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In this work characterizations of internal notions of
output stability for uncertain time-varying systems
described by retarded functional differential equations
are provided. Particularly, characterizations by means
of Lyapunov functionals of uniform and non-uniform in
time Robust Global Asymptotic Output Stability are
given. The results of this work have been developed for
systems with outputs in abstract normed linear spaces
in order to allow outputs with no delay, with discrete or
distributed delay or functional outputs with memory.
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1. Introduction-Motivation

In this work we develop Lyapunov characterizations
of various internal robust stability notions for uncer-
tain systems described by Retarded Functional Dif-
ferential Equations (RFDEs). The internal robust
stability notions proposed in the present work are
parallel to the internal robust stability notions used
for finite-dimensional systems and the framework
used in this work allows the study of systems with
outputs with no delays, outputs with discrete or dis-
tributed delay or functional outputs with memory.
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It should be emphasized that our assumptions for
systems described by RFDEs are very weak, since we
do not assume boundedness or continuity of the right-
hand side of the differential equation with respect to
time or a Lipschitz condition. Furthermore, we do not
assume that the disturbance set is compact.

Notions of output stability have been studied for
finite-dimensional systems described by ordinary dif-
ferential equations (see [11,15,17,32,33]) or difference
equations (see [12,16]). For systems described by
RFDEs the notion of partial stability (which is a
special case of the notion of global asymptotic output
stability) has been studied in [2,3,10,34]. Particularly
in [2], the authors provide Lyapunov characterizations
of local partial stability for systems described by
RFDEs without disturbances under the assumptions
of the invariance of the attractive set and boundedness
of the right-hand side of the differential equation with
respect to time.

In this work we provide Lyapunov characterizations
of Robust Global Asymptotic Output Stability
(RGAOS) for systems described by RFDEs with dis-
turbances, without the hypothesis that the attractive
set is invariant and without the assumption that the
right-hand side of the differential equation is bounded
with respect to time. Particularly, we consider uniform
and non-uniform notions of RGAOS, which directly
extend the corresponding notions of Robust Global
Asymptotic Stability of an equilibrium point (see
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[3.4,5,9,18,23,24,25,27,28]). The reader should notice
that the notion of non-uniform in time (asymptotic)
stability is a classical stability notion arising in time-
varying differential equations (see for instance [8, 25]).
The usefulness of the non-uniform in time stability
notions in Mathematical Control Theory was recently
shown in [13—20]: time-varying feedback will induce
a time-varying closed-loop system even if the open-
loop control system is autonomous. The use of time-
varying feedback provides certain advantages which
cannot be guaranteed by time-invariant feedback (see
[13,14] and references therein). Finally, in [14,16,20]
it was shown that non-uniform in time stability notions
are useful even for autonomous systems (see for
instance Proposition 3.7 in [14], Proposition 3.3 in [16]
and Theorem 3.1 in [20]) and can be utilized in order to
study robustness to perturbations for control systems.
The results of the present work are expected to have
numerous applications for Mathematical Control
Theory. For example, the characterizations presented
in this work can be directly used (exactly as in the
finite-dimensional case) in order to:

e obtain necessary and sufficient Lyapunov-like
conditions for the existence of robust continuous
feedback stabilizers for control systems described
by RFDE:s (use of Control Lyapunov Functionals),

e develop backstepping methods for the feedback
design for triangular control systems described by
RFDEs,

e develop Lyapunov redesign methodologies which
guarantee robustness to disturbance inputs,

e study the solution of tracking control problems
where the signal to be tracked is not necessarily
bounded with respect to time,

e study the existence/design observer problem for sys-
tems described by RFDEs by means of Lyapunov-
like conditions (e.g., Observer Lyapunov Func-
tion, Lyapunov characterizations of observability/
detectability).

However, the most important application of the
results presented in this work is the development of
Lyapunov characterizations of the external stability
notions of Input-to-Output Stability (IOS) and Input-
to-State Stability (ISS) for systems described by
RFDEs. Related findings are reported on in a com-
panion paper [21].

The structure of the paper is as follows: Section 2 is
devoted to the presentation of the class of systems
studied in this work. The stability notions used in the
present paper as well as other important notions
concerning Lyapunov functionals are provided in
Section 3. Section 4 contains the main results of this
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work. Two important examples are presented in Sec-
tion 5: Example 5.1 shows the applicability of the
main results to feedback stabilization problems and
Example 5.2 is an academic example which illustrates
the use of the Lyapunov characterizations provided in
the present paper. Finally, the main results are proved
in the Appendix. For the proofs of the main results
some important technical results are stated and
proved in the Appendix. It should be noticed that the
capability of dealing with measurable (and not piece-
wise continuous) disturbances is provided by the three
technical results proved in the Appendix (Lemma A.1,
Lemma A.2 and Lemma A.3).

Notations Throughout this paper we adopt the fol-
lowing notations:

* Let I C R”" be an interval. By C°(;Q2), we denote
the class of continuous functions on 7, which take
values in Q@ C R”". By C!(I;Q), we denote the class
of functions on 7 with continuous derivative,
which take values in Q.

* For a vector x € " we denote by |x]| its usual
Euclidean norm and by X’ its transpose. For x €
C%([—r,0]; R") we define ||x]|, := max, |x(6)].

—r,

* N denotes the set of positive integers and R*
denotes the set of non-negative real numbers.

* We denote by [R] the integer part of the real
number R, i.e., the greatest integer, which is less
than or equal to R.

* E denotes the class of non-negative wafunctions

p:RT— RT, for which it holds: [ u(r)dr <
+o00 and th+n p(t) =0. 0
* We denote byOOK+ the class of positive C? functions
defined on R*. We say that a function p : R —
R is positive definite if p(0) = 0 and p(s) > 0 for
all s > 0. By K we denote the set of positive def-
inite, increasing and continuous functions. We
say that a positive definite, increasing and con-
tinuous function p: R — R' is of class K
if\- L1r+1r1OO p(s) = +oo. By KL we denote the set of all

continuous functions o = o(s,7) : R x KT —
RT with the properties: (i) for each >0 the
mapping o(-,7) is of class K ; (ii) for each s > 0,
the mapping o(s,) is non-increasing with
tLi+moo o(s, 1) =0.

* Let U C R™ be a non-empty set with 0 € U. By
Byl0,r] :={u € U;|u| <r} we denote the closed
sphere in U C R™ with radius r > 0, centered at
0ecU.

* Let D C R’ be a non-empty set. By M), we denote
the class of all Lebesgue measurable and locally
essentially bounded mappings d : R — D. By M),
we denote the class of all right-continuous
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mappings d: RT — D, with the property that
there exists a countable set A; C R which is either
finite or Ay = {t,‘(’;k =1,...,00} with ZZH > IZ >
0 for all k =1,2,... and lim #{ = +o0, such that
the mapping 1 € R\ 4, — d(t) € Dis continuous.

*Let x:[a—r,b) = R" with b>a> —co and
r > 0. By T;(7)x we denote the “r- history” of x at
time ¢ € [a,b), i.e., T,(t)x := x(¢t + 6);0 € [—r,0].
Notice that T,(z )x € C'([-r,05; R") if x is con-
tinuous.

*By || ||y, we denote the norm of the normed linear
space Y

2. Main Assumptions and Preliminaries
for Systems Described by RFDEs

Let D C %R/ be a non-empty set and Y a normed linear
space. We denote by x(¢) the solution of the initial-
value problem:

(1) =f(t, T,(1)x,d(1)),
Y(2) = H(t, T)(1)x)
x(1) € R, d(1) € D, Y(1) € Y

=.

(2.1)

with initial condition T,(#)x = xo € C°([—r,0]; R"),
where r > 0 is a constant and the mappings f: R" x
Co([=r, 0, R")xD — K" H : R" x CO[~r,0]; R") —
Y satisfy f(1,0,d) =0, H(t,0) =0 for all (1,d) €
R x D. The vector d(f) € D represents a time-
varying uncertainty of the model.

Standard hypotheses (see (H1), (H3), (H4) below)
are employed in order to guarantee uniqueness of
solutions for (2.1), Lipschitz continuity of the solution
with respect to the initial conditions and continuity of
the output map. An additional hypothesis will be used
in order to guarantee the “Boundedness-Implies-
Continuation™ property (see (H2) below). Particu-
larly, in this work we consider systems of the form
(2.1) under the following hypotheses:

(H1) The mapping (x, d) — f(t, x, d) is continuous for
each fixed r > 0 and there exists a symmetric, positive
definite matrix P € R"*" such that for every bounded
IC R and for every bounded S C CO([—r,0]; R"),
there exists a constant L > 0 satisfying the following
inequality:

(x(0) = »(0)) P(A(t, x, d) — (1, y, d))

< L max |x(r) = y(r) = Llx —

Ve ILV(x,y) € Sx S,Vde D
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Hypothesis (H1) is equivalent to the existence of a
continuous function L : R x KT — R such that for
each fixed ¢ > 0 the mappings L(¢,-) and L(-,7) are
non-decreasing, with the following property:

(x(0) = 1(0)) P(flt, x, d) = f(t,,d))
< L( x4l e = y2Y(s X, p.d) € RE
) CO([=r, 0]; ") x CO([—r,0); R") x D
(2.2)

(H2) For every bounded Q € Rt x C([~r,0]; R") the

image set /(2 x D) C R" is bounded.
(H3) There exists a countable set 4 C R™, which
is either finite or 4 = {f;k =1,...,00} with . >

tr >0 for all k=1,2,... and lim¢# = +oo, such
that the mapping (1, x, d) € (RT\4) x C*([-r,0]; R")x
D — f(t,x,d) is continuous. Moreover, for each

fixed (t9,x,d) € R" x CO([—
lim f(t x,d) = f(to, x, d).

l‘~>t

(H4) The mapping H(t,x) is Lipschitz on bounded
sets, in the sense that for every bounded 7 C R and
for every bounded S C C°([—r,0]; R"), there exists a
constant Ly > 0 such that:

r,0;'R") x D, we have

[H (1, x) = H(r.»)Iy< Lar (|t = 7] + [lx = ¥l,)
V(t,7) e IX IV(x,y) € Sx S

Hypothesis (H4) is equivalent to the existence of a
continuous function Ly : R" x R — RT such that
for each fixed ¢ > 0 the mappings Ly(¢,-) and Ly(-, 1)
are non-decreasing, with the following property:

| H(1,x) = H(7, )|ly

< Ly (max{z, 7}, |lx],+[|y[l,) ( x=yll,)
Y(t,7,%x,y) € RT x R x CO([—r,0]; R")

x C([=r,0); ") (2.3)

