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Abstract

In this paper it is shown that, if a time-varying uncertain system is robustly completely detectable, then there exists an estimator for this system,
i.e. the state vector of the system can be estimated asymptotically. If the time-varying uncertain system is robustly completely observable, it is
shown that there exists an estimator for this system with assignable rate of convergence of the error. Moreover, specialized constructions are
developed for the special class of triangular systems.
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1. Introduction

One of the biggest challenges of Mathematical Control
Theory has been the problem of constructing state observers for
nonlinear systems. This problem has attracted a lot of attention
in the literature in the past decades (see, for example, [1–6,8–
10,15,17,19–25,29,30,32]).

It should be noticed that the problem of design of
observers for nonlinear systems has been approached from
different research directions. Tsinias in [29,30] provided
sufficient conditions for the design of nonlinear global time-
invariant observers based on Lyapunov-like characterizations
of observability and detectability, which can be verified easily
for a special class of nonlinear systems. The works of
Gauthier, Kupka and others [8–10] have provided semi-global
solutions to the observer problem for systems with analytical
dynamics based on a high-gain strategy. The case of observable
systems with analytic dynamics and the solvability of a series
solution methodology to the observer problem with assignable
exponential rate of convergence in transformed coordinates
has been considered initially in [17] and later in [20,21].
A transformed coordinates approach for a limited class of
systems with smooth dynamics has provided local solutions to
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the observer problem in [19,25]. On the other hand, a global
solution to the observer problem is provided in [1] under the
assumptions of Output-to-State Stability and Global Complete
Observability. Observers with delays have been considered
in [6] for special classes of nonlinear systems and time-varying
observers for linear time-varying systems, which guarantee
nonuniform in time convergence, have been considered in [32].

The present paper provides new results regarding the
nonlinear state estimation problem, referring to a broad class
of systems (time-varying uncertain nonlinear systems, which
of course include autonomous systems as a special case), under
minimal regularity conditions (local Lipschitz continuity for the
dynamics and simple continuity for the output map) and easily
verifiable observability assumptions, leading to global solutions
to the observer problem with assignable rate of convergence
of the error. A preliminary version of this paper concerning
systems without uncertainties was given in [16].

To fix the ideas, consider a time-varying nonlinear forward
complete system of the form

ẋ(t) = f (t, x(t)); y(t) = h(t, x(t))

x ∈ Rn, t ≥ 0, y ∈ R. (1.1)

The goal is to construct a state observer for (1.1), which will be
a dynamic system of the form

ż(t) = k(t, z(t), y(t)); x̄(t) = Ψ(t, z(t), y(t))

z ∈ Rm, t ≥ 0, x̄ ∈ Rn (1.2)
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where k : R+
×Rm

×R → Rm , Ψ : R+
×Rm

×R → Rn are
time-varying mappings. System (1.2) will be a state observer
for (1.1), if the series connection of (1.1) followed by (1.2)
satisfies the following two properties:

(a) the Global Convergence Property, i.e. for every set of
initial conditions (x(t0), z(t0)) = (x0, z0) ∈ Rn

× Rm ,
the solution satisfies limt→+∞ φ(t) |x(t) − x̄(t)| = 0,
∀(t0, x0, z0) ∈ R+

× Rn
× Rm for certain smooth function

φ : R+
→ [1, +∞),

(b) the Consistent Initialization Property, i.e. for every
(t0, x0) ∈ R+

× Rn there exists z0 ∈ Rm such that
the solution (x( · ), z( · )) of (1.1) with (1.2), initiated from
(x0, z0) ∈ Rn

× Rm at time t0 ≥ 0, satisfies x(t) = x̄(t),
for all t ≥ t0.

Note that, when the global convergence property is satisfied
but the consistent initialization property is not, system (1.2)
cannot be called an observer, but it will still be capable of
asymptotically estimating the states. To describe this situation,
the term “estimator” will be used instead of “observer”.
Particularly, it is known that dynamic output stabilization
methods are based on estimates of the state vector of the
system and for such purposes the property of consistent
initialization is not essential (see [7,28]). Also, note that the
function φ(t) governs the rate of decay of the estimation
error and it is desirable to be able to assign it in the
construction of an observer or estimator. In what follows, the
terms “φ-observer” and “φ-estimator” explicitly indicate the
corresponding φ-function that governs the rate of decay of the
error (the idea of assigning the rate of decay was exploited in
[12,31] for feedback stabilization purposes).

A special class of systems that will receive special attention
is the class of triangular time-varying nonlinear forward
complete systems of the form

ẋi (t) = a(t, x1(t))xi+1(t) + ϕi (t, x1(t)), i = 1, . . . , n − 1

ẋn(t) = f (t, x(t))

y(t) = x1(t)

x(t) = (x1(t), . . . , xn(t))′ ∈ Rn , t ≥ 0

(1.3)

where a : R+
× R → R, f : R+

× Rn
→ R, ϕi :

R+
×R → R (i = 1, . . . n −1) are locally Lipschitz mappings

with f (t, 0) = ϕ1(t, 0) = · · · = ϕn−1(t, 0) = 0 for all
t ≥ 0. For this class of systems, explicit constructions will be
developed leading to an observer with assignable rate of decay
of the error Theorem 3.3.

It should be emphasized that the property of consistent
initialization cannot in general be satisfied if the original system
is uncertain, i.e. its dynamics contain unknown parameters.
However, the notion of the estimator is generally applicable
even in the presence of uncertainty. The analysis and results
to be presented in this paper also cover the case of uncertain
forward complete nonlinear time-varying systems of the form

ẋ(t) = f (t, x(t), d(t)); y(t) = h(t, x(t))

x ∈ Rn, t ≥ 0, d(t) ∈ D, y ∈ R
(1.4)
where D ⊂ Rl is a compact set. Under appropriate robust
complete observability assumptions for (1.4) and for every
given non-decreasing function φ : R+

→ [1, +∞), the
global convergence property can be guaranteed (Theorem 3.1).
Specialized results will be obtained for the triangular uncertain
case

ẋi (t) = a(t, x1(t))xi+1(t) + ϕi (t, x1(t)),

i = 1, . . . , n − 1

ẋn(t) = f (t, x(t), d(t))

y(t) = x1(t)

x(t) = (x1(t), . . . , xn(t))′ ∈ Rn, t ≥ 0, d(t) ∈ D

(1.5)

where D ⊂ Rl is a compact set, a : R+
× R → R,

f : R+
× Rn

× D → R, ϕi : R+
× R → R (i = 1, . . . n − 1)

are locally Lipschitz mappings with f (t, 0, d) = ϕ1(t, 0) =

· · · = ϕn−1(t, 0) = 0 for all t ≥ 0 and d ∈ D (Corollary 3.2).
It must be emphasized that the notions of complete

detectability and complete observability (Robust Complete
Observability/Detectability) that will be used in this work
generalize the corresponding notion of Uniform Complete
Observability presented in [28] for autonomous systems,
as well as similar notions given in [10]. In particular,
for disturbance-free systems with analytical output maps
and dynamics, the notion of Robust Complete Observability
used in the present work coincides with the notion of
Uniform Complete/Infinitesimal Observability of [10], for
which appropriate test conditions are available.

1.1. Notation

∗ By MD we denote the set of all measurable functions from
R+ to D, where D ⊂ Rm is a given compact set.

∗ By C j (A)(C j (A ; Ω)), where j ≥ 0 is a non-negative
integer, we denote the class of functions (taking values
in Ω ) that have continuous derivatives of order j on A.
L∞(A ; B)(L∞

loc(A ; B)) denotes the set of all measurable
functions u : A → B that are (locally) essentially bounded
on A.

∗ For x ∈ Rn , x ′ denotes its transpose and |x | its usual
Euclidean norm.

∗ By B[x, r ] where x ∈ Rn and r ≥ 0, we denote the closed
sphere in Rn of radius r , centered at x ∈ Rn .

∗ x(t) = x(t, t0, x0; d) denotes the unique solution of (1.4)
at time t ≥ t0 that corresponds to some input d( · ) ∈ MD ,
initiated from x0 ∈ Rn at time t0 ≥ 0.

