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This paper develops a novel characterization of uniform
input-to-state stability (UISS) in terms of vector
Lyapunov functions. The motivation is coming from
the problem of robust global stabilization of the
chemostat and in particular from anaerobic digestion
processes, which are characterized by narrow stability
regions and extreme sensitivity to external perturba-
tions, if operated under optimal steady state conditions.
The theoretical results enable the derivation of precise
robustness margins for a proportional output feedback
law that is globally stabilizing the chemostat under
nominal conditions. The derivations and results are
extended for the case where a feedforward measure-
ment is incorporated in the control law for the
chemostat, and it is shown that this leads to improved
robustness margins.
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1. Introduction

Continuous stirred microbial bioreactors, often called
chemostats, cover a wide range of applications; spe-
cialised ‘‘pure culture’’ biotechnological processes for
the production of specialty chemicals (proteins,

antibiotics etc.) as well as large-scale environmental
technology processes of mixed cultures such as was-
tewater treatment. The dynamics of the chemostat is
often adequately represented by a simple dynamic
model involving two state variables, the microbial
biomass x and the limiting organic substrate s [2,19].
For control purposes, two operating variables are
usually considered, the dilution rate D which is the
manipulated input, and the feed substrate concentra-
tion S0 which is a load variable. A general model for
microbial growth on a limiting substrate in a chemo-
stat is of the form:

dx

dt
¼ �Dxþ �ðsÞx

ds

dt
¼ DðS0 � sÞ � 1

Yx=s
�ðsÞx

ð1Þ

where �ðsÞ is the specific growth rate, and Yx=s is a
biomass yield factor. As will be seen in the next section,
one important example is anaerobic digestion, which
finds many applications e.g., in wastewater treatment,
sludge management, energy from biomass, etc.

In Equation (1), the specific growth rate �ðsÞ is
given by an empirical correlation, e.g. the Monod
equation where �ðsÞ ¼ �maxs=KS þ s, or the Haldane
equation where �ðsÞ ¼ �maxs

�
KS þ sþ s2

�
K1

� �� �
, or
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the generalized Haldane equation where
�ðsÞ ¼ �maxs=KS þ s 1þ s=KIð Þnð Þ, . . . etc., with the
parameters �max;KS;KI; n; . . . all being positive.

In all types of empirical kinetic equations, the

function �ðsÞ satisfies
�ðsÞ > 0 for all s > 0

�ð0Þ ¼ 0

( )
.

However, the specific properties of the function �ðsÞ
affect the number and stability properties of the che-
mostat’s steady states. For example, in the case of
Monod kinetics under constant D and S0, there can
only be one nontrivial steady state and it is always
globally asymptotically stable, but the situation is
entirely different in the case of Haldane kinetics. In
the next section, in the discussion of the anaerobic
digestion process, it will be seen that very meaningful
and challenging stabilization problems arise in the
case of Haldane kinetics.

The problem of the stabilization of the steady state
of the chemostat was considered in [12]. In [6], the
problem of the regulation of the chemostat with non-
zero mortality rate was considered. In [4], feedback
control of the chemostat by manipulating the dilution
rate was studied for the promotion of coexistence.
Other interesting control studies of the chemostat can
be found in [1] and [8]. The stability and robustness of
periodic solutions of the chemostat with periodically
time-varying dilution rate was studied in [14] in terms
of the input-to-state stability (ISS) property. Finally,
chemostat models with time delays were considered in
[5,25,26].

In this work, we will study the problem of robust
global stabilization of a given design steady state
ðxdess ; sdess Þ of (1), by manipulating the dilution rate D,
and despite fluctuations in S0 and possible errors in
the parameters of �ðsÞ. It will be assumed that the
measured output is proportional to the growth rate of
the biomass or equivalently the rate of utilization of
the substrate:

Q ¼ Y�ðsÞx ð2Þ

where Y is a constant coefficient. It will be seen in the
next section that a measurement of the above form is
the most meaningful measurement in the anaerobic
digestion process.

The feedback stabilization problem for (1) with
measured output given by (2), has been studied in [12],
where it was shown that the proportional output
feedback

D ¼ 1

YYx=sðS0 � sdess Þ
Q ð3Þ

is a globally stabilizing feedback. The control law (3)
was implemented experimentally in [18] and in [13].
However, the inlet substrate concentration S0 was
assumed to be a known constant. The robustness
property of the closed-loop system (1) with (3) with
respect to fluctuations in S0 is crucial for the proper
operation of the chemostat since fluctuations in S0

represent a very common and potentially harmful
disturbance.

In this work, precise robustness margins will be
derived for the closed-loop system (1) with (3). Sub-
sequently, in order to cover cases where the load
variable S0 is also measurable, this extra measure-
ment will be incorporated in the control law (3),
leading to a feedforward/output feedback controller
with improved robustness margin with respect to S0.
For both types of controllers, robust stability analysis
will be in terms of the Uniform ISS (UISS) property
and the key mathematical tool will be vector Lyapu-
nov functions.

Vector Lyapunov functions have been proposed
recently in [15] for the stability analysis and control
of finite-dimensional systems, but have a long history
(see the references in [15] and [24]). In this work, we
utilize vector Lyapunov functions to develop a
novel characterization of the UISS property (see
Theorem 3.4 below) that allows the explicit deter-
mination of the gain function and can be applied to
systems with minimal regularity requirements (see the
discussion in Remark 3.5 below). The UISS property
was introduced in [21] and had a strong impact in
Mathematical Control Theory. The characterization
of the UISS property in terms of vector Lyapunov
functions that will be developed in the present paper,
will allow the proof of UISS property for the closed-
loop system (1) with (3). In this case, the input is the
deviation of the designed value of the feed substrate
concentration from its current value S0. Because the
UISS property holds for the closed-loop system (1)
with (3) as long as the deviation in S0 is bounded by
appropriate constant, the system will keep operating
properly despite the deviation and it will be protected
from undesirable ‘‘shut down’’. Similar robustness
results will be derived under feedforward/feedback
control.

Summarizing, the contribution of the present
work is:

� a novel characterization of the UISS property in
terms of vector Lyapunov functions, which allows
the explicit determination of the gain function and
can be applied to systems under minimal regularity
requirements,
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� the construction of a family of Control Lyapunov
Functions for the chemostat that can be used
for various control purposes (e.g. sampled-data
stabilization of the chemostat, robustness analysis
with respect to time-delays),

� a new proof (in terms of control Lyapunov func-
tions) of the fact that (3) is a globally stabilizing
feedback for (1),

� the derivation of precise robustness margins with
respect to fluctuations of the load variable S0 for
the closed-loop system (1) with (3),

� the derivation of a feedforward/output feedback
controller with improved robustness margin with
respect to S0

After going over some standard notations, Section 2
will provide some background on anaerobic digestion
and it will motivate and explain the control problem
for the chemostat in practical terms. Section 3 will
develop the theoretical results on a vector Lyapunov
function characterization of uniform ISS (UISS).
In Section 4, a simple feedback control law will be
derived via a Control Lyapunov Function approach,
which will guarantee global stability of the chemostat
over the entire first quadrant. This feedback control
law will be proved to be robust relative to constant
and also to time-varying perturbations in the organic
load, using the results of Section 3. Finally, Section 5
will develop a feedforward/feedback controller for the
chemostat, a robustness analysis will be preformed
similarly to Section 4 and it will be seen that incor-
poration of feedforward action leads to improved
robustness margin.