It should be emphasized at this point that a major
advantage of allowing the output to take values in
abstract normed linear spaces in (2.1), is that we are in
a position to consider:

e outputs with no delays, e.g. Y(¢) = h(t,x(¢)) with
Y =R,

e outputs with discrete or distribut,ed delay, e.g.
Y(1) = h(x(),x(t —r)) or Y(¢ f h(t,0,x(0))do
with Y = R¢,

e functional outputs with memory, e.g. Y()=
h(t,0,x(t+0));0 € [-r,0] or the identity
output Y(t) = T,(1)x = x(t + 0);0 € [-r,0] with
Y = CO([—r,0]; RY).
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It is clear that (by virtue of hypotheses (H1-3)
above and Lemma 1 in [7], page 4) for every d € Mp
the composite map f(z,x,d(t)) satisfies the Car-
athéodory condition on R x C°([—r,0]; R") and
consequently, by virtue of Theorem 2.1 in [9] (and
its extension given in paragraph 2.6 of the same
book), for every (o, xo,d) € R" x CO([—r,0]; R") x
M p there exists > 0 and at least one continuous
function x : [t — r, 1o + h] — R", which is absolutely
continuous on [#y, ty + 4] with T,.(79)x = xo and x(z) =
f(t, T,(1)x,d(t)) almost everywhere on [z, ty + h]. Let
X : [lo—l‘,lo-i—h} — R" and y: [[0—7',I0+/’l] — R
be two solutions of (2.1) with initial conditions
T.(to)x =x9 and T,(t9)y = yo and corresponding
to the same d € Mp. Evaluating the derivative of
the absolutely continuous map z(7) = (x(¢) —
¥(0))' P(x(t) — ¥(2)) on [ty, to + /] in conjunction with
hypothesis (H1) above, we obtain the integral
inequality:

|x(7)

—y(OP< 2 (1) = (1)

K

1

+2/£|\T,(T)x -

fo

T.(1)y|\dr, V1 € [to, 10 + ]

where L := K
tion

L(to + h,a(to + h)), L(:) is the func-

involved in (2.2), a(t):= sup |x(7)|+
TE(ty—r,1]

E?IUP l]\y(7)|and K, > K; > 0 are the coﬁ)stants that

TE 0T

satisfy Ki|x|*< ¥'Px < K,|x|* for all x € R". Conse-
quently, we obtain:

K,
IT-(0)(x = IS 2 1o = oll7
1
t

+2/I:|\T,.(7')(x—y)||fd7',VIE lt0, t0 + 1]

fo

and a direct application of the Gronwall-Bellman
inequality gives:

1T (1)(x = y)]|,< \/ IIXO—yoHeXp L(t - 1)),

Vit € [lo, to + h (2.4)

Thus, we conclude that under hypotheses (H1-4), for
every (to,xo,d) € R" x CO([—r,0); R") x Mp there
exists 4 >0 and exactly one continuous function
X : [to — 1, 1o + 1] — K", which is absolutely continu-
ous on [fo,fo + /4] with T.(t9)x =x¢ and Xx(7) =
f(t, T,(1)x,d(z)) almost everywhere on [zg, 7 + /1]. We
denote by (1, t, xo; d) the “r-history” of the unique
solution of (2.1), i.e., ¢(t,1,x0;d) := T,(t)x, with
initial condition T,(#y)x = xo corresponding to
d € Mp. Using hypothesis (H2) above and Theorem
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3.21in [9], we conclude that for every (f9, Xo,d) € R* x
C'([~r,0; R") x Mp there exists tmax € (to, +00],
such that the unique solution x(7) of (2.1) is defined
on [ty — r,tmax) and cannot be further continued.
Moreover, if fh. < +0o then we must necessarily
have limsup|x(#)| = +oo. A direct consequence of

inequalities (2.4) and (2.3) is the following inequality
which holds for every pair ¢(-, o, x0;d) : [to, t5,5) —
CO([—V,O]; mn)a ¢(7 lanO;d) : [107 lﬁwx) - CO([_rv 0]7
R") of solutions of (2.1) with initial conditions
T.(to)x = xo, T,(to)y = yo, corresponding to the
same de Mp and for all 1€ t,1) with
= min{e, ;2. b

max’ “max

(2, to, Xo;d) — (2, t0, yo; d) |,

< Gllxo — yoll,exp(L(t, a(1))(t — 1))

[ H(t, d(t, 1o, Xo3d)) — H(t,$(1, 10, y0; d)) |y
< GLy(t,a(t))[lxo — yol|,

exp(L(1,a(1))(1 — 10))
a(l) = Sl[lp](||¢(77 lOaXO;d)||r+||¢(Ta lovy();d>Hr)
T€lto.1
(2.5)
where G:=,/% and L:=K;'L(t,a(1)). Since

f(t,0,d) =0 for all (¢t,d) € R* x D, it follows that
#(t,19,0;d) =0 € CO([—r,0;; R") for all (ty,d) €
RT x Mp and ¢ > ty. Furthermore, (2.5) implies that
foreverye > 0, T, h > 0 there exists 6 := 6(e, T, h) > 0
such that:

[Ixll, < 8 = sup{[l(r. 10, x: )],
€ Mp,7 € [to,to+h], 1o € [0,T]} <e

Thus 0 € C°([—r,0]; R") is a robust equilibrium point
for (2.1) in the sense described in [15].

It should be emphasized that if d € M) then the
map ¢ — f(t,x,d(t)) is right-continuous on R* and
continuous on R"\(4U A4,). Applying repeatedly
Theorem 2.1 in [9] on each one of the intervals
contained in [, fmax)\ (4 U 44), we conclude that
the solution satisfies X(z) = f(t, T,(1)x,d(t)) for
all 7 € [, tmax)\(AU Ay). By virtue of the mean
value theorem, it follows that lim % =
A, To(0)x, d(1)) for all 1 € [to, tmax). "

3. Definitions of Important Notions

An important property for systems of the form (2.1) is
Robust Forward Completeness (RFC) (see [15]). This
property will be used extensively in the following
sections of the present work.
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Definition 3.1: We say that (2.1) under hypotheses
(HI1-4) is Robustly Forward Complete (RFC) if for
every s >0, T >0, it holds that

sup{||¢(10 + & 10, xo0; d),;
¢ e [0, T], ||X0||,§ S, Iy € [0, T],de MD} < 400

In what follows the reader is introduced to the notions
of non-uniform in time and uniform Robust Global
Asymptotic Output Stability (RGAOS) for systems
described by RFDEs. Notice that the notion of
RGAOS is applied to uncertain systems with a robust
equilibrium point (vanishing perturbations) and is an
“Internal Stability” property.

Definition 3.2: Consider system (2.1) under hypotheses
(HI-4). We say that (2.1) is non-uniformly in time
Robustly Globally Asymptotically QOutput Stable
(RGAOS) with disturbances d € Mp if (2.1) is RFC
and the following properties hold:

P1 (2.1) is Robustly Lagrange Output Stable, i.c., for
every e >0, T >0, it holds that

sup{ || H(t,6(1, 10, X0;d)) | y;
te [t07+00), onH,S g,y € [0, ﬂ,dE MD} < 400

(Robust Lagrange Output Stability)
P2 (2.1) is Robustly Lyapunov Output Stable, i.c., for
every e >0 and T > 0 there exists a § := (e, T) >0
such that:

[xoll,< 6,10 € [0, T] = [|H(z, (1, 10, x0; d)) ||y
<e Vt>ty, Vde Mp

(Robust Lyapunov Output Stability)
P3(2.1) satisfies the Robust Output Attractivity
Property, i.e. for every e >0, T> 0 and R > 0, there
exists a T :=7(e, T, R) > 0, such that:

[xoll,.< R, 1o € [0, T] = [|H(1,¢(t, t0, x03 d)) ||y
<eg Vt>ty+T1, Vde Mp

Moreover, if there exists a function a € Ky, such
that a(||x|,) < [|H(t,x)|ly for all (t,x) € R*x
CO([~r,0); R"), then we say that (2.1) is non-uniformly
in time Robustly Globally Asymptotically Stable
(RGAS) with disturbances d € Mp.

We say that (2.1) is non-uniformly in time Robustly
Globally Asymptotically Output Stable (RGAOS) with
disturbances d € My if (1.1) is RFC and properties
PI1-3 above hold with d € M instead of d € Mp.

The next lemma provides an estimate of the output
behavior for non-uniformly in time RGAOS systems.
It is a direct corollary of Lemma 3.4 in [15].

1. Karafyllis et al.

Lemma 3.3: System (2.1) under hypotheses (HI—4)
is non-uniformly in time RGAOS with disturbances d
Mp (or de Mp) if and only if system (2.1) is
RFC and there exist functions o € KL, € K" such
that the following estimate holds for all (ty,xo) € R x
C([=r,0;R"), d € Mp (or d € Mp) and t > t,:

[H(t, ¢(t, to, X053 )|y < o(B(t0)l|x0[, 7 — t0)
(3.1)

We next provide the definition of Uniform Robust
Global Asymptotic Output Stability, in terms of KL
functions, which is completely analogous to the finite-
dimensional case (see [22,26,32,33]). It is clear that
such a definition is equivalent to a ¢ — ¢ definition
(analogous to Definition 3.2).

Definition 3.4: Suppose that (2.1) under hypotheses
(HI1-4) is non-uniformly in time RGAOS with dis-
turbances d € My, (or d € Mp) and there exist o € KL
such that estimate (3.1) holds for all (ty,x0)
€ R x CO[—r,0;R"), d€ Mp (ord € Mp) and t >
to with 3(t) = 1. Then we say that (2.1) is Uniformly
Robustly Globally Asymptotically Output Stable
(URGAOS) with disturbances d € Mp (or d € MD).

The following lemma must be compared to Lemma
1.1, page 131 in [9]. It shows that for periodic systems
RGAOS is equivalent to URGAOS. Its proof can be
found at the Appendix. We say that (2.1) under
hypotheses (H1—4) is T-periodic, if there exists 7> 0
such that f{(¢+ T,x,d) = f(t,x,d) and H(t+ T,x) =
H(t, x) forall (¢,x,d) € R x CO([-r,0}; R") x D. We
say that (2.1) under hypotheses (H1—-4) is autonomous
if f{t,x,d) =f(0,x,d) and H(t,x) = H(0,x) for all
(t,x,d) € R" x CO([~r,0]; R") x D.

Lemma 3.5: Suppose that (2.1) under hypotheses
(HI1-4) is T-periodic. If (2.1) is non-uniformly in time
RGAOS with disturbances d € My, (or d € Mp), then
(2.1) is URGAOS with disturbances d € Mp (or
de Mp).

In order to study the asymptotic properties of
the solutions of systems of the form (2.1), we will
use Lyapunov functionals and functions. Therefore,
certain notions and properties concerning functionals
are needed.

