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On the Observer Problem for Discrete-Time Control
Systems

Iasson Karafyllis and Costas Kravaris

Abstract—This paper studies the construction of observers for
nonlinear time-varying discrete-time systems in a general context,
where a certain function of the states must be estimated. Ap-
propriate notions of robust complete observability are proposed,
under which a constructive proof of existence of an observer is
developed. Moreover, a “transitive observer property” is proven,
according to which a state observer can be generated as the
series connection of two observers. The analysis and the results
are developed in general normed linear spaces, to cover both
finite-dimensional and infinite-dimensional systems.

Index Terms—Discrete-time systems, observer, state estimation.

I. INTRODUCTION

THE observer design problem for nonlinear discrete-time
systems with or without inputs has attracted the interest

of many researchers and important results on the nonlinear
observer design problem can be found in [1], [5], [6], [8], [12],
[15], [16], [19], and [26]. The observer design problem for
the linear case for finite-dimensional discrete-time systems is
now well understood (see the corresponding results provided
in [22] and the references therein), but remains still an open
problem for infinite-dimensional systems. Results concerning
the dead-beat observer synthesis problem were provided in
[25]. In [19], a Newton iteration approach was used for the
solution of a set of nonlinear algebraic equations, which pro-
vided estimates of the states. The applications of solutions
to the nonlinear observer design problem for discrete-time
systems are widespread (see, for instance, [11], [14], and [17]
for applications to the output feedback stabilization problem).
Finally, it should be emphasized that the nonlinear observer
design problem for the discrete-time case is closely related to
the corresponding problem in the continuous-time case when
sampling is introduced (see, for instance, [2] and [9]) as well as
with the observability problem for discrete-time systems (see,
for instance, [18], [22], and [23]).

In this paper, the focus will be on the functional observer
design problem, where the objective is to estimate a given
nonlinear function of the state vector, instead of the entire state
vector. Functional observers have been studied extensively
for continuous-time linear systems (see [7] and the references
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therein), and have been applied to the problem of output feed-
back controller synthesis, where the function to be estimated is
the state feedback function.

In order to provide an informal introduction to the general
ideas of this paper, let us consider a finite-dimensional discrete-
time system of the form

(1)

where represents the measurement. Moreover, consider an-
other output

(2)

where a given function of the states, and
the objective is to design a functional observer to estimate the
output , driven by the measurement of .

In order to study the functional observer design problem, ap-
propriate notions of (functional) observability must be intro-
duced and, subsequently, the existence of a functional observer
must be established. Motivated by problems of inferential con-
trol, where the dynamic system can be subject to unknown ex-
ternal disturbances, notions of robust complete observability
will be introduced in this paper, for the case where the right hand
side of (1) also depends on unknown disturbances . More-
over, in order to make the theoretical formulation more general,
the analysis will be performed with the inputs, states and out-
puts belonging to subsets of general normed linear spaces (not
necessarily finite-dimensional). Even though finite-dimensional
systems are intended to be the primary target of the present
work, results will be applicable to infinite-dimensional systems,
which are currently attracting interest in the literature (see [3]
and [20]).

The development of the solution of the functional observer
problem is constructive, leading to a set of conditions that deter-
mine the functional observer. In addition to inferential control
applications, the proposed functional observer can be useful for
the construction of a regular full-state observer. To illustrate this
point, consider the following simple example:

(3)

with measured output

(4)
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where is a constant with and
are continuous functions that vanish at . This is a
finite-dimensional autonomous discrete-time system possessing
a special structure that could be exploited for the construction
of a state observer. Suppose for the moment that, instead
of (4)

(5)

was the measured output. Then, the third equation of (3) could
be simulated online, forming a reduced-order open-loop ob-
server for the system

(6)

Then, the estimation error satisfies
for all ; therefore, we have exponential con-

vergence of the estimates.
Now, since the measurement is actually and

not , we must find a way to estimate .
Considering the second equation of (3), we see that the right
hand side can be immediately calculated from and .
This leads to the following deadbeat observer for (for details,
see Proposition 14 and Example 19):

Equivalently, the auxiliary output (5) can be estimated from the
measured output (4) from the measured output (4) via the fol-
lowing functional observer:

(7)

Intuitively, a state observer for the original system should be
able to be constructed by combining the functional observer (7),
followed by the state observer (6) that was constructed on the
basis of the auxiliary output (5)

It turns out that the above system is a global observer for (3),
with exponential convergence of the state estimates. Moreover,
it is the product of a simple and intuitively meaningful construc-
tion. If a general, all-purpose nonlinear design method were to
be applied, it would lead to an unnecessarily complicated ob-
server, since it would not account for the special structure of the
system.