∗ For the definition of the classes K , K∞, see [18]. By K L
we denote the set of all continuous functions σ = σ(s, t) :

R+
× R+

→ R+ with the properties: (i) for each
t ≥ 0 the mapping σ( · , t) is of class K ; (ii) for each
s ≥ 0, the mapping σ(s, · ) is nonincreasing with limt→+∞

σ(s, t) = 0.
∗ The saturation function is defined on R as sat(x) :={

x if |x | < 1
x/ |x | if |x | ≥ 1.
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2. Basic notions

In this section we provide definitions that play a key role in
the proofs of the main results of the paper.

Definition 2.1. We denote by K + the class of C0 functions
φ : R+

→ [1, +∞) and we denote by K ∗
⊂ K + the class of

nondecreasing C∞ functions, which belong to K + and satisfy

lim
t→+∞

φ̇(t)φ−2(t) = 0. (2.1)

For example the functions φ(t) = 1, φ(t) = 1 + t , φ(t) =

exp(t) all belong to the class K ∗. The proof of Lemma 2.2
in [12] actually shows an important property for this class
of functions: for every function φ of class K +, there exists
a function φ̃ of class K ∗, such that: φ(t) ≤ φ̃(t) for all
t ≥ 0. Lemma 2.2 in [12] is stated for smooth nondecreasing
functions but only continuity of φ is utilized in the proof of
the lemma and the assumption that φ is nondecreasing is not
needed (since we can always replace φ by the nondecreasing
continuous function φ̄(t) := max0≤τ≤t φ(τ)). We next give the
notion of Robust Forward Completeness, which was introduced
in [14] for uncertain dynamic systems. Consider the system
(1.4), where D ⊂ Rl is a compact set and the mappings
f : R+

× Rn
× D → Rn , h : R+

× Rn
→ R with

f (t, 0, d) = 0, h(t, 0) = 0 for all (t, d) ∈ R+
× D, satisfy

the following conditions:

(1) The functions f (t, x, d), h(t, x) are continuous.
(2) The function f (t, x, d) is locally Lipschitz with respect to

x , uniformly in d ∈ D, in the sense that for every bounded
interval I ⊂ R+ and for every compact subset S of Rn ,
there exists a constant L ≥ 0 such that

| f (t, x, d) − f (t, y, d)| ≤ L |x − y|

∀t ∈ I, ∀(x ; y) ∈ S × S, ∀d ∈ D.

Let us denote by x(t) = x(t, t0, x0; d) the unique solution of
(1.4) at time t that corresponds to input d ∈ MD , with initial
condition x(t0) = x0 and let y(t) := h(t, x(t, t0, x0; d)).

Definition 2.2. We say that (1.4) is Robustly Forward
Complete (RFC) if for every T ≥ 0, r ≥ 0 it holds that

sup {|x(t0 + s)| ; |x0| ≤ r, t0 ∈ [0, T ],

s ∈ [0, T ], d( · ) ∈ MD} < +∞.

The following proposition clarifies the consequences of the
notion of Robust Forward Completeness and provides estimates
of the solutions. Its proof can be found in [14].

Proposition 2.3 (Lemma 2.3 in [14]). Consider system (1.4)
with d ∈ D as input. System (1.4) is RFC if and only if there
exist functions µ ∈ K +, a ∈ K∞ such that for every input
d( · ) ∈ MD and for every (t0, x0) ∈ R+

× Rn , the unique
solution x(t) of (1.4) corresponding to d( · ) and initiated from
x0 at time t0 exists for all t ≥ t0 and satisfies

|x(t)| ≤ µ(t) a (|x0|) , ∀t ≥ t0. (2.2)
The notions of Robust Complete Observability (RCO)
and Robust Complete Detectability (RCD) for time-varying
systems are given next. The definitions given here directly
extend the corresponding notions given in [28], concerning
autonomous systems, as well as similar notions given in [10]
for autonomous systems with analytic dynamics.

Definition 2.4. Consider system (1.4) with h ∈ C1(R+
×

Rn
; R) and h(t, 0) = 0 for all t ≥ 0. Suppose that (1.4)

is RFC. Let a : R+
× R → R be a locally Lipschitz function

with

inf
{

a(t, y) ; (t, y) ∈ R+
× R

}
> 0. (2.3)

Let m ≥ 0 be an integer and let ϕi : R+
× R → R (i =

1, . . . , m) with ϕi (t, 0) = 0 for all t ≥ 0 be locally Lipschitz
functions with the property that the family of functions, defined
recursively below:

y0(t, x) = h(t, x) (2.4a)

yi (t, x) :=
1

a(t, h(t, x))

×

{
∂ yi−1

∂ t
(t, x) +

∂ yi−1

∂ x
(t, x) f (t, x, d) − ϕi (t, h(t, x))

}
,

i = 1, . . . , m (2.4b)

are all independent of d ∈ D and of class C1(R+
× Rn

; R).
We denote by Y (t, x) the following mapping:

Y (t, x) := (y1(t, x), . . . , ym(t, x)). (2.5)

We say that a function θ ∈ C0(R+
×Rn

; Rl) with θ( · , 0) = 0
is Robustly Completely Observable (RCO) with respect to
(1.4) if there exists a function Ψ ∈ C0(R+

× R × Rm
; Rl)

with Ψ(t, 0, 0) = 0 for all t ≥ 0 such that

θ(t, x) = Ψ(t, h(t, x), Y (t, x)), ∀(t, x) ∈ R+
× Rn . (2.6)

We say that system (1.4) is RCO if the function θ(t, x) = x is
RCO with respect to (1.4).

We say that a function θ ∈ C0(R+
× Rn

; Rl) with
θ( · , 0) = 0 is Robustly Completely Detectable (RCD) with
respect to (1.4) if there exists a function Ψ ∈ C0(R+

×

R × Rm
; Rl) with Ψ(t, 0, 0) = 0 for all t ≥ 0, functions

σ ∈ K L , β ∈ K + such that for every (t0, x0) ∈ R+
× Rn

and d( · ) ∈ MD the solution x(t) of (1.4) with initial condition
x(t0) = x0 and corresponding to d( · ) ∈ MD satisfies

|θ(t, x(t)) − Ψ(t, h(t, x(t)), Y (t, x(t)))|

≤ σ (β(t0) |x0| , t − t0) , ∀t ≥ t0. (2.7)

We say that system (1.4) is RCD if the function θ(t, x) = x is
RCD with respect to (1.4).

Remark 2.5. (a) If system (1.4) is RCO, then every function
θ ∈ C0(R+

× Rn
; Rl) with θ( · , 0) = 0 is RCO with

respect to (1.4).
(b) For a linear system ẋ = A(t)x , x ∈ Rn , y = h(t)x ,

where the matrices A(t) ∈ Rn×n and h(t) ∈ R1×n have
real analytic entries, RCO is equivalent to observability (see
pages 279–280 in [26]).
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(c) Notice that by virtue of definition (2.4a) and (2.4b), for
every input d( · ) ∈ MD and for every (t0, x0) ∈ R+

× Rn ,
the unique solution x(t) of (1.4) corresponding to d( · ) and
initiated from x0 at time t0, satisfies the following relations:

ẏi (t) = a(t, y(t))yi+1(t) + ϕi+1(t, y(t)),

∀t ≥ t0, i = 0, . . . , m − 1

where yi (t) := yi (t, x(t)) (i = 0, . . . , m) and y(t) =

h(t, x(t)). Thus the functions {ϕi } i = 1, . . . , m, play
the role of “output injection”, used in the literature for
the construction of observers with linear error dynamics
(see [19,25] and the references therein).

(d) The problem of establishing sufficient conditions for RCO
of a time-varying system is an open problem. However, the
study of this problem is beyond the scope of the present
work. In the present work our starting point is to assume
RCO and the emphasis is placed on the design of an
observer/estimator for such a system.

(e) It should be clear that if a ∈ C0(R+
× R ; R) satisfies

(2.3), then systems (1.3) and (1.5) are RCO under the
assumption of RFC. Indeed, (2.4)–(2.6) (with θ(t, x) = x)
hold with m = n − 1, yi (t, x) := xi+1 for i = 1, . . . , n − 1,
Y (t, x) := (x2, . . . , xn) ∈ Rn−1 and Ψ(t, y, w) := (y, w)

for all (t, y, w) ∈ R+
× R × Rn−1.

