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a b s t r a c t

In this work, sufficient conditions for global stabilization of nonlinear uncertain systems by means of
discrete-delay static output feedback are presented. Examples illustrate the efficiency of the proposed
control strategy.
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1. Introduction

Feedback laws with delayed terms have recently been consid-
ered for the solution of various control problems. In particular, the
following works have showed that feedback laws, which involve
delays, present features that cannot be induced by means of ordi-
nary feedback (i.e. feedback with no delays):

• in [1], it is shown that the use of discrete-delays can allow
the design of observers that provide state estimates for linear
systems which converge to the actual state values in a pre-
specified finite settling time,
• in [7], it is shown that the use of distributed delay feedback can
allow the design of smooth feedback laws which achieve finite-
time stabilization of nonlinear systems in a pre-specified finite
settling time,
• in [3,9–12], it is shown that the use of discrete delay static
output feedback can achieve stabilization for linear systems,
which cannot be stabilized by ordinary (i.e. with no delays)
static output feedback

Specifically, in [3] it was shown that autonomous, minimum
phase, linear systems ẋ = Ax + Bu, x ∈ Rn, u ∈ Rm, y(t) =
cx(t) with relative degree 1 or 2 can be stabilized by static output
feedback with delays of the form u(t) = −k1y(t) − k2

y(t)−y(t−h)
h ,

where h > 0. The form of the feedback is obtained by replacing
the derivative ẏ(t) in an ordinary stabilizing feedback u(t) =
−k1y(t)−k2ẏ(t) by the numerical approximation of the derivative
of the output signal y(t)−y(t−h)h ≈ ẏ(t). The same idea was used in
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[12] for the stabilization of a chain of integrators using multiple
delays.
In the present work, we generalize the idea proposed in [3] and

show that for uncertain systems of the form:

ẋi(t) = xi+1(t)+ vi(t), i = 1, . . . , n− 1
ẋn(t) = vn(t)+ a(d(t), x(t))u(t)
y(t) = x1(t)+ e(t)
x(t) = (x1(t), . . . , xn(t))′ ∈ Rn, d(t) ∈ D,
v(t) = (v1(t), . . . , vn(t))′ ∈ Rn, u(t) ∈ R

(1.1)

where D ⊆ Rl is compact, d = d(·), v = v(·) are time-
varying uncertainties/disturbances (modelling errors), e : R→ R

represents the outputmeasurement error and a : D×Rn → R is a
locally Lipschitz function that satisfies the following inequality for
certain constants α, β > 0:

α ≤ a(d, x) ≤ β, for all (d, x) ∈ D×Rn (1.2)

there exists a vector k ∈ Rn such that for sufficiently small h > 0,
the linear static output feedback law with discrete delays:

u(t) = k′


y(t)
y(t − h)

...
y(t − (n− 1)h)

 (1.3)

achieves robust global stabilization of the equilibrium point 0 ∈
Rn of (1.1) in the sense that the solution of (1.1) with (1.3) and
arbitrary continuous initial condition x0 : [−(n − 1)h, 0] → Rn

corresponding to arbitrary measurable and locally bounded inputs
v : R+ → Rn, d : R+ → D, e : R → R, satisfies the following
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estimate for all t ≥ 0:

|x(t)| ≤ Q0 exp(−µt) sup
−(n−1)h≤θ≤0

|x(θ)|

+

n∑
i=1

Qi sup
0≤τ≤t

exp (−µ(t − τ)) |vi(τ )|

+Qe sup
−(n−1)h≤τ≤t

exp (−µ(t − τ)) |e(τ )| (1.4)

for appropriate constantsQ0,Q1, . . . ,Qn,Qe > 0 (Proposition 2.3).
Inequality (1.4) is a ‘‘fading memory estimate’’ that guarantees the
Input-to-State Stability (ISS) property for the closed-loop system
(1.1) with (1.3) (see [14] for the definition of the ISS property
for finite-dimensional systems, [5,13] for the extension of the
ISS property to time-delay systems and [6] for a discussion of
‘‘fading memory estimates’’ to a wide class of systems). The
feedback law (1.3) is constructed using a backward difference
numerical differentiator of the output signal y(t) = x1(t) + e(t),
which is corrupted by measurement noise. Moreover, we obtain
explicit estimates of the maximum allowable time step h > 0
that can be used for robust stabilization as well as of the gains
Q1, . . . ,Qn,Qe > 0 involved in (1.4).
The obtained results are applied to minimum phase nonlinear

systems of the form:

ż(t) = f (d(t), z(t), x(t)), z(t) ∈ Rk

ẋi(t) = gi(d(t), z(t), x(t))+ xi+1(t)+ vi(t),
i = 1, . . . , n− 1

ẋn(t) = gn(d(t), z(t), x(t))+ a(d(t), z(t), x(t))u(t)+ vn(t)
y(t) = x1(t)+ e(t)
x(t) = (x1(t), . . . , xn(t))′ ∈ Rn, d(t) ∈ D, u(t) ∈ R

v(t) = (v1(t), . . . , vn(t))′ ∈ Rn, e(t) ∈ R.

(1.5)

The reader should notice that system (1.5) is similar to the
Byrnes–Isidori normal form (see Chapter 4 in [4]) with the addition
of disturbance inputs d : R+ → D and v : R+ →

Rn that account for modelling/actuator errors and consequently
the z−subsystem of (1.5) represents the zero dynamics of (1.5).
The stabilization problem for systems of the form (1.5) can
be addressed with a combination of the main result for the
stabilization of (1.1) (Proposition 2.3) and the well-known high
gain feedback design strategy which allows nonlinearities that
satisfy certain growth conditions (see hypotheses (A1–3) in
the statement of Theorem 2.6). Robustness of the closed-loop
system (1.5) with (1.3) is guaranteed by showing an inequality
similar to (1.4) (Theorem 2.6). Therefore, the Bounded-Input-
Bounded-State property and the Converging-Input-Converging-
State property hold for the nonlinear closed-loop system (1.5)with
(1.3).Moreover, the states x(t) converge exponentially to the origin
for the unforced case v ≡ 0, e ≡ 0.
It should be noted that systems of the form (1.1) or (1.5) un-

der the hypotheses imposed in the present work (see hypotheses
(A1–3) in the statement of Theorem 2.6) can be stabilized by dy-
namic (observer-based) output feedback (see [15]). Consequently,
it is clear that static output discrete-delay feedback is an alterna-
tive to dynamic output feedback and further studies need to be per-
formed, in order to show the advantages and disadvantages of each
type of feedback.
Consequently, the contribution of the paper is:

• the main result in [3] is generalized to uncertain minimum
phase nonlinear systemsof the form (1.5)with arbitrary relative
degree (Theorem 2.6),
• the main result in [12] is generalized to uncertain systems of
the form (1.1) and a completely different proof is provided
(Proposition 2.3),
• robustness of the closed-loop system with respect to measure-
ment and modelling errors is guaranteed by ‘‘fading memory
estimates’’ of the form (1.4),
• explicit estimates of the maximum allowable time step h > 0
that can be used in (1.3) as well as of the gains of the inputs are
provided.

