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Abstract

A system-theoretic framework is proposed, which allows the study of hybrid uncertain systems, which do
not satisfy the so-called “semigroup property.” Characterizations of the notion of robust global asymptotic
output stability (RGAOS) are given. Based on the provided characterizations, the qualitative behavior of
hybrid systems obtained by time-discretization of systems of ordinary differential equations with a globally
asymptotically stable equilibrium point, is studied.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this work a system-theoretic framework is proposed, which allows the study of the qualita-
tive properties of the solutions of uncertain hybrid systems which do not necessarily satisfy the
“semigroup property.” Since a complete stability theory for such systems and Lyapunov char-
acterizations of the stability notions are absent from the literature, this work aims to provide
stability notions and characterizations in analogy to those applied to systems that satisfy the
classical “semigroup property.” Moreover, in order to motivate our work, we consider important
problems where the results of the present work can be directly applied: to finite-dimensional
systems that operate under sampled-data feedback control and to systems obtained by time-
discretization of systems of ordinary differential equations. Finally, it is shown how the proposed
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framework can be used in order to address certain problems of numerical analysis and convert
them into feedback stabilization problems. Essential characterizations of external stability no-
tions and applications to the problem of robustness of sampled-data feedback are provided in a
companion paper.

Given a pair of sets D ⊆ �l and U ⊆ �m closed set with 0 ∈ U , a positive function h :�+ ×
�n × U × D → (0, r] which is bounded by certain constant r > 0 and a triplet of vector fields
f :�+ ×�+ ×�n ×�n ×U ×U ×D×D → �n, H :�+ ×�n ×U → �p , R :�+ ×�n ×�n ×
U ×U ×D ×D → �n, we consider the hybrid system that produces for each (t0, x0) ∈ �+ ×�n

and for each pair of measurable and locally bounded inputs u :�+ → U and d :�+ → D the
piecewise absolutely continuous function t → x(t) ∈ �n, produced by the following algorithm:

Step i:

(1) Given τi and x(τi), calculate τi+1 using the equation τi+1 = τi + h(τi, x(τi), u(τi), d(τi)).
(2) Compute the state trajectory x(t), t ∈ [τi, τi+1), as the solution of the differential equation

ẋ(t) = f (t, τi , x(t), x(τi), u(t), u(τi), d(t), d(τi)).
(3) Calculate x(τi+1), using the equation x(τi+1) = R(τi, limt→τ−

i+1
x(t), x(τi), u(τi+1), u(τi),

d(τi+1), d(τi)).
(4) Compute the output trajectory Y(t), t ∈ [τi, τi+1], using the equation Y(t) = H(t, x(t), u(t)).

For i = 0 we take τ0 = t0 and x(τ0) = x0 (initial condition). Schematically, we write

ẋ(t) = f
(
t, τi, x(t), x(τi), u(t), u(τi), d(t), d(τi)

)
, t ∈ [τi, τi+1),

τ0 = t0, τi+1 = τi + h
(
τi, x(τi), u(τi), d(τi)

)
, i = 0,1, . . . ,

x(τi+1) = R
(
τi, lim

t→τ−
i+1

x(t), x(τi), u(τi+1), u(τi), d(τi+1), d(τi)
)
,

Y (t) = H
(
t, x(t), u(t)

)
(1.1)

with initial condition x(t0) = x0.
A system-theoretic framework is proposed in the present paper, which allows the study of

hybrid systems of the form (1.1) under the following hypotheses:

(H1) f (t, τ, x, x0, u,u0, d, d0) is measurable with respect to t � 0, continuous with respect to
(x, d,u) ∈ �n ×D×U and such that for every bounded S ⊂ �+ ×�+ ×�n ×�n ×U ×U

there exists constant L � 0 such that

(x − y)′
(
f (t, τ, x, x0, u,u0, d, d0) − f (t, τ, y, x0, u,u0, d, d0)

)
� L|x − y|2

∀(t, τ, x, x0, u, d, d0) ∈ S × D × D, ∀(t, τ, y, x0, v, d, d0) ∈ S × D × D. (1.2a)

(H2) There exist functions γ ∈ K+, a ∈ K∞, such that∣∣f (t, τ, x, x0, u,u0, d, d0)
∣∣ � γ (t)a

(|x| + |x0| + |u| + |u0|
)

∀(τ, u,u0, d, d0, x, x0) ∈ �+ × U × U × D × D × �n × �n, ∀t � τ, (1.2b)∣∣R(t, x, x0, u,u0, d, d0)
∣∣ � γ (t)a

(|x| + |x0| + |u| + |u0|
)

∀(t, u,u0, d, d0, x, x0) ∈ �+ × U × U × D × D × �n × �n. (1.2c)

(H3) H :�+ × �n × U → �p is a continuous map with H(t,0,0) = 0 for all t � 0.
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(H4) There exists a positive, continuous and bounded function hl :�+ × �n × U → (0, r] and
a partition π = {Ti}∞i=0 of �+, i.e., an increasing sequence of times with T0 = 0 and Ti →
+∞ such that

h(t, x,u, d) � min
{
pπ(t) − t, hl(t, x, u)

}
∀(t, x,u, d) ∈ �+ × �n × U × D, (1.2d)

where pπ(t) := min{T ∈ π; t < T }.

Systems of the form (1.1) under hypotheses (H1)–(H4) arise frequently in certain applica-
tions in mathematical control theory and numerical analysis. We mention here two important
applications.

1.1. Application of “sampled-data” feedback

For example, consider the finite-dimensional continuous-time control system ẋ(t) = f (t, x(t),

v(t)), where x(t) ∈ �n, v(t) ∈ �m and the vector field f :�+ × �n × �m → �n is continuous,
locally Lipschitz in x ∈ �n. Suppose that there exists a family of measurable and locally bounded
controls t → v(t, t0, x0) parameterized by (t0, x0) ∈ �+ × �n with the following property: for
every (t0, x0) ∈ �+ × �n the unique solution of ẋ(t) = f (t, x(t), v(t, t0, x0)) with initial condi-
tion x(t0) = x0 exists for all t � t0 and satisfies limt→+∞ x(t) = 0 ∈ �n. Then application of the
measurable and locally bounded controls t → v(t, t0, x0) on the interval [t0, t0 +h(t0, x0)), where
h :�+ × �n → (0, r] is a positive function bounded by certain constant r > 0, gives the control
system that produces for each (t0, x0) ∈ �+ × �n and for each measurable and locally bounded
inputs u :�+ → �m, e :�+ → �n the absolutely continuous function [t0,+∞) 
 t → x(t) ∈ �n

that satisfies a.e. the differential equation

ẋ(t) = f
(
t, x(t), v

(
t, τi , x(τi) + e(τi)

) + u(t)
)
, t ∈ [τi, τi+1),

τ0 = t0, τi+1 = τi + h
(
τi, x(τi) + e(τi)

)
, i = 0,1, . . . ,

Y (t) = H
(
t, x(t)

)
(1.3)

with initial condition x(t0) = x0. In this case the measurable and locally bounded inputs
u :�+ → �m and e :�+ → �n represent the control actuator error and the measurement error,
respectively. Sampled-data feedback of this form has been considered in [2,6,10,11,21,24,27].
Particularly, Theorem 9.3.1 in [6] provides links to the classical results in [2,27]. Moreover, con-
trol systems under a hybrid feedback law with asynchronous switching rules (as given in [22])
can be modeled as systems of the form (1.3).

1.2. Numerical solutions of ordinary differential equations

For example, consider the finite-dimensional continuous-time dynamical system ẋ(t) =
f (t, x(t)), where x(t) ∈ �n. Let π = {Ti}∞i=0 a partition of �+, i.e., an increasing sequence
of times with T0 = 0 and Ti → +∞ and define pπ(t) := min{T ∈ π; t < T }. Consider
the explicit Euler discretization scheme with state-dependent (adaptive) time step �+ × �n 

(t, x) → h(t, x) > 0 that produces for each (t0, x0) ∈ �+ × �n the absolutely continuous func-
tion [t0,+∞) 
 t → x(t) ∈ �n (Euler arc) that satisfies the evolution equation



I. Karafyllis / J. Math. Anal. Appl. 328 (2007) 876–899 879
ẋ(t) = f
(
τi, x(τi)

)
, t ∈ [τi, τi+1),

τ0 = t0, τi+1 = min
{
pπ(τi), τi + h

(
τi, x(τi)

)}
, i = 0,1, . . . , (1.4)

with initial condition x(t0) = x0. The stability properties of the explicit Euler method of dis-
cretization are studied in [7,17,30].

An important feature of systems of the form (1.1) under hypotheses (H1)–(H4) is that they
do not satisfy the “semigroup property”: for example, the solution x(t) of (1.1) with initial con-
dition x(t0) = x0 does not coincide (in general) for t � t1 > t0 with the solution x̃(t) of (1.1)
with initial condition x̃(t1) = x(t1) corresponding to the same measurable and locally bounded
inputs u :�+ → U and d :�+ → D. Thus, from a mathematical point of view, they cannot be
considered as systems in the sense given in [16,25]. This feature has important consequences,
since the researcher cannot use the tools developed by systems theory and mathematical control
theory. In the present paper we relax the notion of a system so that the “semigroup property” does
not hold in a strict sense and show that systems of the form (1.1) satisfy the “relaxed” definition.
Moreover, the modification introduced allows the results obtained in [16] to hold. Thus we are in
a position to develop a complete stability theory, which covers systems of the form (1.1) as well
as systems which satisfy the classical “semigroup property.”