The following examples show that the notions of RCO and
RCD allow us to consider uncertain systems with unobservable
linearization.

Example 2.6. In this example we show that the single-output
system

ẋ1 = x1 + x3
2 ; ẋ2 = −x1x2

2 + d(t)x2

y = x1, x = (x1, x2)
′
∈ R2, d( · ) ∈ M[−1,1]

(2.8)

is RCO. First, we show that system (2.8) is RFC. Notice that
for every (t0, x0) ∈ R+

× R2 and d( · ) ∈ M[−1,1], the
solution x(t) = (x1(t), x2(t)) of system (2.8) corresponding
to d( · ) ∈ M[−1,1] with initial condition (x1(t0), x2(t0)) = x0,
satisfies the estimate

|x(t)| ≤ exp(t)|x0|, ∀t ≥ t0 (2.9)

and consequently system (2.8) is RFC. Inequality (2.9) follows
from the evaluation of the time derivative of the function
V (x1, x2) = x2

1 +x2
2 along the trajectories of (2.8). Specifically,

we obtain V̇ ≤ 2V and inequality (2.9) is an immediate
consequence. Moreover, notice that (2.4)–(2.6) (with θ(t, x) =

x) hold with:

m = 1,Ψ(t, y, w) :=

(
y

sgn(w) |w|
1
3

)
,

Y (t, x) = y1(t, x) := x3
2 ,

ϕ1(t, y) = y, a(t, y) ≡ 1. (2.10)

Hence, it follows that system (2.8) is RCO. C

Example 2.7. In this example we show that the function
θ(t, x) := x1 + x2 + x3 is RCD with respect to the following
the single-output system

ẋ1 = x1 + x3
2 ; ẋ2 = −x1x2

2 + d(t)x2;

ẋ3 = −(1 + |d(t)|) x3

y = x1; (x1, x2, x3) ∈ R3, d( · ) ∈ M[−1,1]

(2.11)

is RCD. First, we show that system (2.8) is RFC. Notice that
for every (t0, x0) ∈ R+

× R3 and d( · ) ∈ M[−1,1], the solution
x(t) = (x1(t), x2(t), x3(t)) of system (2.11) corresponding to
d( · ) ∈ M[−1,1] with initial condition (x1(t0), x2(t0), x3(t0)) =

x0, satisfies the estimate

|(x1(t), x2(t))| ≤ exp(t) |x0| and

|x3(t)| ≤ exp (−(t − t0)) |x3(t0)| , ∀t ≥ t0 (2.12a)

and consequently system (2.11) is RFC. Inequalities (2.12a)
follow from the evaluation of the time derivative of the
functions V1(x) = x2

1 + x2
2 and V2(x) = x2

3 along the
trajectories of (2.11). Specifically, we obtain V̇1 ≤ 2V1 V̇2 ≤

−2V2 and inequalities (2.12a) are immediate consequences.
Moreover, notice that (2.4), (2.5) and (2.7) with θ(t, x) :=

x1 + x2 + x3 hold for the following selections:

m = 1, Ψ(t, y, w) := y + sgn(w) |w|
1
3 ,

Y (t, x) = y1(t, x) := x3
2 , ϕ1(t, y) = y, a(t, y) ≡ 1.

Particularly, inequality (2.7) follows from the above definitions
and inequalities (2.12a), which imply that for every (t0, x0) ∈

R+
× R3 and d( · ) ∈ M[−1,1], the solution x(t) =

(x1(t), x2(t), x3(t)) of system (2.11) corresponding to d( · ) ∈

M[−1,1] with initial condition (x1(t0), x2(t0), x3(t0)) = x0,
satisfies the estimate:

|θ(t, x(t)) − Ψ(t, x1(t), Y (t, x(t)))|

= |x3(t)| ≤ exp (−(t − t0)) |x3(t0)| , ∀t ≥ t0. (2.12b)

Consequently, inequality (2.7) holds with σ(s, t) := s exp (−t)
and β(t) ≡ 1. Hence, it follows that system (2.11) is RCD. C

The notions of φ-Estimator and φ-Observer are crucial
for the present work. We emphasize that an estimator is not
necessarily an observer since it does not necessarily satisfy the
consistent initialization property (see [15]).

Definition 2.8. Let φ ∈ K + and θ ∈ C0(R+
× Rn

; Rl) with
θ( · , 0) = 0. Consider system (1.4) and suppose that it is RFC.
The system

ż(t) = k(t, z(t), y(t)); θ̄ (t) = Ψ(t, y(t), z(t))

z ∈ Rm, t ≥ 0, θ̄ ∈ Rl
(2.13)

where k ∈ C0(R+
× Rm

× R ; Rm) with k(t, 0, 0) = 0,
the map k̃(t, z, x) := k(t, z, h(t, x)) is locally Lipschitz with
respect to (x, z) ∈ Rn

×Rm and Ψ ∈ C0(R+
×R×Rm

; Rl)

with Ψ(t, 0, 0) = 0 for all t ≥ 0, is called a φ-Estimator
for θ with respect to (1.4) if system (1.4) with (2.13) is RFC
and there exist functions σ ∈ K L and β ∈ K +, such that for
every (x0, z0) ∈ Rn

× Rm, t0 ≥ 0, d( · ) ∈ MD , the unique
solution (x( · ), z( · )) of system (1.4) with (2.13) initiated from
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(x0, z0) ∈ Rn
× Rm at time t0 ≥ 0 and corresponding to

d( · ) ∈ MD , satisfies the following estimate:

φ(t)
∣∣θ̄ (t) − θ(t, x(t))

∣∣ ≤ σ (β(t0) |(x0, z0)| , t − t0) ,

∀t ≥ t0. (2.14)

System (2.13) is called a φ-Estimator for system (1.4) if
θ(t, x) := x . If φ(t) ≡ 1, then (2.13) is simply called
an Estimator for θ with respect to (1.4). In any case, the
continuous map Ψ ∈ C0(R+

× R × Rm
; Rl) is called the

reconstruction map of the (φ-) Estimator for θ with respect to
(1.4).

Definition 2.9. Let φ ∈ K + and consider system (1.4).
Suppose that (1.2) is a φ-estimator for the identity function
θ(t, x) ≡ x with respect to (1.4) and that (1.2) satisfies the
Consistent Initialization Property, i.e. for every (t0, x0) ∈

R+
× Rn there exists z0 ∈ Rm such that the solution

(x( · ), z( · )) of system (1.4) with (1.2) initiated from (x0, z0) ∈

Rn
× Rm at time t0 ≥ 0 and corresponding to arbitrary

d( · ) ∈ MD , satisfies

x(t) = Ψ(t, y(t), z(t)), ∀t ≥ t0. (2.15)

Then we say that system (1.2) is a global φ-Observer for (1.4),
or that the global φ-observer problem for (1.4) is solvable. If
φ(t) ≡ 1 then we say that system (1.2) is a global observer for
(1.4).

Remark 2.10. Necessary and sufficient conditions for the
existence of a global observer for (1.4) with identity
reconstruction map, i.e. z ∈ Rn and Ψ(t, y, z) ≡ z, are given
in [15], by exploiting the notion of the Observer Lyapunov
Function (OLF).

Remark 2.11. If system (2.13) is an estimator for θ with
respect to (1.4) (i.e. the case of uncertain dynamic system) then
the following system:

ẋ(t) = f (t, x(t), d(t)); ż(t) = k(t, z(t), h(t, x(t)))

Y (t) = Ψ(t, h(t, x(t)), z(t)) − θ(t, x(t))

(x, z) ∈ Rn
× Rm, t ≥ 0, Y ∈ Rl , d( · ) ∈ MD

is non-uniformly in time Robustly Globally Asymptotically
Output Stable (RGAOS, see [14]). Moreover, there exists an
estimator for θ with respect to (1.4) if and only if there exists a
function Ψ ∈ C0(R+

×R×Rm
; Rl) with Ψ(t, 0, 0) = 0 for

all t ≥ 0 such that the Robust Output Feedback Stabilization
problem (ROFS problem, see [15]) with measured output y =

(h(t, x), z) and stabilized output Y = Ψ(t, z, h(t, x)) − θ(t, x)

is globally solvable for the system

ẋ(t) = f (t, x(t), d(t)); ż(t) = v(t)

y(t) = (h(t, x(t)), z(t));

Y (t) = Ψ(t, h(t, x(t)), z(t)) − θ(t, x(t))

(x, z) ∈ Rn
× Rm, t ≥ 0, v ∈ Rm ,

Y ∈ Rl , d( · ) ∈ MD, y ∈ R × Rm .

