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Abstract

In this work characterizations of the notion of Weighted Input-to-Output Stability (WIOS) for a wide
class of systems with disturbances are given. Particularly, for systems with continuous dependence of the
solution on the initial state and the input, the WIOS property is shown to be equivalent to robust forward
completeness from the input and robust global asymptotic output stability for the corresponding input-free
system.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let f :�n × U → �n, where U ⊆ �m with 0 ∈ U , a locally Lipschitz vector field with
f (0,0) = 0 and consider the solution x(t) of the initial value problem

ẋ(t) = f
(
x(t), u(t)

)
,

x(t) ∈ �n, u(t) ∈ U, (1.1)

corresponding to some measurable and locally bounded input u :�+ → U , with initial condition
x(0) = x0 ∈ �n. It is generally known that the 0-GAS property, i.e., global asymptotic stability
of the equilibrium point 0 ∈ �n for the unperturbed system

ẋ(t) = f
(
x(t),0

)
(1.2)
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does not guarantee that the solution of (1.1) satisfies limt→+∞ |x(t)| = 0 for all measurable
and locally bounded inputs u :�+ → U with limt→+∞ |u(t)| = 0 (CICS property—Converging
Input Converging State). Moreover, global asymptotic stability of the equilibrium point 0 ∈ �n

for the unperturbed system (1.2) (0-GAS property) does not guarantee that the solution of (1.1)
remains bounded for all measurable and bounded inputs u :�+ → U (BIBS property—Bounded
Input Bounded State). These important robustness properties (CICS and BIBS properties) are
satisfied if system (1.1) satisfies the Input-to-State Stability (ISS) property from the input u.
The notion of ISS was given by E.D. Sontag for finite-dimensional systems in [25] and was
proved to be useful in many areas of mathematics (Mathematical Control Theory, Dynamical
Systems Theory). Various sufficient conditions for ISS were given in [26,27,29] and extensions to
continuous-time systems with outputs and discrete-time systems were considered in [7–9,31,32].
Recently, non-uniform notions of ISS that guarantee the CICS and BIBS properties for time-
varying systems were given in [18].

It should be emphasized that the 0-GAS property does not even guarantee the existence
of a positive continuous function δ :�+ → (0,+∞) such that the solution of (1.1) satis-
fies limt→+∞ |x(t)| = 0 for all measurable and locally bounded inputs u :�+ → U with
limt→+∞ δ(t)|u(t)| = 0 (CWICS property—Converging Weighted Input Converging State).
Moreover, the 0-GAS property does not guarantee the existence of a positive continuous func-
tion δ :�+ → (0,+∞) such that the solution of (1.1) remains bounded for all measurable and
locally bounded inputs u :�+ → U with supt�0 δ(t)|u(t)| < +∞ (BWIBS property—Bounded
Weighted Input Bounded State). These important robustness properties (CWICS and BWIBS
properties) are satisfied if system (1.1) satisfies the non-uniform in time Input-to-State Stability
(ISS) property from the input u(see [12–15]).

A recent result in [13] showed that the 0-GAS property combined with forward complete-
ness of system (1.1) for all measurable and locally bounded inputs u :�+ → U guarantees the
non-uniform in time ISS property from the input u (and consequently the CWICS and BWIBS
properties are also satisfied).

In the present work we study the problem of finding necessary and sufficient conditions for
the CWICS and BWIBS properties. Particularly, we extend the validity of the result showed
in [13] to time-varying systems with outputs and we show for a very wide class of systems (that
includes certain hybrid systems, systems described by retarded functional differential equations
and systems described by partial differential equations) that:

“If the unperturbed system is globally asymptotically stable and the system has the property of
forward completeness to all allowed inputs u :�+ → U then the system satisfies the CWICS
and BWIBS properties.”

The proof of the above general result is completely different from the proof given in [13]
for systems described by ordinary differential equations. Here, we exploit the system theoretic
framework presented in [16] and the solution of the system is related to the solution of an
infinite-dimensional discrete-time system (abstract discretization). Recent results developed for
infinite-dimensional discrete-time systems make possible the proof of the result under very gen-
eral hypotheses. Essentially, it is shown that the CWICS and BWIBS properties are consequences
of three requirements: (i) 0-GAS property, (ii) forward completeness, and (iii) continuity with re-
spect to the initial state and input. It is expected that the discovery of sufficient conditions for
the CWICS and BWIBS properties for a wide class of systems with outputs will motivate sim-
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ilar advances to the advances which were triggered by the ISS property for finite-dimensional
systems.

It should be emphasized that stronger robustness results (e.g., BIBS and CICS properties)
demand stronger hypotheses (e.g., the hypotheses used in [26,27] for finite-dimensional systems
described by ordinary differential equations) in conjunction with the 0-GAS property. The link
which connects the CWICS and BWIBS properties with the CICS and BIBS properties is yet to
be found. This will be the subject of future research.

The structure of this paper is as follows. In Section 2 the definitions of the stability notions
used in this paper are provided. In Section 3, the main results are presented and proved. Section 4
contains certain robustness results for sampled-data feedback control systems with uniform sam-
pling rate. Finally, the conclusions of the paper as well as a brief list with some open problems
are provided in Section 5.

Notations. Throughout this paper we adopt the following notations:

∗ For a vector x ∈ �n we denote by |x| its usual Euclidean norm and by x′ its transpose.
∗ We denote by [R] the integer part of the real number R, i.e., the greatest integer, which is

less than or equal to R.
∗ We denote by K+ the class of positive C0 functions defined on �+. We say that a function

ρ :�+ → �+ is positive definite if ρ(0) = 0 and ρ(s) > 0 for all s > 0. For definitions of
classes K , K∞, KL see [17].

∗ By ‖‖X , we denote the norm of the normed linear space X . Let U ⊆ X with 0 ∈ U . By
BU [0, r] := {u ∈ U ; ‖u‖U � r} we denote the closed sphere in U ⊆ X with radius r � 0,
centered at 0 ∈ U . By B[0, r] we denote the closed sphere with radius r � 0 in �n, centered
at 0 ∈ �n.

∗ By M(U) we denote the set of all functions u :�+ → U . By u0 we denote the identity zero
input, i.e., u0(t) = 0 ∈ U for all t � 0.

∗ A partition π = {Ti}∞i=0 of �+ is an increasing sequence of times with T0 = 0 and Ti → +∞.
For every partition π = {Ti}∞i=0 of �+ we define pπ(t) := min{T ∈ π; t < T }. The diameter
of the partition is defined as sup{Ti+1 − Ti; i = 0,1,2, . . .} � +∞.

2. Definitions and preliminary results

The definition of a control system with outputs was given in [16], inspired from the definitions
in [11,28]. However, in this work a “weaker” version is adopted, which allows important classes
of systems (hybrid systems) to be considered as control systems with outputs. Moreover, we
focus on continuous-time systems for reasons that are explained below.

Definition 2.1. A control system Σ := (X ,Y,MU,MD,φ,H) with outputs consists of

(i) a set U (control set) which is a subset of a normed linear space U with 0 ∈ U and a set
MU ⊆ M(U) (allowable control inputs) which contains at least the identity zero input
u0 ∈ MU (i.e., the input that satisfies u0(t) = 0 ∈ U for all t � 0),

(ii) a set D (disturbance set) and a set MD ⊆ M(D), which is called the “set of allowable
disturbances,”

(iii) a pair of normed linear spaces X ,Y called the “state space” and the “output space,” respec-
tively,
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(iv) a continuous map H :�+ × X × U → Y that maps bounded sets of �+ × X × U into
bounded sets of Y , called the “output map,”

(v) and the map φ :Aφ → X where Aφ ⊆ �+ × �+ × X × MU × MD , called the “transition
map,” which has the following properties:

(1) Existence: For each (t0, x0, u, d) ∈ �+ × X × MU × MD , there exists t > t0 such that
[t0, t] × {(t0, x0, u, d)} ⊆ Aφ .

(2) Identity property: For each (t0, x0, u, d) ∈ �+ × X × MU × MD , it holds that φ(t0, t0, x0,

u, d) = x0.
(3) Causality: For each (t, t0, x0, u, d) ∈ Aφ with t > t0 and for each (ũ, d̃) ∈ MU × MD

with (ũ(τ ), d̃(τ )) = (u(τ ), d(τ )) for all τ ∈ [t0, t), it holds that (t, t0, x0, ũ, d̃) ∈ Aφ and
φ(t, t0, x0, u, d) = φ(t, t0, x0, ũ, d̃).