Notations: Throughout this paper we adopt the
following notations:

� For a vector x 2 <n we denote by jxj its usual
Euclidean norm and by x0 its transpose.

� We say that a non-decreasing continuous function
� : <þ ! <þ is of class N if �ð0Þ ¼ 0. We say that
an increasing continuous function � : <þ ! <þ is
of class K if �ð0Þ ¼ 0. We say that an increasing
continuous function � : <þ ! <þ is of class K1 if
�ð0Þ ¼ 0 and lim

s!þ1 �ðsÞ ¼ þ1. Clearly, we have

K1 � K � N. We say that a function � : <þ ! <þ
is positive definite if �ð0Þ ¼ 0 and �ðsÞ > 0 for all
s > 0. By KL we denote the set of all continuous
functions � ¼ �ðs; tÞ : <þ � <þ ! <þ with the
properties: (i) for each t � 0 the mapping �ð�; tÞ is of
class K; (ii) for each s � 0, the mapping �ðs; �Þ is
non-increasing with lim

t!þ1�ðs; tÞ ¼ 0.

� Let D � <l be a non-empty set. By MD we denote
the class of all Lebesgue measurable and locally
bounded mappings d : <þ ! D.

2. Practical Motivation: Anaerobic

Digestion Processes

Anaerobic digestion is a complex biochemical process,
in which organic compounds are mineralised to biogas
(a useful energy product), consisting primarily of
methane and carbon dioxide, through a series of
reactions mediated by several groups of microorgan-
isms. Under normal (or balanced) operation, the rate
of production of the intermediates is matched by their
consumption rate; hence there is very little accumu-
lation of these compounds. However, disturbances
such as an increase in the concentration of organic
compounds in the feed (organic overload), an increase
in feed flow rate (hydraulic overload), presence of
toxins in the feed, and temperature fluctuations, can
cause an imbalance in the process [20], which results in
accumulation of volatile organic acids. These acids
cause a drop in the pH, inhibiting methanogenesis and
the reactor fails. Such a failure has major conseque-
nces in the process economics since digester recovery
can be a very cumbersome and costly process. For this
reason, the development of appropriate control
schemes for anaerobic digesters has received sig-
nificant attention in recent years [16,17].

2.1. Mathematical Model of Anaerobic Digestion

For the description of anaerobic digestion, the math-
ematical model (1) can be used. This system of equa-
tions describes methanogenesis, the ultimate step in
anaerobic digestion, which is rate limiting and is
usually the most sensitive step. In other words, it is
assumed that the bioconversion of organics into fatty
acids (hydrolysis and acidification) has fast kinetics.
Then x and s in (1) represent the methanogen and
volatile fatty acid concentrations respectively. The
specific growth rate is assumed to follow Haldane
kinetics (substrate inhibition) [7]:

�ðsÞ ¼ �maxs

KS þ sþ s2

KI

ð4Þ

The output of the system is the methane production
rate, given by (2), whereY is a yield factor for methane
production. The methane production rate Q is easily
and reliably measurable on line.

2.2. Steady States of Anaerobic Digestion

A first step in the analysis of an anaerobic digester is
the calculation of its steady states under a constant
dilution rate DðtÞ ¼ Ds > 0. Apart from the trivial
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steady state (xs ¼ 0, ss ¼ S0) that corresponds to
washout of the biomass, the steady states of an
anaerobic digester are calculated from the set of
equations:

�ðssÞ ¼ Ds

xs ¼ Yx=sðS0 � ssÞ

( )
ð5Þ

with only positive solutions (xs > 0 and ss > 0) being
acceptable on physical grounds.

When the specific growth rate follows equation (4)
and the dilution rate 0 < Ds � Dmax, where

Dmax ¼

�max � S0

Ks þ S0 þ S2
0

KI

; if S0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ks � KI

p

�max

1þ 2 �
ffiffiffiffiffi
Ks

KI

r ; if S0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ks � KI

p

8>>>>>><
>>>>>>:

the set of equations (5) admits one or two positive
solutions; for dilution rates higher thanDmax, the set of
equations (5) does not admit any solution at all. Two
positive steady states occur in the case S0 >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ks � KI

p
(organic feed in excess) and for dilution rate
�max�S0

KsþS0 þ
S2
0

KI

< Ds <
�max

1þ2�
ffiffiffi
Ks
KI

p ¼ Dmax

In practice, anaerobic digesters operate under
excess of organic feed and under not too low dilution
rate, therefore the presence of two steady states is the
most common situation.

2.3. Local Asymptotic Stability

The eigenvalues of the linearization of (1) around a
nontrivial steady state are given by:

	1 ¼ ��ðssÞ ¼ �Ds

	2 ¼ � d�

ds
ðssÞ

 �
ðS0 � ssÞ

For positive dilution rate (Ds > 0) and for a positive
steady state (xs > 0) ss < S0), local asymptotic sta-
bility is guaranteed as long as d�

dsðssÞ > 0.
When the specific growth rate follows equation (4),

the stability condition translates to ss <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ks � KI

p
. In

case there are two positive steady states, it can be
shown that one of them satisfies ss <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ks � KI

p
, hence

it is stable, whereas the other has ss >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ks � KI

p
, hence

it is unstable. Comparing the two steady states cor-
responding to the same value of the dilution rate, one
can see that the methane production rate is higher at
the stable steady state, and this makes the stable
steady state more desirable from a performance point
of view.

2.4. Optimal Steady State for Maximal Methane

Production

For the purpose of optimal design of the operating
steady state conditions of an anaerobic digester, a
meaningful criterion is themaximizationof themethane
production rate. At steady state, the methane produc-
tion rate is calculated from:

Qs ¼ Y�ðssÞxs
¼ YYx=s�ðssÞðS0 � ssÞ

and the maximum is calculated from:

dQs

dss
¼ 0, d�

ds
ðssÞ

 �
ðS0 � ssÞ � �ðssÞ ¼ 0

Substituting the expression for �ðsÞ given by (4), the
optimal steady state is found to be:

sopts ¼ S0

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S0

KS
1þ S0

KI

� �r ð6Þ

and this corresponds to biomass

xopts ¼ Yx=sðS0 � sopts Þ ¼ Yx=sS0

1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þS0

KS
1þS0

KI

� �r

and dilution rate

Dopt
s ¼ �max � sopts

Ks þ sopts þ ðsopts Þ2
KI

It can be easily shown that the optimal steady state
is locally asymptotically stable.