One of the key contributions of the present paper will be
the theoretical justification of the foregoing two-step process
for the design of a nonlinear state observer. In particular,
referring to system (1), when a full-state observer is available

Fig. 1. Transitive observer property.

for the output map (through any available design
method from the literature), and the proposed functional
observer is constructed for the estimation of
from the measured output , we show that their
series connection generates a full-state observer from the
measurement . We call this important property
the “transitive observer property” (TOP) (see Fig. 1). This
property can facilitate the observer design, since certain output
maps may be more convenient for the design of an observer
than the actual measured outputs.

The structure of the paper is as follows: In Section II. we
review fundamental properties and bounds for the solutions of
difference equations with inputs. The results of Section II, will
enable the derivation of convergence estimates in subsequent
sections. In Section III, definitions for the notion of observer
and functional observer for general time-varying nonlinear
discrete-time systems with inputs are provided. The proposed
observer notions are weaker than existing notions in the literature
and make more intuitive sense, as will be seen through an
illustrative example. The proposed observer notions will play
a critical role in establishing the transitive observer property,
which would not hold under more stringent specifications
for the observer. Moreover, in Section III, the definition of
the notion of complete observability is given. In Section IV,
we provide the main results of this paper on the construction
of functional observers and their application to the design
of full-state observers, as well as finite-dimensional and
infinite-dimensional examples illustrating the main results.
Finally, in Section V, some concluding remarks are presented.

Notations:
• By , we denote the norm of the normed linear space

. By we denote the euclidean norm of .
• We denote by the set of non-negative integers and by

the set of non-negative real numbers.
• Let a normed linear space, a non-empty set,

and . We denote by the closed
ball in of radius centered at , i.e.,

.
• We denote by , where is a subset of

the normed linear space and is a normed linear space,
the class of continuous maps with
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the properties that: i) for every pair of bounded sets
the image set is bounded, and ii)
for all .

• We denote by the set of sequences with values in the
set .

• For definitions of classes see [13]. de-
notes the class of positive functions .

• denotes the transpose of the vector and
denotes the transpose of the matrix .

The following convention will be adopted throughout this
paper: The Cartesian product of two normed linear spaces

will be considered to be endowed with the norm
, unless stated otherwise.

II. FUNDAMENTAL PROPERTIES OF THE SOLUTIONS OF

DIFFERENCE EQUATIONS

Consider the following discrete-time system:

(8)

(9)

where is a triplet of normed linear spaces, is the set
of disturbances (or time-varying parameters), is the set
of inputs with and

with and for all
. Let denote the solution of

(8) at time with initial condition
corresponding to inputs (sequences) .

Notions of robust forward completeness and robust equilib-
rium point were introduced in [10] for a wide class of sys-
tems (that encompasses discrete-time systems). In what follows,
these notions will be reviewed, since they will be needed in
subsequent developments. In particular, the following defini-
tions are [10, Defs. 2.2 and 2.3], specialized to the case of dis-
crete-time systems (8).

Definition 1: Let denote the identity zero input, i.e.,
for all . We say that system (8) is

robustly forward complete (RFC) if for every ,

it holds that the first equation at the bottom of the page holds.
We say that system (8) is robustly forward complete (RFC)
from the input if for every , it holds
that the second equation at the bottom of the page holds.

Definition 2: Consider system (8) and let denote the iden-
tity zero input, i.e., for all . We say
that is a robust equilibrium point for (8) if for every

there exists such that the
third equation at the bottom of the page holds.

The following lemma is a specialization of [10, Lemma 3.5]
to the case of discrete-time systems (8). It provides a character-
ization of the RFC property.

Lemma 3: Consider system (8) and let denote the identity
zero input, i.e., for all .

i) (8) is RFC from the input if and only if there
exist functions and a constant

such that the following estimate holds for all
and :

(10)

ii) Equation (8) is RFC, if and only if, there exist functions
and a constant , such that for

every , we have

(11)

Moreover, if is a robust equilibrium point for (8),
then inequality (11) holds with .