The obtained results are applied in systems obtained by solving numerically systems of or-
dinary differential equations. The qualitative behavior of the solutions of systems, which are
obtained via time-discretization from continuous-time finite-dimensional systems, was the sub-
ject of intensive research during the last years. The existence of discretization methods that
conserve invariants of the corresponding continuous-time system is studied in [8]. The questions
concerning the relation between the attracting sets of the continuous-time (“original”) system
and its numerical approximation are answered in [7,30]. Both monographs present results that
apply to discretization methods with fixed time step. Adaptive discretization schemes or dis-
cretization schemes with step-size control are also used in the literature (see [23]). In the present
work we consider the implicit Euler method and it is shown that for an autonomous continuous-
time system with a globally asymptotically stable equilibrium point, the implicit Euler method
applied to an equivalent system (which has been extracted through an appropriate change of
coordinates) produces a system of the form (1.1) with a globally asymptotically stable equilib-
rium point (Theorem 4.1). This implication is important for numerical analysis. The proof of
this result uses the stability theory developed in this work and a major theorem proved in [5] for
autonomous continuous-time finite-dimensional systems. The proposed method of discretization
can be applied in straightforward way for the simulation of the solutions of closed-loop triangular
systems under feedback (see Examples 4.3 and 4.4).

The structure of this paper is as follows: in Section 2 the definition of the notion of a control
system and definitions of important classes of systems are provided. It is shown that system (1.1)
under hypotheses (H1)–(H4) is a control system with outputs that satisfies important properties.
In Section 3, the stability theory for control systems with outputs is developed, by extending
the results contained in [16]. In Section 4 we consider the application of the stability theory
developed in Section 3 to systems obtained by time discretization of systems described by ordi-
nary differential equations. The conclusions of the paper and some final remarks are provided in
Section 5.

Notations. Throughout this paper we adopt the following notations:

∗ For a vector x ∈ �n we denote by |x| its usual Euclidean norm and by x′ its transpose.
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∗ We denote by [R] the integer part of the real number R, i.e., the greatest integer, which is
less than or equal to R.

∗ E denotes the class of non-negative C0 functions μ :�+ → �+, for which it holds:∫ +∞
0 μ(t) dt < +∞ and limt→+∞ μ(t) = 0.

∗ We denote by K+ the class of positive C0 functions defined on �+. We say that a function
ρ :�+ → �+ is positive definite if ρ(0) = 0 and ρ(s) > 0 for all s > 0. For definitions of
classes K , K∞, KL see [18].

∗ By ‖‖X , we denote the norm of the normed linear space X . Let U ⊆ X with 0 ∈ U . By
BU [0, r] := {u ∈ U ; ‖u‖U � r} we denote the closed sphere in U ⊆ X with radius r � 0,
centered at 0 ∈ U . By B[0, r] we denote the closed sphere with radius r � 0 in �n, centered
at 0 ∈ �n.

∗ By M(U) we denote the set of all functions u :�+ → U . By u0 we denote the identity zero
input, i.e., u0(t) = 0 ∈ U for all t � 0.

∗ A partition π = {Ti}∞i=0 of �+ is an increasing sequence of times with T0 = 0 and Ti → +∞.
For every partition π = {Ti}∞i=0 of �+ we define pπ(t) := min{T ∈ π; t < T }.

2. Control systems with outputs and equilibrium points

The definition of a control system with outputs was given in [16], inspired from the definitions
in [14,25]. However, in this work a “relaxed” version is adopted, which allows important classes
of systems (hybrid systems) to be considered as control systems with outputs. Moreover, we
focus on continuous-time systems for reasons that are explained below.

Definition 2.1. A control system Σ := (X ,Y,MU,MD,φ,H) with outputs consists of

(i) a set U (control set) which is a subset of a normed linear space U with 0 ∈ U and a set
MU ⊆ M(U) (allowable control inputs) which contains at least the identity zero input u0 ∈
MU (i.e., the input that satisfies u0(t) = 0 ∈ U for all t � 0),

(ii) a set D (disturbance set) and a set MD ⊆ M(D), which is called the “set of allowable
disturbances,”

(iii) a pair of normed linear spaces X ,Y called the “state space” and the “output space,” respec-
tively,

(iv) a continuous map H :�+ × X × U → Y that maps bounded sets of �+ × X × U into
bounded sets of Y , called the “output map,” and

(v) the map φ :Aφ → X , where Aφ ⊆ �+ ×�+ ×X ×MU ×MD , called the “transition map,”
which has the following properties:
(1) Existence. For each (t0, x0, u, d) ∈ �+ × X × MU × MD , there exists t > t0 such that

[t0, t] × (t0, x0, u, d) ⊆ Aφ .
(2) Identity property. For each (t0, x0, u, d) ∈ �+ × X × MU × MD , it holds that

φ(t0, t0, x0, u, d) = x0.
(3) Causality. For each (t, t0, x0, u, d) ∈ Aφ with t > t0 and for each (ũ, d̃) ∈ MU × MD

with (ũ(τ ), d̃(τ )) = (u(τ ), d(τ )) for all τ ∈ [t0, t), it holds that (t, t0, x0, ũ, d̃) ∈ Aφ

and φ(t, t0, x0, u, d) = φ(t, t0, x0, ũ, d̃).
(4) Weak semigroup property. For each (t0, x0, u, d) ∈ �+ × X × MU × MD there exists

a set π(t0, x0, u, d) ⊆ [t0,+∞) and a constant r > 0, such that for each t � t0 with
(t, t0, x0, u, d) ∈ Aφ :
(a) (τ, t0, x0, u, d) ∈ Aφ for all τ ∈ [t0, t],



I. Karafyllis / J. Math. Anal. Appl. 328 (2007) 876–899 881
(b) φ(t, τ,φ(τ, t0, x0, u, d), u, d) = φ(t, t0, x0, u, d) for all τ ∈ [t0, t] ∩ π(t0, x0, u, d),
(c) if (t + r, t0, x0, u, d) ∈ Aφ , then it holds that π(t0, x0, u, d) ∩ [t, t + r] �= ∅,
(d) for all τ ∈ π(t0, x0, u, d) with (τ, t0, x0, u, d) ∈ Aφ we have π(τ,φ(τ, t0, x0, u, d),

u, d) = π(t0, x0, u, d) ∩ [τ,+∞).

Let T > 0. A control system Σ := (X ,Y,MU,MD,φ,H) with outputs is called T -periodic,
if:

(a) H(t + T ,x,u) = H(t, x,u) for all (t, x,u) ∈ �+ ×X × U ,
(b) for every (u, d) ∈ MU × MD and integer k there exist inputs PkT u ∈ MU,PkT d ∈ MD with

(PkT u)(t) = u(t + kT ) and (PkT d)(t) = d(t + kT ) for all t + kT � 0,
(c) for each (t, t0, x0, u, d) ∈ Aφ with t � t0 and for each integer k with t0 − kT � 0 it

follows that (t − kT , t0 − kT , x0,PkT u,PkT d) ∈ Aφ and π(t0 − kT , x0,PkT u,PkT d) =⋃
τ∈π(t0,x0,u,d){τ − kT } with φ(t, t0, x0, u, d) = φ(t − kT , t0 − kT , x0,PkT u,PkT d).

A control system Σ := (X ,Y,MU,MD,φ,H) with outputs is called time-invariant or au-
tonomous, if:

(a) the output map is independent of t , i.e., H(t, x,u) ≡ H(x,u),
(b) for every (θ, u, d) ∈ � × MU × MD there exist inputs Pθu ∈ MU,Pθd ∈ MD with

(Pθu)(t) = u(t + θ) and (Pθd)(t) = d(t + θ) for all t + θ � 0,
(c) for each (t, t0, x0, u, d) ∈ Aφ with t � t0 and for each θ ∈ (−∞, t0] it follows that

(t − θ, t0 − θ, x0,Pθu,Pθd) ∈ Aφ and π(t0 − θ, x0,Pθu,Pθd) = ⋃
τ∈π(t0,x0,u,d){τ − θ} with

φ(t, t0, x0, u, d) = φ(t − θ, t0 − θ, x0,Pθu,Pθd).

Remark 2.2.

(a) Notice that Definition 2.1 allows us to consider all discrete-time systems as continuous-time
systems with π(t0, x0, u, d) := Z+ ∩[t0,+∞), where Z+ denotes the set of non-negative in-
tegers and φ(t, t0, x0, u, d) = φ([t], t0, x0, u, d), where [t] denotes the integer part of t � t0.

(b) The difference between the present definition of a control system with outputs and [16,
Definition 2.1] lies in property (4) (semigroup property). In the above definition we do not
require that for all (t0, x0, u, d) ∈ �+ ×X ×MU ×MD , there exists t > t0 such that [t0, t) ⊆
π(t0, x0, u, d) (in contrast with [16, Definition 2.1]; the classical “semigroup property”).
This modification allows us to study important classes of systems, which were excluded by
[16, Definition 2.1]. The following example illustrates this point.

(c) It should be emphasized that all systems, which satisfy the classical “semigroup prop-
erty,” (namely, for all (t0, x0, u, d) ∈ �+ × X × MU × MD , there exists t > t0 such that
[t0, t) ⊆ π(t0, x0, u, d)), are automatically control systems with outputs in the sense of Defi-
nition 2.1.

Example 2.3. Consider system (1.1) under hypotheses (H1)–(H4). Clearly, under hypothesis
(1.2a), for each pair of measurable and locally bounded inputs u :�+ → U and d :�+ → D and
for each (t0, x0) ∈ �+ × �n the piecewise absolutely continuous function t → x(t) ∈ �n that
satisfies (1.1) with initial condition x(t0) = x0 is unique and the system (1.1) is a control system
Σ := (X ,Y,MU,MD,φ,H) with outputs in the sense of Definition 2.1 of the present paper. Par-
ticularly, we have X = �n, Y = �p , U = �m and MU , MD the sets of measurable and locally
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bounded inputs u :�+ → U and d :�+ → D, respectively. The set π(t0, x0, u, d) ⊆ [t0,+∞)

involved in the weak semigroup property consists of the sequence π = {τi}∞i=0 generated by
the recursive relation τi+1 = τi + h(τi, x(τi), u(τi), d(τi)), i = 0,1, . . . , with τ0 = t0. Since
h :�+ × �n × U × D → (0, r] is bounded by the constant r > 0, it follows that property (4)
of Definition 2.1 holds. Notice that the control system (1.1) fails to satisfy the classical semi-
group property. Consequently, the control system (1.1) does not meet the requirements of [16,
Definition 2.1].