The structure of this article is as follows: in Section 2 the main
results are presented and proved. Section 3 contains illustrating
examples, which show the efficiency of the discrete-delay static
output feedback for the stabilization of linear and nonlinear
uncertain systems. Finally, in Section 4 we present the concluding
remarks of the present work.

Notations. Throughout this paper we adopt the following nota-
tions:

∗ By Z+ we denote the set of non-negative integers and byR+ we
denote the set of non-negative real numbers.
∗ Let I ⊆ R+ := [0,+∞) be an interval. ByL∞(I;U)(L∞loc(I;U))
we denote the space of measurable and (locally) bounded
functions u(·) defined on I and taking values in U ⊆ Rm. Notice
that functions inL∞(I;U) (orL∞loc(I;U)) are defined pointwise
and are not equivalent classes of functions. The sup operator
used for a function inL∞(I;U) (orL∞loc(I;U)) is the actual least
upper bound of this function.
∗ By C0(A;Ω), we denote the class of continuous functions on A,
which take values inΩ .
∗ Let x : [a − r, b) → Rn with b > a > −∞ and r > 0. By
Tr(t)x we denote the ‘‘r-history’’ of x at time t ∈ [a, b), i.e.,
Tr(t)x := x(t + θ); θ ∈ [−r, 0].
∗ For a vector x ∈ Rn we denote by |x| its usual Euclidean norm,
by x′ its transpose and by |A| := sup {|Ax| ; x ∈ Rn, |x| = 1} the
induced norm of a matrix A ∈ Rm×n. For x ∈ C0([−r, 0];Rn)
we define ‖x‖r := maxθ∈[−r,0] |x(θ)|.
∗ For the definitions of the classes K and K∞, see [8].
∗ By A = diag(l1, l2, . . . , ln) we mean that the matrix A =
{aij; i = 1, . . . , n, j = 1, . . . , n} is diagonal with aii = li, for
i = 1, . . . , n.
∗ We say that a function V ∈ C0(Rn;R) is radially unbounded
if the following property holds: ‘‘for every M > 0 the set
{x ∈ Rn : V (x) ≤ M} is compact’’.

2. Main results

We start by presenting a preliminary result on the numerical
differentiation of the output signal of an uncertain linear system.
The following lemma shows that there is a family of backward
difference operators (parameterized by the time step h) that
provides state estimates for a linear uncertain observable system.

Lemma 2.1. Consider the following system:

ẋi = xi+1 + ui, i = 1, . . . , n− 1
ẋn = un
x = (x1, . . . , xn)′ ∈ Rn, u = (u1, . . . , un) ∈ Rn

(2.1)

with n ≥ 2. There exist constants K0, K1, . . . , Kn > 0 and a family
of linear continuous operators ∆nh : L

∞([−(n − 1)h, 0];R) → Rn

(parameterized by h ∈ (0, 1]), defined by

∆nhy := Q
n
h P
−1 [y(0) y(−h) y(−2h) . . . y(−(n− 1)h)

]′
,

∀y ∈ L∞([−(n− 1)h, 0];R) (2.2)

where Q nh := diag
(
1, 1!

(−h) ,
2!

(−h)2
, . . . , (n−1)!

(−h)n−1

)
∈ Rn×n and P ={

pij = (i− 1)j−1 , i, j = 1, . . . , n
}
∈ Rn×n, such that for every h ∈

(0, 1], ui ∈ L∞loc(R
+
;R)(i = 1, . . . , n), x0 ∈ Rn the solution x(t)
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of (2.1) with initial condition x(t0) = x0 corresponding to inputs
ui ∈ L∞loc(R

+
;R)(i = 1, . . . , n), satisfies the following inequality:

∣∣x(t)−∆nhT(n−1)h(t)x1∣∣ ≤ n∑
j=1

Kjhj+1−n sup
t−(n−1)h≤τ≤t

∣∣uj(τ )∣∣ ,
∀t ≥ t0 + (n− 1)h. (2.3)

Moreover, for every h ∈ (0, 1] it holds that:

hn−1
∣∣∆nhy∣∣ ≤ K0 sup

−(n−1)h≤τ≤0
|y(τ )| ,

∀y ∈ L∞([−(n− 1)h, 0];R). (2.4)

Proof. First notice that P is a Vandermonde matrix and is
invertible. Clearly, definition (2.2) guarantees that inequality (2.4)
holds for appropriate K0 > 0 (e.g., K0 =

√
n
∣∣P−1∣∣ (n − 1)!). In

order to show inequality (2.3), let h ∈ (0, 1], ui ∈ L∞loc(R
+
;R)(i =

1, . . . , n), x0 ∈ Rn (arbitrary) and consider the solution x(t) of
(2.1) with initial condition x(t0) = x0 corresponding to inputs
ui ∈ L∞loc(R

+
;R) (i = 1, . . . , n). For all t ≥ t0 + (n − 1)h, it

holds that:

x(t) = exp (A(n− 1)h) x(t − (n− 1)h)

+

∫ t

t−(n−1)h
exp (A(t − τ)) u(τ )dτ (2.5)

x1(t − kh) = c ′ exp (A(n− 1− k)h) x(t − (n− 1)h)

+

∫ t−kh

t−(n−1)h
c ′ exp (A(t − kh− τ)) u(τ )dτ ,

k = 0, . . . , n− 1 (2.6)

whereA =


0 1 0 . . . 0
0 0 1 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
0 0 0 . . . 1
0 0 0 . . . 0

, exp(At) = {φij(t), i, j = 1, . . . , n}
with φij(t) = 0 for j < i, φij(t) = t j−i

(j−i)! for j ≥ i
and c ′ =

[
1 0 0 . . . 0

]
. Eq. (2.6) can be written in vec-

tor form as in Box I: It follows from the binomial theorem
that G(h) = P

(
Q nh
)−1 exp (A(n− 1)h) for all h > 0, where

Q nh := diag
(
1, 1!

(−h) ,
2!

(−h)2
, . . . , (n−1)!

(−h)n−1

)
∈ Rn×n and P ={

pij = (i− 1)j−1, i, j = 1, . . . , n
}
∈ Rn×n. Consequently, G(h) is

invertible and we obtain:

x(t − (n− 1)h) = exp (−A(n− 1)h)Q nh P
−1


x1(t)
x1(t − h)
x1(t − 2h)

...
x1(t − (n− 1)h)


− exp (−A(n− 1)h)Q nh P

−1B(t, u).