Our main assumption concerning system (8) is as follows.
H1) There exist functions such that

, for all
.

The following fact is an important implication of hypothesis
H1) to discrete-time systems (8):
Fact I: There exist functions and a con-
stant such that for every
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, the corresponding solution
of (8) satisfies the following estimate for all :

(12)

To prove Fact I, notice that by virtue of Lemma 3 it suf-
fices to show that system (8) under hypothesis (H1) is Ro-
bustly Forward Complete from the input . This
follows by considering arbitrary , then
defining recursively the sequence of sets in by

for ,
where , which are bounded
by virtue of hypothesis H1) and finally noticing that the
equation at the bottom of the page holds.

Our main assumption concerning the input set is as follows.
H2) is a positive cone, i.e., for all and it
follows that .

The following lemma shows that under hypothesis H2), it is
possible to obtain sharper estimates than estimate (10) for the
solutions of (8).

Lemma 4: Suppose that hypotheses (H1-2) are fulfilled for
system (8). Then there exist functions such
that for every , the corre-
sponding solution of (8) with satisfies estimate
(12) with , i.e.,

(13)

Proof: Consider the following discrete-time dynamical
system:

(14)

where
with norm

. Notice that by virtue of hypothesis H1)
we know that there exist functions such
that , for all

, which directly implies the
following inequality:

(15)

where and .
The fact that system (14) is robustly forward complete can be

shown in exactly the same way as in the proof of Fact I, by
exploiting (15).

We next show that is a robust equilibrium point
for (14). It suffices to show that for every and

there exists such that

where denotes the -component of the
unique solution of (14) initiated from at time

and corresponding to (notice that the
-component of the unique solution of (14) satisfies

for all ). We prove this fact by induction on .
First notice that the fact holds for (by selecting

). We next assume that the fact holds for some
and we prove it for the next integer . In order

to have ,
by virtue of inequality (15) it suffices to have

, where
.

It follows that the selection
guarantees

that

and , for all
.

It follows from Lemma 3 that there exist functions
such that for every

, the solution of (14) with initial
condition and corresponding to input

satisfies

(16)

Finally, notice that that for every
with , the unique solution
of (8), with initial condition and corresponding
to coincides on with the
component of the solution of (14) with initial condition

and corre-
sponding to , where

if and

and

if otherwise

for all
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This observation, in conjunction with inequality (16) gives the
desired estimate (13). The proof is complete.

Our main assumption concerning the output map of system
(8), (9) is as follows.

H3) The output map is continuous and
for every pair of bounded sets the image set

is bounded and for all , i.e.,
(see notations).

The following lemma is an important tool for the derivation
of estimates of the solutions of difference equations and will be
used extensively in the next section of this paper.

Lemma 5: Suppose that hypotheses H1)–H3) are fulfilled for
system (8), (9). Then the following statements are equivalent.

i) System (8), (9) satisfies the robust output attractivity
property, i.e., for every and

, there exists , such that for
every , with

, the solution
of (8), (9) with initial condition and

corresponding to input satisfies

ii) There exist functions and , such that
for every , the
unique solution of (8), (9), with initial condition

and corresponding to ,
satisfies for all

(17)

The proof of Lemma 5 relies on characterizations of the
notion of non-uniform in time robust global asymptotic
output stability (RGAOS), which are provided in [10]
for a wide class of systems with outputs (that includes
discrete-time systems). For reasons of completeness, we
have included all characterizations of non-uniform in
time RGAOS based on [10] in the Appendix, appropri-
ately specialized for the case of discrete-time systems
(8), (9).

Proof: i) ii) Notice that for every
the component of the solu-

tion of (14) with initial condition
and corresponding to coincides on the time set

with the unique solution of (8),
with initial condition and corresponding to

, where

Notice that, as it is shown in the proof of Lemma 4, system
(14) is Robustly Forward Complete and is a robust
equilibrium point for (14). Consequently, by virtue of Lemmas

22 and 23 in the Appendix, in conjunction with hypothesis i)
(which implies the robust output attractivity property for system
(14) with output ), it follows that there exist
functions and , such that for every

the unique solution
of (14), with initial condition and
corresponding to , satisfies

(18)

Moreover, notice that that for every
with , the unique solution
of (8), with initial condition and corresponding to

coincides on the time set with
the component of the solution of (14) with initial condi-
tion and corre-
sponding to , where

if and

and

The previous observation in conjunction with (18) implies the
desired estimate (17).

ii) i) This implication is an immediate consequence of the
properties of the functions.