For the following values of the parameters:

S0¼ 10;000mg=l; KS¼ 100mg=l;�max¼ 0:5d�1;
KI¼ 4;000mg=l; Yx=s¼ 0:05mg=mg;

Y¼ 0:00746 ll�1reactord
�1

which are representative of a typical anaerobic
digestion process, the optimal steady state from
equation (6) is ss ¼ 506:714mg=l. This corresponds
to xoptS ¼ 474:664mg=l, Dopt

s ¼ 0:377633d�1 and
QS ¼ 1:337205ll�1reactord

�1.
The above numerical values of the parameters and

the resulting optimal steady state conditions will be
used in the numerical calculations throughout this
paper.
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2.5. The Need for Control

Figure 1 depicts the phase portrait of the system
dynamics under constant dilution rate D, in particular
for the optimal value D ¼ Dopt

S ¼ 0:377633d�1, which
corresponds to maximal methane production rate.
For this value of the dilution rate, there are three
steady states for the system:

1. The trivial steady state point (xs ¼ 0; ss ¼ S0) that
corresponds to washout: it is a locally asymptoti-
cally stable equilibrium point.

2. An unstable steady state point in the interior of the
first quadrant: it is a saddle point with a stable
manifold.

3. A stable steady state point in the interior of the first
quadrant: it is a locally asymptotically stable
equilibrium point and it is the operating steady
state point that maximizes the methane production
rate.

In the diagram, the points S and U represent the
stable and unstable steady states, respectively in the
interior of the first quadrant. The stability regions of
the washout steady state and the steady state S are
separated by a curve (separatrix), which is the graph
of the stable manifold for the unstable steady state U.
Notice that the optimal steady state S is locally stable
but the stability region is very small (in fact the sta-
bility region of the washout steady state is ‘‘larger’’
than the stability region of the desired steady state).
This makes the optimal operation of the biochemical
reactor very sensitive to disturbances.

The goal of control is the stabilization of the system
in the sense of enlargement of the stability region.

3. Vector Lyapunov Function

Characterization of Uniform ISS

The notion of UISS was proposed in [21]. Consider
the system:

_x ¼ fðd; x; uÞ
x 2 <n; d 2 �; u 2 U � <m ð7Þ

where � � <l is compact, U � <m is a non-empty set
with 0 2 U and f is a continuous vector field with
fðd; 0; 0Þ ¼ 0 for all d 2 �. Furthermore, there exists a
symmetric positive definite matrix P 2 <n�n such that
for every bounded S � <n �U, there exists a constant
L � 0 satisfying the following inequality:

x� yð Þ0P fðd; x; uÞ � fðd; y; uÞð Þ � Ljx� yj2
8ðx; u; y; uÞ 2 S� S; 8d 2 �

It follows that for every ðx0; u; dÞ 2 <n �MU �MD

there exists a unique solution to the initial value pro-
blem (7) with xð0Þ ¼ x0 2 <n corresponding to input
ðu; dÞ 2MU �M�.

Definition 3.1: Consider the control system (7) and
suppose that there exist functions � 2 KL, � 2 N such
that the following estimate holds for all ðx0; u; dÞ 2
<n �MU �M� and t � 0:

jxðtÞj � � jx0j; tð Þ þ sup
0���t

� juð�Þjð Þ ð8Þ

where xðtÞ denotes the solution of (7) with initial con-
dition xð0Þ ¼ x0 corresponding to input ðu; dÞ 2
MU �M�. Then we say that (7) satisfies the UISS
property with gain � 2 N from the input u 2MU.

Fig. 1. Phase portrait of the open-loop dynamics.
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Although the above property was introduced in [21]
under the name ISS, we prefer the name UISS because
various extensions of this notions have been proposed
in the literature (non-UISS, weighted ISS, etc.–see
[11] and references therein).

For the proof of the vector Lyapunov function
characterization of the UISS property we will need the
following two technical lemmas. The following lemma
is a direct corollary of Theorem 1 in [23].

Lemma 3.2: For every � 2 KL and a 2 N with aðsÞ < s
for all s > 0, there exists ~� 2 KL with the following
property: if y : ½t0; t1Þ ! <þ, u : <þ ! <þ are locally
bounded functions and M � 0 a constant such that the
following inequality holds for all � 2 ½t0; t1Þ:

yðtÞ � max �ðM; t� �Þ; a sup
����t

yð�Þ
 !

; uðtÞ
( )

;

8t 2 ½�; t1Þ
ð9Þ

then the following estimate holds for all t 2 ½t0; t1Þ:

yðtÞ �max ~� M; t� t0ð Þ; sup
t0���t

uð�Þ
� �

;8t2 ½t0; t1Þ:

ð10Þ

The second technical lemma is a comparison
lemma, which provides a sharp estimate of the evo-
lution of Lyapunov functions (compare the obtained
estimate with Theorem 5.2, page 218 in [9]). Its proof
can be found in [10].

Lemma 3.3: For each positive definite continuous
function � : <þ ! <þ there exists a function � of class
KL, with �ðs; 0Þ ¼ s for all s � 0 with the following
property: if y : ½t0; t1� ! <þ is an absolutely continuous
function, u : <þ ! <þ is a locally bounded mapping
and I � ½t0; t1� a set of Lebesgue measure zero such that
_yðtÞ is defined on ½t0; t1�nI and such that the following
implication holds for all t 2 ½t0; t1�nI:

yðtÞ � uðtÞ ) _yðtÞ � �� yðtÞð Þ ð11Þ

then the following estimate holds for all t 2 ½t0; t1�:

yðtÞ � max � yðt0Þ; t� t0ð Þ; sup
t0�s�t

� uðsÞ; t� sð Þ
� �

ð12Þ
We are now in a position to state and prove our

main result concerning the vector Lyapunov function
characterization of the UISS property.

Theorem 3.4. (Vector Lyapunov Function Character-

ization of the UISS Property): Consider system (7) and
suppose that there exists a family of functions
Vi 2 C1ð<n;<þÞ (i ¼ 1; :::; k), functions a1; a2 2
K1 a;  2 N with aðsÞ < s for all s > 0 and a family
of positive definite functions �i 2 C 0ð<þ;<þÞ
(i ¼ 1; :::; k), such that:

a1 jxjð Þ � max
i¼1;:::;k

ViðxÞ � a2 jxjð Þ; 8x 2 <n ð13Þ

and for every i ¼ 1; :::; k and ðx; uÞ 2 <n �U the fol-
lowing implication holds:

‘‘If max  jujð Þ; max
j¼1;:::;k

a VjðxÞ
� �� �

�ViðxÞ

then sup rViðxÞfðd;x;uÞ :d2Df g���i ViðxÞð Þ’’
ð14Þ

Then system (7) satisfies the UISS property with
gain � ¼ a�11 �  2 N from the input u 2Mu.