Substituting x(t− (n−1)h) from the above equation in (2.5) gives:

x(t) = Q nh P
−1


x1(t)
x1(t − h)
x1(t − 2h)

...
x1(t − (n− 1)h)

− Q nh P−1B(t, u)

+

∫ t

t−(n−1)h
exp (A(t − τ)) u(τ )dτ ,

∀t ≥ t0 + (n− 1)h. (2.7)
Since c ′ exp(Ah) =
[
1 h

h2

2
. . .

hn−1

(n− 1)!

]
, we have for

k = 0, . . . , n− 1:∣∣∣∣∫ t−kh

t−(n−1)h
c ′ exp (A(t − kh− τ)) u(τ )dτ

∣∣∣∣
≤

n∑
j=1

(n− 1− k)j

j!
hj sup
t−(n−1)h≤τ≤t

∣∣uj(τ )∣∣ .
Consequently, |B(t, u)| ≤ (n − 1)

∑n
j=1

(n−1)j

j! h
j supt−(n−1)h≤τ≤t

|uj(τ )| and∣∣Q nh P−1B(t, u)∣∣ ≤ (n− 1)√n ∣∣P−1∣∣ (n− 1)!
×

n∑
j=1

(n− 1)j

j!
hj+1−n sup

t−(n−1)h≤τ≤t

∣∣uj(τ )∣∣ ,
∀t ≥ t0 + (n− 1)h. (2.8)

Moreover, since h ∈ (0, 1], we have:∣∣∣∣∫ t

t−(n−1)h
exp (A(t − τ)) u(τ )dτ

∣∣∣∣
≤ (n− 1)h max

0≤s≤(n−1)h
|exp(As)| sup

t−(n−1)h≤τ≤t
|u(τ )|

≤ (n− 1) max
0≤s≤n−1

|exp(As)|

×

n∑
j=1

hj+1−n sup
t−(n−1)h≤τ≤t

∣∣uj(τ )∣∣ .
The above inequality, in conjunction with (2.7) and (2.8) and def-
inition (2.2), guarantees that inequality (2.3) holds for appropri-
ate constants K1, . . . , Kn > 0 (e.g., Kj = (n − 1)

√
n
∣∣P−1∣∣ (n −

1)! (n−1)
j

j! + (n− 1)max0≤s≤n−1 |exp(As)|, j = 1, . . . , n). The proof
is complete. C

The following lemma is concerned with the stabilization
properties of system (1.1) by means of state ordinary linear
feedback. Its proof is omitted.

Lemma 2.2. Consider system (1.1), where D ⊂ Rl is compact and a :
D×Rn → R is a locally Lipschitz mapping that satisfies (1.2). There
exists a vector k ∈ Rn and constants M0,M1, . . . ,Mn > 0, µ > 0
such that for every v ∈ L∞loc(R

+
;Rn), d ∈ L∞loc(R

+
;D), (t0, x0) ∈

R+×Rn the solution x(t) of the closed-loop system (1.1)with u = k′x
corresponding to inputs v ∈ L∞loc(R

+
;Rn), d ∈ L∞loc(R

+
;D), with

initial condition x(t0) = x0 ∈ Rn satisfies:

|x(t)| ≤ M0 exp (−µ(t − t0)) |x0|

+

n∑
i=1

Mi sup
t0≤τ≤t

{exp (−µ(t − τ)) |vi(τ )|} ,

∀t ≥ t0. (2.9)

We are now in a position to state themain results of the present
work. The following proposition shows that the state estimate
provided by the backward difference operator of Lemma 2.1 can
be used for the robust exponential stabilization of system (1.1)
for sufficiently small values of the time step h. The result of the
following proposition provides explicit formulae that allow the
designer to select appropriate values for the time step h, in contrast
with Proposition 2 in [12]. Its proof is provided at the Appendix A.

Proposition 2.3. Consider system (1.1), where D ⊂ Rl is compact
and a : D × Rn → R is a locally Lipschitz mapping that satisfies
(1.2). Let k ∈ Rn andM0,M1, . . . ,Mn > 0, µ > 0, be the vector and
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]


x1(t)
x1(t − h)
x1(t − 2h)

...
x1(t − (n− 1)h)

 = G(h)x(t − (n− 1)h)+ B(t, u)
where

B′(t, u) =
[∫ t

t−(n−1)h
c ′ exp (A(t − τ)) u(τ )dτ

∫ t−h

t−(n−1)h
c ′ exp (A(t − h− τ)) u(τ )dτ . . .

∫ t−(n−2)h

t−(n−1)h
c ′ exp (A(t − (n− 2)h− τ)) u(τ )dτ 0

and

G(h) =
{
gij =

(n− i)j−1hj−1

(j− 1)!
, i, j = 1, . . . , n

}
∈ Rn×n.

Box I.
the constants for which (2.9) holds. Moreover, let K0, K1, . . . , Kn >
0,∆nh : L∞([−(n − 1)h, 0];R) → Rn, be the constants and the
family of linear operators (parameterized by h ∈ (0, 1]), for which
(2.3), (2.4) hold. Then for every h ∈ (0, 1] that satisfies

βhKn |k| exp (µ(n− 1)h) < 1;

hKnMnβ2 |k|2 exp (µ(n− 1)h)

(1− βhKn |k| exp (µ(n− 1)h))2
< 1 (2.10)

there exist constants Q0,Q1, . . . ,Qn,Qe > 0 such that for every v ∈
L∞loc(R

+
;Rn), e ∈ L∞loc(R;R) and x0 ∈ C

0([−(n−1)h, 0];Rn), the
solution x(t) of the closed-loop system (1.1) with

u(t) = k′∆nhT(n−1)h(t)y (2.11)

corresponding to inputs v ∈ L∞loc(R
+
;Rn), e ∈ L∞loc(R;R), d ∈

L∞loc(R
+
;D), with initial condition x(θ) = x0(θ); θ ∈ [−(n−1)h, 0]

satisfies (1.4) for all t ≥ 0.

Remark 2.4. Notice that formula (2.2) for the backward difference
operator ∆nh : L∞([−(n − 1)h, 0];R) → Rn implies that the
feedback law (2.11) can be equivalently expressed as

u(t) = k′Q nh P
−1


y(t)
y(t − h)

...
y(t − (n− 1)h)


where Q nh := diag

(
1, 1!

(−h) ,
2!

(−h)2
, . . . , (n−1)!

(−h)n−1

)
∈ Rn×n and P =

1 0 0 . . . 0
1 1 12 . . . 1n−1

1 2 22 . . . 2n−1

.

.

.
.
.
.

.

.

. . . .
.
.
.

1 n− 1 (n− 1)2 . . . (n− 1)n−1

 ∈ Rn×n.