The proof is complete.
Remark 6: Some comments regarding hypotheses H1)–H3).
The role of hypotheses H1)–H3) is to guarantee the estimates

derived in this section. The estimates of the solutions of differ-
ence equations are used extensively in the following sections in
order to prove the main results of the paper. The following re-
marks apply for each one of the hypotheses H1)–H3).

a) Hypothesis H1) is automatically satisfied if is of class
and is compact. Furthermore, there are certain

classes of discrete-time systems with discontinuous right-
hand sides which satisfy hypothesis H1). Notice that hy-
pothesis H1) implies continuity of only at

and local boundedness of ( maps bounded sets
into bounded sets).

b) Hypothesis H2) is a technical hypothesis, which usually
holds in applications. If hypothesis H2) is not satisfied,
then it may be satisfied after input redefinition, i.e., we
may introduce a locally bounded mapping
with and , where is a positive
cone with and define . Notice that in the
case of input redefinition, the mapping is not
required to be continuous [only continuity at is
required in order to regain hypothesis H1)]. For example,
when is a closed convex set with , we
may define as the (continuous) projection on

.
c) Hypothesis H3) is a standard continuity hypothesis for

the output map in the finite-dimensional case. However,
in the infinite-dimensional case it is not necessary that a
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continuous map maps bounded sets into bounded sets
and consequently, hypothesis H3) guarantees exactly this
additional property.

III. OBSERVERS AND OBSERVABILITY FOR DISCRETE-TIME

SYSTEMS WITH INPUTS

The following definitions introduce notions of estimators and
observers for discrete-time systems.

Definition 7: Let , where is a
normed linear space with and with

. Let be a normed linear space and consider
the system

(19)

where
with and for all

. Suppose that there exist functions and
, such that for every

, the unique solution of (8), (9), and (19) with initial
condition corresponding to inputs

, satisfies for all ; see (20), as shown
at the bottom of the page. Then system (19) is called a robust
-estimator for with respect to (8), (9). System (19) is called

a robust -estimator for system (8), (9) if is the identity map
. If , then (19) is simply called a robust

estimator for with respect to (8), (9). In any case, the map
is called the reconstruction map of

the robust ( )-estimator for with respect to (8), (9).
Definition 8: Let , where is a

normed linear space with and with
. Let be a normed linear space and consider

system (19) where
with and for all

. We say that (19) satisfies the consistent initialization
Property for if for every there exists

such that the unique solution of (8), (9), and (19) with
initial condition and corresponding
to arbitrary , satisfies

(21)

Definition 9: Let , where is a
normed linear space with and with

. Suppose that (19) is a -estimator for with
respect to (8), (9), which satisfies the consistent initialization
property for . Then, we say that system (19) is a robust global
-observer for with respect to (8), (9), or that the robust global
-observer problem for with respect to (8), (9) is solvable.

If then we say that system (19) is a robust global
observer for with respect to (8), (9), or that the robust global
observer problem for with respect to (8), (9) is solvable. If

is the identity map , then we say that system
(19) is a robust global -observer for (8), (9). Finally, if
and then we say that (19) is an identity
observer.

Remark 10: We next discuss the consequences of Definition
9.

i) Notice that according to Definition 9, an observer for (8),
(9) guarantees convergence of the estimates of the states
only for bounded inputs . The phenomenon, that
the state estimates of an observer converge to the states for
bounded inputs and not necessarily for all possible inputs,
is a purely nonlinear one. For linear finite-dimensional
systems with linear identity observers this phenomenon
cannot happen. Moreover, it should be emphasized that
there exist more demanding versions of the notion of an
observer (see, for example, [22]), where convergence for
all inputs is required. The following example illustrates
this point.