If h(τ + T ,x,u, d) = h(τ, x,u, d), f (t + T , τ + T ,x, x0, u,u0, d, d0) = f (t, τ, x, x0, u,u0,

d, d0), R(τ + T ,x, x0, u,u0, d, d0) = R(τ, x, x0, u,u0, d, d0) and H(t + T ,x,u) = H(t, x,u)

for certain T > 0 and for (t, τ, u,u0, d, d0, x, x0) ∈ �+ × �+ × U × U × D × D × �n ×
�n with t � τ , then system (1.1) is T-periodic. Moreover, if h(τ, x,u, d) = h(x,u, d),
f (t, τ, x, x0, u,u0, d, d0) = f (t − τ, x, x0, u,u0, d, d0), R(τ, x, x0, u,u0, d, d0) = R(x, x0,

u,u0, d, d0) and H(t, x,u) = H(x,u) for (t, τ, u,u0, d, d0, x, x0) ∈ �+ × �+ × U × U × D ×
D × �n × �n with t � τ then system (1.1) is autonomous. �

We next give definitions of some important classes of control systems.

Definition 2.4. Consider a control system Σ := (X ,Y,MU,MD,φ,H) with outputs. We say
that system Σ

(i) has the Boundedness-Implies-Continuation (BIC) property if for each (t0, x0, u, d) ∈ �+ ×
X × MU × MD , there exists a maximal existence time, i.e., there exists tmax ∈ [t0,+∞],
such that [t0, tmax) × (t0, x0, u, d) ⊆ Aφ and for all t � tmax it holds that (t, t0, x0, u, d) /∈
Aφ . In addition, if tmax < +∞ then for every M > 0 there exists t ∈ [t0, tmax) with
‖φ(t, t0, x0, u, d)‖X > M ,

(ii) is forward complete if for every (t0, x0, u, d) ∈ �+ ×X × MU × MD, (t, t0, x0, u, d) ∈ Aφ

for all t � t0. Clearly, every forward complete control system has the BIC property,
(iii) is simply robustly forward complete (RFC) if it has the BIC property and for every R � 0,

T � 0, it holds that

sup
{∥∥φ(t0 + s, t0, x0, u0, d)

∥∥
X ; s ∈ [0, T ], ‖x0‖X � R, t0 ∈ [0, T ],

d ∈ MD

}
< +∞,

(iv) is robustly forward complete (RFC) from the input u ∈ MU if it has the BIC property and
for every R � 0, T � 0, it holds that

sup
{∥∥φ(t0 + s, t0, x0, u, d)

∥∥
X ; u ∈ M

(
BU [0,R]) ∩ MU, s ∈ [0, T ], ‖x0‖X � R,

t0 ∈ [0, T ], d ∈ MD

}
< +∞.

The BIC property is a property that depends on the kind of the system rather than the system
itself and can be verified for wide classes of systems. In [16] it is shown that the BIC property is
satisfied by systems described by ordinary differential equations (finite-dimensional) as well as
systems described by retarded functional differential equations. The following proposition shows
that the BIC property holds for system (1.1) under hypotheses (H1)–(H4).

Proposition 2.5. System (1.1) under hypotheses (H1)–(H4) has the BIC property.
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Proof. Standard arguments from the theory of existence of solutions of ordinary differential
equations (see, for instance, [3]) show that if x(t) is defined for some t > t0 then there exists
ε > 0 such that the solution x(τ) is also defined for τ ∈ [t, t + ε). Thus for each (t0, x0, u, d) ∈
�+ × �n × MU × MD , there exists a maximal existence time, i.e., there exists tmax ∈ (t0,+∞],
for which the solution x(t) of (1.1) is defined on [t0, tmax) and cannot be continued further.

We next show that if tmax < +∞ then the solution x(t) of (1.1) cannot be bounded on
[t0, tmax). Consequently, system (1.1) has the BIC property. The proof of this implication de-
pends on the following claim.

Claim 1. Let s > 0. Every infinite sequence {τi}, i = 0,1, . . . , with τi+1 � min{pπ(τi), τi +
s}, i = 0,1, . . . , and τ0 � 0 satisfies τi → +∞, where pπ(t) := min{T ∈ π; t < T } and π =
{Ti}∞i=0 is the partition involved in hypothesis (H4).

Proof of Claim 1. Since pπ(τi) > τi , it follows that {τi}, i = 0,1, . . . , is an increasing sequence.
Consequently, we have τi → sup{τi, i = 0,1, . . .}. Suppose that sup{τi, i = 0,1, . . .} < +∞. In
this case there exist N, Ñ > 0 such that TN,TN−1 ∈ π and TN−1 < τi < TN , i = Ñ, Ñ + 1, . . . .
Thus we obtain pπ(τi) = TN , i = Ñ, Ñ + 1, . . . , and consequently τi+1 � min{TN, τi + s}, i =
Ñ, Ñ + 1, . . . . Clearly, since τi+1 < TN , i = Ñ, Ñ + 1, . . . , it follows that we must have τi + s =
min{TN, τi + s}, i = Ñ, Ñ + 1, . . . , and this implies τi+1 � τi + s, i = Ñ, Ñ + 1, . . . . Thus we
obtain τi � TN−1 + (i − Ñ)s, i = Ñ, Ñ + 1, . . . , which shows that sup{τi, i = 0,1, . . .} = +∞,
a contradiction. The proof of the claim is complete. �

We are now ready to show the required implication. Suppose that tmax < +∞. Let {t0 =
τ0, τ1, . . .} the sequence of times satisfying τi+1 = τi + h(τi, x(τi), u(τi), d(τi)), i = 0,1,2, . . . ,
and R := sup{|u(t)|; t ∈ [t0, tmax]}. We consider the following cases:

(1) The cardinal number of the set {τ0, τ1, . . .} is finite. Standard arguments from the the-
ory of existence of solutions of ordinary differential equations show that in this case we have
lim supt→t−max

|x(t)| = +∞.
(2) The cardinal number of the set {τ0, τ1, . . .} is infinite. In this case we have sup{τ0, τ1, . . .} �

tmax + r . However, if x(t) is bounded (say x(t) ∈ B[0, ρ] for some ρ > 0) then we may define
s := min{hl(t, x,u); (t, x) ∈ [t0, tmax + r] × B[0, ρ] × BU [0,R]}. Since the set [t0, tmax + r] ×
B[0, ρ] × BU [0,R] is compact (U ⊆ �m is closed) and hl is continuous, we have s > 0. More-
over, by virtue of (1.2d), we have τi+1 � min{pπ(τi), τi +s}, i = 0,1, . . . , with τ0 � 0. It follows
from Claim 1 that τi → +∞, which contradicts the fact that sup{τ0, τ1, . . .} � tmax + r < +∞.
Thus we conclude that the solution x(t) of (1.1) is not bounded.

In any case the hypothesis tmax < +∞ leads to the conclusion that the solution x(t) of (1.1)
is not bounded, which shows that system (1.1) has the BIC property. �

The following definition clarifies the notion of an equilibrium point for control systems with
outputs in the sense of Definition 2.1.

Definition 2.6. Consider a control system Σ := (X ,Y,MU,MD,φ,H) and suppose that
H(t,0,0) = 0 for all t � 0. We say that 0 ∈X is a robust equilibrium point for Σ if

(i) for every (t, t0, d) ∈ �+ × �+ × MD with t � t0 it holds that φ(t, t0,0, u0, d) = 0,
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(ii) for every ε > 0, T ,h ∈ �+ there exists δ := δ(ε, T ,h) > 0 such that for all (t0, x) ∈
[0, T ] ×X , τ ∈ [t0, t0 + h] with ‖x‖X < δ it holds that (τ, t0, x,u0, d) ∈ Aφ for all d ∈ MD

and

sup
{∥∥φ(τ, t0, x,u0, d)

∥∥
X ; d ∈ MD, τ ∈ [t0, t0 + h], t0 ∈ [0, T ]} < ε.

We say that 0 ∈ X is a robust equilibrium point from the input u ∈ MU for Σ if 0 ∈X is a robust
equilibrium point for Σ and

(iii) for every ε > 0, T ,h ∈ �+ there exists δ := δ(ε, T ,h) > 0 such that for all (t0, x,u) ∈
[0, T ] × X × MU , τ ∈ [t0, t0 + h] with ‖x‖X + supt�0 ‖u(t)‖U < δ it holds that
(τ, t0, x,u, d) ∈ Aφ for all d ∈ MD and

sup
{∥∥φ(τ, t0, x,u, d)

∥∥
X ; d ∈ MD, τ ∈ [t0, t0 + h], t0 ∈ [0, T ]} < ε.

The following proposition guarantees that system (1.1) under hypotheses (H1)–(H4) has a
robust equilibrium point.

Proposition 2.7. 0 ∈ �n is a robust equilibrium point from the input u ∈ MU for system (1.1)
under hypotheses (H1)–(H4).

Proof. Since f (t, τ,0,0,0,0, d, d0) = 0, R(τ,0,0,0,0, d, d0) = 0 for all (τ, d, d0) ∈ �+ ×
D × D, t � τ and H(t,0,0) = 0 for all t � 0, it follows that property (i) of Definition 2.6
is automatically satisfied. It suffices to show that for every ε > 0, T ,T ′ ∈ �+ there exists
δ := δ(ε, T ,T ′) > 0 such that for all (t0, x0, u, d) ∈ [0, T ] × �n × MU × MD , t ∈ [t0, t0 + T ′]
with |x0| + supt�0 |u(t)| < δ it holds that the solution x(t) of (1.1) with initial condition
x(t0) = x0 corresponding to inputs (u, d) ∈ MU × MD exists and satisfies sup{|x(t)|; d ∈
MD, t ∈ [t0, t0 + T ′], t0 ∈ [0, T ]} < ε.

Claim 2. For every ε > 0, T > 0 there exists δ := δ(ε, T ) > 0, such that if |x(t0)| +
supt�0 |u(t)| < δ then the unique solution of (1.1) starting from x(t0) at time t0 ∈ [0, T ] and
corresponding to inputs (u, d) ∈ MU × MD exists for all t ∈ [t0, τ1] and satisfies |x(t)| < ε for
all t ∈ [t0, τ1], where τ1 = t0 + h(t0, x(t0), u(t0), d(t0)).