(4) Weak semigroup property: For each (t0, x0, u, d) ∈ �+ × X × MU × MD there exists
a set π(t0, x0, u, d) ⊆ [t0,+∞) and a constant r > 0, such that for each t � t0 with
(t, t0, x0, u, d) ∈ Aφ :
(a) (τ, t0, x0, u, d) ∈ Aφ for all τ ∈ [t0, t],
(b) φ(t, τ,φ(τ, t0, x0, u, d), u, d) = φ(t, t0, x0, u, d) for all τ ∈ [t0, t] ∩ π(t0, x0, u, d),
(c) if (t + r, t0, x0, u, d) ∈ Aφ , then it holds that π(t0, x0, u, d) ∩ [t, t + r] �= ∅,
(d) for all τ ∈ π(t0, x0, u, d) with (τ, t0, x0, u, d) ∈ Aφ we have π(τ,φ(τ, t0, x0, u, d),

u, d) = π(t0, x0, u, d) ∩ [τ,+∞).

Let T > 0. A control system Σ := (X ,Y,MU,MD,φ,H) with outputs is called T -periodic, if:

(a) H(t + T ,x,u) = H(t, x,u) for all (t, x,u) ∈ �+ ×X × U ,
(b) for every (u, d) ∈ MU × MD and integer k there exist inputs PkT u ∈ MU , PkT d ∈ MD with

(PkT u)(t) = u(t + kT ) and (PkT d)(t) = d(t + kT ) for all t + kT � 0,
(c) for each (t, t0, x0, u, d) ∈ Aφ with t � t0 and for each integer k with t0 − kT � 0

it follows that (t − kT , t0 − kT , x0,PkT u,PkT d) ∈ Aφ , π(t0 − kT , x0,PkT u,PkT d) =⋃
τ∈π(t0,x0,u,d){τ − kT } and φ(t, t0, x0, u, d) = φ(t − kT , t0 − kT , x0,PkT u,PkT d).

Remark 2.2.

(a) Notice that Definition 2.1 allows us to consider all discrete-time systems as continuous-time
systems with π(t0, x0, u, d) := Z+ ∩[t0,+∞), where Z+ denotes the set of non-negative in-
tegers and φ(t, t0, x0, u, d) = φ([t], t0, x0, u, d), where [t] denotes the integer part of t � t0.

(b) The difference between the present definition of a control system with outputs and Defi-
nition 2.1 in [14] lies in property (4) (semigroup property). In the above definition we do
not require that for all (t0, x0, u, d) ∈ �+ × X × MU × MD there exists t > t0 such that
[t0, t) ⊆ π(t0, x0, u, d) (in contrast with Definition 2.1 in [14]). This modification allows
us to study important classes of systems, which were excluded by Definition 2.1 in [14]
(see [16], where it is shown that a wide class of hybrid systems satisfies the requirements of
the present definition of a control system with outputs).

We next provide definitions of some important classes of systems with outputs (see also [16]).
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Definition 2.3. Consider a control system Σ := (X ,Y,MU,MD,φ,H) with outputs. We say
that system Σ

(i) has the “Boundedness-Implies-Continuation” (BIC) property if for each (t0, x0, u, d) ∈
�+ × X × MU × MD , there exists a maximal existence time, i.e., there exists
tmax ∈ [t0,+∞], such that [t0, tmax) × {(t0, x0, u, d)} ⊆ Aφ and for all t � tmax it holds
that (t, t0, x0, u, d) /∈ Aφ . In addition, if tmax < +∞ then for every M > 0 there exists
t ∈ [t0, tmax) with ‖φ(t, t0, x0, u, d)‖X > M ;

(ii) is forward complete if for every (t0, x0, u, d) ∈ �+ ×X × MU × MD, (t, t0, x0, u, d) ∈ Aφ

for all t � t0. Clearly, every forward complete control system has the BIC property;
(iii) is simply robustly forward complete (RFC) if it has the BIC property and for every r � 0,

T � 0, it holds that

sup
{∥∥φ(t0 + s, t0, x0, u0, d)

∥∥
X ;

s ∈ [0, T ], ‖x0‖X � r, t0 ∈ [0, T ], d ∈ MD

}
< +∞;

(iv) is robustly forward complete (RFC) from the input u ∈ MU if it has the BIC property and
for every r � 0, T � 0, it holds that

sup
{∥∥φ(t0 + s, t0, x0, u, d)

∥∥
X ;

u ∈ M
(
BU [0, r]) ∩ MU, s ∈ [0, T ], ‖x0‖X � r, t0 ∈ [0, T ], d ∈ MD

}
< +∞.

It is clear that Definition 2.3 provides additional properties for the set Aφ ⊆ �+ × �+ ×X ×
MU × MD of Definition 2.1. For example, if system Σ satisfies the BIC property then for all
(t0, x0, u, d) ∈ �+ ×X × MU × MD , there exists tmax = tmax(t0, x0, u, d) > t0 such that

Aφ =
⋃

(t0,x0,u,d)∈�+×X×MU ×MD

[t0, tmax) × {
(t0, x0, u, d)

}
.

Moreover, if the system is forward complete then

Aφ =
( ⋃

t0∈�+
[t0,+∞) × {t0}

)
×X × MU × MD.

The following definition clarifies the notion of an equilibrium point for control systems (see
also [16]).

Definition 2.4. Consider a continuous-time control system Σ := (X ,Y,MU,MD,φ,H) and
suppose that H(t,0,0) = 0 for all t � 0. We say that 0 ∈X is a robust equilibrium point for Σ if

(i) for every (t, t0, d) ∈ �+ × �+ × MD with t � t0 it holds that φ(t, t0,0, u0, d) = 0,
(ii) for every ε > 0, T ,h ∈ �+ there exists δ := δ(ε, T ,h) > 0 such that for all (t0, x) ∈

[0, T ]×X , τ ∈ [t0, t0 +h] with ‖x‖X < δ it holds that (τ, t0, x,u0, d) ∈ Aφ for all d ∈ MD

and

sup
{∥∥φ(τ, t0, x,u0, d)

∥∥
X ; d ∈ MD, τ ∈ [t0, t0 + h], t0 ∈ [0, T ]} < ε.

We say that 0 ∈ X is a robust equilibrium point from the input u ∈ MU for Σ if 0 ∈X is a robust
equilibrium point for Σ and
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(iii) for every ε > 0, T ,h ∈ �+ there exists δ := δ(ε, T ,h) > 0 such that for all (t0, x,u) ∈
[0, T ] × X × MU,τ ∈ [t0, t0 + h] with ‖x‖X + supt�0 ‖u(t)‖U < δ it holds that
(τ, t0, x,u, d) ∈ Aφ for all d ∈ MD and

sup
{∥∥φ(τ, t0, x,u, d)

∥∥
X ; d ∈ MD, τ ∈ [t0, t0 + h], t0 ∈ [0, T ]} < ε.

The notion of Robust Global Asymptotic Output Stability (RGAOS) is an internal stability
property, i.e., is applied only when the control input is identically zero (input-free case). Essential
properties of RGAOS are developed in [14,16] for control systems with outputs. Particularly,
Lemmas 3.3–3.5 and Theorem 3.6 in [16] hold (in [14] the notion of RGAOS was given by the
name non-uniform in time Robust Global Asymptotic Output Stability).

Definition 2.5. Consider a control system Σ := (X ,Y,MU,MD,φ,H) with outputs that has
the BIC property and for which 0 ∈ X is a robust equilibrium point. We say that Σ is Robustly
Globally Asymptotically Output Stable (RGAOS) if Σ is RFC and the following properties hold:

(P1) Σ is Robustly Lagrange Output Stable, i.e., for every ε > 0, T � 0, it holds that

sup
{∥∥H

(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y ;

t � t0, ‖x0‖X � ε, t0 ∈ [0, T ], d ∈ MD

}
< +∞

(Robust Lagrange Output Stability).

(P2) Σ is Robustly Lyapunov Output Stable, i.e., for every ε > 0 and T � 0 there exists
δ := δ(ε, T ) > 0 such that:

‖x0‖X � δ, t0 ∈ [0, T ]
⇒ ∥∥H

(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y � ε, ∀t � t0, ∀d ∈ MD

(Robust Lyapunov Output Stability).

