.6: Consider the following autonomous time-
delay system:

x1(t) = d()x (1)

Xo(t) = —xa(t) + x1(t = r)u(r)

Y(t) = x2(1)

(x1(0),x2(1)) € R, d(1) € D := [-1,1],
)

u(t) e U:=R, Y(1) € N (3.19)

Consider the functional:

V(t,x1,x2) := exp(—8 1)x}(0) + exp(—41)x3(0)

0
éx%(())—&-%exp(—S t)/x?(s)ds

First notice that the functional V :R" x C°([—r,0];
R?) — R' defined by (3.20) is almost Lipschitz on
bounded sets. Moreover, inequalities (3.6), (3.16) are
satisfied for this functional with a(s) = ax(s) :=
(1+5)s* +5% ai(s) :=1s* and B(t)=1. We next
estimate an upper bound for the Dini derivative of the
functional V : R" x CO([—r,0]; R?) — R along the
solutions of system (3.19). We have for all (t,x,u,d) €
R x CO([—r,0]; R?) x R x [-1,1]:

Vo(t,xl,xz;(dm(ﬂ),—m( )+ x1(=r)u))
= —8exp(—81)x}(0) +4dexp(—81)x}(0)
— dexp(—41)x7(0) + 2dexp(—41)x3(0)

0
rju—2exp(— /x

+%exp(—81)x‘1‘(0) —%exp(—gl)x?(—r)

+ (3.20)

= 23(0) +x2(0)x1 (~
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Using the inequalities |d| < 1,x5(0)x; (—r)u < 1x3(0)+
%x%(—r)uz,éx%( ru? < Lexp(—8t)x}(—r) + Lexp(81)
u*, we are in a position to estimate for all

(t,x,u,d) € R x CO([—r,0]; R?) x R x [-1,1]:
VO(1,x1,x2; (dx1(0), —x2(0) 4 x1 (—r)u))

< —3exp(—81)x(0) — 2exp(—41)3(0) = 5x3(0)

0
+%exp(8t)u4—2exp(—81)/x‘f(s)ds

—r

Finally, using the above inequality and definition (3.20)
we obtain for all (t,x,u,d) € R" x CO([—r,0]; R})x
R x [—1,1]:

VO(Z, x1,x2; (dx1(0), =x2(0) 4+ x1(—=r)u))

< —V(t,x1,x2) + %exp(ﬁit)u4 (3.21)
Inequality (3.21) guarantees that (3.7) and (3.17)
hold with p(s) :=1%s, ((s) :=3s* and §(t) := exp(21).
Definition (3.20) guarantees that there exist functions
pE Ky, p€ Kt and a constant R>0 such that
p(u(2)]x(0 )|) < V(t,x)+ R for all (t,x) € Rt x C°
(11, 00; %) (e, pls) i= 152, (1) i= exp(~21) and
R :=0). It follows from Theorem 3.2 (statement (e))
that system (3.19) satisfies the UWIOS property from
the input u € My. In order to be able to determine
the gain and weight functions we utilize the result of
Theorem 3.5. Indeed, it follows from Theorem 3.5 that
system (3.19) satisfies the UWIOS property from the
input u € My with gain ~(s) := a;'(¢(s)) = s* and
weight 6(t) := exp(2t).

It should be emphasized that system (3.19) does not
satisfy the UIOS property from the input u € My. This
can be shown by considering the solution of (3.19)
corresponding to inputs d(t) = 1 and u(t) = 1. It can be
shown that for x1(0) # 0 the output of (3.19) is not
bounded and satisfies rli+moo| Y(#)| = +oo. Consequently,

bounded inputs can produce unbounded output respon-
ses, which contradicts the requirements of the UIOS
property from the input u € My.

In order to understand how important the above
conclusions are, consider the output regulation problem

for the system:

X1 (l) =d (Z)X1 (l)

Xo(1) = =x2(t) + do(t)x1 (¢ = r)p(| T, (1)x3]],)

X3(1) = u(1)

Y(1) = x(1)

(x1(1), 2x2(1), x3(1))" € R, d(1) = (i (1), da (1))
eD:=[-1L17, u(t)eR, Y(t) e R (3.22)
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where p : R — R is a polynomial with p(0) = 0. Using
the main result in [19], and the fact that system (3.19)
satisfies the UWIOS property from the input u € My
with gain ~(s) := s> and weight §(t) := exp(2t), we
are in a position to show that the linear feedback
u(t) = —kxs(t) +v(t), where ve Mg represents
the control actuator error, achieves the regulation of the
output Y(t) = x(t) for k > 2. More specifically, the
closed-loop system (3.22) with u(t) = —k x3(t) + v(¢)
and k > 2 satisfies the UWIOS property from the input
veE Mg. N