ii) The notion of state observer given by Definition 9 is
weaker than the one of [22, Def. 7.1.3], even when we
consider autonomous systems without inputs and full
order autonomous observers because Definition 9 does
not guarantee the “Lyapunov stability” property for the
error , i.e., if the initial value
for the error is “sufficiently small,” we
cannot guarantee that all future values of the error will
be “small.” This stronger property would be satisfied if
instead of (20) with and the
following estimate were satisfied for all for the
solution of system (8), (9) with (19)

(22)

Instead, our asymptotic property (20) guarantees
that if the initial condition and the input

are “sufficiently small,” then all future values
of the error will be “small.” For example, if zero
is a non-uniformly in time globally asymptotically
stable equilibrium point for the system without inputs

, then according to Definition 9
the system is a global
identity observer. On the other hand, if the definition of
the observer were based on (22) instead of (20), then the
system would not be an
observer for the system , unless
the system had special structure
(e.g., linear systems).

(20)
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Example 11: Consider the following autonomous system
with input:

(23)

and zero output map, i.e., . We will show that the
following system:

(24)

is an observer for (23) in the sense of Definition 9, but is not an
observer in the sense described in [22]. Define

and notice that

(25)

It can be proved inductively using (25) that the following in-
equality holds:

(26)

Inequality , which holds for all
for and defined by

for , in conjunction with
(25) implies the estimate

where and
. Thus, system (24) is an iden-

tity observer for (23) according to Definition 9.
On the other hand, since by virtue of (25) we have

, it is
clear that the input does not
allow the error to converge to zero. Thus, system (24) is not an
observer in the sense described in [22].

Next, the notion of robust (strong) complete observability
is introduced. The definition of the notion of robust (strong)
complete observability for discrete-time systems is completely
analogous to the corresponding notions for continuous-time au-
tonomous systems given in [24].

Definition 12: Consider system (8), (9) under hypotheses
H1)–H3) and let and define

recursively the family of mappings shown in the equation at
the bottom of the page, where

for . Let an integer and define the fol-
lowing mapping for all

We say that a continuous function where
is a normed linear space, is robustly completely observable

from the output with respect to (8), (9) if there
exists an integer and a continuous function (called the
reconstruction map) , such
that for all it holds that

(27)

Furthermore, we say that is ro-
bustly strongly completely observable from the output

with respect to (8), (9) if is robustly com-
pletely observable from the output with respect
to (8), (9) and for every there exists

such that for all
it holds that

(28)

(29)

We say that system (8), (9) is robustly (strongly) completely
observable from the output if the identity function

is robustly (strongly) completely observable from
the output with respect to (8), (9).

Remark 13:
a) Notice that if (27) holds, then for every input

and for every , the unique
solution of (8), (9) corresponding to and ini-
tiated from at time , satisfies the following relation
for all

for



KARAFYLLIS AND KRAVARIS: ON THE OBSERVER PROBLEM FOR DISCRETE-TIME CONTROL SYSTEMS 19

Following the terminology in [22], if system (8), (9) is ro-
bustly completely observable from the output
then every control final-state distin-
guishes between any two events in time .

b) Notice that every continuous function of the measured
output , where

is robustly strongly completely observable from the
measured output with .

There are classes of uncertain finite-dimensional dis-
crete-time systems, for which it can be verified that they
satisfy the requirements for robust complete observability, as
described in Definition 12. The first class generalizes example
(3) presented in the Introduction.

Proposition 14: Let a non-empty compact set,

continuous mappings with
for all .

Consider the following finite-dimensional discrete-time system:

(30)

and suppose that there exist continuous mappings

with for all
such that the following identities hold for all

and

(31)

Then every continuous function with
for all is robustly completely observable

from the output with respect to (30).
Sketch of Proof: Robust complete observability for the

function from the output with
respect to system (30) follows directly from the following
claim.

Claim: For each , there exists a continuous
function with

for all such that for every
and

it holds that

(32)

where denotes the solution of (30) corresponding
to with initial condition and

.
The proof of the claim is straightforward and is left to the

reader.

The second class of discrete-time systems generalizes what
is known in the literature as “triangular” systems (see [21]).

Proposition 15: Let a non-empty compact set,

continuous mappings
with

for all . Consider the following fi-
nite-dimensional discrete-time system:

(33)

Suppose that there exist continuous mappings
with

for all such that the following
identities hold for all and

(34)
Then, every continuous function with

for all is robustly completely observable
from the output with respect to system
(33).