(P3) Σ satisfies the Robust Output Attractivity Property, i.e., for every ε > 0, T � 0 and R � 0,
there exists τ := τ(ε, T ,R) � 0, such that:

‖x0‖X � R, t0 ∈ [0, T ]
⇒ ∥∥H

(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y � ε, ∀t � t0 + τ, ∀d ∈ MD.

Moreover, if there exists a ∈ K∞ such that a(‖x‖X ) � ‖H(t, x,0)‖Y for all (t, x) ∈ �+ ×X ,
then we say that Σ is Robustly Globally Asymptotically Stable (RGAS).

In contrast to RGAOS, the notion of Weighted Input-to-Output Stability (WIOS) is an external
stability property, i.e., it can be applied to cases where the input is not identically zero. The
definition of the WIOS property is given next.

Definition 2.6. Consider a control system Σ := (X ,Y,MU,MD,φ,H) with outputs and the
BIC property and for which 0 ∈ X is a robust equilibrium point from the input u ∈ MU . We say
that Σ satisfies the Weighted Input-to-Output Stability property (WIOS) from the input u ∈ MU

if Σ is RFC from the input u ∈ MU and there exist functions σ ∈ KL, β,γ ∈ K+, ρ ∈ K∞ such
that the following estimate holds for all u ∈ MU , (t0, x0, d) ∈ �+ ×X × MD and t � t0:
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∥∥H
(
t, φ(t, t0, x0, u, d), u(t)

)∥∥
Y

� max
{
σ
(
β(t0)‖x0‖X , t − t0

)
, sup
τ∈[t0,t]

σ
(
β(τ)ρ

(
γ (τ)

∥∥u(τ)
∥∥
U
)
, t − τ

)}
. (2.1)

Moreover, if there exists a ∈ K∞ such that a(‖x‖X ) � ‖H(t, x,u)‖Y for all (t, x,u) ∈
�+ ×X × U then we say that Σ satisfies the Weighted Input-to-State Stability property (WISS)
from the input u ∈ MU .

The following lemma must be compared to Lemma 1.1 in [4, p. 131] and Proposition 3.2
in [10]. It shows that for periodic systems estimate (2.1) is equivalent to a simpler estimate.

Lemma 2.7. Suppose that Σ := (X ,Y,MU,MD,φ,H) is T -periodic. If Σ satisfies the WIOS
property from the input u ∈ MU , then there exist functions σ ∈ KL, γ ∈ K+ and ρ ∈ K∞ such
that estimate (2.1) holds for all (t0, x0, d,u) ∈ �+ ×X × MD × MU and t � t0 with β(t) ≡ 1.

Proof. The proof is based on the following observation: if Σ := (X ,Y,MU,MD,φ,H) is
T -periodic then for all (t0, x0, u, d) ∈ �+ × X × MU × MD it holds that φ(t, t0, x0, u, d) =
φ(t − kT , t0 − kT , x0,PkT u,PkT d) and

H
(
t, φ(t, t0, x0, u, d), u(t)

)
= H

(
t − kT ,φ(t − kT , t0 − kT , x0,PkT u,PkT d), (PkT u)(t − kT )

)
,

where k := [ t0
T

] denotes the integer part of t0
T

and the inputs PkT u ∈ MU,PkT d ∈ MD are defined
in Definition 2.1.

Since Σ := (X ,Y,MU,MD,φ,H) satisfies the WIOS property from the input u ∈ MU ,
there exist functions σ ∈ KL, β,γ ∈ K+, ρ ∈ K∞ such that (2.1) holds for all (t0, x0, u, d) ∈
�+ ×X × MU × MD and t � t0. Consequently, it follows that the following estimate holds for
all (t0, x0, u, d) ∈ �+ ×X × MU × MD and t � t0:∥∥H

(
t, φ(t, t0, x0, u, d), u(t)

)∥∥
Y

� max
{
σ
(
β(t0 − kT )‖x0‖X , t − t0

)
,

sup
τ∈[t0−kT ,t−kT ]

σ
(
β(τ)ρ

(
γ (τ)

∥∥(PkT u)(τ )
∥∥
U
)
, t − kT − τ

)}
.

Setting τ = s − kT and since 0 � t0 − [ t0
T

]T < T , for all t0 � 0, we obtain∥∥H
(
t, φ(t, t0, x0, u, d), u(t)

)∥∥
Y

� max
{
σ̃
(‖x0‖X , t − t0

)
,

sup
s∈[t0,t]

σ̃
(
β(s − kT )ρ

(
γ (s − kT )

∥∥(PkT u)(s − kT )
∥∥
U
)
, t − s

)}
, (2.2)

where σ̃ (s, t) := σ((1 + r)s, t) and r := max{β(t); 0 � t � T }. By virtue of Lemma 2.3 in [12],
there exist functions γ̃ ∈ K+ and ρ̃ ∈ K∞ such that β(t)ρ(γ (t)s) � ρ̃(γ̃ (t)s) for all t, s � 0. The
previous observation in conjunction with estimate (3.8) and the identity (PkT u)(s − kT ) = u(s)

for all s � 0, implies that the following estimate holds for all (t0, x0, u, d) ∈ �+ ×X ×MU ×MD

and t � t0:
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∥∥H
(
t, φ(t, t0, x0, u, d), u(t)

)∥∥
Y

� max
{
σ̃
(‖x0‖X , t − t0

)
, sup
s∈[t0,t]

σ̃
(
ρ̃
(
γ̃ (s − kT )

∥∥u(s)
∥∥
U
)
, t − s

)}
. (2.3)

Setting γ̃ (t) := max{γ (s); s ∈ [0, t]}, we obtain from (2.3) that estimate (2.1) holds with
β(t) ≡ 1 and σ̃ ∈ KL, ρ̃ ∈ K∞, γ̃ ∈ K+ in place of σ ∈ KL, ρ ∈ K∞, γ ∈ K+, respectively.
The proof is complete. �

We next provide necessary conditions for the WIOS property.

Lemma 2.8 (Necessary Conditions for the WIOS property). Suppose that Σ := (X ,Y,MU,MD,

φ,H) satisfies the WIOS property; particularly there exist functions σ ∈ KL, β,γ ∈ K+, ρ ∈ K∞
such that estimate (2.1) holds for all u ∈ MU , (t0, x0, d) ∈ �+ ×X × MD and t � t0. Then there
exist functions ζ ∈ K∞, δ ∈ K+ such that the following estimate holds for all (t0, x0, u, d) ∈
�+ ×X × MU × MD and t � t0:∥∥H

(
t, φ(t, t0, x0, u, d), u(t)

)∥∥
Y

� max
{
σ
(
β(t0)‖x0‖X , t − t0

)
, sup
t0�τ�t

ζ
(
δ(τ )

∥∥u(τ)
∥∥
U
)}

(2.4)

(Sontag-like estimate).

Proof. Suppose that Σ := (X ,Y,MU,MD,φ,H) satisfies the WIOS property and there ex-
ist functions σ ∈ KL, β,γ ∈ K+, ρ ∈ K∞ such that estimate (2.1) holds for all u ∈ MU ,
(t0, x0, d) ∈ �+ × X × MD and t � t0. By virtue of Lemma 2.3 in [12], there exist functions
δ ∈ K+ and ρ̃ ∈ K∞ such that β(t)ρ(γ (t)s) � ρ̃(δ(t)s) for all t, s � 0. Let ζ ∈ K∞ such that
ζ(s) � σ(ρ̃(s),0) for all s � 0. Estimate (2.4) follows directly from estimate (2.1) and the pre-
vious definitions. �
Remark 2.9. We call estimate (2.4) “a Sontag-like estimate,” because E.D. Sontag formulated
ISS in [25] for finite-dimensional continuous-time systems using an estimate of the form∥∥φ(t, t0, x0, u, d)

∥∥
X � max

{
σ
(‖x0‖X , t − t0

)
, sup
t0�τ�t

ζ
(∥∥u(τ)

∥∥
U
)}

. (2.5)

Moreover, Sontag and Wang formulated IOS in [31,32] for continuous-time finite-dimensional
systems using an estimate of the form (2.4) with β(t) ≡ δ(t) ≡ 1. On the other hand, estimates
of the form (2.1) (“fading memory estimates”) were first used by Praly and Wang in [22] for
the formulation of exp-ISS and by L. Grune in [3] for the formulation of Input-to-State Dynam-
ical Stability (ISDS) with H(t, x) = x, β(t) ≡ γ (t) ≡ 1, which was proved to be qualitatively
equivalent with (2.5) for finite-dimensional continuous-time systems.