Let x € CO([—r,0]; R"). By E;(x;v), where 0 < h <
rand v € R" we denote the following operator:

o x(0)+(@+h)y for —h<0<0
Ey(xv) = { X(0+h)  for —r<0<—h
(3.2)
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Let V: RT x CO([~r,0]; R") — R. We define

521

v) + hy) —

V(t, x)

: V(t+ h, Ep(x;
lim sup

h_;O‘F h
y=0,yeC([-r,0[;R")

VOt x;v) ==

Notice that the function (z,x,v) — V°(z,x;v) may
take values in the extended real number set
R* = [—o0, +00].

An important class of functionals is presented next.

Definition 3.6: We say that a continuous functional
ViR x CO[-r,0);R") — RT, is “almost Lipschitz
on bounded sets”, if there exist non-decreasing functions
M:R"—=R", PR =R, G:R" = [l,+0)
such that for all R > 0, the following properties hold:

(P1) For every x,y € {x € C°([-r,0; R"); ||x|,< R},
it holds that:

V(1) = Vi € [0, R]

Vi, )| < M(R)|ly — x|,
(P2) For every absolutely continuous function x :
[—r,0] — R" with ||x||,< R and essentially bounded
derivative, it holds that:

V(t+h,x)—V(t7x)|<hP(R)<l+ sup IX(T)I>7

—r<7<0

1
G (R+ sup |x(7) |>

—r<7<0

forallze[0,R]and 0 </ <

Remark 3.7: For mappings V:R" x CO([—r,0];
R") — R, which are Lipschitz on bounded sets of
R x CO[~r,0];R"), the derivative defined in (3.3)
coincides with the derivative introduced in [6] and was
used later in [4]. Particularly, we have:

VO(Z, x;v) := lim sup V(t+h, Eh(x;l V) —
h—0*

V(t,x)

Finally, the following definition introduces an
important relation between output mappings. The
equivalence relation defined next, will be used exten-
sively in the following sections of the present work.

Definition 3.8: Suppose that there exists a continuous
mapping h : [—r,+00) x R" — R’ with h(t,0) = 0 for
all t> —r and functions ay,ay € Ky, such that

al(Ih(l,X(O))l)S||H(Z7X)||yéa2< sup [h(1+90, X(G))I)

0c[—r,0]
Sor all (t,x)€RT x CO([—r,01;R"). Then we say that H:
RE X CO[—r,0;R") =Y is equivalent to the finite-
dimensional mapping h.

(3.3)

For example, the identity output mapping H(z, x) =
x € C°([-r,0]; R") is equivalent to finite-dimensional
mapping A(t,x) = x € R".

4. Main Results

We are now in a position to present Lyapunov-like
characterizations for non-uniform in time RGAOS
and URGAOS. The proofs are provided in the
Appendix.

Theorem 4.1: Consider system (1.1) under hypotheses
(HI1-4). The following statements are equivalent:

(@) (2.1) is non-uniformly in time RGAOS with
disturbances d € Mp.

(b) (2.1) is non-uniformly in time RGAOS with
disturbances d € M.

(¢) (2.1) is RFC and thele exzst funclzons

ay,ay € Ky, 8,7 € K™ with f y()dt = 400, a

positive definite locally Llpschltz function p:
R — R and a mapping V : R x C°([-r,0];
R") — RT, which is almost Lipschitz on boun-
ded sets, such that:

ar(|H(t,0)|ly) < V(t.x) < a(B(1)]|x],),

V(t,x) € RT x CO([~r,0]; R") (4.1)

Vo(ta x;f(taxvd)) S 7’7(1‘):0([/(1‘7)6))7 (4 2)

V(t,x,d) € R x CO([—r,0;; R") x D .
(d) (2.1) is RFC and there exist functions

ay,ay € Ky, B€ KT and a mapping V : R x
CO([-r,0); R") — ", which is almost Lipschitz
on bounded sets, such that inequalities (4.1),
(4.2) hold with (1) = 1 and p(s) :=s

() (2.1) is RFC and there exist a lower semi-
continuous mapping VR x CO([—r — 7,0];
R") — RT, a constant T >0, funcnonv a, a

€ Ky, 8,7 € KT with f7 =400, pu€E

(see Notations) and a posztlve definite locally
Lipschitz function p: RY — RT, such that the
following inequalities hold.:

ar([[H(1,x)lly) < V(t,x) < a2 (B()]x]],.)

V(t,x) € RT x CO([—r — 7,0]; R") (4.3)
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VOt 5 f(t, T,(0)x,d) < —y(0)p(V(1,x))

+y(0)p (/ ’Y(S)ds) , ¥(t,d) € [, +00) x D,
0

Vx € S(1) (4.4)

where the set-valued map S(t) is defined for t > T by
S(t):= U S(t,d) and the set-valued map S(t,d) is
M

defined}(e)r ? >7andd e Mp by:
S(t,d) := {x € CO([=r —1,0; R"); x(0) = x(—7)

0

+ /f(t + 5, T(s)x,d(T + 5))ds, V0 € [—, O]}

(4.5)
Moreover,

() if H:R" x C[~r,0];R") — Y is equivalent to
the finite-dimensional continuous mapping h :
[—r,+00) X R" — NP then inequalities (4.1) in
statements (c) and (d) can be replaced by the
following inequalities:

a(Jh(t,x(0))]) < V(t,x) < ax (B(1)||x]],), (4.6)

V(t,x) € RT x CO([—r,0]; R") '

() if H:R" x CO[~r,0];R") — Y is equivalent to
the finite-dimensional continuous mapping h :
[—r,+00) X R" — N’ then inequalities (4.3) in
statement (e) can be replaced by the following
inequalities:

ar(Jh(t,x(0)]) < V(t,x) < ax (B(O1x[l,+)
Y(t,x) € R x CO([—r — 7,0]; R")
(4.7)

(iii) if there exist functions a € K, p € K™ and a con-
stant R > 0 such that a(p(1)|x(0)]) < V(t,x) + R
for all (t,x) € R* x CO([~r,0; R") then the
requirement that (2.1) is RFC is not needed in
statements (c) and (d) above.

Theorem 4.2: Consider system (2.1) under hypotheses
(HI-4). The following statements are equivalent.

(a) (2.1) is URGAOS with disturbances d € Mp.

() (2.1) is URGAOS with disturbances d € Mp.

(¢) (2.1) is RFC and there exist functions ay,a; € K,
a positive definite locally Lipschitz function p :
R =R and a mapping V:R" x
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([=r,0; R") — RT, which is almost Lipschitz on
bounded sets, such that:

ar([|H(t,x)lly) < V(t,x) < ax(|Ixl,),

V(t, X) c R x CO([fr, O],iR") (48)

V(1 x: /{1, x, d)) < —p(V(1,x)), (49)

V(t,x,d) € RT x C°([—r,0; R") x D '

(d) (2.1) is RFC and there exist functions ay,a; € K,
and a mapping V: R x CO([—r,0]; ") — R,
which is almost Lipschitz on bounded sets, such
that inequalities (4.8), (4.9) hold with p(s) := s.
Moreover, if system (2.1) is T—periodic, then V is
T—periodic (i.e. V(t+ T,x)=V(t,x) for all
(t,x) € R" x CO[—r,01;R")) and if (2.1) is
autonomous then V' is independent of t.

(e) (2.1) is RFC and there exist constants 7,3 > 0,
a lower semi-continuous mapping V:RT x
C([—r—7,0]; R") — R*, functions ay, ay € Ky
and a positive definite locally Lipschitz function
p:RT = RT, such that the following inequalities
hold:

al(HH(l’ X)HY) S V(l’ x) S a2(‘|x|lr+7')7

Y(t,x) € R x CO([—r — 7,0]; R")
(4.10)
VxSt TH(0)x, d)) < B8, ),
Y(t,x,d) € RT x C([—r — 7,0]; R") x D
(4.11a)
Vs T0x.D) < (V).

Y(t,d) € [1,+00) x D,Vx € S(7)

where the set-valued map S(t) is defined for t > 1
by S(t):= U S(t,d) and the set-valued map
d

eMp ~
S(t,d) is defined for t > T and d € Mp by (4.5).
Moreover,

() ifH:R" x C[~r,0];R") — Y is equivalent to
the finite-dimensional  continuous T-periodic
mapping h: [—r,+00) x V" — R then inequal-
ities (4.8) in statements (c) and (d) can be
replaced by the following inequalities:

ar(|h(1,x(0))]) < V(1,x) < ax(|Ix]],),

V(1,x) € RT x C°([—r,0); R") (4.12)
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(i) if H:R" x C[—r,0];R") — Y is equivalent to
the finite-dimensional continuous T—periodic
mapping h: [—r,+00) X R" — R’ then inequal-
ities (4.10) in statement (e) can be replaced by
the following inequalities:

ar(|h(1,x(0))]) < V(1,x) < @ (|lx],.),

Y(t,x) € R x CO([—r — 7,0]; R") (413)

(iii) if there exist functions a € K., p € K and a con-

stant R > 0 such that a(u(t)|x(0)|) < V(t,x) + R

for all (t,x) € R" x CO([~r,0; R") then the

requirement that (2.1) is RFC is not needed in
statements (c) and (d) above.

Remark 4.3: The set-valued map S(t,d) defined by
(4.5) can be equivalently described for given t > T and
de Mp as

“the set of all x € C°([—r — 7,0]; R"), which are
arbitrary on |—r — 1, —7| (i.e., T,(—7)x is arbit-
rary) and coincide on [—1,0] with the unique
solution y(t) of p(t) = f(t, T,(1)y,d(t)) with initial
condition T,(t — 1)y = T,(—7)x, ie., T;(0)x =
Tr(1)y and x = T (1)y"

Statements (e) of Theorem 4.1 and Theorem 4.2
are important, since they can be used efficiently when
some information about the solution of (1.1) is avail-
able (e.g., we have analytical expressions for some
components of the solution vector). In this case, the
Lyapunov differential inequality is required to hold only
Sfor all (t,d) € [r,+00) x D and x € S(t) since the
solution of (1.1) initiated from ty > 0 and correspond-
ing to input d € Mp satisfies Ty, (t)x € S(t,d) for all
t>ty+ 7. In the following section an important
example is presented, where statement (e) of Theorem
4.1 is used in conjunction with additional information
for the solution (see Example 5.1 below). Moreover,
statements (e) of Theorem 4.1 and Theorem 4.2 have an
additional advantage: the Lyapunov functional is not
required to be almost Lipschitz on bounded sets (lower
semi-continuity is sufficient). Consequently, value
functionals of optimal control problems can be used for
verification of RGAOS (usually value functionals are
not continuous ).