Consequently, by virtue of Proposition 2.6 in [15], if system
(2.13) is an estimator for θ with respect to (1.4) then there exist
functions V ∈ C1(R+
× Rn

× Rm
; R+), a1, a2 ∈ K∞,

β, µ ∈ K +, such that the following inequalities hold for all
(t, z, x, d) ∈ R+

× Rm
× Rn

× D:

a1 (|Ψ(t, h(t, x), z) − θ(t, x)|) + a1 (µ(t) |(z, x)|)

≤ V (t, z, x) ≤ a2 (β(t) |(z, x)|)

∂ V

∂ t
(t, z, x) +

∂ V

∂ x
(t, z, x) f (t, x, d)

+
∂ V

∂ z
(t, z, x)k(t, z, h(t, x)) ≤ −V (t, z, x).

3. Main results and examples

We are now in a position to state our main results. Our
first main result states that there exists an estimator for a RCD
function. Moreover, it is possible to assign the convergence rate
under the hypothesis of RCO.

Theorem 3.1. If the function θ ∈ C0(R+
× Rn

; Rl) with
θ( · , 0) = 0 is RCO with respect to (1.4) then for every
φ ∈ K + there exists a φ-estimator for θ with respect to (1.4).
If the function θ ∈ C0(R+

× Rn
; Rl) is RCD then there

exists an estimator for θ with respect to (1.4). Particularly,
there exist an integer m ≥ 0, locally Lipschitz functions ϕi :

R+
× R → R (i = 1, . . . , m), a : R+

× R → R, functions
Ψ ∈ C0(R+

× R × Rm
; Rl), q ∈ K ∗, a vector k ∈ Rm+1

and a constant R > 0 such that the following system:

żi = a(t, y)zi+1 + ϕi+1(t, y) + vi i = 0, . . . , m − 1

żm = vm

θ̄ := Ψ(t, y, z1, . . . , zm); z := (z0, . . . , zm) ∈ Rm+1,

v := (v0, . . . , vm) ∈ Rm+1

(3.1a)

with

v = a(t, y) diag(Rq(t), R2q2(t), . . . , Rm+1qm+1(t))k (z0 − y)

(3.1b)

is a (φ-) estimator for θ with respect to (1.4).

If Theorem 3.1 is specialized to the triangular uncertain case
(1.5) (see Remark 2.5(e)) we obtain the following corollary:

Corollary 3.2. Consider system (1.5), where D ⊂ Rl is a
compact set, a : R+

× R → R, f : R+
× Rn

× D →

R, ϕi : R+
× R → R (i = 1, . . . , n − 1) are locally Lipschitz

mappings with f (t, 0, d) = ϕ1(t, 0) = · · · = ϕn−1(t, 0) = 0
for all t ≥ 0 and d ∈ D. Suppose that (2.3) holds and that
(1.5) is RFC. Then for every φ ∈ K + there exists a φ-estimator
for (1.5). Particularly, for every φ ∈ K +, there exist a function
q ∈ K ∗, a vector k ∈ Rn and a constant R > 0 such that the
following system:

żi = a(t, y)zi+1 + ϕi (t, y) + vi i = 1, . . . , n − 1

żn = vn

x̄ := (y, z2, . . . , zn)′; z := (z1, . . . , zn) ∈ Rn,

v := (v1, . . . , vn) ∈ Rn

(3.2a)
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with

v = a(t, y) diag(Rq(t), R2q2(t), . . . , Rnqn(t))k (z1 − y)

(3.2b)

is a φ-estimator for (1.5).

Our second main result deals with the solvability of the
global φ-observer problem for the triangular case (1.3).

Theorem 3.3. Consider system (1.3), where a : R+
× R →

R, f : R+
× Rn

→ R, ϕi : R+
× R → R (i = 1, . . . , n − 1)

are locally Lipschitz mappings with f (t, 0) = ϕ1(t, 0) = · · · =

ϕn−1(t, 0) = 0 for all t ≥ 0. Suppose that (2.3) holds and
that (1.3) is RFC. Then the global φ-observer problem for (1.3)
is solvable for all φ ∈ K +. Particularly, for every φ ∈ K +

there exist functions q ∈ K ∗, β̃ ∈ K +, a vector k ∈ Rn and a
constant R > 0 such that the following system:

żi = a(t, y)zi+1 + ϕi (t, y) + vi i = 1, . . . , n − 1

żn = β̃(t) (1 + exp(t) |w|) sat
(

f (t, y, z2, . . . , zn)

β̃(t)(1 + exp(t) |w|)

)
+ vn

ẇ = −w

x̄ := (y, z2, . . . , zn)′, z := (z1, . . . , zn) ∈ Rn,

v := (v1, . . . , vn) ∈ Rn, w ∈ R

(3.3)

with v given by (3.2b) is a global φ-observer for (1.3).

Although Theorem 3.3 deals with the triangular case (1.3),
it should be noted that there is a wide class of systems of the
form (1.1) that can be transformed (via an appropriate change
of coordinates) to the triangular case (1.3). The reader should
notice that the constructed observer (3.3) for system (1.3) is a
high-gain type observer (with increasing time-varying gains).
High-gain type observers were also considered in [8–10] for
autonomous systems with analytic dynamics.

The proofs of the main results depend on the two following
facts. Their proofs can be found at the Appendix.

Fact 1. For each pair of C0 functions a : R+
→ R, b :

R+
→ R+ that satisfy

∫
+∞

0 a(t)dt = +∞, limt→+∞
b(t)
a(t) =

M ≥ 0, a(t) > 0 for all t ≥ T and for certain T ≥ 0,
there exist constants K1, K2 > 0 with the following property:
if y : R+

→ R+ is an absolutely continuous function that
satisfies the following differential inequality a.e. for t ∈ [t0, t1]:

ẏ(t) ≤ −a(t)y(t) + b(t) (3.4)

then the following inequality holds:

y(t) ≤ K1 y(t0) + K2, ∀t ∈ [t0, t1]. (3.5)

Fact 2. Suppose that Ψ ∈ C0(R+
× Rm

; Rn). Then there
exist functions a1, a2 ∈ K∞, β ∈ K + such that for every
(t, x, y) ∈ R+

× Rm
× Rm , it holds that:

|Ψ(t, x) − Ψ(t, y)|

≤ a1 (β(t) |x − y|) + a1 (a2(|y|) |x − y|) . (3.6)
The following facts will be used for the proof of the
main results: Fact 3 is a direct consequence of Lemma 3.3
and Lemma 3.5 in [14], Fact 4 is a direct consequence of
Corollary 10 and Remark 11 in [27] and Fact 5 is a direct
consequence of Lemma 3.2 in [13] (see also Lemma 2.3 in
[11]).

Fact 3 (Lemma 3.3, Lemma 3.5 in [14]). Consider system (1.4),
where h : R+

× Rn
→ Rk is a C0 function with h(t, 0) = 0

for all t ≥ 0. Suppose that (1.4) is RFC. Moreover, suppose
that for every ε > 0, T ≥ 0 and R ≥ 0, there exists a
τ := τ (ε, T, R) ≥ 0, such that

|x0| ≤ R, t0 ∈ [0, T ] ⇒ |y(t)| ≤ ε, ∀t ≥ t0 + τ,

∀d( · ) ∈ MD (Robust Global Output Attractivity)

where x(t) = x(t, t0, x0; d) denotes the unique solution of
(1.4) at time t that corresponds to input d ∈ MD , with
initial condition x(t0) = x0 and y(t) := h(t, x(t, t0, x0; d)).
Then there exist functions σ ∈ K L and β ∈ K + such
that for every t0 ≥ 0 and x0 ∈ Rn it holds that |y(t)| ≤

σ (β(t0) |x0| , t − t0 ), for all d( · ) ∈ MD and t ≥ t0.