Lemma 2.10 (Necessary Conditions for the WIOS property). Consider system Σ := (X ,Y,MU,

MD,φ,H) and suppose that Σ is RFC from the input u ∈ MU and there exist functions
σ ∈ KL, β, δ ∈ K+, ζ ∈ K∞ such that estimate (2.4) holds for all u ∈ MU , (t0, x0, d) ∈
�+ ×X ×MD and t � t0. Then the output trajectory t → H(t,φ(t, t0, x0, u, d), u(t)) is bounded
for all inputs u ∈ MU with supt�0 δ(t)‖u(t)‖U < +∞ (Bounded Weighted Input Bounded
Output property) and limt→+∞ H(t,φ(t, t0, x0, u, d), u(t)) = 0 for all inputs u ∈ MU with
limt→+∞ δ(t)‖u(t)‖U = 0 (Converging Weighted Input Converging Output property).
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Proof. The fact that the output trajectory t → H(t,φ(t, t0, x0, u, d), u(t)) is bounded for all in-
puts u ∈ MU with supt�0 δ(t)‖u(t)‖U < +∞ is an immediate consequence of estimate (2.4).
Next we show that limt→+∞ H(t,φ(t, t0, x0, u, d), u(t)) = 0 for all inputs u ∈ MU with
limt→+∞ δ(t)‖u(t)‖U = 0 (Converging Weighted Input Converging Output property). Let ar-
bitrary ε > 0, (t0, x0, d) ∈ �+ × X × MD and input u ∈ MU with limt→+∞ δ(t)‖u(t)‖U = 0.
Clearly, there exists T > t0 such that ζ(δ(t)‖u(t)‖U ) � ε for all t � T . By virtue of the weak
semigroup property for Σ and since (T + r, t0, x0, u, d) ∈ Aφ , where r is the constant involved
in the weak semigroup property for Σ , there exists T̃ ∈ π(t0, x0, u, d) ∩ [T ,T + r] �= ∅ with
φ(t, T̃ , φ(T̃ , t0, x0, u, d), u, d) = φ(t, t0, x0, u, d) for all t � T̃ . Inequality (2.4) in conjunction
with the fact that ζ(δ(t)‖u(t)‖U ) � ε for all t � T̃ implies for all t � T̃ :

∥∥H
(
t, φ(t, t0, x0, u, d), u(t)

)∥∥
Y

= ∥∥H
(
t, φ

(
t, T̃ , φ(T̃ , t0, x0, u, d), u, d

)
, u(t)

)∥∥
Y

� max
{
σ
(
β(T̃ )

∥∥φ(T̃ , t0, x0, u, d)
∥∥
X , t − T̃

)
, sup
T̃ �τ�t

ζ
(
δ(τ )

∥∥u(τ)
∥∥
U
)}

� max
{
σ
(
β(T̃ )

∥∥φ(T̃ , t0, x0, u, d)
∥∥
X , t − T̃

)
, ε

}
.

The estimate above implies that ‖H(t,φ(t, t0, x0, u, d), u(t))‖Y � ε for t � T̃ sufficiently large.
Since ε > 0 is arbitrary we conclude that lim→+∞ H(t,φ(t, t0, x0, u, d), u(t)) = 0. �
3. Main results

Consider a system Σ := (X ,Y,MU,MD,φ,H) with outputs H :�+ × X → Y , which is
Robustly Forward Complete from the input u ∈ MU and satisfies the following hypotheses:

(A1) There exists a partition π = {Ti}∞i=0 of �+ with finite diameter such that:
(i) for every sequence di ∈ MD , ui ∈ MU , the functions d(t) := di(t) and u(t) := ui(t),

Ti � t < Ti+1, belong to MD and MU , respectively;
(ii) for each (t0, x0, u, d) ∈ �+ × X × MU × MD it holds that π ∩ (t0,+∞) ⊂

π(t0, x0, u, d), where π(t0, x0, u, d) is the set involved in property (4) of Defini-
tion 2.1 (weak semigroup property);

(iii) for each bounded set S ⊂ X and for every (T ,R, ε) ∈ �+ × �+ × (0,+∞)

there exists δ > 0 such that sup{‖φ(τ, t0, x,u, d) − φ(τ, t0, x0, v, d)‖X ; d ∈ MD,

τ ∈ [t0,pπ (t0)]} < ε for all t0 ∈ [0, T ] ∩ π , x, x0 ∈ S, u,v ∈ M(BU [0,R]) ∩ MU

with ‖x − x0‖X + supt0�τ�p(t0)
‖u(τ) − v(τ)‖U < δ.

(A2) The subset MU ⊆ MU of inputs u ∈ MU with supt�0 ‖u(t)‖U < +∞, is a normed linear
space with norm ‖u‖MU := supt�0 ‖u(t)‖U .

(A3) Complete Continuity of the Output Map: For every pair of bounded sets I ⊂ �+, S ⊂ X
and for every ε > 0 there exists δ > 0 such that ‖H(t, x) − H(t, x0)‖Y < ε, for all t ∈ I ,
x, x0 ∈ S with ‖x − x0‖X < δ.

Hypotheses (A2) and (A3) are standard assumptions, which can be verified easily for a very
wide class of systems. Hypothesis (A1) is a technical hypothesis that guarantees two properties:
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(a) continuity of the transition map with respect to the external input and the initial state,
(b) the set of times that satisfies the semigroup property, i.e., the set π(t0, x0, u, d), contains

all members of the partition π = {Ti}∞i=0 greater than t0. Thus the partition π = {Ti}∞i=0
can be used in order to discretize time for all initial conditions and inputs. Notice that this
requirement is automatically satisfied if π(t0, x0, u, d) = [t0,+∞).

The following section and the examples of this section show that hypotheses (A1)–(A3)
are satisfied by a wide class of systems. Let us remark one case where hypotheses (A1)–(A3)
are (generally) not satisfied; the case of a finite-dimensional control system under sampled-
data feedback which is either discontinuous or the sampling times are affected by noise. If the
sampled-data feedback law is discontinuous then (in general) the solution does not depend con-
tinuously on the initial condition and consequently property (iii) of hypothesis (A1) does not
hold. If the sampling times are affected by noise then there is no partition π = {Ti}∞i=0 which
satisfies property (ii) of hypothesis (A1).

For systems satisfying hypotheses (A1)–(A3), our main result provides equivalent character-
izations for the WIOS property. Furthermore, it shows that for the WIOS property the “fading
memory” estimate (2.1) is qualitatively equivalent to the “Sontag-like” estimate (2.4).

Theorem 3.1 (Necessary and sufficient conditions for the WIOS property). Let the system
Σ := (X ,Y,MU,MD,φ,H), which is RFC from the input u ∈ MU and satisfies hypotheses
(A1)–(A3). Moreover, suppose that 0 ∈ X is a robust equilibrium point from the input u ∈ MU

for Σ . The following statements are equivalent:

(i) Σ satisfies the WIOS property from the input u ∈ MU ,
(ii) there exist functions ζ ∈ K∞, δ ∈ K+ such that estimate (2.4) holds for all (t0, x0, u, d) ∈

�+ ×X × MU × MD and t � t0,
(iii) Σ is RGAOS.

Proof. Notice that the implications (i) ⇒ (ii) and (ii) ⇒ (iii) are immediate. Thus we are left
with the proof of the implication (iii) ⇒ (i).

By virtue of Lemma 3.2 in [16] and since (i) hypothesis (A2) implies that ũ ∈ MU for all
(u,λ) ∈ MU × �+, where ũ is the input that satisfies ũ(t) = λu(t) for all t � 0, (ii) Σ is RFC
from the input u ∈ MU , and (iii) 0 ∈ X is a robust equilibrium point from the input u ∈ MU

for Σ , there exist functions μ ∈ K+, a ∈ K∞ such that the following estimate holds for all
(t0, x0, d,u) ∈ �+ ×X × MD × MU :

∥∥φ(t, t0, x0, u, d)
∥∥
X � μ(t)a

(
‖x0‖X + sup

τ∈[t0,t]
∥∥u(τ)

∥∥
U

)
, ∀t � t0. (3.1)

By virtue of Lemma 3.4 in [14] and since Σ := (X ,Y,MU,MD,φ,H) is RGAOS, we guar-
antee the existence of functions σ ∈ KL, β ∈ K+ such that the following estimate holds for all
(t0, x0, d) ∈ �+ ×X × MD and t � t0:∥∥H

(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y � σ

(
β(t0)‖x0‖X , t − t0

)
. (3.2)

Let π = {Ti}∞i=0 the partition of �+ for which hypothesis (A1) is satisfied and let r > 0 its
diameter, i.e., r := sup{Ti+1 − Ti; i = 0,1,2, . . .} < +∞.
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The proof is divided into two parts:

Part 1: We apply an abstract discretization technique, which provides an infinite-dimensional
discrete-time system, which satisfies the non-uniform in time IOS property (in the sense
described in [15]).