Sketch of Proof: Robust complete observability for the
function from the output with
respect to system (33) follows directly from the following
claim.

Claim: For each , there exists a continuous
function with

for all such that for every
and

it holds that

(35)

where denotes the solution of (33) corresponding
to with initial condition and

.
The proof of the claim is straightforward and is left to the

reader. The knowledge of
and allows the calculation of

the vector (using (33) recursively).

IV. MAIN RESULTS

The following proposition is our first main result of the
present paper and provides sufficient conditions for the solv-
ability of the robust -estimator problem for (8), (9).
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Proposition 16: Let where is a
normed linear space. Suppose that is ro-
bustly completely observable from the output with
respect to (8), (9). Then, under hypotheses H1)–H3), for every

with , the robust global -estimator
problem for with respect to (8), (9) is solvable.

Proof: Since is robustly completely
observable from the output with respect to (8), (9),
there exists an integer and a reconstruction map

such that for all
identity (27) holds. Consider the following

system:

...

(36)
...

(37)

where

(38)

Clearly, for every
the solution of (8), (9) with (36) (or equivalently (37)) with

initial condition and corresponding
to input satisfies for all

(39)

(40)

It follows from (39) and (40) and Remark 13(a) that the fol-
lowing equality holds for all

(41)

Let with arbitrary. It fol-
lows from (41) that system (8), (9) with (36) and output

satis-
fies the robust output attractivity property as stated in Lemma
5. Next we show that hypotheses H1)–H3) are satisfied for the
composite system (8), (9) with (36). Clearly, hypothesis H2) is
automatically satisfied. Moreover, notice that the output map

is of class (this follows from the facts that
and

) and consequently, hypothesis H3) is
satisfied for the composite system (8), (9) with (36). Finally,
we show that hypothesis H1) holds for system (8), (9) with
(36). It is clear that by virtue of definition (38), the following
inequality holds:

(42)

Moreover, [10, Lemma 3.2] and the fact that
imply that there exist functions

such that , for all
. This fact, in conjunction with inequalities (42) and hypoth-

esis H1) for system (8) implies that there exist functions
such that

(43)

Inequality (43) guarantees that hypothesis H1) also holds for
system (8), (9) with (36). Consequently, by virtue of Lemma 5
it follows that the system (36) is a robust -estimator for with
respect to (8), (9). The proof is complete.

The following corollary shows that robust strong complete
observability for a discrete-time system implies solvability of
the observer problem and is a direct consequence of equalities
(3.10a,b).

Corollary 17: Consider system (8), (9) under hypotheses
(H1-2) and suppose that is robustly
strongly completely observable from the output
with respect to (8), (9). Then, under hypotheses H1)–H3),
for every with , the robust global
-Observer problem for with respect to (8), (9) is solvable.

We are now in a position to state our second main result,
which establishes the transitive observer property.

Theorem 18 (Transitive Observer Property): Let
with . Suppose that:

A1) is robustly strongly completely observable from the
output with respect to (8), (9)

A2) The robust global -observer problem for (8) with output
is solvable. Particularly, there exists

, functions
such that

for all
in such a way that the following system

(44)

is a robust global -observer for (8) with output .
Then, under hypotheses H1)–H3), the robust global -ob-

server problem for (8), (9) with output is solvable.
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Proof: We consider the system

(45)

where is defined by (38). Since (44) is a robust global -ob-
server for (8) with output , there exist functions

and , such that for every
, the unique solution of (8)

and (44) with initial condition corre-
sponding to inputs , satisfies for all

(46)

By virtue of (41), the component of the solution of (45) coin-
cides for with the solution of (44). Thus, for every

,
the unique solution of (8), (9), and (45) with
initial condition corre-
sponding to inputs , satisfies for all

(47)

Next, we prove the following fact.
Fact: System (8), (9) with (45) and output

satisfies hy-
potheses H1)–H3).

Proof of the Fact: Hypothesis H2) is automatically
satisfied. Notice that the output map

is of class
, since

and . Next, we show hypoth-
esis H1). Lemma 3.2 in [10], in conjunction with the facts that

,
implies that there exist functions such that

for all . Making use of hypothesis H1)
for system (8), assumption A2) and the previous inequality, we
obtain

(48)

The previous inequality in conjunction shows that hypothesis
H1) is satisfied for system (8), (9) with (45). The proof of the
fact is complete.