5. Illustrative Examples

In this section we present examples which illustrate the
use of our main results. Our first example shows an
important application of Theorem 4.1 to feedback
design problems.
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Example 5.1: Consider the state stabilization problem
for the system:

z=F(t,z,x,u)

! " (5.1a)
zeR,xeR ueRt>0
Xi=filt,xr, . ,x) +xi, i=1,...,n—1
Xn = fult,x) +u
Xi= (X1, %) ER, UER, t>0

(5.1b)

where F:RX R xR xR - R, fi: R xR - R
(i=1,...,n) are smooth  mappings  with
F(1,0,0,0) =0, /(1,00 =0(i=1,...,n) forall t € R.
We assume the following:

(S1) System (5.1a) is RFC from the input
(x,u) € R" X N, ie., there exist functions 3 € K+, a €
K., such that for every (t,z9) € Rt x R and for every
pair of Lebesgue measurable and locally essentially
bounded mappings x:RT = R", u:RT =R the
unique solution of (5.1a) with initial condition z(ty) =
zo corresponding to x : R — R, u: R — R satisfies
the following estimate for all t > ty:

=00 < 5(0a(ao + sup ()] + sup )

to<s<t
(5.2)

(S2) 0 € R is non-uniformly in time GAS for the system
z=F(1,2,0,0).

We will next show that under hypotheses (S1), (S2),
we are in a position to design a stabilizing feedback
law for (5.1) depending only on x € R" (partial state
feedback) which involves delays (retarded feedback).
To this purpose we will employ statement (e) of
Theorem 4.1.

Theorem 3.1 in [19] guarantees the existence of
functions p € K*, g € K, constants T,r > 0 and the
existence of a locally Lipschitz mapping
k:Rx C[-r,0; R") — RN, which maps bounded
subsets of R x C([—r,0]; R") into bounded subsets of
R such that for every (fy,xo) € R x CO([-r,0]; R")
the solution of the closed-loop system (5.1b) with
u(t) = k(z, T,(1)x) and initial condition 7,(z9)x = X
satisfies

()] < e(q(llxoll,), ¥t > 10 (5:3)

x(r)=0, Vit>t+T (5.4)

Moreover, if the mappings f;i: RT xR — R (i=
1,...,n) are independent of time then k: MR x



524

C'([~r,0); R") — N is time-periodic, i.e., there exists
w>0 such that k(r4+w,x)=k(t,x) for all
(t,x) € R x CO([~r,0]; R"). The reader should notice
that the closed-loop system (5.1) with u(s) =
k(t, T,(t)x) is a system described by RFDEs. We will
show that 0 € C%([~r,0]; R’ x ®") is non-uniformly
in time GAS for the closed-loop system (5.1) with
u(t) = k(t, T,(1)x).

Indeed, Theorem 3.1 in [13] in conjunction with
hypothesis (S2) implies the existence of a smooth
function W: R x R’ — R, functions a1, a> € Ko,
6 € K", such that the following inequalities hold:

ar(|z]) < W1, 2) < ax(6(1)|2)),

5.5
Y(t,z) € RT x R 5:3)

oW oW
i il < _
B (t,z) + % (t,2)F(1,2,0,0) < —W(t,z),

V(t,z) € RT x R
(5.6)

Let ay,a € Ky and let Q: R x CO([—r,0; R") —
RY be any continuous functional that satisfies
@ (Ix(0)) < 0(1,%) < @ (5()]|x],) for all (1,%) €
R x C[—r,01;R") (e.g., O(t,x) :=ai(|x(0)]) or
O(1,x) = a(8()||x[],)). Define the continuous func-
tional for all (¢,z,x) € R* x C*([—r — 7,0]; R x R")
with 7:=r+ T:

V(t,z,x):= W(t,z(0)) + Q(t, T,(0)x) (5.7)
Using definition (4.5) and (5.4) it follows that for all
t>7=r+T each (z,x)€ C([—r—7,0[; R x R")
which belongs to S(¢) satisfies 7,(0)x = 0. Conse-
quently, V(z,z,x) := W(t,z(0)) for all t > 7 and for all
(z,x) € S(¢). Inequality (5.6) (combined with the fact
that F(z,2(0),x(0),k(¢, T,(0)x)) = F(t,2(0),0,0) for
all r>7 and for all (z,x) € S(7)) implies that
inequality (4.4) holds with ~(¢r) =1, u(f) =0 and
p(s) :=s. Moreover, inequality (5.5) in conjunction
with inequality a;(|x(0)]) < Q(¢,x) < a>(8(¢)||x]|,).
which holds for all (z,x) € R" x CO([-r,0]; R"),
implies that inequality (4.7) holds with A(z,z,x) :=
|(z, x)| for appropriate a;, a; € Ky, 3 € K. Finally,
we notice that hypothesis (S1) in conjunction with
(5.3) implies that the closed-loop system (5.1) with
u(t) = k(t, T,(r)x) is RFC. Notice that the finite-
dimensional mapping 4(z, z, x) := |(z, x)| is equivalent
to the output map R x CO([—r,0]; R/ x R") > (¢,z, x)
— H(t,z,x) = (z,x) € C'([~r,0; R x R") =Y.

Therefore, statement (e) of Theorem 4.1 holds for
the closed-loop system (5.1) with u(z) = k(z, T(1)x)
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and thus we conclude that 0 € C°([—r,0]; R x R") is
non-uniformly in time GAS. It should be noted that
if the mappings F: R x R/ x R" x R — R, /i : RT x
R — R (i=1,...,n) are independent of time, then
the closed-loop system (5.1) with u(z) = k(¢, T,(t)x) is
time periodic (since k: M x CO([—r,0]; R") — N is
time-periodic, i.e., there exists w > 0 such that k(7 +
w,x) = k(t,x) for all (t,x) € R x C*([—r,0]; R")). In
this case Lemma 3.5 guarantees that 0€
CO([~r,0]; R x R") is uniformly GAS. 4

Our following example is an academic example,
which illustrates the use of Theorem 4.1 and
Theorem 4.2.

Example 5.2: Consider the system:

X1 (1) ==2g1(0)x1 (1) + di (1)g2(1)x7 (1)
—g3(1)x3 (1) + da(1)b(1) | x2 (1 — 7(1)) "

X (1) = c()x2(1)

Y(r) =x1(1) e R

(1) = (x1(1), x2(1)) € R,

d= dl,dz) €D := [71, 1] X [71, 1]

=

(5.8)

where g € K*, g: R =R, g3:RT —=R", b:
RT = R, ¢: N — N are continuous functions and
p> %is a constant. We consider system (5.8) under the
following hypotheses:

(A1) There exist a continuous function g € K+ with
400
[ g(s)ds = +oo and a constant M >0 such that

]l(i[g(t) <g1(?) for all t>0. Moreover, g5(1)<4g(t)gs(1),
for all t>0.

(A2) The function T: RT — R is continuously differ-
entiable, non-negative and bounded from above by a
constant r > 0.

(A3) There exist constants K,m > 0 such that:

t—7(1)

exp | 2p / c(s)ds

0

b(1))*
g1(7)

< K(1 —7(1))exp (mt - /g(s)ds) , Vt>0
0
(5.9)

For example hypotheses (A1-3) are satisfied for p = 2,
(1) := 2 +1sin(2), (1) = 1, b(2) = 1, g1 (1) = exp(61),
() =exp(t), g(1)=1, with g(t)=1, M:=1,
K:=2, m:=1. We next show that system (5.8)
under hypotheses (Al1-3) is non-uniformly in time
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RGAOS with disturbances d € Mp. We consider the
functional:

V(t,x) = 5 33(0)

+exp (plmt - / (p’lg(s) + 2c(s))ds) x%(O)

0

+%exp (—mt - / (g(s) + 2pc(s))ds> \x2(0)|2p

0
K t
+§exp (—mt - /g(s)ds)
0 ’ t+s
/ exp (—ms - 2p/ c(f)d§> |x2(s) | ds
—7(1) 0

(5.10)
Since p > %, it follows that the functional defined by
(5.10) is almost Lipschitz on bounded sets. Moreover,
inequalities (4.1) hold with H(¢,x) = x;(0) € Y := R,
ai(s):=27"s%, ax(s) :=s*+2"'K(m~" +rexp(mr))s¥,

¢
B(t):=1 +max{exp (5’; zlphfg(s)ds>

0

xmax{exp (—gfsc(w)dw> :—7(§) Ssgo} :ogggz}

Furthermore, we obtain for all

x CO([—r,0];R%) x D:
VO (2,x;-2g1(1)x1(0)+d182(1)x7(0) —g3(1)x7 (0)
+dab(1)|x2(=T(1))I (1) 2(0)) <281 (1)x7(0)
+g2(1)][x1(0)F —g3(1)x}(0)
HbOx1 (O)][x2 (=)' —p~ (m+g(1))

X exp (—plmt—/(plg(s)Jr2c(s))ds) x3(0)
0

~g(1)5, xp (m / <g<s>+2pc<s>>ds> )

0

—g(l)gexp (—mt—/g(s)ds)

0
t+s

0
/ exp (—ms—2p/ c(§)d§> |x2(s) | ds

—7(1) 0

t t—7(1)

K @yexp| —m(—r(1))- /g<s>ds—zp / e(s)ds | Pea(=r (1))

K

2
0 0
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Hypothesis (A1) implies that —g;(1)x3 + |g2(2)|]x1]°
—g3(1)x} <0, for all (z,x;) € R" x R. Using the
inequality  [b(1)][x1 (0)]|x2(~7(D)"< 27 g1 (0)x1(0)+
[6(7)] |xz(—7'(t))|2‘” in conjunction with (5.9) we

2g1(l)
obtain for all (z,x,d) € R"x CO([—r,0]; R?) x D:

& (l,X;—Zgl (1)x1(0)+d1g2(1)x7(0) — g5(1)x7(0)
+d2b(t)|x2(—T(1))|p7C(f)X2(0)) S—%gl(f)xf(o)

—p 'g(r)exp (—plml— / (plg(S)HC(S))dS) x3(0)
0

~g(0)3,exp (—mr— / <g<s>+zpc<s>>ds> 2 (0)

0

t
K
—g(t)zexp (—mt—/g(s)ds)
0
0 1+s
/ exp (—ms—Zp/ c(f)dg) |x2(5)| P ds
7(1) 0
Since Mg(1) < gi(¢) for all t > 0, the above inequality
in conjunction with definition (5.10) gives for all
(t,x,d) € R" x CO([-r,0]; R?) x D:

VO(z,x;—zgmz)xl (0) + diga(1)3(0) — g3(1)x}(0)

+dzb(f)|x2(—7(l))|p,C(f)x2(0)>
<-—min{M,p ", 1}g(1)V(t,x)

Consequently, inequality (4.2) holds with p(s) :=s
and ~(¢) :=min{M,p~', 1}g(r). If system (5.8)
was RFC then we would have showed that statement
(c) of Theorem 4.1 would hold. However,
since inequality a(u(r)|x(0)|) < V(t,x) + R holds
for all (,x) € R" x CO([—r, 0 R*) with p(r) ==

<min <21;exp (—’p”t - j(p’lg(s) + 2c(s))ds>>>2,
0

R:=0 and a(s) := s, the requirement that system
(5.8) is RFC is not needed. Thus we can conclude that
system (5.8) is non-uniformly in time RGAOS with
disturbances d € Mp.