Proof of Claim 2. Let L > 0 the constant that satisfies (1.2a) for the compact set S := [0, T +
r] × [0, T + r] × B[0, ε] × B[0, ε] × BU [0, ε] × BU [0, ε]. It follows from (1.2a)–(1.2b) that the
following inequality holds for all x, x0 ∈ B[0, ε], u,u0 ∈ BU [0, ε], τ ∈ [0, T ], t ∈ [τ, τ + r] and
d, d0 ∈ D:

x′f (t, τ, x, x0, u,u0, d, d0) � (L + M)
(|x|2 + a2(|x0| + |u| + |u0|

))
, (2.1)

where M := 1+max{γ 2(t); t∈[0,T +r]}
2 and γ ∈ K+, a ∈ K∞ are the functions involved in (1.2b).

Let ρ > 0 the unique solution of the equation:

ε2
1 = 4 exp

(
2(L + M)r

)(
2ρ2 + a2(3ρ)

)
, (2.2)

where r > 0 is the upper bound for h and

ε1 := min

{
ε,

1
a−1

(
ε

)}
> 0. (2.3)
4 max{γ (t); t ∈ [0, T + r]}
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Define

δ = min

{
ε1

2
;ρ

}
. (2.4)

Let arbitrary (x(t0), u, d) ∈ �n × MU × MD with |x(t0)| + supt�0 |u(t)| < δ and consider the
unique solution x(t) ∈ �n of (1.1) starting from x(t0) and corresponding to input (u, d) ∈
MU ×MD . Since (2.4) implies δ < ε1, it follows that |x(t0)| < ε1. Next we show that |x(t)| < ε1
for all t ∈ [t0, τ1). The proof will be made by contradiction. Suppose that there exists t1 ∈ (t0, τ1)

with |x(t1)| � ε1. Let tε the maximal time in the interval [t0, t1] such that |x(t)| < ε1 for
all t ∈ [t0, tε). By virtue of continuity of the solution with respect to time on the interval
[t0, τ1), the maximal time tε is well defined. By continuity of the solution with respect to time
we must have |x(tε)| = ε1. On the other hand, inequality (2.1) in conjunction with the fact
|x(t0)| + supt�0 |u(t)| < δ and definition (2.4) implies d

dt
|x(t)|2 � 2(L + M)(|x(t)|2 + a2(3ρ))

for almost all t ∈ [t0, tε]. The previous differential inequality, in conjunction with (2.2), the fact
tε < τ1 � t0 + r and inequality |x(t0)| < ρ, directly implies that |x(tε)| � ε1

2 < ε1, which contra-
dicts |x(tε)| = ε1. We conclude that |x(t)| < ε1 for all t ∈ [t0, τ1).

By virtue of uniform continuity of the solution on the interval [t0, τ1) (notice that by
(1.2b) ẋ(t) is bounded on [t0, τ1)), it follows that the limit limt→τ−

1
x(t) exists and satisfies

| limt→τ−
1

x(t)| � ε1. Using (1.2c) in conjunction with (2.3), (2.4), the facts t0 < τ1 � t0 + r ,
|x(t0)| + supt�0 |u(t)| < δ and | limt→τ−

1
x(t)| � ε1, we conclude that |x(τ1)| < ε. The previ-

ous inequality combined with the facts ε1 � ε and |x(t)| < ε1 for all t ∈ [t0, τ1), implies that
|x(t)| < ε for all t ∈ [t0, τ1]. Consequently, Claim 2 is proved. �

Using induction, the fact τi � t0 + ir for all non-negative integers i (where r > 0 is the upper
bound for h) and Claim 2, we may conclude that the following claim holds.

Claim 3. For every ε > 0, T > 0, N > 0 integer, there exists δ := δ(ε, T ,N) > 0, such that if
|x(t0)|+ supt�0 |u(t)| < δ then the unique solution of (1.1) starting from x(t0) at time t0 ∈ [0, T ]
and corresponding to inputs (u, d) ∈ MU × MD exists for all t ∈ [t0, τN ] and satisfies |x(t)| < ε

for all t ∈ [t0, τN ], where τi+1 = τi + h(τi, x(τi), u(τi), d(τi)), i = 1, . . . ,N − 1, with τ0 = t0.

Consider the continuous function hl involved in hypothesis (H4). For this function we have
the following claim.

Claim 4. For every ε > 0, T > 0, there exists integer N := N(ε,T ) > 0, such that τN > T ,
where s := min{hl(t, x,u); (t, x,u) ∈ [0, T ] × B[0, ε] × BU [0, ε]} and the sequence {τi}Ni=0
satisfies τi+1 � min{pπ(τi), τi + s}, i = 1, . . . ,N − 1, with arbitrary initial condition τ0 � 0,
where pπ(t) := min{T ∈ π; t < T } and π = {Ti}∞i=0 is the partition involved in hypothesis (H4).

Proof of Claim 4. Let arbitrary ε > 0, T > 0. Since the set [0, T ] × B[0, ε] × BU [0, ε] is
compact (U ⊆ �m is closed) and hl is continuous, we have s > 0. Consider the infinite se-
quence {yi}∞i=0 which satisfies yi+1 = min{pπ(yi), yi + s}, i = 1,2, . . . , with y0 = 0. By virtue
of Claim 1 showed in the proof of Proposition 2.5 we have yi → +∞ and consequently for every
T > 0, there exists integer N > 0, such that yN > T . Let arbitrary τ0 � 0 and arbitrary sequence
{τi}Ni=0 that satisfies τi+1 � min{pπ(τi), τi + s}, i = 1, . . . ,N − 1. By virtue of Theorem 1.6.1
in [19] (Comparison principle) we have τi � yi , i = 1, . . . ,N , which implies τN > T . The proof
of the claim is complete. �
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We are now ready to show the required property. Let arbitrary ε > 0, T ,T ′ ∈ �+ . Claim 4
implies that there exists integer N := N(ε,T + T ′ + r) > 0, such that τN > T + T ′ + r ,
where s := min{hl(t, x,u); (t, x,u) ∈ [0, T + T ′ + r] × B[0, ε] × BU [0, ε]} and the sequence
{τi}Ni=0 satisfies τi+1 � min{pπ(τi), τi + s}, i = 1, . . . ,N − 1, with arbitrary initial condi-
tion τ0 � 0. On the other hand, by virtue of Claim 3, there exists δ := δ(ε, T ,N) > 0, such
that if |x(t0)| + supt�0 |u(t)| < δ then the unique solution of (1.1) starting from x(t0) at time
t0 ∈ [0, T ] and corresponding to inputs (u, d) ∈ MU × MD exists for all t ∈ [t0, τN ] and satis-
fies |x(t)| < ε for all t ∈ [t0, τN ], where τi+1 = τi + h(τi, x(τi), u(τi), d(τi)), i = 1, . . . ,N − 1,
with τ0 = t0. Hypothesis (H4) implies that the sequence {τi}Ni=0 satisfies the inequality τi+1 �
min{pπ(τi), τi + s} for all integers i for which τi � T + T ′ + r . If we assume that τN � T + T ′
then we obtain a contradiction and thus we conclude that τN > T + T ′. It follows that if
|x(t0)|+ supt�0 |u(t)| < δ then the unique solution of (1.1) starting from x(t0) at time t0 ∈ [0, T ]
and corresponding to inputs (u, d) ∈ MU × MD exists for all t ∈ [t0, t0 + T ′] and satisfies
|x(t)| < ε for all t ∈ [t0, t0 + T ′]. �
3. Stability notions for control systems with outputs

The notions robust global asymptotic stability is given in [16] for a wide class of control sys-
tems. For reasons of completeness we repeat the definition here for the class of systems allowed
by Definition 2.1.

Definition 3.1. Consider a control system Σ := (X ,Y,MU,MD,φ,H) with outputs that has
the BIC property and for which 0 ∈ X is a robust equilibrium point. We say that Σ is robustly
globally asymptotically output stable (RGAOS) if Σ is RFC and the following properties hold:

(P1) Σ is robustly Lagrange output stable, i.e., for every ε > 0, T � 0, it holds that

sup
{∥∥H

(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y ; t � t0, ‖x0‖X � ε, t0 ∈ [0, T ], d ∈ MD

}
< +∞

(robust Lagrange output stability).

(P2) Σ is robustly Lyapunov output stable, i.e., for every ε > 0 and T � 0 there exists a δ :=
δ(ε, T ) > 0 such that

‖x0‖X � δ, t0 ∈ [0, T ] ⇒ ∥∥H
(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y � ε ∀t � t0, ∀d ∈ MD

(robust Lyapunov output stability).

(P3) Σ satisfies the robust output attractivity property, i.e., for every ε > 0, T � 0 and R � 0,
there exists a τ := τ(ε, T ,R) � 0, such that

‖x0‖X � R, t0 ∈ [0, T ] ⇒ ∥∥H
(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y � ε

∀t � t0 + τ, ∀d ∈ MD.

Moreover, if there exists a ∈ K∞ such that a(‖x‖X ) � ‖H(t, x,0)‖Y for all (t, x) ∈ �+ × X ,
then we say that Σ is robustly globally asymptotically stable (RGAS).

It should be emphasized that the results contained in [16] are not affected by the modifi-
cation of the semigroup property introduced in this work. Particularly, Lemmas 3.3–3.5 and
Theorem 3.6 in [16] hold (in [16] the notion of RGAOS was given by the name non-uniform
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in time robust global asymptotic output stability). For reader’s convenience, we mention two
important estimates for RGAOS and RFC:

– if system Σ := (X ,Y,MU,MD,φ,H) is RGAOS, then there exist functions σ ∈ KL,
β ∈ K+ such that the following estimate holds for all (t0, x0, d) ∈ �+ ×X ×MD and t � t0:∥∥H

(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y � σ

(
β(t0)‖x0‖X , t − t0

)
, (3.1)

– system Σ := (X ,Y,MU,MD,φ,H) is RFC from the input u ∈ MU if and only if there exist
functions μ ∈ K+, a ∈ K∞ and a constant R � 0 such that the following estimate holds for
all (t0, x0, d,u) ∈ �+ ×X × MD × MU :∥∥φ(t, t0, x0, u, d)

∥∥
X � μ(t)a

(
R + ‖x0‖X + sup

τ∈[t0,t]
∥∥u(τ)

∥∥
U

)
∀t � t0. (3.2)

The result of Lemma 3.5 in [16] can be strengthened under the following hypothesis:

(A1) For every (u,λ) ∈ MU × �+, we have ũ ∈ MU , where ũ is the input that satisfies ũ(t) =
λu(t) for all t � 0.