Proof: Consider a solution xðtÞ of (7) corresponding
to arbitrary ðu; dÞ 2MU �M� with initial condition
xð0Þ ¼ x0 2 <n. Clearly, there exists a maximal exis-
tence time for the solution denoted by tmax � þ1. Let
ViðtÞ ¼ ViðxðtÞÞ; i ¼ 1; :::; k, absolutely continuous
functions on ½0; tmaxÞ. Moreover, let
VðtÞ :¼ max

i¼1;:::; k
ViðtÞ and I � ½0; tmaxÞ be the zero

Lebesgue measure set where xðtÞ is not differentiable
or _xðtÞ 6¼ fðdðtÞ; xðtÞ; uðtÞÞ. By virtue of (14), it follows
that the following implication holds for t 2 ½0; tmaxÞnI
and i ¼ 1; :::; k:

ViðtÞ � max  juðtÞjð Þ; a VðtÞð Þf g
) _ViðtÞ � ��iðViðtÞÞ

ð15Þ

Lemma 3.3 implies that there exists a family of
continuous functions �i of class KL (i ¼ 1; :::; k), with
�iðs; 0Þ ¼ s for all s � 0 such that for all � 2 ½0; tmaxÞ,
t 2 ½�; tmaxÞ and i ¼ 1; :::; k we have:

ViðtÞ�max

�i Við�Þ;t��ð Þ; sup
����t

�i a Vð�Þð Þ;t��ð Þ;

sup
����t

�i  juð�Þjð Þ;t��ð Þ

8><
>:

9>=
>;

ð16Þ

Let �ðs; tÞ :¼ max
i¼1;:::;k

�iðs; tÞ, which is a function of

class KL that satisfies �ðs; 0Þ ¼ s for all s � 0. An
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immediate consequence of definition VðtÞ :¼
max
i¼1;:::;k

ViðtÞ, estimate (16) with � ¼ 0 and the fact that

�iðs; 0Þ ¼ s for all s � 0 (i ¼ 1; :::; k) is the following
estimate, which holds for all t 2 ½0; tmaxÞ:

VðtÞ �max � Vð0Þ; tð Þ;a sup
0�s�t

VðsÞ
� �

;

�

sup
0�s�t

 juðsÞjð Þ
� ð17Þ

Inequality (17) and the fact that �ðs; 0Þ ¼ s for all
s � 0, imply the following inequality:

sup
0�s�t

VðsÞ � max Vð0Þ; a sup
0�s�t

VðsÞ
� �

;

�

sup
0�s�t

 juðsÞjð Þ
�
; for all t 2 ½0; tmaxÞ

ð18Þ
Making use of the fact that aðsÞ < s for all s > 0, we

obtain from (18):

VðtÞ�max Vð0Þ; sup
0�s�t

 juðsÞjð Þ
� �

;

for all t2 ½0;tmaxÞ
ð19Þ

Clearly, inequality (19) implies that as long as the
solution of (7) exists, VðtÞ is bounded. A standard
contradiction argument in conjunction with inequality
(13) shows that necessarily we must have tmax ¼ þ1.
We conclude that estimate (16) holds for all � � 0,
t � � and i ¼ 1; :::; k. Similarly, estimate (19) holds for
all t � 0.

An immediate consequence of estimate (16), defi-
nitions VðtÞ :¼ max

i¼1;:::; k
ViðtÞ, �ðs; tÞ :¼ max

i¼1;:::;k
�iðs; tÞ

and the fact that �iðs; 0Þ ¼ s for all s � 0 (i ¼ 1; :::; k) is
the following estimate, which holds for all t � � � 0:

VðtÞ � max � Vð0Þ; t� �ð Þ; a sup
��s�t

VðsÞ
 !

;

(

sup
0�s�t

 juðsÞjð Þ
�

ð20Þ
Lemma 3.2 in conjunction with inequality

(20) implies the existence of �� 2 KL such that:

VðtÞ � max �� Vð0Þ; tð Þ; sup
0�s�t

 juðsÞjð Þ
� �

ð21Þ

Estimate (21) in conjunction with inequality (13)
shows that (7) satisfies the UISS property with gain
� ¼ a�11 �  2 N from the input u 2MU. The proof is
complete. 3

Remark 3.5: Theorem 3.4 allows the explicit determi-
nation of the gain function ð� ¼ a�11 �  2 NÞ for the
ISS property. However, there are other results in the
literature that utilize vector Lyapunov functions and
guarantee the UISS property under weaker conditions,
like in [3]. A slight generalization of the analysis in [3]
would lead to the following result, although it is not
explicitly stated in their paper.

Theorem 3.6 (Alternative Vector Lyapunov Function

Characterization of the UISS property): Consider
system _x ¼ fðx; uÞ; ðx; uÞ 2 <n � <m where f : <n�
<m ! <n is a locally Lipschitz vector field with
fð0; 0Þ ¼ 0 and suppose that there exists a family of
functions Vi 2 C1ð<n;<þÞ (i ¼ 1; :::; k), functions
a1; a2; ’ 2 K1  2 N, �i;j 2 N (i; j ¼ 1; :::; k) with

max
i¼1;:::;k

�
si �

P
j6¼i

�i;j sj þ ’ðsjÞ
�� �

> 0 for all s1; :::; sk � 0

with max
i¼1;:::;k

sið Þ > 0 and a family of positive definite

functions �i 2 C0ð<þ;<þÞ (i ¼ 1; :::; k), such that:

a1 jxjð Þ � max
i¼1;:::;k

ViðxÞ � a2 jxjð Þ; 8x 2 <n ð22Þ

and for every i ¼ 1; :::; k and ðx; uÞ 2 <n �U the fol-
lowing implication holds:

‘‘If  jujð Þ þ
X
j6¼i

�i;j VjðxÞ
� � � ViðxÞ

then rViðxÞfðx; uÞ � ��i ViðxÞð Þ’’
ð23Þ

Then system _x ¼ fðx; uÞ; ðx; uÞ 2 <n �<m satisfies
the UISS property from the input u 2MU.

A comparison between Theorems 3.4 and 3.6 is
useful. Although condition (14) is much more
demanding than (23), the result of Theorem 3.6 does
not provide an explicit determination of the gain
function. Furthermore, it is restricted to systems
without disturbances and demands Lipschitz con-
tinuity in both the input and the state.