Moreover, if in addition to hypotheses (A1-3) the
following hypothesis holds as well:
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(A4) There exlst constants T'; A > 0 such that g(t) > T

+w
and —tJr—/

/ c(s)ds > —A for
allt>0. °

then we can conclude that system (5.8) is URGAOS
with disturbances d € Mp. Notice that if (A4)
holds inequalities (4.8), (4.9) hold with p(s):=
min{M,p~", 1}Ts, H(,x) = x1(0) € Y :=R a\(s) :=
27158, ap(s) :=exp(24)s* + 27 K(m™! 4 rexp(mr))
exp(2pA)s* and consequently statement (c) of The-
orem 4.2 holds (without the requirement that system
(5.8) is RFC). <

s)ds + mm
1) <w<0

6. Conclusions

In this work Lyapunov-like characterizations of non-
uniform in time and uniform Robust Global Asymp-
totic Output Stability (RGAOS) for uncertain time-
varying systems described by Retarded Functional
Differential Equations (RFDEs) are developed.
Necessary and sufficient conditions in terms of Lya-
punov functionals are provided for these notions. The
framework of the present work allows outputs with no
delays, outputs with discrete or distributed delays and
functional outputs with memory. The robust stability
notions and properties proposed in the present work
are parallel to those recently developed for dynamical
systems described by finite-dimensional ordinary dif-
ferential equations. The Lyapunov characterizations
presented in this work can be directly used (exactly as
in the finite-dimensional case) in order to:

e obtain necessary and sufficient Lyapunov-like
conditions for the existence of robust continuous
feedback stabilizers for control systems described
by RFDE:s (use of Control Lyapunov Functionals),

e develop backstepping methods for the feedback
design for triangular control systems described by
RFDEs,

e develop Lyapunov redesign methodologies which
guarantee robustness to disturbance inputs,

e study the solution of tracking control problems
where the signal to be tracked is not necessarily
bounded with respect to time,

e study the existence/design observer problem for
systems described by RFDEs by means of Lyapu-
nov-like conditions (e.g., Observer Lyapunov
Function, Lyapunov characterizations of observa-
bility/detectability).

However, the most important application of the
results presented in this work is the development of
Lyapunov characterizations of the external stability
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notions of Input-to-Output Stability (I0S) and Input-
to-State Stability (ISS) for systems described by
RFDE:s. Related findings are reported on in a com-
panion paper [21].
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Appendix—Proofs

For the proofs of Theorem 4.1 and Theorem 4.2 we
need first to establish three auxiliary technical results,
which allow us to derive useful estimates from the
Lyapunov differential inequalities.

Ist Auxiliary Result: Estimating the derivative of a
Lyapunov functional
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The following lemma presents some eclementary
properties of the generalized derivative defined in (3.3).
Its proof is almost identical with Lemma 2.7 in [18].
Notice that we are not assuming that the mapping V' :
R x CO([~r,0); R") — R is locally Lipschitz. The
reader can see also the discussion in [30] for other
cases of time-delay systems.

Lemma A.1: Let V: R x CO([-r,0; R") — R and
let x € CO[tg — 7, tmax); R") @ solution of (2.1) under
hypotheses (HI1-4) corresponding to certain d € Mp,
where tmax € (to, +00] is the maximal existence time of
the solution. Then it holds that

limsuph~ ' (V(t + h, T,(t + h)x) — V(t, T,(¢)x))
h—0+
< V1, To(t)x; DT x(t)), a.e. on [to, tmax)

(A.1)
where D x(t) = llin01+ WY (x(t+ h) — x(t)). Moreover,
if d € My then (A.1) holds for all t € [ty, tmay)-
Proof: It suffices to show that (A.1) holds for all 7 €
[t0, tmax)\I Where I C [fo,fmax) is the set of zero
Lebesgue  measure  such  that  Dtx(7) =
lim h='(x(t + h) — x()) is not defined on 1. Let & > 0
and ¢ € [to, tmax)\I. We define:

T,(t+ h)x — Ey(T.(t)x; DT x(0)) = hyy ~ (A.2)
where
x(t+h+0)—x(1)
yp=h! —(@+h)D*x(t) for —h<6<0
0 for —r<6<-h

and notice that y, € C°([—r,0]; R") (as difference of
continuous functions, see (A.2) above). Equivalently
yy, satisfies:

O+h (x(t+9+h)x(t)

+ — <
- 0h D x(l)) for—h<6<0
0

for—r<0<-h

x(t+s)—x(1)

— D" x(1)

with ||y, < sup{

. . t+h)—x(t .
Since }hr(r)l W:Dﬂc(ﬂ we obtain that y, —0
h—0+

as h—0". Finally, by virtue of definitions (3.3), (A.2)
and since y,—0 as h—0", we have:
limsup i~ (V(t + h, T,(t 4+ h)x) — V(t, T,(1)x))
h—0+

= limsup i~ (V (¢ + h, Ey (T, (t)x; D x(1)) +hyy)
h—0+

—V(t, T,(t)x)) < V(¢, T,(¢)x; DT x(1))

;O<s<h}.
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The proof is complete. <

2nd Auxiliary Result: Absolute continuity of
the Lyapunov functional for differentiable initial
conditions

For functionals which are almost Lipschitz on
bounded sets, we are in a position to prove a novel
result, which extends the result of Theorem 4 in [29].

Lemma A.2: Let V:R" x CO([—r,0];R") — R be a
Sfunctional which is almost Lipschitz on bounded sets and
let x € CO([tg — 1, tmax); R") a solution of (2.1) under
hypotheses (HI1—4) corresponding to certain d € Mp
with initial condition T,(to)x = xo € C'([-r,0]; R"),

where tmax € (1, +00] is the maximal existence time of

the solution. Then for every T € (1o, tmax ), the mapping
[to, T] > t — V(t, T,(1)x) is absolutely continuous.

Proof: Tt suffices to show that for every T € (19, fmax)
and >0 there exists 6<0 such that

N
S \V(bk, Tr(br)x) — V(ak, Ty(ar)x)| < e for every
=1

finite collection of pairwise d]\i/sjoint intervals [ax, by] C

[to, T] (k=1,...,N) with > (by —ax) <. Let T €
k=1
(70, fmax) and e > 0 (arbitrary). Since the solution x €

C([to — r, T); ") of (2.1) under hypotheses (H1-4)
corresponding to certain d € Mp with initial
condition T (19)x = xo € C'([—r,0]; R") is bounded
on [to—r,T], there exists R; >0 such

that sup ||7.(7)x||,< R;. Moreover, by virtue of
10w<t<T

hypothesis (H2) and since T, (79)x=xo€C' ([-r,0];R"),
there exists R,>0 such that sup [X(7)|<R,. The
to—r<t<T

previous observations in conjunction with properties
(P1), (P2) of Definition 3.6 imply for every interval
[HJJ]C[IO,T] Wlth bfagm:

[V(b, T,(b)x) — V(a, T, (a)x)]

< (b—a)P(R)(1 + Ry)

+M(R)||T,(b)x — T, (a)x]],

In addition, the estimate sup
to—r<t<T

|T,(b)x — T,(a)x|,< (b —a)R, for every interval
[a,b] C [to, T]. Consequently, we obtain for every
interval [a,b] C [ty, T] with b —a <
Vb, To(8)) — V(e Ti{a))
< (b - a)[P(Rl)(l + Rz) + M(R])Rz]

|X(7)| < R, implies

1 .
G(Ri+Ry)"

The previous inequality implies that for every finite
collection of pairwise disjo]ivnt intervals [ax, br] C

[t0, T] (k=1,...,N) with Y (by —a;) < 6, where

=1
I 1 . 5 :
b= Emm{cmmz)vP(R1)<1+Rz)+M(R1)R2} >0, it holds
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N
that > |V(bg, Tr(br)x) — V(ak, Tr(ar)x)| <e. The
k=1

proof is complete. <
3" Auxiliary Result: Estimates with differentiable
initial conditions hold for continuous initial condi-
tions as well

The following lemma extends the result presented in
[29] and shows that appropriate estimates of the
solutions of systems (2.1) hold globally. The proof of
the following lemma is similar to the proof of Pro-
position 2 in [29].

Lemma A.3: Consider system (2.1) under hypotheses
(HI1-4). Suppose that there exist mappings
Br: R x CO[—r, 0;R") = R, B R xR x
([-r,0]; ") x A — R, where A C Mp, with the fol-
lowing properties.

(i) for each (t,ty,d) € R™ x K" x A, the mappings
x — Bi(t,x), x — Balt, to, x,d) are continuous,
(ii) there exists a continuous function M :
R x RY — R such that

Sup{ﬁZ(tO +£7 thx()vd);
£€0,7],x0 € C°([—r,0); R"),
[xo0ll,< 5,20 € [0, T),d € A} < M(T,s)

(iii) for every (to,x0,d) € R* x C'([-r,0;;R") x 4
the solution x(t) of (2.1) with initial condition
T.(to)x = xo corresponding to input de A
satisfies:

ﬂl(la T',(Z)X) < 62(15 Z‘()7)60761)7 Vi > A (A3)

Moreover, suppose that one of the following
properties holds:
@) (T,s) = sup{ || T,(r0 + )], € € [0,7], xo €
COL=r, 0 ), 1% |, < 5. 10 € [0, T],d € A} <-+oo
(V) there exist functions a € K, p € K" and a con-
stant R >0 such that a(u(1)|x(0)]) < Bi(t, x) +
R for all (1,x) € R" x CO([-r,0]; R")

Then for every (to,xo,d) € R x CO([—r,0; ") x 4
the solution x(t) of (2.1) with initial condition
T,(to)x = xo corresponding to input d € A exists for all
t > ty and satisfies (A.3).