Fact 4. For every p ∈ K∞ there exists a function κ ∈ K∞ such
that p(r s) ≤ κ(r) κ(s), for all r, s ≥ 0.

Fact 5. Let D ⊂ Rl be a compact set and let f : R+
×

Rn
× D → Rm be a continuous mapping with f (t, 0, d) = 0

for all (t, d) ∈ R+
× D. There exist functions ζ ∈ K∞

and β ∈ K + such that | f (t, x, d)| ≤ ζ (β(t) |x |) for all
(t, x, d) ∈ R+

× Rn
× D.

The construction of the observer/estimator for our main results
is achieved by means of the following lemma, which deals
with the robust stabilization problem of a special class of linear
uncertain systems.

Lemma 3.4. Consider the system:

ẋi = a(t, θ)xi+1 + vi i = 1, . . . , n − 1

ẋn = vn + u
(3.7)

where x = (x1, . . . , xn) ∈ Rn is the state, v = (v1, . . . , vn) ∈

Rn is the input, θ(t) ∈ Θ ⊆ Rm is the vector of time-varying
parameters, u ∈ R and a ∈ C0(R+

× Θ ; R) is a mapping
that satisfies inf

{
a(t, θ) ; (t, θ) ∈ R+

× Θ
}

> 0.
Then for every φ ∈ K + there exist q ∈ K ∗, ρ ∈ K +, a

vector k ∈ Rn and constants γ, R, M > 0 such that for every
(t0, θ, x0, u) ∈ R+

× C0(R+
; Θ) × Rn

× L∞

loc(R
+

; R) the
solution of system (3.7) with

v = a(t, θ) diag
(

Rq(t), R2q2(t), . . . , Rnqn(t)
)

k x1 (3.8)

initial condition x(t0) = x0 and corresponding to inputs
(θ, u) ∈ C0(R+

; Θ) × L∞

loc(R
+

; R) satisfies the following
estimate for all t ≥ t0:

φ(t) |x(t)| ≤ ρ(t0) exp (−γ (t − t0)) |x0|

+M sup
τ∈[t0,t]

(
|u(τ )|

φ(τ)

)
. (3.9)
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Proof. Without loss of generality we may assume that the given
function of our problem φ ∈ K + is continuously differentiable
(if φ ∈ K + is not continuously differentiable we may replace
it by a continuously differentiable function φ̃ ∈ K +which
satisfies φ̃(t) ≥ φ(t) for all t ≥ 0). Let q ∈ K ∗ a function
that satisfies

q(t) ≥
∣∣φ̇(t)

∣∣φ−1(t) + φ2(t), ∀t ≥ 0 (3.10)

where φ ∈ K + is the given function of our problem. Let A :={
ai, j : i, j = 1, . . . , n

}
with ai, j := 1 for i = 1, . . . , n − 1,

j = i + 1, ai, j = 0 for i = 1, . . . , n, j 6= i + 1 and let c′
=

(1, 0, . . . , 0) ∈ Rn . There exist a vector k = (k1, . . . , kn)′ ∈

Rn , constants µ, K1, K2 > 0 and a positive definite symmetric
matrix P ∈ Rn×n , such that

P(A + kc′) + (A + kc′)′ P ≤ −µ P (3.11)

K1 I ≤ P ≤ K2 I (3.12)

where I ∈ Rn×n denotes the identity matrix. Let

l := inf
{

a(t, θ) ; (t, θ) ∈ R+
× Θ

}
> 0. (3.13)

Define:

R := max
{

1 ;
8
√

nK2

µK1l

}
. (3.14)

Consider the time-varying transformation

Ri−1q i−1(t)yi = φ(t)xi , i = 1, . . . , n. (3.15)

Define:

F̃i (t, yi ) :=
φ̇(t)

Rφ(t)q(t)
yi , i = 1, . . . , n. (3.16)

It follows from (3.10), (3.15) and (3.16) that the following
inequalities hold for all t ≥ 0 and yi ∈ R:∣∣∣F̃i (t, yi )

∣∣∣ ≤
µ l

8
√

n

K1

K2
|yi | , i = 2, . . . , n. (3.17)

For every input (θ, u) ∈ C0(R+
; Θ) × L∞

loc(R
+

; R) the
solution of the closed-loop system (3.7) with (3.8) is described
in y-coordinates by the following system of differential
equations:

ẏ = a(t, θ)Rq(t)(A + kc′)y + Rq(t)F̃(t, y)

−q̇(t)q−1(t)B y + φ(t)R1−nq1−n(t)bu (3.18)

where y = (y1, . . . , yn) ∈ Rn , B := diag ( 0, 1, . . . , n − 1),

F̃(t, y) :=

(
F̃1(t, y1) , F̃2(t, y2) , . . . , F̃n(t, yn)

)′

(defined

by (3.16) and b := (0, . . . , 0, 1)′.
Let arbitrary (t, θ, x0, u) ∈ R+

× C0(R+
; Θ) × Rn

×

L∞

loc(R
+

; R) and consider the solution x(t) of the closed-
loop system (3.7) with (3.8), initial condition x(t0) = x0 and
corresponding to inputs (θ, u) ∈ C0(R+

; Θ)× L∞

loc(R
+

; R).
Clearly, for the solution x(t) there exists a maximal existence
time tmax > t0 such that the solution is defined on [t0, tmax)

and cannot be further continued. Define the function V (t) =

y′(t)Py(t), where y(t) is defined by the transformation (3.15).
By virtue of (3.11)–(3.14), (3.17) and (3.18), it follows that
the derivative of V (t) satisfies the following inequality a.e. for
t ∈ [t0, tmax):

V̇ (t) ≤ −µ l Rq(t)V (t) + 2Rq(t)K2 |y(t)|
∣∣∣F̃(t, y(t))

∣∣∣
+ 2K2 |y(t)|2

q̇(t)

q(t)
|B|

+ 2K2 |y(t)|
φ(t)

Rn−1qn−1(t)
|u(t)|

≤ −Rq(t)

(
µ

4
l −

2K2

K1 R
(n − 1)

q̇(t)

q2(t)

)
V (t)

+
4K 2

2

µ K1 l
Rq(t)

φ2(t) |u(t)|2

R2nq2n(t)
.

The above differential inequality in conjunction with (3.12)
and inequality |y| ≤ φ(t) |x | ≤ Rn−1qn−1(t) |y| (which
is a direct implication of definition (3.15), implies that the
following estimate for all t ∈ [t0, tmax):

φ2(t) |x(t)|2 ≤
K2

K1
R2(n−1)q2(n−1)(t)

(
q(t)

q(t0)

) 2K2(n−1)

K1

× exp
(

−
µRl

4

∫ t

t0
q(s)ds

)
φ2(t0) |x0|

2

+
4K 2

2

µ K 2
1 l

∫ t

t0

(
q(t)

q(τ )

)2(n−1)
(

1+
K2
K1

)
exp

(
−

µRl

4

∫ t

τ

q(s)ds

)
×

φ2(τ ) |u(τ )|2

Rq(τ )
dτ.