4. Robust Feedback Stabilization of the

Chemostat

Consider the dynamic system (1) with D 2
½0;þ1Þ; x 2 ð0;þ1Þ; s 2 ð0;þ1Þwhere� : <þ !<þ
is a smooth function with �ð0Þ ¼ 0; �ðsÞ > 0
for all s > 0. The reader should notice that the closed
first quadrant in <2, i.e., the set ½0;þ1Þ� ½0;þ1Þ, is
positively invariant for system (1) for any measurable
and locally essentially bounded control D : <þ ! <þ.
This can be verified by the inequalities _s > 0 when s ¼ 0
and _x � 0, when x ¼ 0 (i.e., for every measurable
and locally essentially bounded control D : <þ ! <þ,
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the closed first quadrant in <2 is a viability domain for
system (1)). Consequently, for every measurable and
locally essentially bounded control D : <þ ! <þ and
for every ðxð0Þ; sð0ÞÞ 2 ½0;þ1Þ � ½0;þ1Þ, the solution
of (1) with initial condition ðxð0Þ; sð0ÞÞ 2 ½0;þ1Þ
�½0;þ1Þ corresponding to the control input
D : <þ ! <þ satisfies ðxðtÞ; sðtÞÞ 2 ½0;þ1Þ� ½0;þ1Þ
as long as the solution exists. Notice that the closed first
quadrant in<2 is the set where the state variables of (1)
are physically meaningful. However, the boundary of
the closed first quadrant in <2, i.e., the semi-axes x ¼ 0
and s ¼ 0, contain operating points of the chemostat
that must be avoided (since they correspond to zero
growth rate and, in particular, in the case of anaerobic
digestion, to zero methane production rate). Therefore,
we are interested only in solutions of (1) that lie in the
open first quadrant in <2.

Also, consider the coordinate transformation:

x1 ¼ ln
x

xdess

� �
; x2 ¼ ln

S

sdess

� �
ð24Þ

where xdess ; sdess are the design steady state values for x,
s, respectively (e.g., in anaerobic digestion, the optimal
steady state of Section 2.4 given by equation (6), or any
other design steady state arising from other criteria).
Transformation (24)maps the open first quadrant onto
<2. In particular, it maps the design steady state
xs ¼ Yx=sðS0 � sdess Þ
ss ¼ sdess

( )
to the origin.

Under the transformation (24), the system (1)
becomes:

_x1¼� sdess ex2
� ��D

_x2¼D
S0

sdess

e�x2�1

� �
�� sdess ex2
� � S0

sdess

�1

� �
ex1�x2

ð25Þ
The above state-space description is more con-

venient for analysis purposes since the state space is
now the entire <2, the objective being to stabilize the
system at the origin.

4.1. Controllability Analysis

A straightforward calculation can show that the line-
arization of system (25) at the desired equilibrium point
ðx1; x2Þ ¼ ð0; 0Þ is not controllable. Itwill nowbe shown
that system (25) is not a controllable system, even in a
nonlinear sense (see [22]). Particularly, we have:

Proposition 4.1: There is no T > 0 such that system
(25) is controllable in time T.

Proof: Notice that controllability in time T requires
that for every vectors �;  2 <2, there is a measurable
and locally essentially bounded control D : <þ !
½0;þ1Þ, such that the solution of (25) with initial
condition xð0Þ ¼ � corresponding to the control
D : <þ ! ½0;þ1Þ satisfies xðTÞ ¼ . Indeed, let

� ¼ �1
�2

� �
6¼ 0 2 <2 with e�2 þ

�
S0

sdess
�1
�
e�1� S0

sdess
6¼ 0

and  ¼ 0 2 <2. Suppose that there exists a control
D : <þ ! ½0;þ1Þ such that the solution of (25) with
initial condition xð0Þ ¼ � corresponding to the control
D : ½0;T� ! ½0;þ1Þ satisfies xðTÞ ¼ 0. Consider the

function WðtÞ ¼ ex2ðtÞ þ S0

s dess
� 1

 !
ex1ðtÞ � S0

sdess
. The

derivative of WðtÞ exists almost everywhere on ½0;T�
and satisfies _WðtÞ ¼ �DðtÞWðtÞ almost everywhere

on ½0;T�. It follows that WðtÞ ¼ e
�
Rt
0

Dð�Þd�
Wð0Þ for

all times in ½0;T�. However this implies

0 ¼WðTÞ ¼ e
�
RT
0

DðtÞdt
Wð0Þ 6¼ 0, a contradiction. The

proof is complete. 3

4.2. Synthesis of a Globally Stabilizing Control Law

Although there is no control that can stir system (25)
to the desired equilibrium in finite time (in general), it
is possible that we can find controls that stir system
(25) to the desired equilibrium asymptotically. Parti-
cularly, the controls can be given in feedback form,
which guarantees robustness properties for the closed-
loop system (see [22]). Let � : < ! <þ, � : < ! <þ,
� : < ! <þ be non-negative continuously differenti-
able functions with �ð0Þ ¼ �ð0Þ ¼ �ð0Þ ¼ 0 and such
that

x�0ðxÞ > 0; x�0ðxÞ > 0; x�0ðxÞ � 0 for all x 6¼ 0

ð26Þ

if x!  1 then �ðxÞ ! þ1 and �ðxÞ ! þ1
ð27Þ

For example, �ðxÞ and �ðxÞ may be of the form Kxm

where K > 0 and m > 0 is an even integer. Consider
now the family of Control Lyapunov Functions:

VðxÞ ¼ � x1ð Þ þ � x2ð Þ þ � ex2 þ R� 1ð Þex1 � Rð Þ
ð28Þ

where

R :¼ S0

sdess
ð29Þ
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For example, the selection �ðxÞ ¼ �ðxÞ :¼ 1
2
x2 and

�ðxÞ ! 0 gives VðxÞ ¼ ð1=2Þx21 þ ð1=2Þx22. Notice that
by virtue of (27), the functionV is radially unbounded.
The time derivative of V along the trajectories of (25)
is given by:

_V ¼ � sdess ex2
� ��D

� �
�0ðx1Þ

þ D Re�x2 � 1ð Þ�� sdess ex2
� �

R� 1ð Þex1�x2Þ�0ðx2Þ
�

�D ex2 þ R� 1ð Þex1 �Rð Þ�0 ex2 þ R� 1ð Þex1 �Rð Þ
ð30Þ

Since �0ðxÞ e�x � 1ð Þ < 0, �0ðxÞ e�x � 1ð Þ < 0 for all
x 6¼ 0 (a direct consequence of (26)), it is concluded
from (26), (30) that the smooth feedback law:

D ¼ � sdess ex2
� �

ex1 ð31Þ

will globally stabilize the origin for system (25). Par-
ticularly, we have:

_V ¼ � sdess ex2
� �

ex1 e�x1 � 1ð Þa0ðx1Þ þ e�x2 � 1ð Þ�0ðx2Þ½
� ex2 þ R� 1ð Þex1 � Rð Þ�0 ex2 þ R� 1ð Þex1 � Rð Þ�

Transforming the feedback law (31) back to the
original coordinates (via (24)) results in

D ¼ �ðsÞx
Yx=sðS0 � sdess Þ

ð32Þ

Notice that from equations (31), (32), it is guaran-
teed that D � 0 for all times.