Part 2: The solution of the discrete-time system obtained from the Part 1 is related to the solution
of Σ and we show that estimate (2.1) holds for all bounded inputs u ∈ MU.

Since estimate (2.1) holds for all bounded inputs u ∈ MU, we conclude that Σ satisfies WIOS
property.

Part 1: Abstract discretization

Define FX the normed linear space of bounded functions x : [0, r] → X with norm
‖x‖FX := supθ∈[0,r] ‖x(θ)‖X . Let CMD , CMU denote the set of sequences with values in MD

and MU, respectively. Define for (i, x, d,u) ∈ Z+ × FX × MD × MU , where x = {x(θ) ∈ X ;
θ ∈ [0, r]} ∈FX ,

f (i, d, x,u) :=
{

φ(θ − r + Ti+1, Ti, x(r), u, d), θ ∈ [r − Ti+1 + Ti, r],
0, θ ∈ [0, r − Ti+1 + Ti],

∈FX , (3.3)

a map, which by virtue of (3.1) is well defined and satisfies∥∥f (i, d, x,u)
∥∥
FX � μ̃(i)a

(
‖x‖FX + sup

Ti�s�Ti+1

∥∥u(s)
∥∥
U

)
,

∀(i, x, d,u) ∈ Z+ × FX × MD × MU, (3.4)

where μ̃(i) := maxTi�t�Ti+1 μ(t). By virtue of hypothesis (A1) and inequality (3.4) it follows
that f is completely continuous, i.e., satisfies the following hypothesis:

(H1) For every bounded sets S ⊂ FX × MU, I ⊂ Z+ and for every ε > 0, the set f (I ×
MD ×S) is bounded and there exists δ > 0 such that sup{‖f (i, d, x,u)−f (i, d, x0, v)‖X ;
d ∈ MD} < ε, for all i ∈ I, (x,u) ∈ S, (x0, v) ∈ S with ‖x − x0‖FX + ‖u − v‖MU < δ.
Moreover, it holds that f (i, d,0,0) = 0 for all (i, d) ∈ Z+ × MD .

Define FY the normed linear space of bounded functions Y : [0, r] → Y with norm ‖Y‖FY :=
supθ∈[0,r] ‖Y(θ)‖Y . Let the output map defined for (i, x) ∈ Z+ ×FX ,

H̃ (i, x) := H
(
max{0, Ti − r + θ}, x(θ)

)
, θ ∈ [0, r]. (3.5)

By virtue of hypothesis (A3) and the fact that the continuous map H :�+ × X → Y maps
bounded sets of �+ × X into bounded sets of Y , it follows that H̃ is completely continuous,
i.e., satisfies the following hypothesis:

(H2) For every pair of bounded sets I ⊂ Z+, S ⊂ FX and for every ε > 0 the set H̃ (I × S)

is bounded and there exists δ > 0 such that ‖H̃ (i, x) − H̃ (i, x0)‖FY < ε, for all i ∈ I ,
x, x0 ∈ S with ‖x − x0‖FX < δ. Moreover, it holds that H̃ (i,0) = 0 for all t ∈ Z+.

Next consider the discrete-time system:
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xi+1 = f (i, di, xi, ui),

Yi = H̃ (i, xi),

(i, xi, Yi, di, ui) ∈ Z+ ×FX ×FY × MD × MU. (3.6)

Using induction, hypothesis (A1)(ii) and the weak semigroup property for Σ it can be easily
shown that for every sequence {di}∞i=0 ∈ CMD the solution of (3.6) with initial condition xi0 =
x0 ∈FX and corresponding to input {di}∞i=0 ∈ CMD and ui ≡ 0 for all i � i0 satisfies:

xi =
{

φ(θ − r + Ti, Ti0, x0(r), u0,Pd), θ ∈ [r − Ti + Ti−1, r],
0, θ ∈ [0, r − Ti + Ti−1],

for all i � i0 + 1,

(3.7)

where Pd :�+ → D with Pd(t) := di(t) for all Ti � t < Ti+1, i = 0,1,2, . . . , which by virtue of
hypothesis (A1) belongs to MD . Moreover, using (3.2) in conjunction with (3.7) we obtain

‖Yi‖FY � σ
(
β(Ti0)‖xi0‖FX ,max{0;Ti − Ti0 − r}) for all i � i0 + 1. (3.8)

Estimate (3.8) implies that system (3.6) implies the Robust Output Attractivity Property given
in [15]. Thus system (3.6) is non-uniformly in time RGAOS as explained in [15]. Consequently,
by virtue of Proposition 3.3 in [15] and properties (H1)–(H2) above, we conclude that the
discrete-time system (3.6) satisfies the non-uniform in time IOS property in the sense of [15].

Since the discrete-time system (3.6) satisfies the non-uniform in time IOS property in the sense
of [15], there exist functions σ̃ ∈ KL, β̃, γ̃ ∈ K+ and ρ̃ ∈ K∞ such that for all {ui ∈ MU}∞i=0,
(i0, x0, {di}∞i=0) ∈ Z+ × FX × CMD the following estimate holds for all i � i0 for the solu-
tion xi of (3.6) with initial condition xi0 = x0 and corresponding to inputs {ui}∞i=0 ∈ CMU,
{di}∞i=0 ∈ CMD :∥∥H̃ (i, xi)

∥∥
FY � max

{
σ̃
(
β̃(i0)‖x0‖FX , i − i0

)
,

sup
i0�j�i

σ̃
(
β̃(j)ρ̃

(
γ̃ (j) sup

τ�0

∥∥uj (τ )
∥∥
U

)
, i − j

)}
. (3.9)

Part 2: Proof of estimate (2.1)

Notice that definition (3.3) of the evolution map f of the discrete-time system shows that the
solution xi of (3.6) with arbitrary initial condition xi0 = x0 and corresponding to arbitrary inputs
{ui}∞i=0 ∈ CMU, {di}∞i=0 ∈ CMD coincides for all i � i0 + 1 with the solution with arbitrary
initial condition xi0 that satisfies xi0(r) = x0(r) corresponding to inputs {di}∞i=0 ∈ CMD and
{ũi}∞i=0 ∈ CMU with ũj (t) = uj (t) for all t ∈ [Tj , Tj+1] and j = i0, i0 + 1, . . . , i − 1. Thus
by virtue of (3.9), it follows that for all {ui ∈ MU}∞i=0, (i0, x0, {di}∞i=0) ∈ Z+ × FX × CMD

the following estimate holds for all i � i0 + 1 for the solution xi of (3.6) with initial condition
xi0 = x0 and corresponding to inputs {ui}∞i=0 ∈ CMU, {di}∞i=0 ∈ CMD :∥∥H̃ (i, xi)

∥∥
FY � max

{
σ̃
(
β̃(i0)

∥∥x0(r)
∥∥
X , i − i0

)
,

sup
i0�j�i−1

σ̃
(
β̃(j)ρ̃

(
γ̃ (j) sup

Tj �s�Tj+1

∥∥uj (s)
∥∥
U

)
, i − j

)}
. (3.10)

Let arbitrary (d,u) ∈ MD × MU, (t0, x0) ∈ �+ ×X and consider the transition map φ(t, t0, x0,

u, d) of Σ . The definitions (3.3) and (3.5) of the evolution and output maps f, H̃ of the discrete-
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time system (3.6) imply that the transition map φ(t, t0, x0, u, d) of Σ satisfies the following
identities for all i � i0 + 1:

x(t) = φ(t, t0, x0, u, d) = xi(t + r − Ti) for all t ∈ [Ti−1, Ti],
Y (t) = H

(
t, φ(t, t0, x0, u, d)