Proof: We distinguish the following cases:

(a) Property (iv) holds. The proof will be made by
contradiction. Suppose on the contrary that there
exists (tg,xp,d) € RT x C°([~r,0]; R") x 4 and 1; >
fo such that the solution x(z) of (2.1) with initial
condition T,(zy)x = xo corresponding to input d € A
satisfies:

Bi(t1, Tr(11)x) > Ba(t1, to, Xo, d)
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Using (2.5) and property (iv) we obtain for all Xy €
CO([—r,0]; R") with ||xg — %o, < 1:
T.(t1)x — T.(11)x|],
I1T:(1) ~(1) o (A4)
< GHXQ — x0||rexp(L(t1,c)(t1 — l()))

where X(7) denotes the solution of (2.1) with initial
condition 7(zp)x = Xy corresponding to input d € A
and. ¢=2c(1y, ||xo,+1)

Let € := B1(t, T,(t1)x) — Ba(t1, to, X0, d) > 0. Using
property (iv), (A.4), density of C'([-r,0;R")
in C°[-r,0;R"), continuity of the mappings
x — Bi(t,x), x — Ba(t1,t0,x,d), we conclude that
there exists %o € C'([—r,0]; R") such that:

X0 — 560“;‘ < 17 |62(t17 to,Xo,d) - 62(t1a lo,i’o,dﬂ

< g; 81 (11, Tr(11)x) = Bi(t1, To(11)X)| < %

where X(7) denotes the solution of (2.1) with initial
condition T,(f)x = X, corresponding to input d € A.
Combining property (iii) for x(z) with the above
inequalities and the definition of & we obtain
01 (l], T,,(ll)x) > [ (l], T,l(tl)x), a contradiction.

(b) Property (v) holds. It suffices to show
that property (iv) holds. Since there exist functions
a€ Ky, € K" and a constant R >0 such that
a(u()|x(0)]) < Bi(t,x)+ R for all (¢,x) € R x
C%([-r,0]; R™), it follows that from property (iii) that
for every (t9,%o,d) € R* x C'([-r,0;;R") x A4 the
solution X(7) of (2.1) with initial condition 7,(#)X =
Xo corresponding to input d € A4 satisfies:

a(u(DIX(0)]) < R+ Ba(t, 10, X, d), V1 = 10

Moreover, making use of property (ii) and the above
inequality, we obtain that for every (f9, X, d) € R* x
C'([~r,0];R") x 4 the solution X(¢) of (2.1) with
initial condition T,(#y)X = Xy corresponding to input
d € A satisfies:

1T-(0)x]], < [|%oll,+1
1
+ max [—a~' (R+ M(r, [|%ol],)) |, V7 > 1o

o<r<t{p(7)
(A.5)

We claim that estimate (A.5) holds for all
(to, x0,d) € R x C°([—r,0]; R") x A. Notice that this
claim implies directly that property (iv) holds with

C(T,S) S s+ 1 +Wd71
0<7<2T

R+ max M(r,s)
0<x<2s,
0<r<2T
The proof of the claim will be made by contradiction.
Suppose on the contrary that there exist (z9, xo,d) €
R x CO([—r,0];R") x 4 and 1, > ) such that the
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solution x(7) of (2.1) with initial condition T,(#y)x =
xo corresponding to input d € A4 satisfies:

I T-(11)x]], > [|xoll,+1

1
Ton [M(T)“ (R+M(r, xOr))},Vtzzo
(A.6)
Let B:= sup ||T.(7)x|| < 4oo. Using (2.5) and

10<T<1)
(A.5), it follows that (A.4) holds for all Xy €
Cl([—l’, 0], ER") with X0 — )NCO |r§ Il and ¢ = B+ ||)C0||r
+2+ max{ D 0 < < g, 41,0 < 0 <1y

where X(7) denotes the solution of (2.1) with

initial condition T,(#)X = Xy corresponding to

input ded. Let ¢e:=|T.(t1)x],—|xoll,—1—
1 - . :

[max [#(—T)a (R+ M(T, ||xo|\,,))] >0 Using (A.4),

density of C!'([-r,0;R") in C°([-r,0];R") and
continuity of the mapping x—g(x):=|x||,+1+
max { 1 a*I(R+M(T,||x||,,))}’Wemaycondude

0<7<1; .“‘(T)

there exists Xo € C!([—r,0];R") such that

that

[[x0 — Foll,< 15 [g(x0) — g(%o)]
€ - g
<3 T () x|, = T ()R], | < 3

where X(z) denotes the solution of (2.1) with
initial condition 7,(fy))X = X, corresponding to input
de A. Combining (A.5) for X(#) with the above inequal-
ities and the definition of ¢ we obtain | T,(1)x||, >
I 7,(1)x]|,, a contradiction. The proof is complete. <

We are now in a position to present the proofs of
the main results of the present work.

Proof of Theorem 4.1: Implications (a)= (b), (d)= (¢),
(c)= (e) are obvious. Thus we are left with the proof
of implications (b)=- (d), (¢)= (a) and (e)= (b).

Proof of (b) = (d): The proof of this implication is
based on the methodology presented in [1] for finite-
dimensional systems as well as the methodologies
followed in [13,18,26].

Since (2.1) is non-uniformly in time RGAOS with
disturbances d € Mp, there exist functions o € KL,
B € K" such that estimate (3.1) holds for all
(107)60,611) €N x CO([—r,O};iR”) X MD and > 1.
Moreover, by recalling Proposition 7 in [31] there exist
functions a,, a, of class K., such that the KL function
o(s, 1) is dominated by a;!(exp(—2¢)as(s)). Thus, by
taking into account estimate (3.1), we have:

a (|[H(t, é(t, to, x0: d))[ly)
< exp(=2(1 — to))a (B(10) [ xoll,), V1 > 10 >0,
xo € C([—r,0]; R"), d € Mp

(A.7)
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Without loss of generality we may assume that
a € Ky, is globally Lipschitz on R" with unit
Lipschitz  constant, namely, |a(s;) — a(s2)] <
|s1 — 2] for all 51,55 >0. To see this notice that
we can always replace a; € K by the function
ai(s) == inf{min{dy,a;(»)} + [y — s;» > 0}, which
is of class K., globally Lipschitz on R" with unit
Lipschitz constant and satisfies a@;(s) < a;(s). More-
over, without loss of generality we may assume that
3 € K" is non-decreasing.

Since (2.1) is Robustly Forward Complete (RFC),
by virtue of Lemma 3.5 in [15], there exist functions
u € K*, a € K., such that for every (tg, xo,d) € R" x
CO([-r,0); R") x Mp we have:

(2,10, %05 ), < 0)a(lxoll,). Vi = 1o

Moreover, without loss of generality we may assume
that p € Kt is non-decreasing. Making use of (2.5)
and (A.8), we obtain the following property for the
solution of (2.1):

||H(ta (t fo, x ,d)) ( (t t()vyad))HY
< B(t, |Ix[,+1yll,) exp (L(t, |x]l,+yll,) (7 — 10))
|lx — y||, forall # > # and (19, x, y,d) € R*

x C([—r,0]; R") x C°([—r,0]; R") x M)
(A.9)

(A.8)

= L(1,2u(1)a(s));
B(v ) GLu(1, 2pu(1)a(s))

Ly (-) are the functions involved in (2.5) and
hypothesis (H2)

and L(-),
(2.3), respectively. Furthermore,
implies that the mapping

(s) :==sup{|f(t,x,d)| : 1+ || x|, <s,d€ D}, s >0

is ﬁmte valued and non-decreasing. Since x(7) =
)+ f (7, T,(7)x, d(r))dr using the definition

above i 1n conjunction with (A.8) we obtain:

(1) = x(0)] < (£ = 20) G (¢, [|x]],)
Gi(t,5) == C(t + p(t)als))

and consequently

(2, t0, x;.d) — x||,< (1 — 10) G (1, [|x][,.)
+Gy(x,t — to) forallt > tgand (, x,d) € R*
x C([—r,0]; R") x M)

(A.10)
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where the functional
Ga(x,h) = sup{|x(0)
+{ 0 ifh>r

sup{|x(0 + h) — x(0)|;0 € [-r

— x(60);0 € [~ min{h,r},0]}
—H} ifo<h<r

is defined for all (x,h) € C°([—r,0]; R") x R*. Notice
that lim Gy(x,h) =0 for all x & C°([-r,0;RN")
and hcé)nsequently for every >0, R>0,
x € CO([-r,0); R"), there exists T(e, R,x) >0 such
that:

to<t<ty+T(e,R,x)=|¢p(t,t0,x;d) — x||,
<e, forall(t,x,d) € [0, R] x C°([~r,0];R") x Mp
(A.11)
We define for all ¢ € N:

Uq(lax) ::Sup{max{ovdl (||H(T,¢(T,Z,X;d>)||y) _qil}
xexp((T—Z)):TZt,dGMD}
(A.12)
Clearly, we obtain from estimate (A.7) and definition
(A.12):
max{0,a (| H(t,x)|ly) —¢ "'}
< Uyt x) < @ (B(n)lIx]],), V(2 x,q) € R*
xC([—r,0); R") x N
(A.13)

Moreover, by virtue of definition (A.12) we obtain for
all (h,t,x,d,q) € RT x RT x CO([—r,0]; R") x Mp x N:

U,(t,x)
(A.14)

Uy (t+ h,¢(t + h, t,x;d)) < exp(—h)

By virtue of estimate (A.7) it follows that for every
(g,R) e Nx R, 7> t+ T(R,q), (t,d) € [0,R] xMp,
and x € C([-r,0; R") with |x||,< R, it holds:
a (|[H(r, ¢(r,1,x;d))|ly) < exp(=2(1 —1))a (B(1)||x[],)

<q~', where
- 1 B
T(R,q) := max{O,zlog(l —+ qaz(ﬂ(R)R))}
(A.15)

Thus, by virtue of definitions (A.12), (A.15), we con-
clude that:

U,(t,x) = sup{max{0,a (| H(r, ¢(, 1, x;d))||y) — ‘1}
xexp((T—1)): 1 <7 <t+&de Mp},

vE > T(max{z, [|x],},9)
(A.16)
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Equality (A.16) implies the following inequalities
for all t€[0,R], and (x,y)€ C'([-r,0];R") x
CO([=r, 00; R") with [|x[|,< R.|[y[l,< R:

|Uq(tay) - Uq(tvx)‘ =

531

h <t <t+T(1,R x) (where
involved in (A.11)) and d € Mp:

T(e,R,x) >0 is

|sup{max{0,a, (||[H(, ¢(r, t,y;d))|ly) —q ' }exp((r — 1)) : t < 7 <t + T(R,q),d € Mp}
— sup{max{0,a (||[H(r,¢(r, t,x;d))|ly) —q ' }exp((r — 1)) : t < 7 <t + T(R,q),d € Mp}]|
< sup{exp((r — 0)|a (| H(r, ¢(7, 1, y;d)|ly) — @ (|[H (7, ¢(7, 1, y;d))|| )| : t <7 < 14+ T(R,q),d € Mp}

< sup{exp((T — 0))||H(7, ¢(7, 1, y; d))

Notice that in the above inequalities we have
used the facts that the functions max{0,s —q~'}
and aj(s) are globally Lipschitz on R* with unit
Lipschitz constant. From (A.9) and (A.17) we deduce
for all t€[0,R], and (x,y)€ C'([-r,0];R") x
CO([—r,0); ®") with |x],< Ry, < R

|Uq(1,9) = Uy(t,%)] < G3(R, q)|ly — x]l,
(A.18)

where

G3(R,q) := B(R+ T(R,q),2R)

, FTR.q A19
exp(T(R,q)(1+ L(R+ T(R,q),2R))) | !