Remark 2.5. The proof of Proposition 2.3 (see Appendix A) allows
an estimation of the magnitude of the constants Q0,Q1, . . . ,Qn,
Qe > 0 involved in (1.4):

Q0 ≤ M0 +Mnβ |k|
cM0β |k| + nL
1− cMnβ2 |k|2

Qi ≤ Mi +Mnβ |k|
c
(
Kihi−n + Knβ |k|Mi

)
+ LKn(

1− cMnβ2 |k|2
)
Kn

, i = 1, . . . , n

Qe ≤ Mnh1−nK0β |k|
[
exp (µ(n− 1)h)

+ β |k|
c (Mnβ |k| exp (µ(n− 1)h)+ 1)+ L exp (µ(n− 1)h)

1− cMnβ2 |k|2

]

where c := hKn exp(µ(n−1)h)
(1−hKnβ|k| exp(µ(n−1)h))2

, L := (1 + K0h1−n) exp(2(n +

β|k|h1−nK0 + µ)(n − 1)h). However, numerical examples in the
following section show that the above estimates are conservative
for the linear case a(d, x) ≡ 1. Moreover, it should be noted that
when h→ 0 thenQe →+∞: this is thewell-knownphenomenon
of sensitivity of high-gain feedback laws to measurement errors.
Indeed, when h→ 0 then the linear feedback law (1.3) becomes a
high-gain feedback (see the formula in the previous remark).

Our next main result deals with the stabilization problem for
system (1.5).

Theorem 2.6. Consider system (1.5), where D ⊂ Rl is compact, the
mappings f : D × Rk × Rn → Rk, gi : D × Rk × Rn → R(i =
1, . . . , n) and a : D × Rk × Rn → R are locally Lipschitz with
f (d, 0, 0) = 0 for all d ∈ D. Suppose the following:
(A1) There exist constants γ ≥ 0, c > 0 and functions

a ∈ K∞, V ∈ C0(Rk;R+) which is positive definite and
radially unbounded with V (0) = 0, such that for every x ∈
L∞loc(R

+
;Rn), d ∈ L∞loc(R

+
;D), z0 ∈ Rk the solution z(t) of

the system ż(t) = f (d(t), z(t), x(t)) corresponding to inputs x ∈
L∞loc(R

+
;Rn), d ∈ L∞loc(R

+
;D), with initial condition z(0) = z0 ∈

Rk satisfies:

V (z(t)) ≤ exp (−ct) a (|z0|)
+ γ sup

0≤τ≤t
exp (−c(t − τ)) |x(τ )| . (2.12)

(A2) There exists a constant L ≥ 0, such that the following
inequalities hold for all (d, z, x) ∈ D×Rk ×Rn :

|gi(d, z, x)| ≤ L |(x1, . . . , xi)| , i = 1, . . . , n− 1 (2.13a)
|gn(d, z, x)| ≤ L (V (z)+ |x|) . (2.13b)

(A3) There exist constants α, β > 0, such that the following
inequalities hold for all (d, z, x) ∈ D×Rk ×Rn :

α ≤ a(d, z, x) ≤ β. (2.13c)

Let K0, K1, . . . , Kn > 0,∆nh : L∞([−(n − 1)h, 0];R) → Rn, be
the constants and the family of linear operators (parameterized by
h ∈ (0, 1]), for which (2.3) and (2.4) hold and let k ∈ Rn and
M0,M1, . . . ,Mn > 0, µ > 0, be the vector and the constants for
which (2.9) holds. Then for every b ∈ (0, 1] that satisfies

bKnMnβ2 |k|2 exp (µ(n− 1)b)

(1− bKnβ |k| exp (µ(n− 1)b))2
< 1;

bKnβ |k| exp (µ(n− 1)b) < 1 (2.14)

there exists R(b) ≥ 1 and constants M, K ,Q > 0 such that for
every r > R(b), d ∈ L∞loc(R

+
;D), v ∈ L∞loc(R

+
;Rn), e ∈
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u(t) = rnk′diag
(
1,

1!
(−b)

,
2!

(−b)2
, . . . ,

(n− 1)!
(−b)n−1

)
1 0 0 . . . 0
1 1 12 . . . 1n−1

1 2 22 . . . 2n−1
...

...
... . . .

...

1 n− 1 (n− 1)2 . . . (n− 1)n−1


−1

y(t)
y(t − h)

...
y(t − (n− 1)h)


Box II.
L∞loc(R;R), z0 ∈ Rk and x0 ∈ C0([−(n − 1)h, 0];Rn), where
h := b/r, the solution (z(t), x(t)) of the closed-loop system (1.5)with
Box II with initial condition z(0) = z0 ∈ Rk, x(θ) = x0(θ); θ ∈
[−(n − 1)h, 0], corresponding to inputs d ∈ L∞loc(R

+
;D), v ∈

L∞loc(R
+
;Rn), e ∈ L∞loc(R;R), satisfies for all t ≥ 0 :

|x(t)| + V (z(t)) ≤ exp(−µ̃rt)Q
(
p(r) ‖x0‖(n−1)h + a (|z0|)

)
+ r−1p(r)K sup

0≤τ≤t
exp (−µ̃r(t − τ)) |v(τ)|

+ p(r)M sup
−(n−1)h≤τ≤t

exp (−µ̃r(t − τ)) |e(τ )| (2.15)

where µ̃ := min
( c
r ;µ

)
and p(r) = rn

r+1−R(b) .

Remark 2.7. Hypothesis (A1) is automatically satisfied if there
exist constants K , c > 0 and p ≥ 1 a positive definite,
radially unbounded and continuously differentiable function W :
Rk → R+ such that for every (d, z, x) ∈ D × Rk × Rn the
differential inequality ∇W (z)f (d, z, x) ≤ −2cpW (z) + K |x|p

holds. Particularly, in this case inequality (2.12) holdswith V (z) :=

(W (z))
1
p , γ :=

(
K
cp

) 1
p
and a ∈ K∞ any function that satisfies

(W (z))
1
p ≤ a (|z|) for all z ∈ Rk. Particularly, if the z-subsystem

is linear ż = Az + Bx, where B ∈ Rk×n and A ∈ Rk×k is Hurwitz,
then hypothesis (A1) holds for the function W (z) = z ′Pz, where
P ∈ Rk×k is a symmetric positive definite matrix which satisfies
the property that the matrix Q = −(A′P + PA) is positive definite.