4. Razumikhin Method for WIOS

Let V:[—r,+00) x R" — R be a locally Lipschitz
mapping and let (z,x,v) € RT x R" x R". We define

V(it+h hy) — V(t
D* V{1, x; ) o= lim supUE A X ) = Vit X)

h—0+ h
(4.1)

The following proposition provides conditions in terms
of Razumikhin functions for the (U)WIOS property.

Proposition 4.1: Consider system (1.1) under hypo-
theses (S1-7) and suppose that H : R" x C*([—r,0];
R") — Y is equivalent to the finite-dimensional mapping
h:=r,+00) x R" — N, Moreover, suppose that there
exist a locally Lipschitz function V :[—r,+00)x
R" — RT, functions ay , ar, a,C of class Ky, with
a(s) < s forall s > 0,0,6 of class K+ and a locally Lip-
schitz positive definite function p such that:
ar(|h(t = r,x)]) < V(t—r,x)
< a)(B(1)|x]), V(t,x) e RT xR (4.2)
DY V(1,x(0); A1, x,u,d))
< —p(¥(t,x(0))), for all (¢,x,u,d) € R*

x CO([~r,0]; ") x U x D with

max{ C(6(0)|ul) a<9 s[lipo] V(t+ 9,x(9))> }
< V(z,x(0)) (4.3)

Finally, suppose that one of the following holds:

(i) system (1.1) is RFC from the input u € My
(ii) there exist functions p € Ky, € K™ and a
constant R > 0 such that p(u(t)|x]) < V(t—r,x)+ R
Sorall (t,x) € R* x N"
Let as € Ky be the function with the property
0.l s s [hte+0.xO)]) for il (1) €
fe[—r.0]

R x CO[~r,0]; W"). Then system (1.1) satisfies the
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WIOS property with gain ~(s) = as(a;'({(s))) and
weight 6. Moreover, if 3 is bounded then system (1.1)
satisfies the UWIOS property from the input u € My.
Finally, if 3,6 are bounded then system (1.1) satisfies
the UIOS property from the input u € My.

Proof: Consider a solution x(z) of (1.1) under hypo-
theses (S1-7) corresponding to arbitrary (u,d) €
My x Mp with initial condition 7, (f)x = xo €
C%([-r,0]; R™). It follows from (4.3) and Lemma 2.8
that there exists a continuous function o of class KL,
with o(s,0) =s for all s >0 such that for all €
[t0, tmax) We have:

V(t,x(1))

< max 0’( V(lo,x(to)), l—lo);.

sup U(d( sup V(s+9,x(s+9))> , t—s>;
lo<s<t Oe[—r,0]

sup o(C(6(s)[u(s)[), 1 =) }

to<s<t

(4.4)

An immediate consequence of estimate (4.4) and the
fact that o(s,0) =5 for all s >0 is the following
estimate for all 7 € [, tmax):

sup V(t+0,x(1+0))
Oc[—r,0]

< max { a( sup V(to+0,x(to +0)), 1t — lg);

oc[—r,0]

al sup sup V(s+0,x(s+0)) |;
t0<s<t ge[—r,0]

sup ¢(8(s)u(s)[) } (4.5)

t1o<s<t

where G(s, 1) := s for t € [0,7] and &(s, ) := o(s,1 —r)
for ¢ > r. Using the fact that a(s) < s for all s > 0 and
estimate (4.5) it may be shown that:

sup V(t+0,x(t+9))
Oc[—r,0]

<maxq sup V(t +0,x(t +0));
fe[—r,0]

sup C(8(s)|u(s)|) }, Yt € [t, tmax) (4.6)
fh<s<t

In case that system (1.1) is RFC from the
input u € My, we have ty,x = +oo. In case that
there exist functions p € K., € K™ and a constant
R >0 such that p(u(7)|x|) < V(t —r,x) + R for all
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(t,x) € RT x N, inequality (4.6) in conjunction with
(4.2) implies:

—1
/ (maz (,max_ (ol

+ sup ¢<6<s>|u<s>|> ) Vi€l tme) (4.7)

to<s<t

Estimate (4.7) implies that system (1.1) is RFC from
the input u € My. Therefore we conclude that in any
case system (1.1) is RFC from the input u € My
and that estimates (4.5), (4.6) hold for all ¢ > ¢,.
Combining (4.5) with (4.6) we obtain for all ¢ > #,:

sup V(t+60,x(140))
Oe[—r,0]

< inf max{a( sup V(to+9,x(to+9)),t—§>;

RIS Oe[—r,0]

a(sup sup V(s+9,x(s+9))>;

{<s<tfe[-r0)
tsgsgté(é(»?)lu(S))} (4.8)

Lemma 2.7 in conjunction with inequality (4.8)
implies the existence of 6 € KL such that:
sup V(t+0,x(t+9))
Oc|—r,0]

grna;;{&( sup V(tg+ 0, x(t9 + 0)), t—zg>;

0c[—r,0]

sup ¢(8(s)u(s)[) },VI > 1o (4.9)

lo<s<t

Since H : R* x CO([-r,0]; W") — Y is equivalent to
the finite-dimensional mapping /, there exists a function

a3 €Ky Suchthat||H(l,x)||Y§a3< sup |h(t+0,x(0))|>
Oe[—r,0]
for all (z,x)eR* x CO([—r,0];R"). Using the previous

inequality in conjunction with (4.9) and (4.2) we obtain:

1H (2, T:(0)x)]ly
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v(s) == a3 (a; ' (¢(s))) and weight 6. Moreover, if 3 is
bounded then estimate (4.10) implies that system (1.1)
satisfies the UWIOS property from the input u € M.
Finally, if 5,6 are bounded then estimate (4.10)
implies that system (1.1) satisfies the UIOS property
from the input u € M. The proof is complete. N
The following corollary extends the classical
Razumikhin theorem to systems with disturbances as
well as to the case of output asymptotic stability. The
notion of Robust Global Asymptotic Output Stability
(RGAOS) is presented in the companion paper [21].

Proposition 4.2: Consider system (1.1) under hypo-
theses (S1-7) with u=0 and suppose that H :
R x CO[—r,0]; R") — Y is equivalent to the finite-
dimensional mapping h : [—r,+00) x R" — R’. More-
over, suppose that there exist a locally Lipschitz function
V:[—r,+00) x R" — R, functions a; , ay , a of class
K., with a(s) <s for all s >0, 8 of class Kt and a
locally Lipschitz positive definite function p such that:

ar([h(t —r,x)|) < V(1 = r,x) < ax(B(1)]x]),
Y(t,x) € R x R (4.11)

DTV (t,x(0): f(1,x,0,d)) < —p(V(1,x(0))),

for all (¢,x,d) € R x C°([—r,0]; R")

x D with a( sup V(¢ + 9,x(9))> < V(1,x(0))
Oe[—r,0]

(4.12)

Finally, suppose that one of the following holds:
(i) system (1.1) withu =0 is RFC
(ii) there exist functions ¢ € Ko, p € Kt and a con-
stant R > 0 such that {(p(t)|x|) < V(t —r,x) + R for
all (t,x) € R x R

Then system (1.1) with u =0 is non-uniformly in
time RGAOS. Moreover, if (3 is bounded then system
(1.1) withu=0is URGAOS.

The following example illustrates the application of
Proposition 4.1 to an autonomous time-delay system.

Example 4.3: Consider the following autonomous time-
delay system:

x(0) =d(t)x(t—r) — x> (1) + u(t)

Y(1) = H(T,(1)x)

x(r)eR,d(t) e D:=[-R,R], u(t) € U:=NR,
Y(1) € C°([-r,0;R) (4.13)

< max{ as (all (&(az (0<111g§+rﬂ(7)||x0||,,>, t— t0>)>; sup as(ay' (C(8(s)|u(s)]))) }, V>t (4.10)

Estimate (4.10) implies that system (1.1) satisfies the
WIOS property from the input u € My with gain

to<s<t

where R >0, H(x) :=h(x(0)); 0 € [-r,0], h(x):=
x (1=2VR|x|™") for |x| >2vVR and h(x):=0 for
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|x| <2V/R. Notice that H:C’([-r,0]; R) = Y :=
C([~r,0]; M) is equivalent to the finite-dimensional
mapping h: R — R. Consider the locally Lipschitz
function:

V(x) :=max{0; x> — 4R } (4.14)
which satisfies (4.2) with ai(s) = ay(s) := s* and
B(t) = 1. Notice that for all |d <R and x¢€
CO([~r,0]; R) with |x(0)| > 2v/R, we have:

DYV(x(0);dx(—r) — x*(0) + u) = 2dx(0)x(—r)
—2x*(0) + 2x(0)u < 2R|x(0)] |x(—7)|
— 234(0) + 21x(0)| |

Using the Young inequality 2|x(0)| |u| < x*(0) + 3 |u|%
and completing the squares, we obtain for all |d| < R
and x € C°([—r,0]; R) with |x(0)] > 2v/R:

DY V(x(0);dx(—r) — x*(0) + u) < 2R x*(0)

R
2 X2 (=r) = x*(0) + 3 |uf

5 (4.15)

4
3

Let a(s) := %s,p(s) :=2Rs and ((s) := %s,,

: Notice
< V(x(0)) and |x(0)] > 2vR

that if a| sup V(x(0))

Oe[—r,0]
then x*(—r) < 4x%(0). Consequently, previous defini-
tions, definition (4.14) and inequality (4.15) implies
that the following inequality holds for all |d| <R

and  x € C'([-r,0]; R) with  max< ((|u]),

a( sup V(x(@))) } < V(x(0)),]x(0)| > 2vR:

fe[-r,0]

DV (x(0); dx(—r) — x*(0) +u) < —p(V(x(0)))
(4.16)

Notice that (4.16) holds also for all |d| < R and x €

CO([~r,0]; ) with max{ C(|u)), a< sup V(x(&))) }

0c[—r,0]
< V(x(0)), [x(0)] < 2v/R. Thus V satisfies (4.3) with

a(s) :=1s,p(s) :=2Rs,((s) := %sg and  5(1)=1.
Finally, notice that there exist functions p € Ky, u € K+
and a constant K>0 such that p(u(f)]x]) <

V(t—r,x)+ K for all (t,x) € R" x R" (for instance,
pls):=s*u(t)=1 and K=4R). It follows from
Proposition 4.1 that system (4.13) satisfies the UIOS
property from the input u € My with gain ~(s) :=

3 2 <
2R

1. Karafyllis et al.

5. Conclusions

In this work Lyapunov-like characterizations of the
external stability notions of (uniform) weighted Input-
to-State Stability (ISS) and Input-to-Output Stability
(IOS) for uncertain time-varying systems described by
Retarded Functional Differential Equations (RFDEs)
are developed. Necessary and sufficient conditions in
terms of Lyapunov functionals and sufficient condi-
tions in terms of Razumikhin functions are provided for
these notions. The framework of the present work
allows outputs with no delays, outputs with discrete or
distributed delays and functional outputs with memory.
The robust stability notions and properties pro-
posed in the present work are parallel to those recently
developed for dynamical systems described by finite-
dimensional ordinary differential equations. Just as
the popularity gained by the notions of uniform and
non-uniform in time ISS and IOS in the context of
deterministic systems, it is our firm belief that the
stability results of this paper will play an important
role in mathematical systems and control theory for
important classes of systems described by RFDE:s.
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Appendix—Proofs

Proof of Theorem 3.2: We prove implications (a) =
(b), (b) = (¢), (¢) = (d), (d) = (e), (¢) = (a). The
equivalence between (f) and (b) is a direct consequence
of Theorem 3.1 in [18].

(a) = (b) : Suppose that there exist functions o €
KL,3,¢ € K',p € Ky, such that the estimate (3.2)
holds for all (d,u) € Mp x My, (to,xo) € R* x
C'([~r,0]; R") and ¢ > to. If we set (s) := o(p(s),0)
(that obviously is of class K), the desired (3.1) is a
consequence of (3.2) and the previous definition. Thus
statement (b) holds if (1.1) is RFC from the input
u € My. If the hypothesis that (1.1) is RFC from the
input u € My is not included in statement (a) then
there exist functions p € K, u € K™ and a constant
R > 0 such that p(u(7)|x(0)]) < ||H(z,x)||y+R for all
(t,x) € R"x CO([-r,0]; W"). It follows from (3.2)
and previous definitions that for every (f, xo) € R* x
C'([~r,0; R"), (d,u) € Mp x My the corresponding
solution x(z) of (1.1) with T,(7)x = x, satisfies the
following estimate for all 1 > #:

p(p()]x(1)]) < R+ max { a(B(0) | xoll, > 7 = 10),

sup 7(5(7)M(T)I)}

ty<T<
The above estimate in conjunction with Definition 2.1
implies that (1.1) is RFC from the input u € My.
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(b) = (c¢) : The methodology of the proof of this
implication follows closely the methodology used in
[16] for finite-dimensional systems. Since (1.1) is RFC
from the input u € My, by virtue of Lemma 3.5 in [14],
there exist functions ¢ € K", a € K, and a constant
R > 0 such that the following estimate holds for all
u € My and (107X0,d) e R x CO([—I‘, 0], ‘J{n) X Mp:

X0

TEty,1]

IT-(0)x]l, < q(1) a<R +

Yt >ty

o+ sup |u<7>>,
(A1)

Using Corollary 10 and Remark 11 in [33], we
obtain /<¢€KoC such that a(rs) < x(r)x(s) for all
(r,s) € (‘R+) . Let # € K be a locally Lipschitz
function that satisfies 6(s) < min{x~'(s); s }

. S
_1(exp(=1)

K ( 24(7) )

exp(1) q(1) (1), p(t) ==L where § € K is the

function involved in (3.1). The previous definitions
guarantee that:

if ¢(r)u| < 6(||x||,) then a(4]u])

< Su(0)lxl, and (50l < 7 (u(2)¥],) (A2)

for all s>0. Moreover, let ¢(r):=

By virtue of (Al), (3.1) and (A2) it follows that the
solution x(-) of (1.1) satisfies the following implica-
tion:
S(r)u()| < O(I To(7)x],), a.e. in [to,1]
= (|| T (1)x[],< exp(=1)a(2R)
+exp(—1)a(4]xol,)

+3e0(=) sup DI, (AY)
S(lalr)| < 6(IT,(1x],). ae. in [,

= H(t, Tl < o(8(0) ]

t =) + sup y(u(r)|T:(7)x,) (A4)

Clearly, (A3) implies:
pONTm)xl, < sup w(s)[Tr(s)x], < 2a(2R)
055

+2a(4\|x0||r), V1 € [lo,l],
provided that ¢(7)|u(r)| < O(||T.(7)x]|,),

a.e. in [f, (] (AS)

Notice that every solution x( - ) of (3.3) corresponding
to some (d’,d) € M coincides (as long as it
exists) with the solution of (1.1) corresponding to
u(+) = él(HT(i)YH)d (+) initiated from same initial xo €

1. Karafyllis et al.

C*([-r,0];R") at time # >0 and corresponding to
same d € M p. Thus, by taking into account (A3), (A4)
and (A5), it follows that the solution x(-) of (3.3)
exists for all 7 > ¢y and satisfies:

w(ONT()x||,< exp(—

1
Na(4]xoll,) +5exp(=1)
sup ()| T (7)x[l,, V1 = 10, (d', d) € Ma,
t1h<7t<t

1)a(2R)

+exp(—

(10,%0) € R* x C([~r,0]; ") (A6)

1H(t, T,(0)x)lly < o(B(10)|x0ll,» ¢ = 10)
+ sup (D) To(7)xl,), Ve > 1o, (d’, d)

1H<t<t

€ Ma, (10, %0) € R* x CO[=r,0:R") (A7)
u(O TH(1)x],< 2a(2R) + 2a(4]xol,),

Vit > 1y, (d',d) € Ma, (1o, xo) € RT

x CO([=r,0]; ") (A8)

Consider the functions c(h, T,s) := sup{ u(to + /)
IT(to + h)xll, s (d',d) € Ma, [xo],< s, 0 € 0, T}
and b(h,T,s) := sup{|[H(to + h, T,(t + h)x)|y ;
(d',d) € Ma, ||xol|,<s, to €[0,7]}, where x(-)
denotes the solution of (3.3) corresponding to some

(d',d) € Ma. Next we show that hm b(h,T,s) =
llm c(h, T,s) =0, for all (T,s) € (fRJr) .Clearly, by

(A7) (A8) and definitions of ¢, b we have

c(t,T,s)<2a(2R)+2a(4s);
b(1,T.5) <o uax, 8(7)5.0) +7(2a(2R) +2a(45)),
V>0

By virtue of the above estimates the m%ppings ¢,bare
bounded for each fixed (7,s) € (R")” and thus the
limits limsup ¢(/, T,s) = p and limsup b(h, T,s) =

h——+00 h—+00

are well defined and finite. We show that p =/=0.
Indeed, for every € > 0 there exists 7= 7(e, 7,s) > 0
such that

c(h,T,s)<p+eVh>rt (A9)