Lemma 3.2. Consider a control system Σ := (X ,Y,MU,MD,φ,H) with outputs and the BIC
property under hypothesis (A1). Suppose that Σ is RFC from the input u ∈ MU and that 0 ∈ X
is a robust equilibrium point from the input u ∈ MU for Σ . Then there exist functions μ ∈ K+,
a ∈ K∞ such that estimate (3.2) holds for all (t0, x0, d,u) ∈ �+ ×X × MD × MU with R = 0.

Proof. Consider the control system Σ̃ := (X̃ ,Y,M{0},MD̃
, φ̃,H), where X̃ = X × � with

norm ‖(x, z)‖X̃ := (‖x‖2
X + |z|2)1/2, D̃ = D × V , V := U ∩ BU [0,1], M

D̃
= MD × MV ,

φ̃(t, t0, x0, z0,0, (d, v)) := (φ(t, t0, x0, |z0|v, d), z0). It can be verified immediately (using the
facts that Σ is RFC from the input u ∈ MU and that 0 ∈ X is a robust equilibrium point from the
input u ∈ MU for Σ ) that Σ̃ is RFC and that 0 ∈ X̃ is a robust equilibrium point for Σ̃ .

It follows from Lemma 3.5 in [16] that there exist functions μ ∈ K+, a ∈ K∞ such that for
every (t0, x0, z0, d, v) ∈ �+ ×X × � × MD × MV , we have:∥∥φ̃

(
t, t0, x0, z0,0, (d, v)

)∥∥
X̃ � μ(t)a

(‖x0‖X + |z0|
) ∀t � t0. (3.3)

Finally, notice that for every (t, t0, x0, d,u) ∈ �+ × �+ ×X × MD × MU with t � t0, we have
φ(τ, t0, x0, u, d) := φ(τ, t0, x0, |z0|v, d) for all τ ∈ [t0, t], where z0 = supτ∈[t0,t] ‖u(τ)‖U and
the input v ∈ MV is defined by the following relations:

v(τ) := u(τ)

sups∈[t0,t] ‖u(s)‖U ∈ V if sup
τ∈[t0,t]

∥∥u(τ)
∥∥
U > 0

and

v(τ) = 0 ∈ V if sup
τ∈[t0,t]

∥∥u(τ)
∥∥
U = 0.

The above observation, in conjunction with inequality (3.3), gives the desired estimate (3.2) with
R = 0. �

The following corollary is an immediate consequence of Proposition 2.7 and Lemma 3.2.
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Corollary 3.3. Suppose that for every (u,λ) ∈ U ×�+, it holds that (λu) ∈ U . System (1.1) under
hypotheses (H1)–(H4) is RFC from the input u ∈ MU if and only if there exist functions μ ∈ K+,
a ∈ K∞ such that the following estimate holds for all (t0, x0, d,u) ∈ �+ × �n × MD × MU

for the solution x(t) of (1.1) with initial condition x(t0) = x0 corresponding to inputs (d,u) ∈
MD × MU :∣∣x(t)

∣∣ � μ(t)a
(
|x0| + sup

t0�τ�t

∣∣u(τ)
∣∣) ∀t � t0. (3.4)

We next provide the definition of uniform robust global asymptotic output stability, in terms of
KL functions, which is completely analogous to the finite-dimensional case (see [18,20,28,29]).
It is clear that such a definition is equivalent to a δ − ε definition (analogous to Definition 3.1).

Definition 3.4. Suppose that the control system Σ := (X ,Y,MU,MD,φ,H) with outputs is
RGAOS and there exist σ ∈ KL such that estimate (3.1) holds for all (t0, x0, d) ∈ �+ ×X ×MD

and t � t0 with β(t) ≡ 1. Then we say that Σ is uniformly robustly globally asymptotically output
stable (URGAOS).

The following lemma must be compared to Lemma 1.1 in [9, p. 131] and Proposition 3.2 in
[13]. It shows that for periodic systems RGAOS is equivalent to URGAOS.

Lemma 3.5. Suppose that Σ := (X ,Y,MU,MD,φ,H) is T -periodic. If Σ is non-uniformly in
time RGAOS, then Σ is URGAOS.

Proof. The proof is based on the following observation: if Σ := (X ,Y,MU,MD,φ,H) is
T -periodic then for all (t0, x0, u, d) ∈ �+ × X × MU × MD it holds that φ(t, t0, x0, u, d) =
φ(t − kT , t0 − kT , x0,PkT u,PkT d) and H(t,φ(t, t0, x0, u, d), u(t)) = H(t − kT ,φ(t − kT , t0 −
kT , x0,PkT u,PkT d), (PkT u)(t − kT )), where k := [t0/T ] denotes the integer part of t0/T and
the inputs PkT u ∈ MU , PkT d ∈ MD are defined in Definition 2.1.

Since Σ := (X ,Y,MU,MD,φ,H) is RGAOS, there exist functions σ ∈ KL, β ∈ K+ such
that (3.1) holds for all (t0, x0, d) ∈ �+ × X × MD and t � t0. Consequently, it follows that the
following estimate holds for all (t0, x0, d) ∈ �+ ×X × MD and t � t0:

∥∥H
(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y � σ

(
β

(
t0 −

[
t0

T

]
T

)
‖x0‖X , t − t0

)
.

Since 0 � t0 − [
t0
T

]
T < T , for all t0 � 0, it follows that the following estimate holds for all

(t0, x0, d) ∈ �+ ×X × MD and t � t0:∥∥H
(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y � σ̃

(‖x0‖X , t − t0
)
,

where σ̃ (s, t) := σ(rs, t) and r := max{β(t); 0 � t � T }. The previous estimate in conjunc-
tion with Definition 3.4 implies that Σ := (X ,Y,MU,MD,φ,H) is URGAOS. The proof is
complete. �

One of the most important tools for establishing RGAOS for a control system is the Lya-
punov functional. The following theorem shows that the existence of a Lyapunov functional is a
necessary and sufficient condition for RGAOS for systems that satisfy the following hypothesis:
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(A2) There exists a constant r > 0, a continuous, bounded, positive function h :�+ × �+ →
(0, r] and a partition π = {Ti}∞i=0 of �+ such that for every (t0, x0, d) ∈ �+ × X × MD ,
it holds that π(t0, x0, u0, d) ∩ [b(t0,‖x0‖X ), t0 + r] �= ∅, where b(t, ρ) := min{pπ(t), t +
h(t, ρ)}.

Remark 3.6.

(a) Hypothesis (A2) holds automatically for the case of the classical semigroup property;
namely if for all (t0, x0, u, d) ∈ �+ × X × MU × MD , there exists t > t0 such that
[t0, t) ⊆ π(t0, x0, u, d). Hence, property (A2) is satisfied by systems described by ordi-
nary differential equations (finite-dimensional) as well as systems described by retarded
functional differential equations. Moreover, hypothesis (H4) guarantees that hypothesis
(A2) holds for system (1.1) under hypotheses (H1)–(H4) if system (1.1) is RFC (with
h(t, ρ) := min|x|�ρ hl(t, x,0)).

(b) Notice that hypothesis (A2) guarantees the existence of τ ∈ (t0, t0 + r] such that τ ∈
π(t0, x0, u0, d) for all (t0, x0, d) ∈ �+ ×X × MD . Thus for all (t0, x0, d) ∈ �+ ×X × MD ,
it follows that the set π(t0, x0, u0, d) \ {t0} cannot be empty.

Theorem 3.7 (Lyapunov functionals). Suppose that the control system Σ := (X ,Y,MU,MD,

φ,H) with outputs satisfies hypothesis (A2) and the BIC property and 0 ∈ X is a robust equilib-
rium point for Σ . System Σ is RGAOS if and only if there exist mappings V :�+ × X → �+,
β,γ,μ ∈ K+ with

∫ +∞
0 γ (t) dt = +∞, ϕ ∈ E , a1, a2 ∈ K∞ and a locally Lipschitz positive

definite function ρ :�+ → �+, such that for every (t0, x0, d) ∈ �+ × X × MD there exists
τ ∈ π(t0, x0, u0, d)∩ [b(t0,‖x0‖X ), t0 + r], where b(t, ρ) := min{pπ(t), t +h(t, ρ)} is the func-
tion involved in hypothesis (A2), with (τ, t0, x0, u0, d) ∈ Aφ and the following properties:

a1
(∥∥H

(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y + μ(t)

∥∥φ(t, t0, x0, u0, d)
∥∥
X

)
� V (t0, x0) � a2

(
β(t0)‖x0‖X

) ∀t ∈ [t0, τ ], (3.5a)

V
(
τ,φ(τ, t0, x0, u0, d)

)
� η

(
τ, t0,V (t0, x0)

)
, (3.5b)

where η(t, t0, η0) denotes the unique solution of the initial value problem:

η̇ = −γ (t)ρ(η) + γ (t)ϕ

( t∫
0

γ (s) ds

)
, η(t0) = η0 � 0. (3.5c)

Particularly,

(a) if system Σ := (X ,Y,MU,MD,φ,H) is RGAOS then there exist mappings V :�+ ×X →
�+, μ,β ∈ K+, a1, a2 ∈ K∞ such that for every (t0, x0, d) ∈ �+ × X × MD and τ ∈
π(t0, x0, u0, d) properties (3.5a)–(3.5c) are satisfied with η(t, t0, s) := exp(−(t − t0))s,
ρ(s) := s, γ (t) ≡ 1 and ϕ(t) ≡ 0,