) = Yi(t + r − Ti) for all t ∈ [Ti−1, Ti],
where Ti0 = pπ(t0), pπ(t) := min{T ∈ π; t < T } and xi denotes the solution of (3.6) with
arbitrary initial condition xi0 ∈ FX that satisfies xi0(r) = φ(Ti0, t0, x0, u, d) and corresponding
to the constant inputs {ui ≡ u}∞i=0 ∈ CMU, {di ≡ d}∞i=0 ∈ CMD . Combining the above identities
with (3.10) we obtain for all i � i0 + 1,

sup
Ti−1�t�Ti

∥∥Y(t)
∥∥
Y � max

{
σ̃
(
β̃(i0)

∥∥xi0(r)
∥∥
X , i − i0

)
,

sup
i0�j�i−1

σ̃
(
β̃(j)ρ̃

(
γ̃ (j) sup

Tj �s�Tj+1

∥∥u(s)
∥∥
U

)
, i − j

)}
. (3.11)

Let β̄, γ̄ ∈ K+ non-decreasing functions, which satisfy β̄(Tj−1) � β̃(j), γ̄ (Tj ) � γ̃ (j) for all
integers j � 1. Estimate (3.11) in conjunction with the trivial inequalities Ti0 − r � t0 < Ti0 and
the causality property for Σ (which shows that Y(t) depends only on the values of u ∈ MU in
the interval [t0, t]) implies (notice that without loss of generality we may assume that σ(s, t) is
of class K∞ for each t � 0):

∥∥Y(t)
∥∥
Y � max

{
σ̃

(
β̄(t0)

∥∥x(Ti0)
∥∥
X ,

t − t0 − r

r

)
,

sup
t0�τ�t

σ̃

(
β̄(τ )ρ̃

(
γ̄ (τ )

∥∥u(τ)
∥∥
U
)
,
t − τ

r

)}
, ∀t � t0 + r. (3.12)

Without loss of generality, we may assume that the function μ ∈ K+ involved in (3.1) is non-
decreasing. Inequality (3.1) in conjunction with (3.12) implies the following estimate for all
t � t0 + r :

∥∥Y(t)
∥∥
Y � max

{
σ̃

(
β̄(t0)μ(t0 + r)a

(
‖x0‖X + sup

t0�τ�t

∥∥u(τ)
∥∥
U

)
,
t − t0 − r

r

)
,

sup
t0�τ�t

σ̃

(
β̄(τ )ρ̃

(
γ̄ (τ )

∥∥u(τ)
∥∥
U
)
,
t − τ

r

)}
. (3.13)

Since the output map H :�+ ×X → Y satisfies

(i) for every bounded set S ⊂ �+ ×X the set H(S) is bounded,
(ii) H(t,0) = 0 for all t � 0,

(iii) for every ε > 0, t � 0 there exists δ := δ(ε, t) > 0 such that sup{‖H(τ, x)‖Y ; τ � 0,

|τ − t | + ‖x‖X < δ} < ε (immediate consequence of hypothesis (A3)),

it follows from Lemma 3.3 in [14] that there exists a pair of functions ζ ∈ K∞ and δ ∈ K+ such
that ∥∥H(t, x)

∥∥
Y � ζ

(
δ(t)‖x‖X

)
, ∀(t, x) ∈ �+ ×X . (3.14)

Without loss of generality, we may assume that the function δ ∈ K+ involved in (3.14) is non-
decreasing. Combining the above inequality with estimate (3.1), we obtain
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∥∥Y(t)
∥∥
Y � ζ

(
δ(t0 + r)μ(t0 + r)a

(
‖x0‖X + sup

t0�τ�t

∥∥u(τ)
∥∥
U

))
, ∀t ∈ [t0, t0 + r].

(3.15)

Defining

ω(s, t) := exp(r − t)ζ(s) +
{

σ̃
(
s, t−r

r

)
if t > r,

exp(r − t)σ̃ (s,0) if 0 � t � r,
(3.16a)

β̂(t) := β̄(t)
(
1 + μ(t + r)

) + δ(t + r)μ(t + r) (3.16b)

and combining estimates (3.13), (3.15) we obtain the following estimate for all t � t0:

∥∥Y(t)
∥∥
Y � max

{
ω

(
β̂(t0)a

(
‖x0‖X + sup

t0�τ�t

‖u(τ)‖U
)
, t − t0

)
,

sup
t0�τ�t

ω
(
β̂(τ )ρ̃

(
γ̄ (τ )

∥∥u(τ)
∥∥
U
)
, t − τ

)}
. (3.17)

Lemma 2.3 in [12] implies the existence of a pair of functions ã ∈ K∞ and q ∈ K+ being non-
decreasing such that β̂(t)a(2s) � ã(q(t)s) for all t, s � 0. Since the following inequality holds
for all t � t0:

ω
(
β̂(t0)a

(
‖x0‖X + sup

t0�τ�t

∥∥u(τ)
∥∥
U

)
, t − t0

)

� max
{
ω

(
β̂(t0)a

(
2‖x0‖X

)
, t − t0

)
,ω

(
β̂(t0)a

(
2 sup

t0�τ�t

∥∥u(τ)
∥∥
U

)
, t − t0

)}
, (3.18)

and β̂(t)a(2s) � ã(q(t)s) for all t, s � 0 with q ∈ K+ being non-decreasing we obtain
from (3.18):

ω
(
β̂(t0)a

(
‖x0‖X + sup

t0�τ�t

∥∥u(τ)
∥∥
U

)
, t − t0

)

� max
{
ω̄

(
q(t0)‖x0‖X , t − t0

)
, sup
t0�τ�t

ω̄
(
q(τ)

∥∥u(τ)
∥∥
U , t − τ

)}
, (3.19)

where ω̄(s, t) := ω(ã(s), t). Finally, let β(t) := 1 + q(t) + β̂(t), σ(s, t) := ω̄(s, t) + ω(s, t),
ρ(s) := s + ρ̃(s), γ (t) := γ̄ (t) + q(t). The previous definitions in conjunction with (3.17) and
(3.19) imply estimate (2.1).

The proof is complete. �
The first example shows that finite-dimensional systems described by ordinary differential

equations are systems for which Theorem 3.1 can be applied.

Example 3.2. Let U ⊆ �m be a subspace and let D ⊆ �l be a compact set. Every pair of
continuous mappings f :�+ × �n × U × D → �n, H :�+ × �n → �k , with H(t,0) = 0,
f (t,0,0, d) = 0 for all (t, d) ∈ �+ × D and such that the vector field f :�+ × �n ×
U × D → �n, satisfies the following Lipschitz condition:
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The function f (t, x,u, d) is locally Lipschitz with respect to (x,u), uniformly in d ∈ D, in
the sense that for every bounded interval I ⊂ �+ and for every compact subset S of �n ×U ,
there exists a constant L � 0 such that∣∣f (t, x,u, d) − f (t, y, v, d)

∣∣ � L
∣∣(x − y,u − v)

∣∣,
∀t ∈ I, ∀(x,u;y, v) ∈ S × S, ∀d ∈ D,

defines a continuous-time control system Σ := (�n,�k,MU,MD,φ,H) with outputs and the
BIC property, by the evolution equation:

ẋ(t) = f
(
t, x(t), u(t), d(t)

)
,

Y (t) = H
(
t, x(t)

)
.

This fact is an immediate consequence of Proposition 3.7.2 in [28]. In this case MU ⊆ M(U) is
the set of measurable and locally essentially bounded mappings u :�+ → U and MD ⊆ M(D)

is the set of measurable and locally essentially bounded mappings d :�+ → D. Notice that
Σ := (�n,�k,MU,MD,φ,H) satisfies the “classical” semigroup property. Moreover, notice
that Theorem 2.6 in [17] guarantees that hypothesis (A1) holds and that 0 ∈ �n is a robust equilib-
rium point from the input u ∈ MU for Σ . Hypotheses (A2)–(A3) hold as well and consequently,
we conclude that Theorem 3.1 holds for Σ := (�n,�k,MU,MD,φ,H).

The following example is an immediate consequence of Theorems 2.2 and 3.2 in [4], con-
cerning continuous dependence on initial conditions and continuation of solutions of retarded
functional differential equations, respectively.