Again recall definitions of ¢, b above and (A6), (A7),
(A8) in conjunction with (A9), which imply

<
b(h,T,s) < a( exp(T+ 1) OSI?SaTxH B(6) Og?;}"(w

4(6)[24(2R) + 2a(45)] b~ 7)

+7(p+e), forall h>r
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c(h, T,s) < exp(—h)a(2R)

+ exp(—h)a (4 exp(T+7) 0<r?<a7§+T

4(€)[2a(2R) + 2a(4s)]) + gexp(—h)(p + <),
forall h > 7

Clearly, the above inequalities imply that p = 0 as well
as [ < v(e) for all € > 0. Consequently, we must have
limsup b(h, T,s)=I1=0. The fact that lim b(h,T,s)=

h—+o0 h—+00
hm c(h,T,s) = 0 in conjunction with Lemma 3.3 in

[14] shows that (3.3) is non-uniformly in time RGAOS
with disturbances (d’,d) € Mx.

(c) = (d) : Suppose that (3.3) is non-uniformly in time
RGAOS with disturbances (d’,d) € Mx. Theorem 4.1
(statement (d)) in [21] implies that there exists a con-
tinuous mapping (1,x) € R" x CO([~r,0;; R") —
V(t,x) € R, which is almost Lipschitz on bounded
sets, with the following properties:

-- there exist functions a;,a; € K, 3 € K™ such that:

ar([H(, %) [ly+p@)llx,) < V(1 x)

< ax (B(0)lIx]l,), V(1. x) € R
x C°([—r,0]; R") (A10)
-- it holds that:
(et
< —V(t,x),Y(t,x,d',d) € R*
x CO([—r,0; ") x A (A11)

Notice that inequality (All) implies the following
inequality:

(1, x: f(t, x,u,d)) < —V(t,x), for all(t, x, u, d)
e R x C([—r,0]; R") x U x D with ¢(1)|u|
< 0(/Ixl,) (A12)
Using property (P1) of Definition 2.2 for the con-

tinuous mapping (1,x) € R" x CO([~r,0;; R") —
V(t,x) € R, we obtain for all (¢,x,ud) €
R x O([—r, 0]; R") xU x D:

|VO(Z, x; ft, x,u,d)) —
< M (14 ||x||,+1) [f(2, x, u, d)

VO(1, x: (1, x,0, d))|
_f([» X, Ov d)|

The above inequality in conjunction with (2.2) implies
that the following inequality holds for all (¢, x,u, d) €
R x CO[~r,0];R") x U x D:

[VO(t, x f(t,x,u,d) — VO(t, x; /{2, x,0,d))|
< M (2 + || x|, 41) Lo(t, [1x]|,+ul ) [u] - (A13)
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Define
U(1,s) :=sup{ M(z+ [|x[|,+1)
Ly (t, ||| +ul ) [ul; |x]],< 07" (6(1)s) ,

Without loss of generality we may assume that the
function ¢ € K* is non-decreasing. Clearly, 1 : R* x
R — R is a mapping with (#,0) = 0 for all # > 0,
such that (i) for each fixed ¢ > 0, the mapping ¥ (¢, - )
is non-decreasing; (ii) for each fixed s > 0, the map-
ping ¢( - ,s) is non-decreasing and (iii) 11m a(t,s) =0,
for all ¢ > 0. Hence, by employing Lenima 2.3 in [12],
we obtain functions a3 € K and § € K such that
(1,5) < ay(5(1)s).

We next establish inequality (3.5), with a3 as pre-
viously, by considering the following two cases:

0 1(¢(1)|u]) < ||x||,- In this case inequality (3.5) is a

direct consequence of (A12).

* 071 (p(0)|u|) > ||x||,. In this case, by virtue of
inequalities (A12), (A13), definition (Al4) and
definition of a3, we have: V(¢ x:f(t,x,u,d)) <
VO(1,x: f(1,%,0,d)) (1, |ul) < =V (1,x)+ a3 (6(1) ul),
which implies (3.5).

(d) = (e) : Notice that (3.5) implies (3.7) with ((s):=
2a3(s) and p(s) :=3s. The fact that system (I.1) is
RFC follows directly from Theorem 3.5.