Next, we establish continuity with respect to ¢ on
R x C([-r,0];R"). Let R>0, g€ N arbitrary,
11,0 € [0, Rl with 1; < 1, and x € C([—r,0]; R") with
|x||, < R. Clearly, we have for all d € Mp:
’Uq(tl,x)f Uq(l‘z,x)‘
< (I —exp(=(2—1))) Ug(11,%)
+|eXp(—([2 - Zl))Ul](tlﬁx) - Uq(127¢(12,ll ,X,d)){
+’Uq(t27¢(t2;[l;x;d)) - Uq(IZax)‘

By virtue of (A.10), (A.11), (A.14), (A.18) and the
above inequality we obtain for all 71,1, € [0, R] with

—H(r,o(r t,x5d))|[y: t <7 <t + T(R,q),d S MD}

(A.17)

A (Zl7l27 )_B (Zl7l2; )

|U,(11,x) = Uy(t2, )|

< (ta — t1)Uq(t1,x) +exp(—(t2 — 1)) Uy(t1, x)
—Uy(t2, ¢(t2, 11, x3d)) + G3(R + 1,9)
X[Ga(x,t2 — 11) + (12 — 11)G (R, R)] (A.20)

Definition (A.12) implies that for every € > 0, there
exists d. € Mp with the following property:
Uq(tl,x) —€
< sup{max{0,a (| H(r.¢(r.01.x;d-))|ly) —q '}
xexp((t1—t));7> 11} < Uy(t1,x) (A.21)
Thus using definition (A.12) we obtain:
exp(—(t2 — 1)) Uy (11, x) — Uy(t2, $(t2, 11, X3 dz))
< maX{Aq(tl, 1, X), Bq(ll, b, X)}
7Bq(ll,l2,x) +66Xp(*(12 — 11)) (A22)
where
Aq(ll,lz,x) =
sup{max{0, @ (||H(r, ¢(r, t1,x;d.))|ly) — ¢~ '}
xexp((T—h))ita >712> 10}
Bq(ll,lz,x) =
sup{max{0,a, (|H(r, ¢(r, t1,x;d.))|ly) —q '}
xexp((T—12));7 > 12} (A.23)

Since the functions max{0,s —¢ '} and a(s) are
globally Lipschitz on R with unit Lipschitz constant,
we obtain:

< sup{max{0,a, (|H(r, ¢(, tl,x d))lly) — g l}e:xp (T—0));ih>7>0}

)
—max{O a1(||H(tz,¢(tz,tl,x d ) }
)

< sup{max{0,a (|H(r, ¢(7, 11, x; d- )HY) —q¢'hh>T>n) - max{0,a (| H(t2, p(t2, 11, x;d-))|ly) — q'}
< Sup{’al(”H T, (T, 11, X; ds))HY) - al(”H(th P(12, 11, x;dz)) ||Y)’7t2 2T2 tl}

< sup{”H(T, (1,11, x;d-)) —

H(I2a¢(127 1, Xx; dE))||Y7 5] Z T Z Zl}

(A.24)
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Notice that by virtue of (2.3), (A.4) and (A.5),
we obtain for all 7€, with 1 <n<ip
+T(1,R,x),t1,12 € 0, R]:

[H(7, ¢(7, 11, x;d:)) — H(12, §(t2, 11, X3 de)) ||y
< [H(7, ¢(7, 11, x3de)) — H(ty, x) |y
+ [[H(t2, ¢(12, 11, x3d:)) — H(t1, )|y
<2(tr —t1)Lyg(R,2R+2)(1 + G1(R, R))
+ 2Ly (R, 2R + 2) sup{Ga(x,h);h € [0, — 1]}
(A.25)
Distinguishing the cases A,(t1,1,x) > By(ti, 12, X)

and A,(t1, 12, x) < By(t1, 12, x) it follows from (A.22),
(A.24), and (A.25) that:

exp(—(tr—1))Uy(t1,x) = Uy(t2,0(t2,11,x;d.)) <
<2(tr— 1)) Ly(R2R+2)(14 G, (R.R))
+2Ly(R2R+2)sup{G(x,h);h€[0,6—11]} +&

Combining the previous inequality with (A.20) and
the right hand side of (A.13), we obtain:
|Uy(11, %) = Uy(t2, %)
< (2 — t1)(@(B(R)R) + G1(R, R)G3(R+ 1,9)
+2Ly(R,2R+2)(1 + G1(R,R)))
+ (2Ly(R,2R+2) + G3(R+ 1,q))

x sup{Gy(x,h);h € 0,6, — 1]} + ¢ (A.26)

Since (A.26) holds for all e >0, R>0, g€ N,
x € CO[—r,0; ") with ||x|,< R and 1,5 € [0, R]
with 11 <1, <11 + T(1, R, x), it follows that:
|Uq(t1,x) - Uq(Zva)’
< G4(R,q)[|tr — 11
+sup{Ga(x,h);h € [0, |t — t;]}] forall R > 0,
q €N, x € C([-r,0); R") with ||x]|,< R

andt, 1 € [0,R]With|lz — l‘1| < T(I,R,X)
(A27)

V(t+ h, Ep(x; f(¢, x,d)) + hy) —
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where G4(R,q) == &(B(R)R) + (1 + Gi(R, R))
G3(R+1,q) +2Ly(R, 2R+ 2)(1 + G{(R, R)).
Finally, we define:

(1, x)
Z1 +G3 4,9 +G4(q q) (A.28)

Inequality (A.13) in conjunction with definition

(A.28) implies (4.1) with a=a  and
. > 2"/max{0.,t7n(s)—q*‘} . . .
ap(s) == ;W’ which is a function of

class K. Moreover, by virtue of definition (A.28)
and inequality (A.14) we obtain for all
(hyt,x,d) € RT x RT x CO([—r,0]; R") x Mp:

V(t+h,¢(t+ h,t,x;d)) < exp(—h)V(t,x)
(A.29)

Next define

RJ+1
2- qG3 (R, q)
+
Z 1+ q) + Ga(q,q)

(A.30)

which is a positive non-decreasing function. Using
(A.18) and definition (A.28) as well as the fact
G3(R,q) < Gs(q,q) for g> R, we conclude that
property (P1) of Definition 3.6 holds. Let d € D
and define d(7) = d. Definition (3.3) and inequality
(A.29) imply that for all (t,x) € R* x C([-r,0]; R")
we get:

V(t, x)

Vo(t,x;f(t,x,d)) = lim sup
h—0"

y=0yeC([-r,0[;R")

h

< lim sup V(t + h, ¢(t + h> 1, X; d)) B V(t’ )C)
h—0+ h
© limsup V(t+ h, Ey(x; /{1, x,d)) + hy) —

V(t+h, ¢(t+ h, 1,x;d))

h—0"
y—0,yeC([—r,0;;R")

V(t+ h, Ey(x; f(t, x,d)) + hy) —

h

V(t+h,¢(t + h, 1, x;d))

< —V(t,x)+ lim sup
h—0"

y—=0,yeC([—r,0;R")

h
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Let R > max{z,|/x[}. Definition (3.2) and property
(A.11) imply that (+hA<R+1, ||¢ t+h,t,x;d) ||
R+1, ||Ep(x:f(t,x,d))+hy||,<R+1 for h and ||y|\
sufficiently small. Using property (P1) of Definition
3.6 and previous inequalities we obtain:

V(x50 x,d) < = V(1,x)

Ey(x:f(t,> _ h .7
+M(R+1)11msup|| hb@f(l’ ’C,d)) h¢(t+ 7t7xad)Hr
h—0*

We set  o(t+ h,t,x;d) =x(t+h+0);0 € [-r0].
Notice that ¢(t+ h,t,x;d) — Ey(x;f(t,x,d)) = hyp,
where
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the prev10us inequality  that  7(1,R,x) >

Property (P2) of Definition

(1+r)(1+G1(RR)+ sup [x(7)])"

—r<r<0

3.6 with G(R):= 1+’( +Gi(R,RR)+R) is a
direct consequence of (A.31) and the two previous
inequalities.

Proof of (¢)= (a):

Case 1: (2.1) is RFC

Consider a solution x(¢) of (2.1) under hypotheses
(H1-4) corresponding to arbitrary d € Mp with initial
condition 7,(t)x = xo € C'([-r,0];R"). By virtue
of Lemma A.2, for every T € (1, +0o0), the map-
ping [to, T] > t — V(t, T,(¢)x) is absolutely continuous.

O+h (x(t+0+h)—x(1)
—flt for —h<6<0
yhi=19 h ( 0+h St x,d) ) for —h <6 <
0 for —r <0< -—h
with  ||y]],< sup{ M — 1, 0<s < h}. It follows from (42) and Lemma A.1 that
d

' x(eth)=x(t) _ ai V(. T (0)x)) < =y (1) p(V(1, T,(1)x)) a.e. on [1,+00).
Since lln01 h =flt;x,d), we obtain that The previous differential inequality in conjunction
yv—0 as  h— 0T, Hence, we  obtain with the comparison lemma in [22] and Lemma 4.4 in
. | Enef e xd))=p(+htxd)||, [26] shows that there exists o € KL such that
lim sup 5 =0 and consequently

h—0+
(4.2) holds with y(7) = 1 and p(s) := s
Finally, we establish continuity of ' with respect
to t on K" x C°([-r,0); R") and property (P2) of
Definition 3.6. Notice that by virtue of (A.27) and the
fact G4(R, q) < Ga(q,q) for ¢ > R, we obtain:

[V(t1,x) = V(t, x)| < P(R)[|12 — 11

+sup{Ga(x,h);h € [0, |t — t1]]}]

forall R > 0,x € C°([—r,0]; R") with [|x]|,

< Rand1,t; € [0, R]with |t — 1| < T(1, R, x)
(A31)

where

279G4(R, q)
1+
Z 1+ Gs(q,9) + Ga(q, q)

is a positive non-decreasing function. Inequality
(A.31) in conjunction with the fact that
Ilir})l Gy(x,h) =0 for all xe& C'([-r,0;R"), esta-
h—0+

blishes continuity of V with respect to ¢ on
R x CO([~r,0]; R"). Moreover, for every absolutely
continuous function x: [—r,0] — R" with ||x||,.< R
and essentially bounded derivative, it holds that
sup{Ga(x,h);h € [0, |t — t1]]} < |2 — 11| sup |x( )|