Proof of Theorem 2.6. Notice that, by virtue of Remark 2.4, for
every d ∈ L∞loc(R

+
;D), v ∈ L∞loc(R

+
;Rn), e ∈ L∞loc(R;R),

z0 ∈ Rk and x0 ∈ C0([−(n− 1)h, 0];Rn), the solution (z(t), x(t))
of the closed-loop system (1.5) with Box II with initial condition
z(0) = z0 ∈ Rk, x(θ) = x0(θ); θ ∈ [−(n− 1)h, 0], corresponding
to inputs d ∈ L∞loc(R

+
;D), v ∈ L∞loc(R

+
;Rn), e ∈ L∞loc(R;R), is

related with the solution of

dξ
dτ
(τ ) = r−1f (d̃(τ ), ξ(τ ), diag(r, . . . , rn)w(τ))

dwi
dτ
(τ ) = r−(i+1)gi(d̃(τ ), ξ(τ ), diag(r, . . . , rn)w(τ))

+wi+1(τ )+ r−(i+1)ṽi(τ ), i = 1, . . . , n− 1
dwn
dτ

(τ ) = r−(n+1)gn(d̃(τ ), ξ(τ ), diag(r, . . . , rn)w(τ))

+ a(d̃(τ ), ξ(τ ), diag(r, . . . , rn)w(τ))u(τ )+ r−(n+1)ṽn(τ )

(2.16)

with

u(τ ) = k′∆nbT(n−1)b(τ )(w1 + ẽ) (2.17)

initial condition ξ(0) = z0 ∈ Rk, w(θ) = diag(r−1,
r−2, . . . , r−n)x0(θ/r); θ ∈ [−(n−1)b, 0], corresponding to inputs
d̃ ∈ L∞loc(R

+
;D), ṽ ∈ L∞loc(R

+
;Rn), ẽ ∈ L∞loc(R;R), where

d̃(τ ) := d(τ/r), ṽ(τ ) := v(τ/r), ẽ(τ ) := r−1e(τ/r), by the
following formulae:

z(t) = ξ(rt); x(t) = diag(r, r2, . . . , rn)w(rt),
as long as the solutions exist. (2.18)
By virtue of Proposition 2.3 and since (2.13c) and (2.14) hold,
there exist constants Q0,Q1, . . . ,Qn,Qe > 0 such that for every
ṽ ∈ L∞loc(R

+
;Rn), ẽ ∈ L∞loc(R;R) and w0 ∈ C0([−(n −

1)b, 0];Rn), the solution w(τ) of the closed-loop system (2.16)
with (2.17) corresponding to inputs ṽ ∈ L∞loc(R

+
;Rn), ẽ ∈

L∞loc(R;R), with initial condition w(θ) = w0(θ); θ ∈ [−(n −
1)b, 0] satisfies the following inequality as long as the solution
exists:

|w(τ)| ≤ Q0 exp(−µτ) ‖w0‖(n−1)b

+

n∑
i=1

Qir−(i+1) sup
0≤s≤τ

exp (−µ(τ − s)) |ṽi(s)|

+

n∑
i=1

Qir−(i+1) sup
0≤s≤τ

exp (−µ(τ − s))
∣∣∣gi(d̃(s), ξ(s),

diag (r, . . . , rn)w(s))
∣∣∣

+Qe sup
−(n−1)b≤s≤τ

exp (−µ(τ − s))
∣∣ẽ(s)∣∣ . (2.19)

By virtue of (2.13a) we obtain for all (d̃, ξ , w) ∈ D×Rk ×Rn:

r−(i+1)
∣∣∣gi(d̃, ξ , diag(r, . . . , rn)w)∣∣∣ ≤ Lr |w| ,

i = 1, . . . , n− 1. (2.20)

Moreover, it follows from (2.13b) that the following inequality
holds for all (d̃, ξ , w) ∈ D×Rk ×Rn:

r−(n+1)
∣∣∣gn(d̃, ξ , diag(r, . . . , rn)w)∣∣∣ ≤ Lr |w| + L

rn+1
V (ξ),

i = 1, . . . , n− 1. (2.21)

It follows from (2.19)–(2.21) and the fact µ̃ := min
( c
r ;µ

)
≤ µ

that the following estimate holds as long as the solution of (2.16)
with (2.17) exists:

exp(µ̃τ ) |w(τ)| ≤ Q0 ‖w0‖(n−1)b

+

n∑
i=1

Qir−(i+1) sup
0≤s≤τ

exp (µ̃s) |ṽi(s)|

+
L
rn+1

Qn sup
0≤s≤τ

exp (µ̃s) V (ξ(s))

+
L
r

(
n∑
i=1

Qi

)
sup
0≤s≤τ

exp (µ̃s) |w(s)|

+Qe sup
−(n−1)b≤s≤τ

exp (µ̃s)
∣∣ẽ(s)∣∣ . (2.22)

On the other hand, hypothesis (A1) in conjunction with (2.18)
guarantees that the following estimate holds as long as the solution
of (2.16) with (2.17) exists:

V (ξ(τ )) ≤ exp
(
−
c
r
τ
)
a (|ξ(0)|)

+ γ rn sup
0≤s≤τ

exp
(
−
c
r
(τ − s)

)
|w(s)| . (2.23)
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It follows from (2.23) and the fact µ̃ := min
( c
r ;µ

)
≤

c
r that

the following estimate holds as long as the solution of (2.16) with
(2.17) exists:

sup
0≤s≤τ

exp (µ̃s) V (ξ(s)) ≤ a (|ξ(0)|)

+ γ rn sup
0≤s≤τ

exp (µ̃s) |w(s)| . (2.24)

Combining (2.22) with (2.24), we conclude that the following
estimate holds as long as the solution of (2.16) with (2.17) exists:

sup
0≤s≤τ

exp (µ̃s) |w(s)| ≤ Q0 ‖w0‖(n−1)b

+

n∑
i=1

Qir−(i+1) sup
0≤s≤τ

exp (µ̃s) |ṽi(s)|

+
L
rn+1

Qna (|ξ(0)|)

+
L
r

(
Qnγ +

n∑
i=1

Qi

)
sup
0≤s≤τ

exp (µ̃s) |w(s)|

+Qe sup
−(n−1)b≤s≤τ

exp (µ̃s)
∣∣ẽ(s)∣∣ . (2.25)

Define:

R := R(b) = 1+ L

(
Qnγ +

n∑
i=1

Qi

)
. (2.26)

Estimates (2.24), (2.25) and definition (2.26) in conjunction with
the fact r > R(b) give the following estimates holds as long as the
solution of (2.16) with (2.17) exists:

sup
0≤s≤τ

exp (µ̃s) |w(s)| ≤
r

r + 1− R
Q0 ‖w0‖(n−1)b

+

n∑
i=1

Qi
r−i

r + 1− R
sup
0≤s≤τ

exp (µ̃s) |ṽi(s)|

+
L

rn(r + 1− R)
Qna (|ξ(0)|)

+Qe
r

r + 1− R
sup

−(n−1)b≤s≤τ
exp (µ̃s)

∣∣ẽ(s)∣∣ (2.27)

sup
0≤s≤τ

exp (µ̃s) V (ξ(s)) ≤
(
1+

LγQn
r + 1− R

)
a (|ξ(0)|)