The feedback law (32) is a nonlinear state feedback
law and, in general, requires measurement of both
biomass and substrate. However, since it has been
assumed that the measured output is proportional to
the product �ðsÞx (see (2)), it becomes the linear
output feedback law (3). It is important to point out
that the control law of equation (3) coincides with the
constant yield control law of [18], where the methane
yield (defined as the ratio between the methane pro-
duction rate and the feed flow rate) was maintained at
a constant set-point value. Mailleret and Bernard [12],
using a different approach, arrived at the same control
law and provided a rigorous justification of global
closed-loop stability.

The closed-loop system (25) under the feedback law
(31) is:

dx

dt
¼ 1� x

Yx=sðS0 � sdess Þ
� �

�ðsÞx

ds

dt
¼ ðs

des
s � sÞ�ðsÞx

Yx=sðS0 � sdess Þ
ð33Þ

The form of the closed-loop system shows that:

(i) the closed-loop system’s equilibrium is at
xs ¼ Yx=sðS0 � sdess Þ and ss ¼ sdess

(ii)
dðs�sdess Þ

dðx�Yx=sðS0�sdess ÞÞ ¼
s�sdess

x�Yx=sðS0�sdess Þ, which proves that

the system’s trajectories represent straight lines on
the s� x plane.

Figure 2 depicts a phase portrait of the closed-loop
dynamics (33) for the particular parameter values and
design conditions of Section 2.

4.3. Robustness Relative to Errors in Process

Parameters

Because the output measurement Q ¼ Y�ðsÞx carries
information on �ðsÞ and the proportional gain of the
controller derived in the previous subsection is inde-
pendent of �ðsÞ, the controller is completely insensi-
tive to errors in �ðsÞ, in terms of achieving global
stability. Of course, the computed sdess (e.g., from
equation (6)) will depend on the parameters in �ðsÞ
(like Ks and KI) and will no longer be optimal in the
presence of parameter errors. For the particular
parameter values given in Section 2, which are repre-
sentative of a typical anaerobic digestion process, it is
found that a 50% error below the nominal values of
Ks and KI corresponds to 1.24 and 1.17% biogas loss,
respectively and that a 50% error above the nominal
values corresponds to 0.63% and 0.22% biogas loss.

The situation is different in the presence of errors in
S0. Perturbations in the organic feed are generally
considered as time-varying bounded fluctuations.
Therefore it is very important to investigate the
situation where S0ðtÞ is time-varying but bounded.
Suppose that a design value Sdes

0 is used in the control
law (3), i.e.,

Fig. 2. Phase portrait of the closed-loop system (33).
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D ¼ 1

YYx=sðSdes
0 � sdess Þ

Q ð34Þ

whereas the true feed substrate concentration in the
process is S0. Then the resulting closed-loop dynamics
will follow:

dx

dt
¼ 1� x

Yx=sðSdes
0 � sdess Þ

 !
�ðsÞx

ds

dt
¼ ðS0 � Sdes

0 Þ þ sdess � s
� �

Yx=sðSdes
0 � sdess Þ

�ðsÞx
ð35Þ

In this case we define:

v :¼ S0 � Sdes
0

sdess

ð36Þ

We assume that the input v takes values in the set
ð�L;LÞ, where 0 < L < 1. Furthermore, we define:

u :¼ ln
Lsdess þ S0 � Sdes

0

Lsdess � S0 þ Sdes
0

� �
¼ ln

Lþ v

L� v

� �
ð37Þ

The input u takes values in <. Notice that the
closed-loop system (35) with (36), (37) under trans-
formation (24), takes the form:

_x1 ¼ ð1� ex1Þ� sdess ex2
� �

_x2 ¼ � sdess ex2
� �

ex1�x2 1� ex2 þ L
eu � 1

eu þ 1

 � ð38Þ

In this case, we can show the following important
robustness result:

Theorem 4.2: System (38) with 0 < L < 1 satisfies the
UISS property from the input u. Moreover, for every
essentially bounded input u : <þ ! <, we have
lim

t!þ1x1ðtÞ ¼ 0.

Proof: Consider the functions:

V1ðxÞ ¼ 1

2
x21;V2ðxÞ ¼ 1

2
x22

and define:

aðsÞ ¼ c�2s; with c > 1

a1ðsÞ ¼ 1

4
s2; a2ðsÞ ¼ 1

2
s2;

ðsÞ ¼ 1

2
ln

es þ 1

2

� � �2

�1ðsÞ ¼ min x1ðex1 � 1Þ� sdess ex2
� �

:
�

x21 ¼ 2s; jx2j � c
ffiffiffiffiffi
2s

p o
;

�2ðsÞ ¼ ð1� LÞ�1e�c
ffiffiffi
2s

p
min x2ð1� e�x2Þf

� � sdess ex2
� �

: x22 ¼ 2s
!

Notice that the above definitions guarantee that all
requirements of Theorem 3.4 are satisfied. Particu-
larly, implication (14) for i ¼ 2 follows from the
inequalities:

x2 > 0; 1þ eu�1

euþ1

""""
""""� ex2

) x2 1� ex2 þL
eu�1

euþ1

� �
�ð1�LÞx2 1� ex2ð Þ

x2 < 0;
2� ex2

ex2
� ejuj � e�u

) x1 1� ex2 þL
eu�1

euþ1

� �
�ð1�LÞx2 1� ex2ð Þ

in conjunction with the inequality eu� 1
euþ1

""" """ �
1
2juj � 1

2 e
juj � 1

2 (which holds for all u 2 <) and the fact

that 2� ex2
ex2

� e�u implies e
u� 1

euþ 1
� ex2 � 1.

We conclude that system (38) satisfies the UISS
property from the input u and satisfies (8) for appro-
priate � 2 KL and � 2 N. Moreover, for every essen-
tially bounded input u : <þ ! <, (8) implies that the
solution is bounded over <þ. Consider a solution of
(38) corresponding to an essentially bounded input
u : <þ ! < and let r ¼ sup

t�0
jx2ðtÞj. It follows that the

derivative of V1ðxÞ ¼ ð1=2Þx21 along the solutions of
(38) satisfies _V1 � ��ðV1Þ a.e., where �ðsÞ :¼
min � sdess ex2

� �
: jx2j

� � rgmin x1ðex1 � 1Þ : x22 ¼ 2s
� !

is a continuous, positive definite function. Lemma 3.3
implies lim

t!þ1V1ðtÞ ¼ 0 which implies lim
t!þ1 x1ðtÞ ¼ 0.