It follows from Lemma 4 that there exist functions
such that for every

, the corresponding solution
of (8), (9) with (45) and initial condition

satisfies for all

(49)

Estimate (47) combined with estimate (49) shows that
system (8), (9) with (45) and output

satisfies the
robust output attractivity property as stated in Lemma 5. By
virtue of Lemma 5 and the fact proved previously, it follows
that system (45) is a robust -estimator for the identity mapping
with respect to (8), (9). The fact that system (45) satisfies the
consistent initialization property for is an immediate con-
sequence of (28), (29) and the fact that (45) also satisfies the
consistent initialization property for . The proof is complete.

We conclude this section with two illustrative examples. The
first is a finite-dimensional example with “triangular” structure,
whereas the second is an infinite-dimensional example.

Example 19: Consider the following four-dimensional dis-
crete-time system:

(50)

where is a compact set, the mappings and are
continuous and vanish at with

(51)

Notice that the following system is an observer for system (50)
with output map

(52)
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In order to prove this, we define the error vector
and the

error Lyapunov function , which satisfies the
following difference inequality:

(53)

Thus, it can be proved using induction arguments and (53) that
the solution of system (50) with (52) corresponding to arbitrary
inputs satisfies

On the other hand the mapping is robustly
completely observable from the output with respect to
(36) since we have , for
all . Moreover, if , then the mapping

is robustly strongly completely observable
from the output with respect to (50) since we can always
select appropriate so that .
Thus, using the methodology of the proof of Theorem 18, we
conclude that if , then the following system:

is a state observer for (50). It should be emphasized that even if
we assumed that the mappings and are continuously differ-
entiable and is a known constant, the linearization of
system (50) is not necessarily observable and this makes many
methodologies for observer design appearing in the literature
not directly applicable.

System (50) is a special case of the following class of systems:

where and
are continuous

mappings, are
continuous mappings with for
all , for which there exist continuous map-
pings
with for all ,
such that the following identities hold for all:

and

and furthermore there exists a positive–definite symmetric ma-
trix and a constant such that

By virtue of Proposition 14, the vector is robustly completely
observable from the output . Moreover, the vector may
be estimated by the observer

with linear dynamics for the estimation error
.

Finally, we present an example of an infinite-dimensional dis-
crete-time system.

Example 20: Consider the observer design problem for the
system of continuous-time difference equations

(54)

with output

(55)

where denotes the continuous time variable and
are constants. Stability issues for such systems

are considered in [20]. In order to design an observer for this
system we follow a three-step procedure: i) we convert the con-
tinuous-time system (54), (55) into a discrete-time system of the
form (8), (9) satisfying hypotheses H1)–H3), ii) we design an
observer for the discrete-time system with output an appropriate
map that satisfies hypothesis A2) of Theorem 18, and iii) we
show that is robustly strongly completely observable from the
output of the discrete-time system. For simplicity reasons we
also assume that , although the general case can be
treated in exactly the same way.

First Step: Let denote the normed
linear space of bounded functions on with values
in and norm .
Similarly, we may define the normed linear space

of bounded functions on with
values in with norm .
Finally, let and define the disturbance set

, which is the set of functions on
with values in . The following nonlinear oper-

ator is defined for all
with

; see
(56) as shown at the bottom of the next page. Con-
sider the solution of (54) with arbitrary initial condition

, corresponding to locally bounded in-
puts and . Let

for .
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Then, using the evolution equations (54) and definition (56),
we obtain

for all (57)

Clearly, we have converted the continuous-time system (54) into
the infinite-dimensional discrete-time system (57). Since the
output (55) expresses the fact that the value of the state is
measured for all times, it is reasonable to define the following
output map for the discrete-time system (57) with

(58)

where denotes the space of bounded
functions on with values in and norm

. It can be easily verified that the
above definitions guarantee that hypotheses H1)–H3) are
satisfied for the discrete-time system (57), (58).