Example 3.3. Let U ⊆ �m be a subspace and let D ⊆ �l be a compact set. Every pair
of completely continuous mappings f :�+ × C0([−r,0];�n) × U × D → �n, H :�+ ×
C0([−r,0];�n) → �k , where r > 0 is a constant, with H(t,0) = 0, f (t,0,0, d) = 0 for all
(t, d) ∈ �+ × D and such that the vector field f :�+ × C0([−r,0];�n) × U × D → �n, satis-
fies the following Lipschitz condition:

The function f (t, x,u, d) is locally Lipschitz with respect to (x,u), uniformly in d ∈ D, in
the sense that for every bounded interval I ⊂ �+ and for every closed and bounded subset S

of C0([−r,0];�n) × U , there exists a constant L � 0 such that∣∣f (t, x,u, d) − f (t, y, v, d)
∣∣ � L|u − v| + L max

τ∈[−r,0]
∣∣x(τ) − y(τ)

∣∣,
∀t ∈ I, ∀(x,u;y, v) ∈ S × S, ∀d ∈ D,

defines a continuous-time control system Σ := (C0([−r,0];�n),�k,MU,MD,φ,H) with out-
puts and the BIC property, by the evolution equation:

ẋ(t) = f
(
t, Tr (t)x,u(t), d(t)

)
,

Y (t) = H
(
t, Tr (t)x

)
,

Tr (t)x = x(t + θ), θ ∈ [−r,0].
In this case MU and MD are the sets of measurable and locally bounded functions with val-
ues in U and D, respectively. Notice that Σ := (C0([−r,0];�n),�k,MU,MD,φ,H) satis-
fies the “classical” semigroup property and that 0 ∈ C0([−r,0];�n) is a robust equilibrium
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point for Σ . Finally, notice that Theorems 2.2 in [4] guarantees that hypothesis (A1) holds
for Σ := (C0([−r,0];�n),�k,MU,MD,φ,H). Hypotheses (A2)–(A3) hold as well and con-
sequently, we conclude that Theorem 3.1 holds for Σ := (C0([−r,0];�n),�k,MU,MD,φ,H).

The following example presents a class of neutral functional evolution equations, for which
Theorem 3.1 can be applied in straightforward manner. The example is concerned with the case
of continuous time difference equations, which was recently studied in [21]. The importance of
continuous time difference equations in applications is explained in [4,21], since such models
appear in economics, gas dynamics and lossless propagation models (see references in [21]).

Example 3.4. Let constants R > r > 0, a non-empty compact set D ⊂ �l , positive func-
tions τi :�+ → [r,R], i = 1, . . . , p, and a pair of continuous vector fields f :�+ × D ×
(�n)p × �m → �n, H :�+ × �n → �k with f (t, d,0, . . . ,0,0) = 0, H(t,0) = 0 for all
(t, d) ∈ �+ × D. Let X the normed linear space of the bounded functions x : [−R,0] → �n

with ‖x‖X := supθ∈[−R,0] |x(θ)|, Y := �k , U := U = �m, MU the set of all locally bounded
functions u :�+ → �m and MD the set of all functions d :�+ → D. Let (t0, x0, u, d) ∈
�+ × X × MU × MD and consider the solution x(t) ∈ �n of the neutral functional evolution
equations:

x(t) = f
(
t, d(t), x

(
t − τ1(t)

)
, . . . , x

(
t − τp(t)

)
, u(t)

)
,

Y (t) = H
(
t, x(t)

)
,

x(t) ∈ �n, Y (t) ∈ �k, u(t) ∈ �m, d(t) ∈ D, t � 0, (3.20)

with initial condition x(t0 +θ) = x0(θ), θ ∈ [−R,0], corresponding to inputs (u, d) ∈ MU ×MD .
It is clear that (3.20) describes a control system Σ := (X ,Y,MU,MD,φ,H) with outputs and
evolution map φ defined by φ(t, t0, x0, u, d) = x(t + θ), θ ∈ [−R,0]. Systems described by
neutral functional evolution equations of the form (3.20) are considered in [4,21]. Here we show
that if system (3.20) with u(t) ≡ 0 is RGAOS then system (3.20) satisfies the WIOS property.
To this purpose we use Theorem 3.1 and we notice that hypotheses (A2)–(A3) are automatically
satisfied for system (3.20). Next we show the following claims.

Claim 1. System (3.20) is RFC from the input u ∈ MU .

Let T ,ρ � 0 and let arbitrary (t0, x0, u, d) ∈ [0, T ]×BX [0, ρ]×MU ∩M(BU [0, ρ])×MD .
Notice that from (3.20) it follows that sup{|x(t)|; t ∈ [t0, t0 + r]} � ρ′, where ρ′ � 0 sufficiently
large such that f ([0, T +r]×D×(B[0, ρ])p ×B[0, ρ]) ⊆ B[0, ρ′] (continuity of the vector field
f :�+ ×D × (�n)p ×�m → �n in conjunction with the compactness of D ⊂ �l guarantees the
existence of such ρ′ � 0). Applying repeatedly the previous observation, we conclude that for all
positive integers k there exists ρ′′ � 0 such that sup{|x(t)|; t ∈ [t0, t0 + kr]} � ρ′′. This proves
that system (3.20) is RFC from the input u ∈ MU .

Claim 2. 0 ∈ X is a robust equilibrium point from the input u ∈ MU for system (3.20).

Let ε > 0, T ∈ �+ arbitrary and let δ > 0 such that f ([0, T +r]×D×(B[0, δ])p ×B[0, δ]) ⊂
B[0, ε] (continuity of the vector field f :�+ × D × (�n)p × �m → �n in conjunction with the
compactness of D ⊂ �l and the fact f (t, d,0, . . . ,0,0) = 0 guarantees the existence of such
δ > 0). Let arbitrary (t0, x0, u, d) ∈ [0, T ] × BX [0, δ] × MU ∩ M(BU [0, δ]) × MD and notice
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that from (3.20) it follows that sup{|x(t)|; t ∈ [t0 − R, t0 + r]} < ε. Applying repeatedly the
previous observation, we conclude that for all positive integers k there exists δ′ � 0 such that
sup{|x(t)|; t ∈ [t0 − R, t0 + kr]} < ε. This proves that 0 ∈ X is a robust equilibrium point from
the input u ∈ MU for system (3.20).

Claim 3. System (3.20) satisfies hypothesis (A1).

We set π = {ir}∞i=0. Clearly, requirements (i) and (ii) of hypothesis (A1) are satis-
fied (notice that π(t0, x0, u, d) = [t0,+∞)). Let arbitrary bounded set S ⊂ X and arbitrary
(T ,ρ, ε) ∈ �+ × �+ × (0,+∞). Let ρ′ � 0 sufficiently large such that S ⊂ BX [0, ρ′] and
let δ > 0 such that |f (t, d, x1, . . . , xp,u) − f (t, d, y1, . . . , yp, v)| < ε for all (t, x1, . . . , xp,u) ∈
[0, T +r]×D×(B[0, ρ′])p ×B[0, ρ], (t, y1, . . . , yp, v) ∈ [0, T +r]×D×(B[0, ρ′])p ×B[0, ρ]
with maxi=1,...,p |xi − yi | + |u − v| < δ. The functional evolution equations (3.20) guaran-
tee that for all t0 ∈ [0, T ] ∩ π , y0, x0 ∈ S, u,v ∈ M(BU [0, ρ]) ∩ MU with ‖x − x0‖X +
supt0�τ�t0+r ‖u(τ) − v(τ)‖U < δ the solutions x(t), y(t) of (3.20) with initial conditions
x(t0 + θ) = x0(θ), θ ∈ [−R,0], and y(t0 + θ) = x0(θ), θ ∈ [−R,0], respectively, corresponding
to inputs (u, d) ∈ MU × MD and (v, d) ∈ MU × MD , respectively, satisfy sup{|x(t) − y(t)|;
t ∈ [t0, t0 + r]} < ε. This proves requirement (iii) of hypothesis (A1).

Claims 1–3 above in conjunction with Theorem 3.1 show that if system (3.20) with u(t) ≡ 0
is RGAOS then system (3.20) satisfies the WIOS property.

4. Applications to sampled-data feedback control

In this section we provide certain robustness results for sampled-data feedback control sys-
tems. Sampled-data feedback control has been considered in [1,2,5,6,19,20,23,24,30]. In this
section we consider sampled-data feedback control with uniform sampling rate. All statements
in this section can be proved in a straightforward way using the results of the previous sections
and are left to the reader.