The proof is complete. 3

Remark 4.3: The consequences of Theorem 4.2 are
significant:

1. Estimate (8) shows that if the input v takes values in
a set ½�r; r�, with r < 1, i.e., if the error
jS0ðtÞ � Sdes

0 j � rsdess , then the solution the closed-
loop system (35) remains in a compact set in the
interior of the first quadrant in <2 (Bounded Input
Bounded State-BIBS property). Thus, the opera-
tion of the bioreactor cannot be led to process shut
down (x ¼ const., s ¼ 0, D ¼ 0).
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2. Estimate (8) shows that if the input v takes values in
a set ½�r; r�, with r < 1 i.e., if the error
jS0ðtÞ � Sdes

0 j � rsdess , and if in addition we have

lim
t!þ1S0ðtÞ ¼ S des

0 , then the solution of the closed-

loop system (35) converges to the design steady

state

�
xs ¼ Yx=sðSdes

0 � sdess Þ
ss ¼ sdess

�
(Converging Input

Converging State (CICS) property).
3. Taking into account Theorem 3.4, the definitions

of the functions a1; a2 2 K1 a;  2 N in the proof of
Theorem 4.2 and transformations (24), (36), (37),
estimate (8) gives for system (35):

ln
sðtÞ
sdess

� �""""
""""� � jx0j;tð Þ

þ sup
0���t

ffiffiffi
2

p
ln

Lsdess

Lsdess þSdes
0 �S0ð�Þ

� �
ð39Þ

for the case inf
t�0

S0ðtÞ � Sdes
0 and for appropriate

� 2 KL. Inequality (39) shows directly the BIBS and
CICS properties for the closed-loop system (35) for
the case inf

t�0
S0ðtÞ � Sdes

0 . Similar inequalities can be

obtained for other cases.

Notice that the result of Theorem 4.2 requires
essentially the following bounds for the error in S0:

�sdess � S0 � Sdes
0 � sdess ð40Þ

In order to investigate how sharp are the bounds (40)
for the allowable error in S0, it will be helpful to con-
sider the special case of constantS0. From (35) it can be
easily seen that the closed-loop system’s equilibrium

will be at
xs ¼ Yx=sðS des

0 � sdess Þ
ss ¼ sdess þ ðS0 � Sdes

0 Þ

( )
, hence xs will

equal the design value of biomass concentration, but
there will be an offset of the substrate concentration
from the design conditions by an amount equal to the
error inS0.A similar analysis as in Section 4.2 can show
that, as long as S0 � Sdes

0 > �sdess , the closed-loop
system’s equilibrium is globally asymptotically stable
and the trajectories of the system (35) will still be
straight lines.

It is exactly the lower bound of (40) that emerges in
the analysis of the case of constant S0. This lower
bound is essential because, when S0 � Sdes

0 � �sdess ,
the corresponding steady state value of the substrate,
ss, will be negative and therefore physically unrealistic.
This physically unrealistic equilibrium point cannot
be reached: the system trajectories will terminate on
the x -axis, which corresponds to process shut down
(x¼ const., s ¼ 0, D ¼ 0).

Figure 3 depicts the phase portrait for
Sdes
0 ¼ 10,000mg/l, S0¼ 8,000mg/l, and the rest of the

parameters as in Section 2, which corresponds to
S0 � Sdes

0 < �sdess . The controller causes the process to
shut down.

The conclusion from the foregoing analysis is that
the feedback control law (34) is guaranteed to be
robust for any time-varying errors in S0 that satisfy
inequality (40). When the lower bound in (40) is vio-
lated (large organic feed underload), the system is
brought to shut down. Shut down is completely
undesirable, since it would subsequently require start-
up of the process, which is both time-consuming and
costly.

5. Robust Feedforward/Feedback

Stabilization of the Chemostat

If it is anticipated that the error in S0 could be large
enough to violate the robustness condition of the
previous section, the control law will need to be
modified to prevent shut down. One possibility is to
measure the feed substrate concentration on-line and
use it as a feedforward measurement in the control
law. The measurement of S0 is feasible using a Total
Organic Carbon analyzer.

Consider the control law (3) or (32), where S0 is
replaced by the on-line measurement of the feed sub-
strate concentration, i.e.,

D ¼ �ðsÞx
Yx=sðS0 � sdess Þ

and, therefore, the control law now involves both
feedback and feedforward action. Then, the resulting

Fig. 3. Phase portrait for S0 ¼ 8; 000mg/l.
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closed-loop system is still given by (33), even though
now S0 is a function of time, with S0ðtÞ > 0 for all
t � 0.

In the event that S0 remains constant, the closed-
loop system’s equilibrium will be at:

xs ¼ Yx=sðS0 � sdess Þ
ss ¼ sdess

( )
. As long as S0 > sdess , the

equilibrium will be in the first quadrant and the
closed-loop system will be globally stable as a result of
the analysis of Section 4.

The situation where S0ðtÞ is time-varying but
bounded requires further attention. Suppose that Sdes

0

is the value of S0 for which the reactor has been
designed to operate. Then the difference

v :¼ S0 � Sdes
0

Sdes
0 � sdess

ð41Þ

represents a bounded but, in general, non-vanishing
perturbation to the system. Now assume that:

jvðtÞj < L; for all t � 0 ð42Þ
where 0 < L < 1 and define:

u ¼ ln
Lþ v

L� v

� �
ð43Þ

Notice that the external input u takes values in <. To
be able to analyze the effect of this perturbation,
consider the coordinate transformation:

x1 ¼ ln
x

Yx=sðSdes
0 � sdess Þ

 !

x2 ¼ ln
s

sdess

� � ð44Þ

Under transformation (44) and definitions (41) and
(43), the closed-loop system transforms into:

_x1 ¼ 1� ðeu þ 1Þex1
ðLþ 1Þeu þ 1� L

� �
� sdess ex2
� �

_x2 ¼ � sdess ex2
� �

e�x2 � 1ð Þ ðeu þ 1Þex1
ðLþ 1Þeu þ 1� L

ð45Þ
In this case, we can show the following important

robustness result:

Theorem 5.1: System (45) with 0 < L < 1 satisfies the
UISS property from the input u. Moreover, for every
essentially bounded input u : <þ ! <, we have
lim

t!þ1x2ðtÞ ¼ 0.

Proof: Consider the functions:

V1ðxÞ ¼ 1

2
x21; V2ðxÞ ¼ 1

2
x22

and define:

aðsÞ ¼ c�2s; with c > 1;

a1ðsÞ¼1

4
s2;a2ðsÞ¼1

2
s2;ðsÞ¼1

2
ln 1þ 2Ls

1�L2

� � �2

�1ðsÞ ¼ 1

2
min

n
x1ðex1 � 1Þ� sdess ex2

� �
: x21 ¼ 2s;:

jx2j � c
ffiffiffiffiffi
2s

p o

�2ðsÞ¼ð1þLÞ�1e�c
ffiffiffi
2s

p
min x2ð1�e�x2Þf

�� sdess ex2
� �

:x22¼2s
!