Second Step: Next, consider the map defined
for all by

(59)

and the observer for system (57) with output

(60)

where and are defined by (61), as shown at the bottom of
the page, holds. In order to show that (60) with definitions (59),

(61) is an observer for system (57) with output ,
we notice that if we define the error variable
and the functional by

(62)

where . It follows that the solution of
(57) and (60) satisfies the recursive relation:

for all

Using induction, the previous inequality, and definition (62) we
obtain

for all

The previous inequality shows that system (60) with defini-
tions (61) is an observer for system (57) with output

. Moreover, it can be immediately verified that
and that there exist a function such

that for all
.

Third Step: Notice that as defined by (59)
is robustly strongly completely observable from the output

defined by (58). Particularly, since , it follows that
for every input and for every

, the unique solution of (57) corresponding to
and initiated from at time , satisfies the following

relation:

where is the map shown in the
last equation at the bottom of the page. Moreover, identities
(28), (29) are also satisfied for appropriate choices of

.

(56)

(61)

if
if
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V. CONCLUDING REMARKS

This work studied the construction of observers for nonlinear
time-varying (possibly infinite-dimensional) discrete-time con-
trol systems with uncertainties. Appropriate notions of robust
complete observability as well as appropriate notions of estima-
tors and observers were proposed, which are suitable for non-
linear systems and generalize the familiar linear case. Under
these notions, a constructive proof of existence of an observer
was developed. Moreover, a “transitive observer property” was
proven, with which a state observer can be generated as the
series connection of two observers. This result can be used in
conjunction with recently proposed methodologies for the ob-
server design in discrete-time systems, since the replacement
of the original output map by other maps that “carry” more in-
formation about the states can facilitate the observer design. It
should be emphasized that the proposed observer notions play
a critical role in establishing the transitive observer property,
which would not hold under more stringent specifications for
the observer.

One meaningful direction for future research is to try to es-
tablish a “transitive observer property” for continuous-time sys-
tems, in analogy to the results of the present work. This would,
of course, require appropriate modifications to the notions of
observer and complete observability, analogous to the modifica-
tions proposed in the present work. Additional technical issues
will arise since there is no direct analog of deadbeat observers
in continuous-time systems, unless observers with delays (in-
finite-dimensional systems) are used in a way that guarantees
finite-time convergence, or analogies are sought for in the con-
text of sliding-mode observers.

APPENDIX

NONUNIFORM IN TIME ROBUST GLOBAL ASYMPTOTIC OUTPUT

STABILITY FOR DISCRETE-TIME SYSTEMS

The definition of the notion of non-uniform in time robust
global asymptotic output stability is given next for the discrete-
time case (8), (9) under hypotheses H1), H3). Notice that the
following definition is equivalent to [10, Def. 3.1] for the dis-
crete-time case (8), (9) under hypotheses H1), H3). In what fol-
lows denotes the identity zero input.

Definition 21: Consider system (8), (9) under hypotheses
H1), H3) and suppose that is a robust equilibrium
point for (8), (9). We say that (8), (9) is non-uniformly in time
RGAOS if following properties hold.

P1) System (8), (9) is robustly Lagrange output stable, i.e.,
for every , it holds that the equation at the bottom
of the page holds.

P2) System (8), (9) is robustly Lyapunov output stable, i.e.,
for every and there exists a

such that

P3) (8), (9) satisfies the robust output attractivity property,
i.e., for every and , there exists a

, such that

Moreover, if there exists a function such that
for all , then we say

that (8), (9) is nonuniformly in time RGAS.
The following technical results provide essential characteriza-

tions of non-uniform in time RGAOS for discrete-time systems.
Lemma 22 [10, Lemma 3.3]: Suppose that system (8), (9)

under hypotheses H1), H3) satisfies the robust output attrac-
tivity property (property P3) of Definition 21) and that is
a robust equilibrium point for (8), (9). Then, (8), (9) is non-uni-
formly in time RGAOS.

Lemma 23 [10, Lemma 3.4]: Suppose that system (8), (9)
under hypotheses H1), H3) is nonuniformly in time RGAOS.
Then there exist functions such that the
following estimate holds for all
and

(63)

Theorem 24 [10, Th. 3.6]: Consider system (8), (9) under
hypotheses H1), H3) and suppose that is a robust equi-
librium point for (8), (9). Then, the following statements are
equivalent.

i) (8), (9) is nonuniformly in time RGAOS.
ii) There exist functions such that

for every , we have for all

(64)

iii) There exist functions
and a constant such that for every

, we have for all

(65)

(66)
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