+ γ
rn+1

r + 1− R
Q0 ‖w0‖(n−1)b

+

n∑
i=1

γQi
rn−i

r + 1− R
sup
0≤s≤τ

exp (µ̃s) |ṽi(s)|

+Qeγ
rn+1

r + 1− R
sup

−(n−1)b≤s≤τ
exp (µ̃s)

∣∣ẽ(s)∣∣ . (2.28)

Estimates (2.27) and (2.28) in conjunction with the fact that imply
that the function V ∈ C0(Rk;R+) is radially unbounded, imply
that the phenomenon of finite escape time cannot happen. Thus
the solution of (2.16) with (2.17) exists for all τ ≥ 0 and satisfies
(2.27) and (2.28) for all τ ≥ 0. By virtue of (2.18), it follows
that the solution of the closed-loop system (1.5) with Box II exists
for all t ≥ 0. Exploiting (2.18) and definitions ṽ(τ ) := v(τ/r),
ẽ(τ ) := r−1e(τ/r) in conjunction with estimates (2.27) and (2.28)
and the facts r > R(b) ≥ 1, h := b/r , gives for all t ≥ 0:

exp (µ̃rt) |x(t)| + exp (µ̃rt) V (z(t))

≤ (1+ γ )
rn

r + 1− R
Q0 ‖x0‖(n−1)h
+

(
1+

(1+ γ )LQn
r + 1− R

)
a (|z0|)

+ (1+ γ )
n∑
i=1

Qi
rn−i

r + 1− R
sup
0≤s≤t

exp (µ̃rs) |vi(s)|

+Qe(1+ γ )
rn

r + 1− R
sup

−(n−1)h≤s≤t
exp (µ̃rs) |e(s)| . (2.29)

Estimate (2.29) implies estimate (2.15) with Q := (1+γ )Q0+1+
(1+γ )LQn, K := (1+γ )

∑n
i=1 Qi andM := Qe(1+γ ). Notice that

the constantsM, K ,Q > 0 are all independent of r (but depend on
b). The proof is complete. C

3. Illustrating examples

The following example illustrates the use of Proposition 2.3 for
stabilization of linear systems.

Example 3.1. Consider the system (chain of three integrators)

ẋ1 = x2
ẋ2 = x3 + v2
ẋ3 = u+ v3
x = (x1, x2, x3)′ ∈ R3, u ∈ R, v2 ∈ R, v3 ∈ R.

(3.1)

The qualitative result in [12] guarantees that there exist k1, k2, k3
and sufficiently small h > 0 such that the equilibrium point 0 ∈
C0([−2h, 0];R3) is globally asymptotically stable for the closed-
loop system (3.1) with v2 = v3 ≡ 0 and

u(t) = −k1x1(t)− k2
3x1(t)− 4x1(t − h)+ x1(t − 2h)

2h

− k3
x1(t)− 2x1(t − h)+ x1(t − 2h)

h2
. (3.2)

The use of Proposition 2.3 allows us to estimate the maximum
allowable time step h > 0 that guarantees inequality (1.4) for the
closed-loop system (3.1) with (3.2). Indeed, inequalities (2.3) and
(2.4) hold for the operator

∆3hy =
1
2h2

 2h2y(0)
h (3y(0)− 4y(−h)+ y(−2h))
2 (y(0)− 2y(−h)+ y(−2h))

 (3.3)

with K0 ≤ 4
√
3 and K3 ≤

√
136. Clearly, inequality (1.2) holds

with α = β = 1. Moreover, the vector k = (−k1,−k2,−k3)′ =
(−3,−5,−3)′ guarantees that inequality (2.9) holds for the
solution of the closed-loop system (1.1) with n = 3 and u = k′x.
Particularly, inequality (2.9) holds with µ = 1/4, M0 ≤

√
190

and M3 ≤ 2
√
5. The estimation of the constants µ, M0 and M3

is performed by making use of the quadratic Lyapunov function
V (x) = 1

2x
2
1 +

1
2 (x2 + x1)

2
+

1
2 (x3 + 2x2 + 2x1)

2. It follows
that inequalities (2.10) hold for h ≤ 4.1 · 10−4. However, (as
noted above in Remark 2.5) it should be emphasized that this
is a conservative estimate of the maximum allowable time step.
Numerical simulations have shown that the maximum allowable
time step is approximately h = 0.21. Of course, as h → 0.21,
the rate of convergence becomes slower (µ → 0 in (1.4)). In
Fig. 1 it is shown the evolution of the states of the closed-loop
system (3.1) with (3.2), h = 0.1 and v2 = v3 ≡ 0 (initial
condition x2(0) = x3(0) = 1, x1(θ) = 0 for θ ∈ [−0.2,−0.1]
and x1(θ) = 10θ + 1 for θ ∈ [−0.1, 0]). Clearly, the states
converge to zero exponentially, despite the fact that the estimates
provided by the backward difference operator (3.3) are not good
approximations of the state vector during the interval [0, 0.2].
The initial transient period, where the estimates provided by the
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Fig. 1. The evolution of the states of the closed-loop system (3.1)with (3.2), h = 0.1
and v2 = v3 ≡ 0.

Fig. 2. The evolution of the states of the closed-loop system (3.1) with u = k′x,
v2 = v3 ≡ 0.

Fig. 3. The evolution of the states of the closed-loop system (3.1)with (3.2), h = 0.1
and v2(t) = cos(t), v3(t) = 1.5 sin(t).

backward difference operator (3.3) are not good approximations of
the state vector, deteriorates the performance (comparewith Fig. 2,
which shows the evolution of the states of the closed-loop system
(3.1) with u = k′x, v2 = v3 ≡ 0 and initial condition x1(0) =
x2(0) = x3(0) = 1; as expected state feedback guarantees better
performance compared to output feedback with x1 as output).
In Fig. 3 it is shown the evolution of the states of the closed-

loop system (3.1) with (3.2), h = 0.1 and v2(t) = cos(t), v3(t) =
1.5 sin(t) (initial condition x2(0) = x3(0) = 1, x1(θ) = 0 for
θ ∈ [−0.2,−0.1] and x1(θ) = 10θ + 1 for θ ∈ [−0.1, 0]).
Clearly, the states converge to a periodic solution exponentially
and estimate (1.4) holds.

Example 3.2. Consider the following nonlinear system:

ż = −z − z3 + d1x2
ẋ1 = x2; ẋ2 = x3; ẋ3 = d2z2 + u
z ∈ R, x = (x1, x2, x3)′ ∈ R3, u ∈ R,
d = (d1, d2) ∈ [−1, 1] × [−1, 1].

(3.4)
Fig. 4. The evolution of the state x(t)of the closed-loop system (3.4) with (3.2),
h = 0.1.

Fig. 5. The evolution of the state z(t)of the closed-loop system (3.4) with (3.2),
h = 0.1.