(e) = (a) : Theorem 3.5 implies that system (1.1) is
RFC from the input u € My and that (3.18) holds.
Next, we distinguish the following cases:

Ul <5} (A14)

1) If (3.6) holds, then (3.2) is a direct consequence of
(3.18) and (3.6).

2) If (3.8) holds, then (3.18) implies the following
estimate:

(2, x(1))]

< max { @ (o a(Bl0)lIxol, ), = 10)),
sup ;! (o(¢(6(s) u(s)]). 1 =) }
to<s<t
for all 1 > ¢,

Since £ :[—r,400) x R" — R’ is continuous with
h(t,0) = 0forallr > —r, it follows from Lemma 3.2 in
[14] implies that there exist functions p€ K, and ¢ K™
such that:

[h(t = r,3)| < p(&(1)|x]), ¥(1,x) € R x R"
Combining the two previous inequalities we obtain:

sup |h(r+ 6, x(1+ 0))|
Oe[—r,0]

< max { w(q(t0)xoll, . 1= 10),

sup w( C(6(s)|u(s)]), £ —s) } Vi > 1o

ty<s<t
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where ¢q(1) := 3(t) + t<n7'12t)~(ﬂ* (1) w(s, ) :=max{p(s),

a;l(o(s+a(s), 0))} for t€[0,r) and w(s, ) := max
{exp(r—1t)p(s), a;' (o(s+a(s), t—r))} fori>r.
The above estimate, in conjunction with the fact that
H:R"x C([-r,0]; R") — Y is equivalent to the
finite-dimensional mapping / shows that (1.1) satisfies
inequality (3.2).

The proof is complete. <

Proof of Theorem 3.3: The proof of implications (a)
= (b), (d) = (e) and (¢) = (a) follow the same
methodology as in the proof of Theorem 3.2. Parti-
cularly, in the proof of implication (¢) = (a), we use in
addition the fact that since 4 : [-r,+00) x R" — R’
is continuous and T — periodic with h(z,0) = 0 for all
t > —r, it follows from Lemma 3.2 in [14] implies that
there exist a function p € K, such that:

|h(t —r,x)| < p(|x]),V(t,x) € RT x R"

The proof of implication (¢) = (d) differs from the
corresponding proof in Theorem 3.2 in the definition
of 9. Specifically, we first notice that the fact that V' is
T — periodic, implies that VO(¢,x;f(t,x,u,d)) is
T — periodic. Using property (P1) of Definition 2.2 for
the continuous mapping (¢, x) € R* x C([-r,0]; R")
— V(t,x) € R", we obtain for all (¢, x,u,d) € R*
x CO([—r,0; R") x U x D:

|V0(l,x;f(l,x,u,d)) — Vo(l,x;f(t7 x,O,d))‘
< M(T+ |l +1) [, %, u,d) — 111, %, 0,)

for certain non-decreasing function M :RT — R,
The above inequality in conjunction with (2.2) and the
fact that f'is T — periodic implies that the following
inequality holds for all (¢,x,u,d) € R* x C*([~r,0];
R") x U x D:

V(8 x; /8, x,u,d) — VO (1, x:£(1, x,0, d))|
< M(T+ |lx]|,+1) Lo(T. ||x],+ul ) u|

We next define:

W(s) ==sup{ M (T+||x[|,+1) Lo(T,[|x],+ul ) Jul
[H(tx)lly <07 (s), Jul <5}

Notice that hypothesis (S8) implies that i (s) < a3(s)
foralls > 0, where as(s) := M(T+ R+ 1+ a(07'(s)))
Ly(T,R+a(67'(s)) +s)s,R>0 is the constant
involved in hypothesis (S8), a € K, is the function
involved in hypothesis (S8) and M(s) is a continuous
positive function which satisfies M(s) > M(s) for all
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s > 0. From this point the proof of implication (c) = (d)
is exactly the same as in Theorem 3.2 (e,
by distinguishing the cases 6~'(|u|) < ||H(t,x)|y and
6~ (lu) > |H(1,x)ly).