The above estimate implies that the solution x(t) of the closed-
loop system (3.7) with (3.8), initial condition x(t0) = x0 and
corresponding to inputs (θ, u) ∈ C0(R+

; Θ) × L∞

loc(R
+

; R)

exists for all t ≥ t0 (i.e., tmax = +∞). Define

I (t) :=
16K 2

2

µ2 K 2
1 R2l2

∫ t

0

(
q(t)

q(τ )

)2a J (τ )

J (t)

µ R l

4
q(τ )dτ (3.19a)

J (t) := exp
(

µ Rl

4

∫ t

0
q(s)ds

)
(3.19b)

a := (n − 1)

(
1 +

K2

K1

)
. (3.19c)

Clearly, the estimate given above for the solution x(t) in
conjunction with Eq. (3.19) implies the following estimate for
all t ≥ t0:

φ(t) |x(t)| ≤

(
K2

K1

) 1
2

Rn−1qn−1(t0)

(
q(t)

q(t0)

)a

× exp
(

−
µ r

8
l
∫ t

t0
q(s)ds

)
φ(t0) |x0| + (I (t))

1
2

× sup
τ∈[t0,t]

(
φ(τ) |u(τ )|

q(τ )

)
. (3.20a)

Notice that definition (3.19b) implies the equality
∫ t

0 (q(τ ))−2a

J (τ )
µ R l

4 q(τ )dτ =
∫ t

0 (q(τ ))−2a J̇ (τ )dτ . Using the previous
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equality and integrating by parts the integral in (3.19), we obtain

I (t) =
16K 2

2

µ2 K 2
1 R2l2

(1 + 2ag(t)) (3.20b)

where

g(t) :=

∫ t

0

(
q(t)

q(τ )

)2a

exp
(

−
µ R

4
l
∫ t

τ

q(s)ds

)
q̇(τ )

q(τ )
dτ.

(3.21)

Definition (3.21) implies that g(t) satisfies the following
differential equation:

ġ(t) = −q(t)

(
µR

4
l − 2aq̇(t)q−2(t)

)
g(t) + q̇(t)q−1(t).

(3.22)

Since q ∈ K ∗ it follows from (2.1):

lim
t→+∞

q̇(t)q−2(t) = 0. (3.23)

Fact 1 in conjunction with (3.23) implies that there exists a
constant G > 0 such that g(t) ≤ G for all t ≥ 0. It follows
from estimate (3.20a) and inequalities (3.10) and (3.20b) that
there exist a constant M2 > 0 such that

φ(t) |x(t)| ≤ M1qn−1(t0)

(
q(t)

q(t0)

)a

exp
(

−2γ

∫ t

t0
q(s)ds

)
×φ(t0) |x0| + M2 sup

τ∈[t0,t]

(
|u(τ )|

φ(τ)

)
(3.24)

for all t ≥ t0 with M1 :=

(
K2
K1

) 1
2

Rn−1 and γ :=
µ R
16 l. Next

consider the function

L(t) := qa(t) exp
(

−γ

∫ t

0
q(s)ds

)
. (3.25)

It is clear that L(t) satisfies the differential equation L̇(t) =

−q(t)
(
γ − a q̇(t)

q2(t)

)
L(t). By virtue of (3.23) and Fact 1, it

follows that there exists a constant K > 0 such that L(t) ≤ K
for all t ≥ 0. Combining estimate (3.24) with definition (3.25)
and using the fact that q(t) ≥ 1 for all t ≥ 0, we obtain

φ(t) |x(t)| ≤ M1 K φ(t0) exp
(

γ

∫ t0

0
q(s)ds

)
× exp (−γ (t − t0)) |x0| + M2 sup

τ∈[t0,t]

(
|u(τ )|

φ(τ)

)
.

(3.26)

It is clear from (3.26) that estimate (3.9) holds with M := M2

and ρ(t) := M1 Kφ(t) exp
(
γ
∫ t

0 q(s)ds
)

. C

We are now in a position to prove the main results of the present
work.

Proof of Theorem 3.1. Let φ ∈ K + be given. Clearly, the
hypotheses of Theorem 3.1 guarantee the existence of a
function Ψ ∈ C0(R+

×R×Rm
; Rl) with Ψ(t, 0, 0) = 0 for

all t ≥ 0 such that

θ(t, x) = Ψ(t, h(t, x), Y (t, x)), ∀(t, x) ∈ R+
× Rn (3.27)
for the case of RCO or there exist functions σ ∈ K L , β ∈ K +

such that for every (t0, x0) ∈ R+
× Rn and d( · ) ∈ MD the

solution x(t) of (1.4) with initial condition x(t0) = x0 and
corresponding to d( · ) ∈ MD satisfies

|θ(t, x(t)) − Ψ(t, h(t, x(t)), Y (t, x(t)))|

≤ σ (β(t0) |x0| , t − t0) , ∀t ≥ t0 (3.28)

for the case of RCD, where in both cases the mappings Y (t, x),
yi (t, x) (i = 0, . . . , m), a : R+

× R → R, {ϕi }, i = 1, . . . , m
are defined by (2.4), (2.5) and satisfy (2.3).

Clearly, definitions (2.4a), (2.4b) and (2.5) guarantee that
Y (t, 0) = 0 for all t ≥ 0. Using Fact 5 in conjunction with
the continuity of f, a, h, Y and compactness of D ⊂ Rl , we
obtain functions p ∈ K∞ and β ∈ K + such that

|h(t, x)| + |Y (t, x)| +

∣∣∣∣∂ ym

∂ t
(t, x) +

∂ ym

∂ x
(t, x) f (t, x, d)

∣∣∣∣
≤ p (β(t) |x |) , ∀(t, x, d) ∈ R+

× Rn
× D. (3.29)

Since system (1.4) is RFC, by virtue of Proposition 2.3, there
exist functions ã ∈ K∞ and µ ∈ K + such that for every input
d( · ) ∈ MD and for every (t0, x0) ∈ R+

× Rn , the unique
solution x(t) of (1.4) corresponding to d( · ) and initiated from
x0 at time t0 exists for all t ≥ t0 and satisfies

|x(t)| ≤ µ(t) ã (|x0|) , ∀t ≥ t0. (3.30)

Moreover, by virtue of Fact II, there exist functions a1, a2 ∈

K∞, γ ∈ K + such that for every (t, y, z, w) ∈ R+
× R ×

Rm
× Rm , it holds that

|Ψ(t, y, z) − Ψ(t, y, w)| ≤ a1 (γ (t) |z − w|)

+ a1 (a2(|y| + |w|) |z − w|) . (3.31)

Notice that for every input d( · ) ∈ MD and for
every (t0, x0) ∈ R+

× Rn , the components of the
mapping (y1(t) , . . . , ym(t)) = Y (t) = Y (t, x(t)) :=

(y1(t, x(t)) , . . . , ym(t, x(t))) ∈ Rm , where x(t) denotes the
unique solution of (1.4) corresponding to d( · ) and initiated
from x0 at time t0, satisfy the following relations:

ẏi (t) = a(t, y(t))yi+1(t) + ϕi+1(t, y(t)), ∀t ≥ t0,

i = 0, . . . , m − 1 (3.32)

where y0(t) = y(t) = h(t, x(t)). By virtue of Fact IV, there
exists a function κ ∈ K∞ such that

p(r s) + a1(r s) + a2(r s) ≤ κ(r) κ(s), ∀r, s ≥ 0 (3.33)

where p ∈ K∞ is the function involved in (3.29) and a1, a2 ∈

K∞ are the functions involved in (3.31). It follows by (3.29),
(3.30), (3.32) and (3.33) that for every input d( · ) ∈ MD and
for every (t0, x0) ∈ R+

× Rn , we have

|y(t)| + |Y (t, x(t))| ≤ β̃(t) κ (ã( |x0|)) , ∀t ≥ t0 (3.34a)

|ẏm(t)| ≤ β̃(t) κ (ã( |x0|)) , a.e. for t ≥ t0 (3.34b)

where β̃ ∈ K + is a function that satisfies β̃(t) ≥ κ (β(t)µ(t))
for all t ≥ 0. Let φ̃ ∈ K + a function that satisfies:

φ̃(t) ≥ β̃(t) +
γ (t) + κ(β̃(t))

κ−1
(

exp(−t)
φ(t)

) , ∀t ≥ 0 (3.35)
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where φ ∈ K + is the given function of our problem and γ ∈

K + is the function involved in (3.31). Let q ∈ K ∗, k ∈ Rm+1,
R > 0 (to be selected) and consider the solution of (3.1) with
initial condition z(t0). Define e(t) := (e1(t), . . . , em+1(t))′ :=

z(t) − (y(t), Y (t))′. It follows from (3.1) and (3.32) that the
following differential equations hold:

ėi (t) = a(t, y(t))ei+1(t) + vi (t), i = 1, . . . , m (3.36a)

ėm+1(t) = −ẏm(t) + vm+1 (3.36b)

where

v = a(t, y(t))