By virtue of Remark 2.7 and using the function W (z) = 1
4 z
4,

it follows that hypothesis (A1) of Theorem 2.6 holds with V (z) :=
1
2 z
2, γ := 1

2 and a(s) :=
1
4 s
4. Hypotheses (A2), (A3) of Theorem 2.6

hold as well with L := 2, α = β = 1. Consequently, Theorem 2.6
guarantees that there exist k1, k2, k3 and sufficiently small h > 0
such that the equilibrium point 0 ∈ C0([−2h, 0];R4) is robustly
globally asymptotically stable for the closed-loop system (3.4)
with (3.2). In Figs. 4 and 5, it is shown the evolution of the
states of the closed-loop system (3.4) with (3.2), h = 0.1, k =
(−k1,−k2,−k3)′ = (−3,−5,−3)′, d1(t) = sgn(x2(t)), d2(t) ≡ 1
(initial condition z(0) = 2, x2(0) = x3(0) = 1, x1(θ) = 0 for
θ ∈ [−0.2,−0.1] and x1(θ) = 10θ + 1 for θ ∈ [−0.1, 0]).

4. Concluding remarks

In this work, sufficient conditions for robust global asymptotic
stabilization of nonlinear uncertain systems by means of discrete-
delay static output feedback are presented. The efficiency of the
proposed control strategy is illustrated with examples. It is clear
that static output discrete-delay feedback is an alternative to
dynamic output (observer-based) feedback and further studies
need to be performed, in order to show the advantages and
disadvantages of each type of feedback.
Future research will address the important open problem

of robust local stabilization of nonlinear systems by means of
discrete delay output feedback (based only on appropriate local
hypotheses). Another challenging problem that remains to be
addressed is the possibility of combining output feedback laws
with delays that exploit state estimates provided by observers
(dynamic output discrete-delay feedback).

Appendix

Proof of Proposition 2.3. For notational convenience we set r =
(n − 1)h. Following the proof of Theorem 1.1 (page 168) in [2]
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and using (2.4), we notice that the solution x(t) of the closed-
loop system (1.1) with (2.11) corresponding to arbitrary inputs
v ∈ L∞loc(R

+
;Rn), e ∈ L∞loc(R;R), with initial condition x(θ) =

x0(θ); θ ∈ [−r, 0] exists for all t ≥ 0 and satisfies the estimate:

sup
t−r≤τ≤t

|x(τ )| ≤ exp (Mt)

(
n ‖x0‖r +

n∑
i=1

sup
0≤τ≤t

|vi(τ )|

+ β |k| h1−nK0 sup
−r≤τ≤t

|e(τ )|
)
, ∀t ≥ 0 (A.1)

where (by virtue of (1.2) and (2.4) M = n + β |k| h1−nK0.
Furthermore, by virtue of (1.2), (2.3) and (2.4),wehave for all t ≥ r:∣∣x(t)−∆nhTr(t)x1∣∣ ≤ n−1∑

j=1

Kjhj+1−n sup
t−r≤τ≤t

∣∣vj(τ )∣∣
+ Knh sup

t−r≤τ≤t

∣∣vn(τ )+ a(d(τ ), x(τ ))
×
(
k′x(τ )− k′

(
x(τ )−∆nhTr(τ )x1

)
+ k′∆nhTr(τ )e

)∣∣
≤

n∑
j=1

Kjhj+1−n sup
t−r≤τ≤t

∣∣vj(τ )∣∣
+βhKn |k|

(
sup

t−r≤τ≤t
|x(τ )| + sup

t−r≤τ≤t

∣∣x(τ )−∆nhTr(τ )x1∣∣
+ h1−nK0 sup

t−r≤τ≤t
|e(τ )|

)
. (A.2)

It follows from (A.2) that the following estimate holds for all t ≥
2r:

sup
t−r≤τ≤t

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣

≤

n∑
j=1

Kjhj+1−n exp (µr) sup
t−2r≤τ≤t

exp (µτ)
∣∣vj(τ )∣∣

+βhKn |k| exp (µr)
(
sup

t−2r≤τ≤t
exp (µτ) |x(τ )|

+ sup
t−2r≤τ≤t

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣

+ h1−nK0 sup
t−2r≤τ≤t

exp (µτ) |e(τ )|
)
.

By distinguishing the cases supt−2r≤τ≤t exp(µτ)|x(τ )−∆nhTr(τ )x1|
= supt−2r≤τ≤t−r exp(µτ)|x(τ ) − ∆nhTr(τ )x1| and supt−2r≤τ≤t
exp(µτ)|x(τ ) − ∆nhTr(τ )x1| = supt−r≤τ≤t exp(µτ)|x(τ ) −
∆nhTr(τ )x1|, it follows from (2.10) and the above inequality that the
following estimate holds for all t ≥ 2r:

sup
t−r≤τ≤t

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣

≤

n∑
j=1

Kjhj+1−n exp (µr)
1− βhKn |k| exp (µr)

sup
t−2r≤τ≤t

exp (µτ)
∣∣vj(τ )∣∣

+
βhKn |k| exp (µr)
1− βhKn |k| exp (µr)

(
sup

t−2r≤τ≤t
exp (µτ) |x(τ )|

+ h1−nK0 sup
t−2r≤τ≤t

exp (µτ) |e(τ )|
)

+βhKn |k| exp (µr)

× sup
t−2r≤τ≤t−r

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣ . (A.3)

Using estimate (A.3) and induction, it may be shown that the
following inequality holds for allm ∈ Z+, ξ ≥ 2r:
sup
ξ+(m−1)r≤τ≤ξ+mr

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣

≤

n∑
j=1

Kjhj+1−n exp (µr)
1− βhKn |k| exp (µr)

m∑
l=0

(βhKn |k| exp (µr))m−l

× sup
ξ+(l−2)r≤τ≤ξ+lr

exp (µτ)
∣∣vj(τ )∣∣

+
βhKn |k| exp (µr)
1− βhKn |k| exp (µr)

m∑
l=0

(βhKn |k| exp (µr))m−l

×

(
sup

ξ+(l−2)r≤τ≤ξ+lr
exp (µτ) |x(τ )| + h1−nK0

× sup
ξ+(l−2)r≤τ≤ξ+lr

exp (µτ) |e(τ )|

)
+ (βhKn |k| exp (µr))m+1

× sup
ξ−2r≤τ≤ξ−r

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣ . (A.4)

Let arbitrary T ≥ 2r . Using inequality (A.4) with m =
[ T−2r
r

]
,

ξ = t − r
[ T−2r
r

]
(where

[ T−2r
r

]
denotes the integer part of the

non-negative real number T−2rr ), in conjunction with the fact that∑m
l=0(βhKn |k| exp (µr))

m−l
≤

1
1−βhKn|k| exp(µr)

for all m ∈ Z+, we
obtain:

sup
T−r≤τ≤T

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣

≤

n∑
j=1

Kjhj+1−n exp (µr)
(1− βhKn |k| exp (µr))2

sup
0≤τ≤T

exp (µτ)
∣∣vj(τ )∣∣

+
βhKn |k| exp (µr)

(1− βhKn |k| exp (µr))2

×

(
sup
0≤τ≤T

exp (µτ) |x(τ )| + h1−nK0 sup
0≤τ≤T

exp (µτ) |e(τ )|
)

+ exp (−σ(T − 2r)) sup
0≤τ≤2r

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣

where σ := − 1r log(βhKn |k|)− µ > 0. Clearly,

sup
r≤τ≤t

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣

≤ sup
2r≤T≤t

(
sup

T−r≤τ≤T
exp (µτ)

∣∣x(τ )−∆nhTr(τ )x1∣∣) ,
for all t ≥ 2r.