*IT

for |t — 11| < r. It follows from (A.10), (A.ll) and

P(R) :=

V(t, T,(t)x)<a(V(to,x0)7/7(s)ds)

to

forallt>1, (A.32)

It follows from Lemma A.3 that the solution x(7) of

(2.1) under hypotheses (H1-4) corresponding to

arbitrary d € Mp with arbitrary initial condition

T,(t9)x = xo € CO([—r,0]; R") satisfies (A.32) for all

t > ty. Next, we distinguish the following cases:

(1) If (4.1) holds, then properties (P1-3) of Definition
3.2 are direct+ consequences of (A.32), (4.1) and

the fact that [ ~(r)dr = +oo.
0

(2) If (4.6) holds, then (A.32) implies the following
estimate:

(2, x(1))]

t

7| @(B@)ll,). [,

Io

<a’

Yit>1

Since h:[—r,+00) x K" — R’ is continuous with
h(t,0) =0 forallt > —r, it follows from Lemma 3.2 in
[15] that there exist functions ¢ € K., and § € K" such
that:

(e = r,)| < ), V(1,x) € R x "
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Combining the two previous inequalities we obtain:

es[upo}Ih(t +0,x(t 4 0))| < max{¢(¢(10)|xoll,),
ay ' (o(ax(n(to]x0],), 0))),
for all € [to, to + 1]

sup |h(t+0,x(t+0))|
0e[—r,0]

< al—l (o’ (az (ﬁ(zo)||x0||r),/ v(s)ds) ) ,

forallt > tg+r

where ¢(1) := (1) + max (7). The above estimates,
0<r<t+r +00

in conjunction with the facts that [ ~(7)dr = +o0 and
H:R" x C([-r,0;R") — Y isOequivalent to the
finite-dimensional mapping / show that properties
(P1-3) of Definition 3.2 hold for system (2.1). Hence,
system (2.1) is non-uniformly RGAOS with dis-
turbances d € Mp

Case 2: There exist functions ¢ € K, p € K" and a
constant R > 0 such that

a(u()]x(0)|) < V(¢,x) + Rforall (,x) € R*
x C([=r,0]; R")
(A.33)

Consider a solution of (2.1) under hypotheses (H1-4)
corresponding to arbitrary d € Mp with initial con-
dition T,(t9)x = xo € C'([-r,0];R"). By virtue of
Lemma A.2, for every T € (f9,/max), the mapping
[to,T] > t— (¢, T, (t)x) is absolutely continuous.
It follows from (4.2) and Lemma A.l that for
every T € (fo,tmax) it holds that < (V(z, T,(1)x)) <
—v()p(V(t, T.(t)x)) a.e. on [ty, T]. The previous
differential inequality in conjunction with the com-
parison lemma in [22] and Lemma 4.4 in [26] shows
that there exists o € KL such that

V(t, T,(1)x) < O'(V(meo), / v(s)ds) ,

fo

forallz € [t, T)
Combining (A.33), (A.34) and (3.2) we obtain:

[x(2)]

Su(ll)al (0’ (az (ﬁ(l0)||xo||,-)a/’Y(S)dS) +R)7

Ly

(A.34)

forallze|z,T]
(A.35)
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Estimate (A.35) shows that fy,x = 400 and conse-
quently estimates (A.34), (A.35) hold for all ¢ > .

It follows from Lemma A.3 that the solution x(7) of
(2.1) under hypotheses (H1-4) corresponding to
arbitrary d € Mp with arbitrary initial condition
T,(t0)x = xo € CO([—r,0]; R") satisfies (A.34) and
(A.35) for all ¢ > ty. Therefore system (2.1) is RFC
and estimate (3.1) is a direct consequence of (A.34)
and (4.1) (or (4.6)), as in the previous case.

Proof of (e)= (b):

Let arbitrary (fg,xp) € R" x C°([~r,0];R") and
d € Mp and consider the solution x(¢) of (2.1) with
initial condition T,(79)x = xog € C°([—r,0]; R") corre-
sponding to d € Mp and defined on [ty — r, +00).
Setting x(1) :==x(tg —r) for t€ [ty —r—T,to— 1],
we may assume that for each time 7 € [y, +00) the
unique solution of (2.1) belongs to C° ([tg —r — 7, {];
R"). Moreover, we have || T, (t0)x||,,..= || T(t0)x||,=
||xo|l,- Since (2.1) is Robustly Forward Complete
(RFC), by virtue of Lemma 3.5 in [15], there exist
functions p € K*, a€ K., such that for every
(to,x0,d) € RT x CO([—r,0]; R") x Mp, estimate (A.8)
holds. Without loss of generality we may assume that
i€ KT is non-decreasing, so that the following
estimate holds:

| Ter ()], < p(a(lxoll,) Ve > 16 (A36)

Let V(¢) := V(¢t, T,-(t)x), which is a lower semi-
continuous function on [fy,+00). Notice that, by
virtue of Lemma A.1, we obtain:

DV(1) < VO(t, Trar (0)x: /2, To(0) T (1),
d(1)), forallt > 1
(A.37)
where
DHV(¢) := lim sup Vet h Tt + h;lx) mldC T”(t)x).
h—0*
It follows from definition (4.5) that:

Ift > 1o + Tthen T, (¢)x € S(7) (A.38)

Inequality (A.37) in conjunction with (A.38) and
inequality (4.4) gives:

DHV(1) < —()p(V(1) + () ( / W(S)d3> ,

forallt >ty + 7
(A.39)

Lemma 2.8 in [18], in conjunction with (A.39) and
Lemma 5.2 in [13] imply that there exist a function
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o(-) € KL and a constant R >0 such that the
following inequality is satisfied:

Vi) <o (V(to +7)+ R, / 'y(s)ds> ,

to+T1
Vt>to+7
(A.40)

It follows from the right hand-side inequality (4.3),
(A.36) and (A.40) that the following estimate holds:

V(<o (az (ﬂ(lo+7)u(lo+7)a(||x0||,,))+R,/ ’y(s)ds) ,

Yi>ty+r (A.41)

Next, we distinguish the following cases:

1) if (4.3) holds, then (A.41) in conjunction with (4.3)
and Lemma 3.3 in [15] shows that (2.1) is non-
uniformly RGAOS with disturbances d € M.

2) If (4.7) holds, then (A.41) implies the following
estimate:
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h:[=r,400) x R" — R’ is continuous and T-periodic
with /i(7,0) = 0 for all z > —r, it follows from Lemma
3.2 in [15] implies that there exist a function ¢ € K,
such that:

|h(t —r,x)| < ¢(|x]),V(t,x) € RT x R"

Finally, the proof of implication (e)=- (b) follows
the same arguments as the proof of implication
()= (b) of Theorem 4.1, with the difference that,
by virtue of inequalities (4.11a,b), the function
V(t) .= V(t, T, (t)x)satisfies the following differen-
tial inequalities:

DT V(1) < BV(¢), forallt > ¢ (A.42)

DTV(t) < —p(V(1)), forallt > 1o+ 7 (A.43)

Thus the comparison lemma in [22], Lemma 4.4 in [26]
in conjunction with (A.37) shows that there exists
o € KL such that the following inequality is satisfied:

Vit) <o(Vitg+7),t—tg—7), Vi > to+ 7
(A.44)

|h(t,x(2))| < a;! (a (az(ﬂ(tg + )ulto + 7)a([|xoll,)) + R, / 7(s)ds>) Ne> o+ T

and consequently

0c|—r,0]

The above estimate, in conjunction with the fact
that H : R x C([-r, 0]; W") — Y is equivalent to
the finite-dimensional mapping # and Lemma 3.3 in
[15] shows that (2.1) is non-uniformly RGAOS with
disturbances d € M. The proof is complete. <

Proof of Theorem 4.2: Implications (a) = (b), (d)=
(c), (c)= (e) are obvious. Thus we are left with the
proof of implications (b)=- (d), (c)=- (a) and (¢)= (b).
The proof of implication of (b)= (d) is exactly the
same with that of Theorem 4.1 for the special case of
the constant function ((¢) = 1. Moreover, the fact
that V'is T — periodic (or time-independent) if (2.1) is
T-periodic (or autonomous) can be shown in the same
way as in [18]. The proof of implication (c)=- (a) is
exactly the same with the proof of implication (c)=- (a)
of Theorem 3.5 with the only difference that since

to+7

sup |h(t+0,x(t +0))] < a;! (0 (az (B(to + T)ulto + T)a(|lxol,)) + R, / v(s)ds> ) S VE> o4+ T+

to+7

Moreover, differential inequality (A.42) implies
V(t) <exp(B(t—ty))V(ty) for all ¢ > ty. Combining
the previous estimate with (A.44) we obtain:

V(t) <w(V(ty),t —tg), Yt > 19 (A.45)

where w(s, 7) := max{exp(07)s,o(s,0)} for 7€ [0,r)
and  w(s, 1) := max{exp(r — 1) exp(07)s,o(s, 1 — r)}
for ¢ > r. From this point the proof can be continued
in exactly the same way as in the proof of Theorem
4.1. The proof is complete. N
Finally, we provide the proof of Lemma 3.5.

Proof of Lemma 3.5: The proof is based on the fol-
lowing observation: if (2.1) is T — periodic then for
all (tg,x0,d) € R x CO([—r,0); R") x Mp it holds
that (¢, t9,x0;d) = o(t — kT, ty — kT, xo; Prrd) and
H(1,¢(1, 10, x0:d)) = H(t=kT,p(t—=kT, 10—k T, x0; Prrd)),
where k:=[t(/T] denotes the integer part of 7y/T and
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(Prrd)(t)=d(t4kT) for all ++k T > 0. Notice that if
deMp then Pird€ Mp and if d€ Mp then Pyrd€ Mp.

Since (2.1) is non-uniformly in time RGAOS,
there exist functions o € KL, 3¢€ K" such that
(3.1) holds for all (z9,x0) € R" x C*([—r,0]; R"),
de Mp(or de Mp) and 1> 1y. Consequently, it
follows that the following estimate holds for all
(to,x0) € RT x C([—r,0]; R"), de Mp(or de Mp)
and 7 > 1g:

[H (1, 6(1, 10, X0; )|y

<o(3(o~ (7Yl
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Since 0 <ty — [;—2} T < T, for all 1, >0, it follows
that the following estimate holds for all
(to,x0) € R x CO([—r,0; R"), d€ Mp(or de€ Mp)
and 1 > fo:

||H(la ¢(Z7 1o, Xo; d))HYS &(HXOHN t— l())

where (s, 1) := o(Rs, 1) and R:=max{5(¢);0<r<T}.
The previous estimate in conjunction with Defini-
tion 3.4 implies that (2.1) is URGAOS. The proof is
complete. <