Consider the finite-dimensional continuous-time control system

ẋ(t) = f
(
t, x(t), v(t)

)
,

Y (t) = H
(
t, x(t)

)
,

x(t) ∈ �n, v(t) ∈ �m, Y (t) ∈ �k, t � 0, (4.1)

where the vector fields f :�+ × �n × �m → �n, H :�+ × �n → �k are continuous, f :�+ ×
�n × �m → �n is locally Lipschitz in (x, v) ∈ �n × �m with f (t,0,0) = 0, H(t,0) = 0 for all
t � 0. We assume that:

Continuous Output Complete Controllability. There exists a family of measurable and lo-
cally bounded controls t → v(t, t0, x0) parameterized by (t0, x0) ∈ �+ × �n, μ ∈ K+, a ∈ K∞,
a continuous function A :�+ ×�+ ×�+ → �+ with A(t, s,0) = 0 for all t, s � 0 and a constant
r > 0 such that

(i) for every (t0, x0) ∈ �+ × �n the unique solution of (4.1) with initial condition x(t0) = x0
and corresponding to input v(t) = v(t, t0, x0), exists for all t � t0 and satisfies |v(t, t0, x0)|+
|x(t)| � μ(t)a(|x0|) for all t � t0 and Y(t) = 0 for all t � t0 + r ,
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(ii) for all (t0, x, x0, y0) ∈ �+ × �n × �n × �n it holds that∣∣f (
t, x, v(t, t0, x0)

) − f
(
t, x, v(t, t0, y0)

)∣∣ � A
(
t, |x| + |x0| + |y0|, |x0 − y0|

)
for all t � t0.

We consider the control system Σ := (�n,�k,MU,MD,φ,H) that produces for each
(t0, x0) ∈ �+ × �n and for each locally bounded input e : �+ → �n the absolutely continuous
function [t0,+∞) � t → x(t) ∈ �n that satisfies a.e. the differential equation

ẋ(t) = f
(
t, x(t), v

(
t, τi , x(τi) + e(τi)

))
, t ∈ [τi, τi+1),

τ0 = t0, τi+1 = r

(
1 +

[
τi

r

])
, i = 0,1, . . . ,

Y (t) = H
(
t, x(t)

)
, (4.2)

with initial condition x(t0) = x0, where [ τi

r
] denotes the integer part of the real number τi

r
. In

this case the locally bounded input e :�+ → �n represents the state measurement error and MU

denotes the set of locally bounded inputs e :�+ → U = �n. The sets D and MD are irrelevant
and thus we may consider D := {0}.

It should be clear to the reader that system (4.2) satisfies hypotheses (H1)–(H4) given in
[16] and thus Propositions 2.5 and 2.7 in [16] indicate that (4.2) defines a control system with
outputs in the sense of Definition 2.1. Particularly, system (4.2) satisfies the weak semigroup
property with π(t0, x0, u, d) := (π ∪ {t0}) ∩ [t0,+∞), where π := {0, r,2r,3r, . . .}. Moreover,
system (4.2) has the Boundedness-Implies-Continuation (BIC) property and 0 ∈ �n is a robust
equilibrium point for (4.2) from the locally bounded input e :�+ → �n. The hypothesis of Con-
tinuous Output Complete Controllability in conjunction with Lemma 3.3 in [14], guarantees that
system (4.2) is RGAOS for the input-free case e(t) ≡ 0.

The following hypothesis in addition to (i) and (ii) of Continuous Output Complete Control-
lability, guarantees that system (4.2) is RFC from the locally bounded input e :�+ → �n:

(iii) for every (t0, x0, y0) ∈ �+ × �n × �n the unique solution of (4.1) with initial condi-
tion x(t0) = x0 and corresponding to input v(t) = v(t, t0, y0), exists and satisfies |x(t)| �
μ(t)a(|x0| + |y0|) for all t � t0.

Moreover, hypothesis (ii) of Continuous Output Complete Controllability, in conjunction with
hypothesis (iii) above, shows that all hypotheses (A1–(A3) of Theorem 3.1 are indeed satisfied
(particularly, (A1) holds with π := {0, r,2r,3r, . . .}). Thus we obtain the following result:

Corollary 4.1. Consider system (4.2) under hypotheses (i)–(iii) stated above. System (4.2) sat-
isfies the WIOS property from the input from the input e :�+ → �n; particularly, there exist
functions σ ∈ KL, β,γ ∈ K+, ρ ∈ K∞ such that the following estimate holds for every locally
bounded input e :�+ → �n, (t0, x0) ∈ �+ × �n and t � t0:∣∣H (

t, x(t)
)∣∣ � max

{
σ
(
β(t0)|x0|, t − t0

)
,

sup
τ∈[t0,t]

σ
(
β(τ)ρ

(
γ (τ)

∣∣e(q(τ, t0)
)∣∣), t − τ

)}
, (4.3)

where x(t) denotes the solution of (4.2) with initial condition x(t0) = x0 corresponding to the
locally bounded input e :�+ → �n, q(t, t0) := max{τ ∈ {t0} ∪ π; τ � t}, π := {0, r,2r,3r, . . .}.
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Notice that Theorem 3.1 can guarantee the existence of functions σ ∈ KL, β,γ ∈ K+, ρ ∈ K∞
such that estimate (2.1) holds, namely,∣∣H (

t, x(t)
)∣∣ � max

{
σ
(
β(t0)|x0|, t − t0

)
, sup
τ∈[t0,t]

σ
(
β(τ)ρ

(
γ (τ)

∣∣e(τ )
∣∣), t − τ

)}
.

Estimate (4.3) is a direct consequence of the above estimate and the observation that the solution
x(t) of (4.2) with initial condition x(t0) = x0 and corresponding to input e :�+ → �n coin-
cides with the solution of (4.2) initiated from the same initial condition and corresponding to the
piecewise constant input ẽ :�+ → �n defined by

ẽ(t) := e(τi) for t ∈ [τi, τi+1), i = 1,2, . . . .

Corollary 4.1 is an important robustness result, which shows that if the state measurement er-
ror e :�+ → �n converges “sufficiently fast” to zero, then the output of (4.2) actually converges
to zero. Thus application of the open-loop controls t → v(t, t0, x0) in a “sampled-data way”
(as in system (4.2)) preserves certain robustness properties of usual ordinary feedback control.
On the other hand, the application of the open-loop controls t → v(t, t0, x0) in a “direct way”
usually is not robust to state measurement errors (see the Introduction in [28]).

5. Conclusions and open problems

In this work characterizations of the notion of Weighted Input-to-Output Stability (WIOS)
for a wide class of systems with disturbances are given. The class of systems studied include
systems, which do not necessarily satisfy the semigroup property. Particularly, for systems with
continuous dependence of the solution on the initial state and the input, the WIOS property is
shown to be equivalent to robust forward completeness from the input and robust global asymp-
totic output stability for the corresponding input-free system (0-GAS property). The obtained
results are applied to sampled-data feedback control systems. It is shown that application of the
open-loop controls in a “sampled-data way” preserves certain robustness properties featured by
usual ordinary feedback control.

It is an open problem to find characterizations for the Uniform Input-to-Output Stability
property, i.e., the property that guarantees the Bounded-Input-Bounded-Output and Converging-
Input-Converging-Output properties. The Uniform Input-to-Output Stability property may be
defined using a “Sontag-like estimate”∥∥H

(
t, φ(t, t0, x0, u, d), u(t)

)∥∥
Y � max

{
σ
(‖x0‖X , t − t0

)
, sup
t0�τ�t

ζ
(∥∥u(τ)

∥∥
U
)}

or a “fading memory estimate”∥∥H
(
t, φ(t, t0, x0, u, d), u(t)

)∥∥
Y � max

{
σ
(‖x0‖X , t − t0

)
, sup
τ∈[t0,t]

σ
(
ρ
(∥∥u(τ)

∥∥
U
)
, t − τ

)}
.

It is not known whether “fading memory estimates” are qualitatively equivalent to “Sontag-like
estimates” (although this equivalence holds for finite-dimensional systems described by ordinary
differential equations with identity output map). Another open problem is to obtain Lyapunov-
like characterizations of the WIOS and Uniform IOS properties, which allow the determination
of the functions involved in the estimates of the corresponding properties. These topics will
be the subject of future research. It is expected that the discovery of sufficient conditions for
the WIOS and Uniform IOS properties for a wide class of systems with outputs will motivate
similar advances to the advances which were triggered by these properties for finite-dimensional
systems.
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