Hence, the two above inequalities give for all t ≥ 2r:

sup
r≤τ≤t

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣

≤

n∑
j=1

Kjhj+1−n exp (µr)
(1− βhKn |k| exp (µr))2

sup
0≤τ≤t

exp (µτ)
∣∣vj(τ )∣∣

+
βhKn |k| exp (µr)

(1− βhKn |k| exp (µr))2

×

(
sup
0≤τ≤t

exp (µτ) |x(τ )| + h1−nK0 sup
0≤τ≤t

exp (µτ) |e(τ )|
)

+ sup
0≤τ≤2r

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣ . (A.5)

On the other hand, it follows from (1.2), (2.9) and (2.4), that
the solution x(t) of the closed-loop system (1.1) with (2.11)
corresponding to inputs v ∈ L∞loc(R

+
;Rn), e ∈ L∞loc(R;R), with
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initial condition {x(θ); θ ∈ [−r, 0]} = x0 ∈ C0([−r, 0];Rn),
satisfies the following estimate for all t ≥ 0:

exp(µt) |x(t)| ≤ M0 |x(0)| +
n∑
i=1

Mi sup
0≤τ≤t

{exp (µτ) |vi(τ )|}

+βMn |k| sup
0≤τ≤t

{
exp (µτ)

∣∣x(τ )−∆nhTr(τ )x1∣∣}
+βMn |k| h1−nK0 exp (µr) sup

−r≤τ≤t
exp (µτ) |e(τ )| . (A.6)

Combining estimates (A.5) and (A.6), we obtain for all t ≥ 2r:

sup
r≤τ≤t

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣

≤

n∑
j=1

h exp (µr)
(
Kjhj−n + βKn |k|Mj

)
(1− βhKn |k| exp (µr))2

× sup
0≤τ≤t

exp (µτ)
∣∣vj(τ )∣∣

+
βhKn |k| exp (µr)

(1− βhKn |k| exp (µr))2
M0 |x(0)|

+
βhKn |k| exp (µr)

(1− βhKn |k| exp (µr))2
βMn |k|

× sup
0≤τ≤t

{
exp (µτ)

∣∣x(τ )−∆nhTr(τ )x1∣∣}
+ sup
0≤τ≤2r

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣

+
βh2−nKn |k| exp (µr)

(1− βhKn |k| exp (µr))2
K0 (βMn |k| exp (µr)+ 1)

× sup
−r≤τ≤t

exp (µτ) |e(τ )| . (A.7)

By using (2.10) and distinguishing the cases sup0≤τ≤t{exp(µτ)
|x(τ )−∆nhTr(τ )x1|} = sup0≤τ≤r{exp(µτ)|x(τ )−∆

n
hTr(τ )x1|} and

sup0≤τ≤t{exp(µτ)|x(τ )−∆nhTr(τ )x1|} = supr≤τ≤t{exp(µτ)|x(τ )−
∆nhTr(τ )x1|}, inequality (A.7) implies for all t ≥ 2r:

sup
r≤τ≤t

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣

≤

n∑
j=1

c
(
Kjhj−n + βKn |k|Mj

)(
1− cMnβ2 |k|2

)
Kn

sup
0≤τ≤t

exp (µτ)
∣∣vj(τ )∣∣

+
cM0β |k|

1− cMnβ2 |k|2
|x(0)|

+ h1−n
cK0β |k| (Mnβ |k| exp (µr)+ 1)

1− cMnβ2 |k|2

× sup
−r≤τ≤t

exp (µτ) |e(τ )|

+
1

1− cMnβ2 |k|2
sup
0≤τ≤2r

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣ (A.8)

where c := hKn exp(µr)
(1−βhKn|k| exp(µr))2

. Notice that by virtue of (2.4) and
(A.1) we have for all t ≤ 2r:

sup
0≤τ≤t

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣

≤
(
1+ K0h1−n

)
exp

(
2(n+ β |k| h1−nK0 + µ)r

)
×

(
n ‖x0‖r +

n∑
i=1

sup
0≤τ≤t

|vi(τ )|

+ β |k| h1−nK0 sup
−r≤τ≤t

|e(τ )|
)
. (A.9)
Finally, combining estimates (A.8) and (A.9) we obtain for all
t ≥ 0:

sup
0≤τ≤t

exp (µτ)
∣∣x(τ )−∆nhTr(τ )x1∣∣

≤

n∑
j=1

c
(
Kjhj−n + βKn |k|Mj

)
+ LKn(

1− cMnβ2 |k|2
)
Kn

sup
0≤τ≤t

exp (µτ)
∣∣vj(τ )∣∣

+
cM0β |k| + nL
1− cMnβ2 |k|2

‖x0‖r

+ h1−nβK0 |k|
c (Mnβ |k| exp (µr)+ 1)+ L exp (µr)

1− cMnβ2 |k|2

× sup
−r≤τ≤t

exp (µτ) |e(τ )| (A.10)

where L :=
(
1+ K0h1−n

)
exp

(
2(n+ β |k| h1−nK0 + µ)r

)
. Esti-

mate (A.10) in conjunction with estimate (A.6) gives for all t ≥ 0:

exp(µt) |x(t)| ≤
(
M0 +Mnβ |k|

cM0β |k| + nL
1− cMnβ2 |k|2

)
‖x0‖r

+

n∑
i=1

[
Mi +Mnβ |k|

c
(
Kihi−n + Knβ |k|Mi

)
+ LKn(

1− cMnβ2 |k|2
)
Kn

]
× sup
0≤τ≤t

exp (µτ) |vi(τ )| +Mnh1−nK0β |k|

×

[
exp (µr)+ β |k|

c (Mnβ |k| exp (µr)+ 1)+ L exp (µr)
1− cMnβ2 |k|2

]
× sup
−r≤τ≤t

exp (µτ) |e(τ )| .

The above estimate implies inequality (1.4). The proof is
complete. C
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