Finally, we continue with the proof of implication
(b) = (c). Without loss of generality we may assume
that v € K. Let 8 € K, be a locally Lipschitz func-
tion that satisfies 6(s) <y~ '(3s) for all s>0. By
virtue of (3.1) and hypothesis (S8) it follows that
the solution x(-) of (1.1) satisfies the following
implications:

lu(7)| < 6(||H(7, T,()x)]|y), a.e. in [to, ]

|,., t— [());

v} (Al3)

= | H(, To()lly < max {o([lx

3 sup [[H(r, (7))

1<t<t

lu(T)| < O(||H(7, T,(1)x)|ly), a-e. inlr, ]
= 1 T(0)x], < R+a(o(|xol,t — 10)

+l sup ||H(T, T,(T)X)HY)

2 10 <7<t

(A16)

Proceeding in exactly the same way as in the proof of
Theorem 3.2, it can be shown that for all (d’,d) €
My, (to, x0) € R x CO([—r,0]; R"), the correspond-
ing solution x(-) of (3.10) satisfies the following
estimates for all 1 > ¢:

|H (@ T,y < max {o(lxoll, 1 = 10):

1
5 sup [H(m T(r)9)ly } (A17)
10 <1<t
17(0l,< R+ a(o(xall, £ = 10)
1
+5 sup [[H(m. T,(r)0)lly ) (AL8)
10 <1<t

[H (e, T()x)[ly < o(llxoll,, 0) and || T,(2)x],
< R+a(20([|xoll,,0)) (A19)

Consequently, (A19) and Definition 2.1 in [21] imply
that system (3.10) is RFC. Moreover, using estimates
(A17) and (A19), it follows that for all # > 7, we have:

[1H(t, T (1)x)[y
< inf max { o(R+a(20(||xol],,0)),t—&);

1h<E<t

3 sup [[H(m T(n))ly ) (A20)

§<r<t
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Lemma 2.7 in conjunction with inequality (A20)
guarantees the existence of w € KL such that for all
t >ty we have:

| Ty < (R +a(2o(|xol,.0)). ¢~ o)
(A21)

Combining estimate (A19) with (A21) we obtain for
all 1 > 1y:

1H (s, T.(0)x)]ly < &(llxoll, , = 10) (A22)

where £ (s, 1) 1= (o(s5,0))2(w(R + a(20(s,0)),1))* (notice
that x is of class KL). Estimate (A22) in conjunction
with Definition 3.3 in [21] and the fact that system
(3.10) is RFC shows that (3.10) is URGAOS with
disturbances (d’,d) € M. The proof is complete. <

Proof of Theorem 3.5: Consider a solution of (1.1)
under hypotheses (S1—-7) corresponding to arbitrary
(u,d) € My x Mp with initial condition T,(#))x =
xo € C([-r,0];R"). By virtue of Lemma 2.5, for
every T € (t,max), the mapping [to, 7|2t —
V(t, T,(t)x) is absolutely continuous. It follows from
(3.17) and Lemma 2.4 that there exists a set I C [to, 7]
of zero Lebesgue measure such that the following
implication holds for all 7 € [ty, T]\I:

(e, T, (0)x) = ((8()[u(2)])

= LV T0W) < (V0 T(0)

Lemma 2.8 implies the existence of a continuous
function o of class KL, with o(s,0) = s for all s >0
such that:

V(t, T,(f)x) < max { o( V(to, T(t0)x), t — to),

tsgsgfa( C(o6(s)|u(s)]), t — S)}Nl € [to, T
T (A23)

555

with T € (f, tmax). Notice that for the case that (1.1) is
RFC from the input u € My then t,,x = +o0. For the
case that there exist functions p € K,,u € K™ and a
constant R > 0 such that p(u(7)|x(0)]) < V(t,x) + R
for all (¢,x) € R" x C°([—r,0]; "), combining the
previous inequality and (A23) we obtain for every
T € (o, tmax):

p(u(D)]x(1)])

< R+max{o( V(l(),Tr(lo)x), t— l()),

sup o)), z—s>},vz € [, 7]
T (A24)

It follows from estimate (A24) that tfy,,x = +oc.
A direct consequence of Lemma 2.6 is that
estimate (A23) holds for all (t9,x0,d,u) € R" x
C'([-r,0; R") x Mp x My and t > ty. Moreover, if
there exist functions p € K, € KT and a con-
stant R > 0 such that p(u(7)|x(0)|) < V(t,x) + R for
all (t,x) € R" x C°([-r,0]; R"), then Lemma 2.6
implies that estimate (A24) also holds for all
(to, x0,d,u) € RT x CO([—r,0]; R") x Mp x My and
t > ty. In this case the fact that system (1.1) is RFC
from the input u € My is an immediate consequence
of (A24) and Definition 2.1. Notice that (3.18) is an
immediate consequence of (A23) and (3.16). Finally,
(1) and (ii) are immediate consequences of (3.18). The
proof is complete. <
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