×diag
(

Rq(t), R2q2(t), . . . , Rm+1qm+1(t)
)

k e1.
(3.36c)

By virtue of (2.3), (3.36) and Lemma 3.4, there exist q ∈ K ∗,
ρ ∈ K +, a vector k ∈ Rm+1 and constants R, M > 0 such
that for every (t0, z(t0), ẏm) ∈ R+

× Rm+1
× L∞

loc(R
+

; R)

the solution of system (3.1) with initial condition z(t0) and
corresponding to input ẏm ∈ L∞

loc(R
+

; R) satisfies the
estimate for all t ≥ t0:

φ̃(t) |z(t) − (y(t), Y (t, x(t)))|

≤ ρ(t0) |z(t0) − (y(t0), Y (t0, x(t0)))|

+M sup
τ∈[t0,t]

(
|ẏm(τ )|

φ̃(τ )

)
. (3.37)

Clearly, inequalities (3.29), (3.34b), (3.35) in conjunction with
(3.37) imply that:

φ̃(t) |z(t) − (y(t), Y (t, x(t)))|

≤ ρ(t0) |z(t0)| + ρ(t0)p(β(t0) |x(t0)|)

+ M κ (ã(|x(t0)|)) , ∀t ≥ t0. (3.38)

Making use of inequalities (3.31), (3.33), (3.34a), (3.35) and
(3.38) we conclude

φ(t) |Ψ(t, y(t), z1(t), . . . , zm(t)) − Ψ(t, y(t), Y (t, x(t)))|

≤ exp(−(t − t0))ω (λ(t0) |(x(t0), z(t0))|) , ∀t ≥ t0 (3.39)

for appropriate functions ω ∈ K∞ and λ ∈ K +. Notice that,
by virtue of (3.30), (3.34a) and (3.38), system (1.4) with (3.1)
is RFC. Inequality (3.39) in conjunction with (3.27) or (3.28),
proves that system (3.1) is a (φ-) estimator for θ with respect to
(1.4). The proof is complete. C

Proof of Theorem 3.3. Let φ ∈ K + be arbitrary. Since system
(1.3) is RFC, by virtue of Proposition 2.3, there exist functions
ã ∈ K∞ and µ ∈ K + such that for every (t0, x0) ∈ R+

× Rn ,
the unique solution x(t) of (1.3) initiated from x0 at time
t0 exists for all t ≥ t0 and satisfies (3.30). Using Fact 5
in conjunction with the continuity of f , we obtain functions
p ∈ K∞ and β ∈ K + such that

| f (t, x)| ≤ p (β(t) |x |) , ∀(t, x) ∈ R+
× Rn . (3.40)

By virtue of (3.30) and (3.40) and Fact 4, there exist functions
κ ∈ K∞, β̃ ∈ K + such that for every (t0, x0) ∈ R+

× Rn , the
unique solution x(t) of (1.3) initiated from x0 at time t0 satisfies

| f (t, x(t))| ≤ β̃(t) κ ( |x0|) , ∀t ≥ t0. (3.41)
Without loss of generality we assume that β̃ ∈ K + is non-
decreasing. Let q ∈ K ∗, k ∈ Rn , R > 0 (to be selected)
and consider the solution (x(t), z(t), w(t))of (1.3) and (3.3)
with (3.2b) with initial condition (x(t0), z(t0), w(t0)) =

(x0, z0, w0) for arbitrary (t0, x0, z0, w0) ∈ R+
× Rn

×

Rn
× R. Clearly, there exists tmax ∈ (t0, +∞] such that the

solution (x(t), z(t), w(t))of (1.3) and (3.3) with (3.2b) exists
for t ∈ [t0, tmax) and cannot be further continued. Note that
exp(t)w(t) = exp(t0)w0 for all t ∈ [t0, tmax). The previous
equality in conjunction with (3.41) gives

| f (t, x(t))| ≤ β̃(t)(1 + exp(t) |w(t)|), ∀t ∈ [t0, tmax),

provided that κ ( |x0|) ≤ 1 + exp(t0) |w0| . (3.42)

Define:

φ̃(t) := exp(t)φ(t) + β̃(t) (3.43)

and e(t) := z(t) − x(t). It follows from (1.3), (3.3) and (3.2b)
that the following differential equations hold:

ėi (t) = a(t, y(t))ei+1(t) + vi (t), i = 1, . . . , n − 1 (3.44a)

ėn(t) = β̃(t) (1 + exp(t) |w(t)|)

× sat
(

f (t, y(t), z2(t), . . . , zn(t))

β̃(t)(1 + exp(t) |w(t)|)

)
− f (t, x(t)) + vn(t)

(3.44b)

where

v = a(t, y) diag
(

Rq(t), R2q2(t), . . . , Rnqn(t)
)

k e1. (3.44c)

By virtue of (2.3) and Lemma 3.4, there exist q ∈ K ∗, ρ ∈ K +,
a vector k ∈ Rn and constants R, M > 0 such that the
following estimate holds for all t ∈ [t0, tmax):

φ̃(t) |z(t) − x(t)| ≤ ρ(t0) |z0 − x0| + M

× sup
t0≤τ≤t

∣∣∣∣∣ f (τ, x(τ ))

φ̃(τ )
−

β̃(τ )(1 + exp(τ )w(τ))

φ̃(τ )

× sat
(

f (τ, y(τ ), z1(τ ), . . . , zm(τ ))

β̃(τ )(1 + exp(τ )w(τ))

)∣∣∣∣ . (3.45)

Estimate (3.45) combined with (3.41), (3.43) and the fact that
exp(t)w(t) = exp(t0)w0 for all t ∈ [t0, tmax), implies that the
following estimate holds for all t ∈ [t0, tmax):

φ(t) |z(t) − x(t)| ≤ exp(−t) [ρ(t0)|z0 − x0| + Mκ( |x0|)

+ M (1 + exp(t0)|w0|)]. (3.46)

Estimates (3.30) and (3.46), in conjunction with the fact that
exp(t)w(t) = exp(t0)w0 for all t ≥ t0, show that system
(1.3) with (3.3) and (3.2b) is RFC. Consequently, tmax = +∞.
Moreover, notice that, if z0 = x0 and κ ( |x0|) ≤ |w0|, then it
follows from (3.42) that x̄(t) = x(t) for all t ≥ t0 (Consistent
Initialization Property). Indeed, using (3.42), the reader can
verify that the solution of system (1.3) with (3.3) and (3.2b)
with z0 = x0 and κ ( |x0|) ≤ |w0| satisfies z(t) = x(t) for all
t ≥ t0 (by simply substituting z(t) = x(t) in the differential
equations (3.3) with (3.2b)).
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It follows from Fact 3, that since:

(i) estimate (3.46) holds (which guarantees Robust Global
Output Attractivity for the output Y := φ(t) (z − x )),

(ii) system (1.3) with (3.3) and (3.2b) is RFC,
(iii) the point (x, z, w) = (0, 0, 0) is the equilibrium point of

(1.3) with (3.3) and (3.2b),
(iv) the right-hand sides of differential (1.3) with (3.3) and

(3.2b) are locally Lipschitz,

then there exist functions σ ∈ K L and b ∈ K + such that for
every t0 ≥ 0 and (x0, z0, w0) ∈ Rn

× Rn
× R the following

estimate holds:

φ(t) |z(t) − x(t)| ≤ σ (b(t0) |(x0, z0, w0)| , t − t0 ) ,

∀t ≥ t0. (3.47)

Estimate (3.47) implies that (3.3), (3.2b) is a φ-estimator for
the function θ(t, x) ≡ x with respect to (1.3). Since (3.3),
(3.2b) is a φ-estimator for system (1.3), which satisfies the
consistent initialization property and since φ ∈ K + is arbitrary,
we conclude that the global φ-observer problem for (1.3) is
solvable. C

The following illustrating examples show the applicability
of Theorem 3.1 to nonlinear uncertain systems.