Notice that the above definitions guarantee that all
requirements of Theorem 3.4 are satisfied. Particu-
larly, implication (14) for i ¼ 1 follows from the
inequalities:

x1 > 0; 1þ 2L eu� 1ð Þ
ð1�LÞeuþ 1�L

� e�x1

) x1 1� ðeuþ 1Þex1
ðLþ 1Þeuþ 1�L

� �
� 1

2
x1 1� ex1ð Þ

x1 < 0; 1� 2L eu � 1ð Þ
ð1þ LÞeu þ 1� L

� e�x1

) x1 1� ðeu þ 1Þex1
ðLþ 1Þeu þ 1� L

� �

� 1

2
x1 1� ex1ð Þ

in conjunction with the inequalities
2L eu � 1ð Þ

ð1� LÞeu þ 1þ L
� 2L

1� L2 juj;� 2L eu � 1ð Þ
ð1þ LÞeu þ 1� L

�
2L

1� L2
juj (which hold for all u 2 < and 0 < L < 1).

We conclude that system (45) satisfies the UISS
property from the input u and satisfies (8) for appro-
priate � 2 KL and � 2 N. Moreover, for every essen-
tially bounded input u : <þ ! <,(8) implies that the
solution is bounded over <þ. Consider a solution of
(45) corresponding to an essentially bounded input
u : <þ ! < and let r ¼ sup

t�0
jx1ðtÞj. It follows that the

derivative ofV2ðxÞ ¼ 1=2x22 along the solutions of (45)
satisfies _V2 � ��ðV2Þ a.e., where �ðsÞ¼ ð1þLÞ�1e�r�
min x2ð1� e�x2Þ� sdess ex2

� �
: x22¼

�
2sg is a continuous,

positive definite function. Lemma 3.3 implies
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lim
t!þ1V2ðtÞ¼ 0, which implies lim

t!þ1x2ðtÞ¼ 0. The

proof is complete. 3

Remark 5.2: The consequences of Theorem 5.1 are
significant:

1. Estimate (8) shows that if the input v takes values
in a set ½�r; r�, with r < 1, i.e., if the error
jS0ðtÞ � sdes0 j � rðSdes

0 � sdess Þ, then the solution the
closed-loop system (33) remains in a compact set in
the interior of the first quadrant in <2 (Bounded
Input Bounded State-BIBS property). Thus, the
operation of the bioreactor cannot be led to process
shut down(x¼ const., s¼ 0, D¼ 0).

2. Estimate (8) shows that if the input v takes values
in a set ½�r; r�, with r < 1 i.e., if the error
jS0ðtÞ � Sdes

0 j � rðSdes
0 � sdess Þ, and if in addition we

have lim
t!þ1S0ðtÞ ¼ S des

0 , then the solution of the closed-

loop system (33) converges to the design steady state
xs ¼ Yx=sðS des

0 � sdess Þ
ss ¼ sdess

( )
(CICS property).

3. A comparison can be made between the feedback

controller D¼ �ðsÞx
Y
x=s

S
des
0 �Sdess

� � and the feedfor-

ward/feedback controller D¼ �ðsÞx
Yx=sðS0�Sdes

s Þ
: the

feedback controller guarantees that the operation of
the bioreactor cannot be led to process shut down if
there exists a positive constant r<1 such that
jS0ðtÞ�Sdes

0 j �rsdess , whereas the feedforward/feed-
back controller guarantees that the operation of the
bioreactor cannot be led to process shut down if there
exists positive constant r<1 such that
jS0ðtÞ�Sdes

0 j� rðSdes
0 �sdess Þ. As long as Sdes

0 > 1
2s

des
s ,

the feedforward/feedback controller will have a
larger guaranteed robustness margin than the feed-
back controller with respect to perturbations of the
organic load. In practice, the operation of a bioreactor
is designed so that sdess <<Sdes

0 , therefore incorpora-
tion of feedforward action will result in significant
enlargement of the robustness margin. Finally, it
should be noted that both control laws are completely
insensitive to errors in �ðsÞ.

Finally, comparing the result of Theorem 5.1 for
time-varying S0ðtÞ to the robustness results for con-
stant S0, we see that both results require essentially the
same lower limit for S0:

S0 > sdess

The result of Theorem 5.1 also requires an upper
limit S0 < 2Sdes

0 � sdess , whereas for constant S0, there
was no upper limit at all.

Comparison of Feedforward/Feedback control to pure
Feedback control

Numerical simulations were performed under pure
feedback action (FB) and combined feedforward and
feedback action (FF/FB), when the system is initially
at steady state with S0 ¼ Sdes

0 ¼ 10,000 mg/l but S0

undergoes a step change to a new value. Figures 4, 5
and 6 compare the responses of x; s and Q for some
representative final values of S0.

It is seen from Fig. 4 and 5 that, as predicted by the
analysis, in a step change in S0, the steady state of x is
unaffected under FB control, whereas the steady state
of s is unaffected under FF/FB control. The problem
with FB control is when the robustness condition
sdess > ðSdes

0 � S0Þ is violated, like in the case S0 ¼
9,000mg/l, where the system is brought to shut down.
For S0 ¼ 9,500mg/l, the reactor is not shut down
because the robustness condition is satisfied, but the
final value of the substrate is very small (s! 6:714

Fig. 4. Responses of x for representative values of S0.

Fig. 5. Responses of s for representative values of S0.
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mg/l), leading to small biogas production
(Q! 0:111ll�1reactord

�1). On the other hand, FF/FB
control can tolerate much larger deviations.

In all the step changes considered, FF/FB has better
performance than FB in the sense that the biogas
production Q is larger (see Fig. 6).

Figures 7, 8 and 9 depict the responses of x, s and Q
under a sinusoidal variation in S0 of amplitude
500mg/l and period 60 d. The system is initially at
steady state with S0 ¼ Sdes

0 ¼ 10,000mg/l and the
average value of S0 remains the same (10,000mg/l) for
t > 0:

S0ðtÞ ¼ 10; 000þ 500 sin
2�

60
t

� �

Here jS0ðtÞ � Sdes
0 j � 500, which satisfies the

robustness conditions for both FB and FF/FB control.
We observe that under either FB or FF/FB control,

the states remain bounded and strictly positive, as
predicted by the theory. Superiority of FF/FB control
is suggested in Fig. 9, in terms of higher biogas pro-
duction.

6. Conclusions

Vector Lyapunov functions can play an instrumental
role in performing robust stability analysis in terms of
the UISS property. This work has developed the the-
oretical tools for this purpose and has applied them to
the important engineering problem of robust global
stabilization of the chemostat.

Fig. 6. Response of Q for representative values of S0.
Fig. 8. Responses of s for a sinusoidal change in S0.

Fig. 7. Response of x for a sinusoidal change in S0.

Fig. 9. Response of Q for a sinusoidal change in S0.
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