(b) if ϕ(t) ≡ 0, γ (t) ≡ 1 and if for every (t0, x0, d) ∈ �+ × X × MD we have in addi-
tion a1(‖H(t,φ(t, t0, x0, u0, d),0)‖Y ) � V (t0, x0) � a2(‖x0‖X ) for all t ∈ [t0, τ ], where
τ ∈ π(t0, x0, u0, d) ∩ [b(t0,‖x0‖X ), t0 + r] the time for which (3.5a)–(3.5b) hold, then Σ is
URGAOS.
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Proof. Suppose first that Σ := (X ,Y,MU,MD,φ,H) is RGAOS. Then by virtue of state-
ment (ii) of Theorem 3.6 in [16] there exist functions μ,β ∈ K+, σ ∈ KL such that for every
(t0, x0, d) ∈ �+ ×X × MD , we have:∥∥H

(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y + μ(t)

∥∥φ(t, t0, x0, u0, d)
∥∥
X

� σ
(
β(t0)‖x0‖X , t − t0

) ∀t � t0. (3.6)

Moreover, by recalling Proposition 7 in [26] there exist functions a1, a2 of class K∞, such that the
KL function σ(s, t) is dominated by a−1

1 (exp(−2t)a2(s)). Combining the previous observations
with estimate (3.6) we obtain the following estimate that holds for all (t0, x0, d) ∈ �+ ×X ×MD :

a1
(∥∥H

(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y + μ(t)

∥∥φ(t, t0, x0, u0, d)
∥∥
X

)
� exp

(−2(t − t0)
)
a2

(
β(t0)‖x0‖X

) ∀t � t0. (3.7)

We define for all (t0, x0) ∈ �+ ×X :

V (t0, x0) := sup
{
exp(t − t0)a1

(∥∥H
(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y

+ μ(t)
∥∥φ(t, t0, x0, u0, d)

∥∥
X

); t � t0, d ∈ MD

}
. (3.8)

It is immediate to verify that definition (3.8) in conjunction with estimate (3.7) guarantees that
inequality (3.5a) holds for all (t0, x0, d) ∈ �+ × X × MD and τ ∈ π(t0, x0, u0, d). Moreover,
definition (3.8) guarantees that inequality (3.5b) holds with η(t, t0, s) := exp(−(t − t0))s for all
(t0, x0, d) ∈ �+ ×X ×MD and τ ∈ π(t0, x0, u0, d) (and consequently, (3.5c) holds for ρ(s) := s,
γ (t) ≡ 1 and ϕ(t) ≡ 0).

Conversely, suppose that there exist mappings V :�+ × X → �+, μ,β,γ ∈ K+ with∫ +∞
0 γ (t) dt = +∞, ϕ ∈ E , a1, a2, a ∈ K∞ and a locally Lipschitz positive definite func-

tion ρ :�+ → �+ with ρ(s) < s for all s > 0, such that inequalities (3.5a)–(3.5b) hold with
η(t, t0, η0) being the unique solution of the initial value problem (3.5c). By virtue of Lemma 3.3
in [16], it suffices to show that Σ := (X ,Y,MU,MD,φ,H) is RFC and satisfies the robust out-
put attractivity property (property (P3) of Definition 3.1). Notice that Lemma 5.2 in [15] implies
that there exist a function σ(·) ∈ KL and a constant M > 0 such that the following inequalities
are satisfied for all t0 � 0:

0 � η(t, t0, η0) � σ
(
η0 + M,q(t, t0)

) ∀t � t0, ∀η0 � 0, (3.9a)

where q(t, t0) := ∫ t

t0
γ (s) ds. Furthermore, if ϕ(t) ≡ 0, γ (t) ≡ 1, it follows from Lemma 4.4 in

[20] that there exists σ(·) ∈ KL such that the following inequalities are satisfied for all t0 � 0:

0 � η(t, t0, η0) � σ(η0, t − t0) ∀t � t0, ∀η0 � 0. (3.9b)

Let arbitrary (t0, x0, d) ∈ �+ × X × MD and let τ0 = t0. We consider the sequence xi =
φ(τi, τi−1, xi−1, u0, d), i � 1, and τi ∈ π(τi−1, xi−1, u0, d) ∩ [b(τi−1,‖xi−1‖X ), τi−1 + r],
i � 1, for which (3.5a)–(3.5b) hold with (τi−1, xi−1) in place of (t0, x0). By virtue of the weak
semigroup property (property (4) of Definition 2.1) we have τi ∈ π(t0, x0, u0, d), τi � t0 + ir

and xi = φ(τi, t0, x0, u0, d) for all i � 1. The semigroup property for η(t, t0, η0) in conjunction
with inequality (3.5b) and trivial induction arguments imply that

a1
(∥∥H

(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y + μ(t)

∥∥φ(t, t0, x0, u0, d)
∥∥
X

)
� V (τi−1, xi−1)

� η
(
τi−1, t0,V (t0, x0)

)
for all i � 1 and t ∈ [τi−1, τi]. (3.10)
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Combining (3.5a) and (3.9a) with (3.10) and using the fact that max{t0, t − r} � τi−1 for t ∈
[τi−1, τi], i � 1, we obtain for all i � 1 and t ∈ [t0, τi]:

a1
(∥∥H

(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y + μ(t)

∥∥φ(t, t0, x0, u0, d)
∥∥
X

)
� σ

(
a2

(
β(t0)‖x0‖X

) + M,q
(
max{t0, t − r}, t0

))
(3.11)

which directly implies

a1
(∥∥H

(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y + μ(t)

∥∥φ(t, t0, x0, u0, d)
∥∥
X

)
� σ

(
a2

(
β(t0)‖x0‖X

) + M,0
)

for all i � 1 and t ∈ [t0, τi]. (3.12)

We next show that (t, t0, x0, u0, d) ∈ Aφ for all t � t0. By virtue of estimate (3.12) and
the BIC property, it suffices to show that τi → +∞. Let arbitrary T > 0. Since the set

[0, T + r] × [0, ε] is compact, where ε := a−1
1 (σ (a2(β(t0)‖x0‖X )+M,0))

min{μ(t); t∈[0,T +r]} and h is continuous, we
have s := min{h(t, ρ); (t, ρ) ∈ [0, T + r] × [0, ε]} > 0. Consider the infinite sequence {yi}∞i=0
which satisfies yi+1 = min{pπ(yi), yi + s}, i = 1,2, . . . , with y0 = 0. By virtue of Claim 1
showed in the proof of Proposition 2.5 we have yi → +∞ and consequently for every T > 0,
there exists integer N > 0, such that yN > T + r . Clearly, the sequence {τi}∞i=0 satisfies
τi+1 � min{pπ(τi), τi + s} for all integers i for which τi � T + r . By virtue of Theorem 1.6.1
in [19] (Comparison principle) we have τi � yi , for all integers i for which τi � T + r , which
implies τN > T .

It follows that estimates (3.11) and (3.12) hold for all t � t0. Robust forward completeness is
an immediate consequence of (3.12) and the robust output attractivity property (property (P3) of
Definition 3.1) is an immediate consequence of estimate (3.11).

Notice that if ϕ(t) ≡ 0, γ (t) ≡ 1, and if for every (t0, x0, d) ∈ �+ ×X × MD we have in ad-
dition a1(‖H(t,φ(t, t0, x0, u0, d),0)‖Y ) � V (t0, x0) � a2(‖x0‖X ) for all t ∈ [t0, τ ], then using
(3.9b) instead of (3.9a), we obtain in addition the following estimate for all t � t0:

a1
(∥∥H

(
t, φ(t, t0, x0, u0, d),0

)∥∥
Y

)
� σ

(
a2

(‖x0‖X
)
,max{0, t − t0 − r}).

The above estimate directly implies that Σ is URGAOS. The proof is complete. �
4. Applications to numerical analysis

The relation between the qualitative behavior of the numerical solutions of initial value prob-
lems described by systems of ordinary differential equations and the qualitative behavior of the
“actual” solution, is a well-known problem in numerical analysis and the fundamental work of
Dahlquist is now part of numerical analysis textbooks (see, for instance, [23] as well as [7,19,
30] for an exposition to the numerical problem from a “difference equation” point of view). For
numerical discretization schemes, the important questions of order and local discretization error,
consistency and numerical stability have been studied extensively (see, for instance, the refer-
ences in [19,30]) and have been related to the qualitative behavior of the numerical solutions for
linear systems. For non-linear systems the questions concerning the relation between the attract-
ing sets of the continuous-time (“original”) system and its numerical approximation are answered
in [7,30]. Both monographs present results that apply to discretization methods with fixed time
step.

In the present work we assume that the following autonomous finite-dimensional (non-linear)
system

ż(t) = f
(
z(t), d(t)

)
, z(t) ∈ �n, d(t) ∈ D, Y = z, (4.1)
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is URGAS, where D ⊂ �l is a compact set, MD the set of measurable and locally bounded inputs
d :�+ → D, f :�n ×D → �n is a continuous vector field with f (0, d) = 0 for all d ∈ D, locally
Lipschitz for z �= 0 uniformly in d ∈ D. Let a homeomorphism Φ :�n → �n with Φ(0) = 0,
which is C1 on �n and consider the numerical approximation of (4.1) with variable integration
step size under the change of coordinates x = Φ(z):

ẋ(t) = F
(
hi, x(τi), d(τi)

)
, t ∈ [τi, τi+1),

τ0 = t0, τi+1 = τi + hi,

hi = min
{
pπ(τi) − τi; exp

(−u(τi)
)}

,

Y (t) = Φ−1(x(t)
)
, (4.2)

where π = {Ti}∞i=0 is a partition of �+, F :�+ × �n × D → �n is a (not necessarily con-
tinuous) vector field with F(h,0, d) = 0 for all (h, d) ∈ �+ × D, limh→0+ F(h,Φ(z), d) =
DΦ(z)f (z, d) for all (z, d) ∈ �n × D. Notice that the condition limh→0+ F(h,Φ(z), d) =
DΦ(z)f (z, d) is a consistency condition for the numerical scheme applied to (4.1) under the
coordinate change x = Φ(z). Clearly, for every partition π = {Ti}∞i=0 of �+, system (4.2) is
a hybrid system of the form (1.1) with U := [0,+∞) ⊂ U := �, R(τ, x, x0, u,u0, d, d0) := x,
f (t, τ, x, x0, u,u0, d, d0) := F(h,x0, d0), H(t, x) := Φ−1(x) and h(τ, x0, u0, d0) :=
min{pπ(τ) − τ ; exp(−u0)} for all (t, τ, x, x0, u,u0, d, d0) ∈ �+ × �+ × �n × �n × U × U ×
D × D. Notice that system (4.2) fails to be autonomous. However, if the partition π = {Ti}∞i=0 is
periodic (e.g., π = {iT }∞i=0 for certain T > 0), then system (4.2) is periodic. Furthermore, notice
that hypotheses (H1), (H3) and (H4) are automatically satisfied for system (4.2). If in addition
there exists a ∈ K∞ such that |F(h,x, d)| � a(|x|) for all (h, x, d) ∈ �+ × �n × D with h � 1,
then hypothesis (H2) is satisfied as well.