Example 3.5. Consider again the RCO system (2.8), which
was studied in Example 2.6. Notice that by virtue of (2.9) we
have

|y(t)| + |Y (t, x(t))| + |ẏ1(t, x(t))|

≤ 3 exp(5t)
(
|x0| + |x0|

3
+ |x0|

5
)

, ∀t ≥ t0 (3.48)

where the mapping Y (t, x) = y1(t, x) := x3
2 is defined in

(2.10). Making use of the inequality |sgn(x)|x |
1
3 − sgn(y)|y|

1
3 |

≤ 2|x − y|
1
3 , which holds for all x, y ∈ R, we obtain that:

|Ψ(t, y, z) − Ψ(t, y, w)| ≤ 2 |z − w|
1
3 ,

∀(t ; y, z, w) ∈ R+
× R3 (3.49)

where Ψ is defined in (2.10). Using Lemma 3.4 for φ(t) =

exp(5t) we guarantee the existence of a function ρ ∈ K +

and constants M, R > 0 such that for every (t0, z0, x0, d) ∈

R+
× R2

× R2
× MD , the solution of (2.8) with

ż0 = y(t) + z1 − 12R exp(10t)(z0 − y(t));

ż1 = −72R2 exp(20t)(z0 − y(t))

x̄ = Ψ(t, y, z1); z := (z0, z1) ∈ R2, t ≥ 0

(3.50)

and initial condition (z(t0), x(t0)) = (z0, x0), corresponding to
input d ∈ MD , satisfies the following estimate for all t ≥ t0:

|z(t) − (y(t), Y (t, x(t)))|

≤ exp(−5t)(ρ(t0)|z(t0) − (y(t0), Y (t0, x(t0)))|

+ M (|x(t0)| + |x(t0)|
3
+ |x(t0)|

5)). (3.51)

The reader should notice that system (3.50) coincides with
system (3.1) for q(t) = exp(10t), m = 1 and ϕ1(t, y) = y.
Let a(s) := 2s
1
3 . The following inequality follows from (3.49)

and estimate (3.51):

|x(t) − Ψ(t, y(t), z2(t))|

≤ exp(−(t − t0))a(ρ(t0)|z(t0) − (y(t0), Y (t0))|

+ M(|x(t0)| + |x(t0)|
3
+ |x(t0)|

5)), ∀t ≥ t0. (3.52)

Estimate (3.52) guarantees that system (3.50) is a φ̃-estimator
for system (2.6) with φ̃(t) = exp(p t), p ∈ [0, 1), i.e. an
estimator for the state of system (2.8) which guarantees
exponential convergence. C

Example 3.6. Consider again system (2.11), for which it was
shown in Example 2.7 that the function θ(t, x) := x1+x2+x3 is
RCD with respect to (2.11). Making use of inequalities (2.12a)
and (2.12b) and working as in the previous example it can be
shown that there exists a constant R > 0 such that the following
system:

ż0 = y(t) + z1 − 12R exp(10t)(z0 − y(t));

ż1 = −72R2 exp(20t)(z0 − y(t))

θ̄ = y + sgn(z1) |z1|
1
3 ; z := (z0, z1) ∈ R2, t ≥ 0

(3.53)

is an estimator for θ with respect to (2.11), which guarantees
exponential convergence. Particularly, there exists a function
ρ ∈ K + and a constant M > 0 such that for every
(t0, z0, x0, d) ∈ R+

× R2
× R3

× MD the solution of
(2.11) with (3.53) and initial condition (z(t0), x(t0)) = (z0, x0)

corresponding to input d ∈ MD satisfies the following estimate
for all t ≥ t0:∣∣∣θ(t, x(t)) − y(t) − sgn(z1(t)) |z1(t)|

1
3

∣∣∣
≤ exp (−(t − t0)) |x3(t0)|

+ exp(−(t − t0))a
(
ρ(t0)

∣∣∣z1(t0) − x3
2(t0)

∣∣∣
+M

(
|x(t0)| + |x(t0)|

3
+ |x(t0)|

5
))

where a(s) := 2s
1
3 . C

4. Conclusions

In this paper we have given sufficient conditions for the
existence of estimators and the solvability of the global
observer problem for dynamic systems. It is showed that if
a time-varying uncertain system is RCD then there exists an
estimator for this system, i.e. we can estimate asymptotically
the state vector of the system. Moreover, if a time-varying
uncertain system is RCO then there exists an estimator for
this system that guarantees convergence of the estimates with
“arbitrary fast” rate of convergence. Finally, the obtained results
are specialized to the triangular time-varying case, where it is
shown that a time-varying observer can be constructed.
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Appendix

Proof of Fact 1. Clearly, the differential inequality (3.4)
implies that:

y(t) ≤ exp
(

−

∫ t

t0
a(s)ds

)
y(t0)

+

∫ t

t0
exp

(
−

∫ t

τ

a(s)ds

)
b(τ )dτ, ∀t ∈ [t0, t1]. (A.1)

Moreover, since a(t) > 0 for all t ≥ T , we obtain for all t0 ≥ 0
and t ≥ t0:∫ t

t0
a(s)ds =

∫ t

t0
|a(s)| ds + 2

∫ t

t0
min{0, a(s)}ds

≥ 2
∫ t

t0
min{0, a(s)}ds ≥ 2

∫ t

0
min{0, a(s)}ds

≥ 2
∫ T

0
min{0, a(s)}ds.

We define K1 := exp
(
−2

∫ T
0 min{0, a(s)}ds

)
and the previous

inequalities in conjunction with (A.1) give

y(t) ≤ K1 y(t0) + exp
(

−

∫ t

0
a(s)ds

)
×

∫ t

0
exp

(∫ τ

0
a(s)ds

)
b(τ )dτ, ∀t ∈ [t0, t1]. (A.2)

We define the function p(t) :=
∫ t

0 exp
(∫ τ

0 a(s)ds
)

b(τ )dτ .
This function is nondecreasing and consequently we either have
p(t) ≤ K3 for some K3 > 0 or limt→+∞ p(t) = +∞. For the
first case, inequality (3.5) is implied by (A.2) with K2 = K1 K3.
For the second case, notice that since

∫
+∞

0 a(t)dt = +∞

and limt→+∞
b(t)
a(t) = M ≥ 0, we can apply L’Hospital’s

rule for the function q(t) := p(t) exp
(
−
∫ t

0 a(s)ds
)

and

obtain that limt→+∞ q(t) = M . Thus we may define K2 :=

supt≥0 q(t) and (3.5) is implied by inequality (A.2). The proof
is complete. C

Proof of Fact 2. Clearly the function

γ (r, s) := sup {|Ψ(t, x) − Ψ(t, y)| ; |(t, y)| ≤ r,

|x − y| ≤ s} (A.3)

is continuous, nonnegative and satisfies γ (r, 0) = 0 for all
r ≥ 0. Consequently, by virtue of Fact 5, there exist functions
ã ∈ K∞, β̃ ∈ K + being increasing, such that γ (r, s) ≤

ã
(
β̃(r) s

)
for all r, s ≥ 0. Definition (A.3), in conjunction

with the previous inequality, implies

|Ψ(t, x) − Ψ(t, y)| ≤ ã
(
β̃ (|(t, y)|) |x − y|

)
,

∀(t, x, y) ∈ R+
× Rm

× Rm . (A.4)

Since β̃ ∈ K + is increasing, we have β̃ (|(t, y)|) ≤ β̃(2t) +

β̃(2 |y|) and using the properties of K∞ functions we obtain
from inequality (A.4)
|Ψ(t, x) − Ψ(t, y)| ≤ ã
(

2β̃ (2t) |x − y|

)
+ ã

×

(
2β̃ (2 |y|) |x − y|

)
,

∀(t, x, y) ∈ R+
× Rm

× Rm .

(A.5)

Define R := 2β̃(0), a2(s) := s + 2β̃(2s) − R and notice
a2 ∈ K∞. Using again the properties of K∞ functions we
obtain from inequality (A.5):

|Ψ(t, x) − Ψ(t, y)| ≤ ã
(

2β̃ (2t) |x − y|

)
+ã (2R |x − y| ) + ã (2a2 (|y|) |x − y|) ,

∀(t, x, y) ∈ R+
× Rm

× Rm . (A.6)

Inequality (3.6) is directly implied by inequality (A.6) with
β(t) := β̃(2t) + R, a1(s) := 2ã(2s). C
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