In the above framework, the explicit Euler method corresponds to F(h,x, d) := DΦ(Φ−1(x))

f (Φ−1(x), d), while for the implicit Euler method the vector field F(h,x, d) is defined by the
formula F(h,x, d) := DΦ(Φ−1(y))f (Φ−1(y), d), were y ∈ �n is one of the solutions of the
equation:

y − x − hDΦ
(
Φ−1(y)

)
f

(
Φ−1(y), d

) = 0. (4.3)

In case that (4.3) admits no solutions, F(h,x, d) may be defined in an arbitrary way. Simi-
larly, the vector field F(h,x, d) may be defined for all Runge–Kutta methods. Notice that one
advantage of the framework presented in the present work is that variable step sizes can be
represented easily, by selecting in an appropriate way the partition π = {Ti}∞i=0 and the input
u :�+ → [0,+∞).

We consider whether the step size can be selected appropriately so that the numerical solution
of (4.2) has the same qualitative properties (for example, limt→+∞ |Y(t)| = 0) with the “actual”
solution of system (4.1). In terms of the stability theory given in the previous section, we may
state this problem in the following way:

(P) Construct a homeomorphism Φ :�n → �n with Φ(0) = 0, which is C1 on �n and a continu-
ous function ϕ :�n → [0,+∞), such that for each partition π = {Ti}∞i=0 of �+ system (4.2)
with u(t) = ϕ(x(t)) is URGAOS.

Clearly, the solvability of problem (P) is very important, since non-solvability would imply
that the numerical solution is useless. Moreover, solvability of problem (P) guarantees that the
global discretization error is bounded on the positive semi-axis. Partial answers to problem (P)
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are given in [19,30], for the disturbance-free case, where the notions of A-stability and B-stability
of Runge–Kutta (theta) methods with no coordinate change play an important role to the follow-
ing cases:

(1) Linear case: f (x) := Ax, where the matrix A is Hurwitz.
(2) Dissipative case: x′f (x) � −β|x|2 for all x ∈ �n and for certain constant β > 0.

In the above cases ϕ :�n → [0,+∞) may be selected to be constant, i.e., ϕ(x) ≡ r > 0 (case
of fixed step size).

The reader should notice that problem (P) is actually a feedback stabilization problem, where
the feedback function ϕ :�n → [0,+∞) determines the integration step size. Consequently,
a second advantage of the framework presented in the present work is that feedback control
theory tools (in principle) can be applied in order to stabilize system (4.2), i.e., solve problem (P).

We next state the main result of the section.

Theorem 4.1. If n �= 4,5 then problem (P) is solvable for the implicit Euler method.

It should be emphasized that the result of Theorem 4.1 is novel even in the disturbance-free
case. For the proof of Theorem 4.1 we rely on three results: (i) the major result showed in [5],
which guarantees the existence of a change of coordinates for (4.1) such that the transformed
system is exponentially stable, (ii) Brouwer’s fixed point theorem, and finally (iii) Theorem 3.7
of the previous section. The reason for the restriction of dimension of system (4.1) is closely
related to the original Poincaré conjecture as remarked in [5].

Proof of Theorem 4.1. If n �= 4,5 and (a) f :�n × D → �n is a continuous vector field with
f (0, d) = 0 for all d ∈ D, locally Lipschitz for z �= 0, uniformly in d ∈ D, (b) D ⊂ �l is a
compact set, and (c) system (4.1) is URGAS, then by virtue of the procedure in the proof of
Theorem 2 in [5], there exist a positive definite matrix Q ∈ �n×n, a constant c > 0 and a homeo-
morphism Φ :�n → �n with Φ(0) = 0, which is C1 on �n and is a diffeomorphism on �n \ {0}
such that for the system (4.1) under the change of coordinates x = Φ(z), namely, the finite-
dimensional system

ẋ(t) = f̃
(
x(t), d(t)

)
, x(t) ∈ �n, (4.4)

where f̃ (x, d) := DΦ(Φ−1(x))f (Φ−1(x), d), satisfies

x′Qf̃ (x, d) � −cx′Qx ∀(x, d) ∈ �n × D. (4.5)

Define for each (R,x) ∈ �+ × �n:

ax(R) := R + max
{∣∣f̃ (y, d) − f̃ (x, d)

∣∣; d ∈ D, y ∈ BR(x)
}
, (4.6a)

γ (x) := max
{∣∣f̃ (x, d)

∣∣; d ∈ D
}
, (4.6b)

where BR(x) := {y ∈ �n; |y − x| � R}. Clearly, by virtue of compactness of the set D × BR(x)

and upper and lower semi-continuity of the set-valued map (R,x) → D × BR(x), it follows
from Theorem 1.4.16 in [1] that the mapping (R,x) → ax(R), defined by (4.6a), is contin-
uous and ax ∈ K∞ for each fixed x ∈ �n. We denote by a−1

x ∈ K∞ the inverse function of
ax ∈ K∞ for each x ∈ �n. Since the mapping (R,x) → ax(R) is continuous, we have the map-
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ping (R,x) → a−1
x (R) is continuous. Similarly, by virtue of compactness of the set D, it follows

that the mapping x → γ (x), defined by (4.6b), is continuous. Next define:

ϕ(x) := − log

(
a−1
x (γ (x) + 1)

2γ (x) + 1

)
. (4.7)

Definition (4.7) implies that ϕ is a continuous function. The fact that ϕ is non-negative
follows from definition (4.6a), which implies ax(γ (x) + 1) � γ (x) + 1 and consequently
a−1
x (γ (x) + 1) � γ (x) + 1 for all x ∈ �n. The previous inequality in conjunction with defin-

ition (4.7) implies

a−1
x (γ (x) + 1)

2γ (x) + 1
� 1 ∀x ∈ �n. (4.8)

We next establish the following claims for the homeomorphism Φ :�n → �n given above and
the continuous function ϕ :�n → [0,+∞) defined by (4.7):

(1) For each (h, x, d) ∈ �+ × �n × D, with h � exp(−ϕ(x)), the set of all solutions y ∈ �n of
Eq. (4.3), denoted by G(h,x, d) ⊆ �n, is non-empty.

(2) For every selection F(h,x, d) ∈ G(h,x, d) (not necessarily continuous), system (4.2) with
u(t) = ϕ(x(t)) and ϕ :�n → [0,+∞) defined by (4.7) satisfies hypothesis (H2).

(3) For every partition π = {Ti}∞i=0 of �+, the quadratic function V (x) := x′Qx satisfies the
hypotheses of statement (b) of Theorem 3.7 for system (4.2) with u(t) = ϕ(x(t)) and
ϕ :�n → [0,+∞) defined by (4.7).

It follows from Theorem 3.7 that for every partition π = {Ti}∞i=0 of �+, system (4.2) with
u(t) = ϕ(x(t)) and ϕ :�n → [0,+∞) defined by (4.7) is URGAOS.

Proof of the first claim. It suffices to show that for each (h, x, d) ∈ �+ × �n × D with h �
exp(−ϕ(x)) there exists R > 0 such that the continuous mapping Ph,x,d (y) := x + hf̃ (y, d)

maps BR(x) := {y ∈ �n; |y−x| � R} into BR(x). It follows from Brouwer’s fixed point theorem
that for each (h, x, d) ∈ �+ × �n × D, there exists at least one solution of Eq. (4.3).

Let R := a−1
x (γ (x) + 1), where the functions ax , γ are defined by (4.6a), (4.6b). Clearly,

using definitions (4.6a), (4.6b) we have for all y ∈ BR(x):∣∣Ph,x,d (y) − x
∣∣ = h

∣∣f̃ (y, d)
∣∣ � h

∣∣f̃ (y, d) − f̃ (x, d)
∣∣ + h

∣∣f̃ (x, d)
∣∣ � hax(R) + hγ (x)

� h
(
2γ (x) + 1

)
.

Since h � exp(−ϕ(x)), where ϕ is defined by (4.7), we obtain from the above inequality:∣∣Ph,x,d (y) − x
∣∣ � a−1

x

(
γ (x) + 1

) = R.

Thus we have Ph,x,d (y) ∈ BR(x) for all y ∈ BR(x). �
Proof of the second claim. Notice that for all (h, x, d) ∈ �+ × �n × D and every solution
y ∈ �n of (4.3) we have by virtue of (4.5):

2hx′Qf̃ (y, d) = 2hy′Qf̃ (y, d) − 2h2f̃ ′(y, d)Qf̃ (y, d)

� −2hcy′Qy − 2h2f̃ ′(y, d)Qf̃ (y, d).

The previous inequality implies the following estimate for all (h, x, d) ∈ �+ ×�n ×D and every
solution y ∈ �n of (4.3):
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y′Qy � 1

1 + 2hc
x′Qx. (4.9)

Notice that since Q ∈ �n×n is positive definite, there exist constants K1,K2 > 0 such that:

K1|x|2 � x′Qx � K2|x|2 ∀x ∈ �n. (4.10)

Let a selection F(h,x, d) ∈ G(h,x, d) for all (h, x, d) ∈ �+ × �n × D with h � exp(−ϕ(x)),
where G(h,x, d) ⊆ �n denotes the set of solutions y ∈ �n of (4.3) for each fixed (h, x, d) ∈
�+ × �n × D. Clearly, inequalities (4.9), (4.10) imply that the following inequality holds for all
(h, x, d) ∈ �+ × �n × D with h � exp(−ϕ(x)):

|y| �
(

K2

K1

) 1
2 |x|.

It follows from continuity of f , DΦ , Φ−1 and definition F(h,x, d) := DΦ(Φ−1(y)) ×
f (Φ−1(y), d) that for every selection F(h,x, d) ∈ G(h,x, d) (not necessarily continuous),
system (4.2) with u(t) = ϕ(x(t)) and ϕ :�n → [0,+∞) defined by (4.7) satisfies hypothe-
sis (H2). �
Proof of the third claim. First notice that for every partition π = {Ti}∞i=0 of �+, hypothesis
(A2) is satisfied for system (4.2) with h(t, ρ) := min{exp(−ϕ(x)); |x| � ρ} and r := 1. Since
Φ :�n → �n is a homeomorphism with Φ(0) = 0, there exists a function a ∈ K∞ such that:∣∣Φ−1(x)

∣∣ � a
(|x|) ∀x ∈ �n. (4.11)

Let (t0, x0, d) ∈ �+ × �n × MD and let τ = min{pπ(t0), t0 + ϕ(x0)}. Clearly, we have τ ∈
π(t0, x0, u0, d) ∩ [b(t0,‖x0‖X ), t0 + 1], where b(t, ρ) := min{pπ(t), t + h(t, ρ)} the function
involved in hypothesis (A2) with h(t, ρ) := min{exp(−ϕ(x)); |x| � ρ}. Notice that the solution
of (4.2) on [t0, τ ] is given by

x(t) = τ − t

τ − t0
x0 + t − t0

τ − t0
y, (4.12)

where y ∈ �n is one of the solutions of the equations y − x0 − hDΦ(Φ−1(y))f (Φ−1(y), d(t0))

= 0 with h = min{p(t0) − t0, exp(−ϕ(x0))} > 0. Let γ > 0 appropriate constant such that
exp(γ h) � 1 + 2ch for all h ∈ [0,1]. Inequality (4.9) and Eq. (4.12) imply that:

V
(
x(τ)

)
� exp

(−γ (τ − t0)
)
V (x0), (4.13)

where V (x) := x′Qx. Thus the function V satisfies inequality (3.5b) of Theorem 3.7 with
η(t, t0, s) := s exp(−γ (t − t0)). Consequently, (3.5c) holds with ϕ(t) ≡ 0, γ (t) ≡ 1 and ρ(s) :=
γ s. Moreover, by virtue of (4.10)–(4.12) we conclude that inequality (3.5a) of Theorem 3.7

holds with a2(s) := K2s
2, β(t) = μ(t) ≡ 1, a1(s) := 1

2K1 min
{(

a−1
(

s
2

))2
, s2

4

}
. The proof is

complete. �
Remark 4.2.

(a) It should be emphasized that the role of the feedback function ϕ :�n → [0,+∞) is to guar-
antee that the integration step size h is sufficiently small so that Eq. (4.3) admits at least one
solution. If Eq. (4.3) happens to be solvable for all h � 0 then ϕ :�n → [0,+∞) may be
selected to be constant, i.e., ϕ(x) ≡ r > 0 (case of fixed step size).
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(b) Notice that the procedure in the proof of Theorem 2 in [5], shows that (4.5) holds with
Q = I (the identity matrix). However, we chose to write (4.5) for a positive definite sym-
metric matrix Q ∈ �n×n since (4.5) becomes less demanding (for example, in Example 4.3
below, if (4.5) was written with Q = I then (4.5) would not hold and an additional linear
transformation would be necessary).

(c) Notice that one disadvantage of the proposed (modified) implicit Euler method given by
(4.3) is that there is no systematic procedure for the construction of the homeomorphism
Φ :�n → �n with Φ(0) = 0, which is C1 on �n and is a diffeomorphism on �n \ {0}
such that the (transformed) system (4.1) under the change of coordinates x = Φ(z), satis-
fies (4.4) and (4.5). However, we are in a position to identify a class of non-linear control
systems (named systems in strict feedback form), which arise frequently in feedback sta-
bilization problems in mathematical control theory, where the transformation Φ :�n → �n

can be given explicitly (see Example 4.3) or a systematic procedure for the construction of
Φ :�n → �n can be applied (backstepping method, see Example 4.4). Since the behavior
of the closed-loop system is usually tested numerically, the application of the implicit Euler
method given by (4.3) for the transformed system guarantees that the simulation will produce
qualitatively correct results.

Example 4.3. Consider the following non-linear finite-dimensional control system:

żi = fi(z1, . . . , zi) + zi+1, 1 � i � n − 1,

żn = fn(z1, . . . , zn) + u,

z = (z1, . . . , zn)
′ ∈ �n, u ∈ �, (4.14)

where each function fi :�i → � (i = 1, . . . , n) is of class Cn−i (�i;�) and satisfies fi(0, . . . ,0)

= 0. Systems of the form (4.14) are called triangular systems or systems in strict feedback form
(see [4,18]). One way to construct a feedback law u = k(z) such that the origin is a globally
asymptotically stable equilibrium point for (4.14) with u = k(z) is the so-called method of feed-
back linearization (see [12]). The method consists of two steps:

Step 1. Define recursively the functions ϕi :�i → � (i = 1, . . . , n) using the condition:

ϕi(z1, . . . , zi) :=
i−1∑
j=1

(
fj (z1, . . . , zj ) + zj+1

)∂ϕi−1

∂zj

(z1, . . . , zi−1), i = 2, . . . , n. (4.15)

Particularly, for i = 1, we have:

ϕ1(z1) := z1. (4.16)

It is clear that the functions defined by (4.15), (4.16) satisfy ∂ϕi

∂zi
≡ 1, ϕi(0, . . . ,0) = 0 (i =

1, . . . , n) and consequently the transformation Φ :�n → �n defined by

Φ(z) := (
ϕ1(z1) ϕ2(z1, z2) . . . ϕn(z1, . . . , zn)

)′ (4.17)

is a global diffeomorphism on �n with Φ(0) = 0.
Step 2. Define the feedback function:

k(z) := −fn(z1, . . . , zn) −
n−1∑
j=1

(
fj (z1, . . . , zj ) + zj+1

)∂ϕn

∂zj

(z1, . . . , zn)

−
n∑

qjϕj (z1, . . . , zj ), (4.18)

j=1
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where qi (i = 1, . . . , n) are positive numbers such that the polynomial p(s) := sn + qns
n−1 +

· · · + q2s + q1 is Hurwitz.
The diffeomorphism (4.17) transforms the closed-loop system (4.14) with u = k(z) under the

change of coordinates x = Φ(z), to the linear system:

ẋ = Ax with A :=

⎡
⎢⎢⎣

0 1 . . . 0
...

...
...

0 0 . . . 1
−q1 −q2 . . . −qn

⎤
⎥⎥⎦ , (4.19)

where A is a Hurwitz matrix. Thus there exists a positive definite matrix Q ∈ �n×n and a constant
c > 0 such that (4.5) holds for the transformed closed-loop system. It follows that problem (P)
is solvable for the implicit Euler method based on the diffeomorphism Φ :�n → �n defined by
(4.15)–(4.17), with constant step size, i.e., for every r > 0 and for every partition π = {Ti}∞i=0 of
�+ the hybrid system:

ẋ(t) = h−1
i

(
(I − hiA)−1 − I

)
x(τi), t ∈ [τi, τi+1),

τ0 = t0, τi+1 = τi + hi,

hi = min
{
pπ(τi) − τi; r

}
,

Y (t) = Φ−1(x(t)
)

(4.20)

is URGAOS.

Example 4.4. Consider the following non-linear finite-dimensional control system:

żi =
i∑

j=1

φij (d, z1, . . . , zi)zj + gi(d, z1, . . . , zi)zi+1, 1 � i � n − 1,

żn =
n∑

j=1

φnj (d, z1, . . . , zn) + gn(d, z1, . . . , zn)u,

z = (z1, . . . , zn)
′ ∈ �n, u ∈ �, d ∈ D, (4.21)

where D ⊂ �l is compact, each function φij :D × �i → � (i = 1, . . . , n, j = 1, . . . , i) is
continuous and each function gi :D × �i → � (i = 1, . . . , n) is continuous and satisfies
gi(d, z1, . . . , zi) �= 0 for all (d, z1, . . . , zi) ∈ D ×�i . Systems of the form (4.14) are called trian-
gular systems or systems in strict feedback form (see [4,18]). A feedback law u = k(z) such that
the origin is a robustly globally asymptotically stable equilibrium point for (4.21) with u = k(z)

is the backstepping method presented in [4]. The method provides a systematic procedure for
the construction of a global diffeomorphism on �n with Φ(0) = 0 such that (4.5) holds with
Q = I for the transformed closed-loop system (4.21) with u = k(z). It follows that problem (P)
is solvable for the implicit Euler method. We conclude that for the triangular case (4.21) the
backstepping method is a step-by-step procedure that allows the construction of: (a) a robust
feedback stabilizing law, (b) a control Lyapunov function, and (c) a reliable numerical scheme.

5. Conclusions

A system-theoretic framework is proposed in the present paper, which allows the study of
hybrid uncertain systems, which do not satisfy the “semigroup property.” Characterizations of
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robust global asymptotic output stability (RGAOS) are given. Based on the provided character-
izations, the qualitative behavior of hybrid systems obtained by solving numerically systems of
ordinary differential equations is studied. Specifically, the implicit Euler method is considered
and it is shown that for an autonomous continuous-time system with a globally asymptotically
stable equilibrium point, the implicit Euler method applied to an equivalent system (which has
been extracted through an appropriate change of coordinates) produces a hybrid system with
a globally asymptotically stable equilibrium point. This implication is important for numerical
analysis. The proof of this result uses the stability theory developed in this work and a major
theorem proved recently in [5] for autonomous continuous-time finite-dimensional systems.
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