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We give Lyapunov-like conditions for non-uniform in time output stabilization of discrete-time systems.
Particularly, it is proved that for a discrete-time control system there exists a (continuous) output
stabilizing feedback if and only if there exists a (strong) output control Lyapunov function (OCLF).
Moreover, strategies for the construction of continuous robust feedback stabilizers are presented.

Keywords: Discrete-Time Systems; Lyapunov Functions; Closed-loop system; RGAOS
1. Introduction

In this paper, we study discrete-time systems of the form:

xðtC1ÞZFðt; xðtÞ; dðtÞ; uðtÞÞ; YðtÞZHðt; xðtÞÞ

xðtÞ2R
n; YðtÞ2R

k; dðtÞ2D; uðtÞ2R
m; t2ZC

(1.1)

where D4Rl is the set of disturbances or time-varying parameters and

F : ZC!Rn!D!Rm/Rn, H : ZC!Rn/Rk satisfy Fðt; 0; d; 0ÞZ0, Hðt; 0ÞZ0 for all

ðt; dÞ2ZC!D. Specifically, we present necessary and sufficient conditions for the existence

of a (continuous) function k : ZC!Rn/Rm with kðt; 0ÞZ0 for all t2ZC such that the

closed-loop system (1.1) with

uðtÞZ kðt; xðtÞÞ (1.2)

is non-uniformly in time robustly globally asymptotically output stable (RGAOS, see [8]).

Notice that the case of state stabilization is also accounted in this framework, since it is

equivalent to the output stabilization of system (1.1) with output map Hðt; xÞ :Zx.

Time-varying discrete-time systems were recently studied in [6,8,17,21,22]. A preliminary

version of the present paper studying time-varying discrete-time systems without

disturbances and with the whole state vector as output map (i.e. state stabilization) was

given in [10]. It should be emphasized that in the present paper, we study the discrete-time
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systems per se, and not necessarily as the sampled-data representation of a continuous-time

system (see for instance [23] and the references therein).
1.1. Motivation

Time-varying control systems of the form (1.1) appear naturally when tracking control

problems are studied. However, the reader should not think that the use of time-varying

feedback is restricted to time-varying control systems. Time-varying feedback may be used

for stabilization of autonomous control systems. Section 2 of the present paper is devoted to

the presentation of an example: an autonomous planar system, which cannot be uniformly

stabilized by continuous time-invariant state feedback or (discontinuous) time-invariant

partial state feedback. On the other hand, there exists a continuous time-varying partial state

feedback, which robustly globally asymptotically stabilizes the origin non-uniformly in time,

even in the presence of measurement errors. Continuity of the dynamics of the closed-loop

system is a desired property, since it guarantees certain robustness properties (see [13,14]).

Thus, as the example presented in section 2 shows, time-varying feedback laws that induce

non-uniform in time asymptotic stability for the resulting closed-loop system may be the

only option for the solution of certain stabilization problems (and sometimes is not a “bad”

option).

Necessary and sufficient Lyapunov-like conditions for the existence of stabilizing ordinary

feedback have been given in the pioneering papers [3,5,25,27] for continuous-time systems,

where the concept of the (Robust) control Lyapunov function (CLF) was introduced. Explicit

formulae for the feedback law are also given in [19] for autonomous continuous-time control

systems. Recently, in [7], necessary and sufficient Lyapunov-like conditions were given for

the existence of a stabilizing ordinary time-varying feedback for continuous-time systems.

CLFs are also used for the expression of Lyapunov-like conditions for asymptotic

controllability of continuous-time systems (see for instance [1,16]).

For discrete-time systems Lyapunov functions were proposed in [28] for the construction

of continuous state stabilizing feedback. In [29,30] a special class of Lyapunov functions

(norms of Rn) was used to express necessary and sufficient conditions for local asymptotic

stabilization by means of time-invariant feedback. Recently, it was shown in [12,15] that the

existence of a smooth CLF for discrete-time systems is equivalent to asymptotic

controllability. This important result allowed the authors in [12,15] to construct stabilizing

(in general discontinuous) feedback for asymptotically controllable discrete-time systems.

A similar result for the existence of (discontinuous) feedback stabilizer was given in [2].

However, in [12,15] the authors prove in addition that the closed-loop system is robust for

perturbations of appropriate magnitude.

In the present paper, uncertain control systems of the form (1.1) are considered, where the

magnitude of the perturbation (i.e. the “size” of the setD) is a priori given and the problem of

the existence of an output stabilizing feedback law (1.2), which stabilizes the output of the

system for all possible disturbances with dðtÞ2D for all t2ZC, is studied. We show that the

existence of a output control Lyapunov function (OCLF) is a necessary and sufficient

condition for the existence of a stabilizing feedback that stabilizes the output of the system

(in general) non-uniformly in time (see [8,9] for the notion of non-uniform in time RGAOS

for discrete-time systems). Moreover, we provide necessary and sufficient Lyapunov-like

conditions for the continuity of the feedback stabilizer. Thus, the result contained in [2] is
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generalized in more than one direction. Since explicit formulae for the feedback law cannot

be given for the general nonlinear time-varying discrete-time case, we show that the actual

computation of the control action at each time can be achieved via a minimization procedure

(Proposition 3.10).

In section 4, we focus on the problem of state stabilization (i.e. when the stabilized output

is the state vector of the system), where the notion of the CLF is applicable. Exactly as in the

continuous-time case, in some cases the construction of a CLF is simpler than the

construction of a state stabilizing feedback. For the case of controllable triangular discrete-

time single input systems (i.e. u2R) of the form (1.1), where we suppose that there exist

continuous functions fi : Z
C!RiC1/R ðiZ1;.; nÞ with fiðt; 0ÞZ0 for all tR0, such that

Fðt; x; 0; uÞZ f1ðt; x1; x2Þ; f2ðt; x1; x2; x3Þ;.; fnðt; x1;.; xn; uÞ
� �0

;

c ðt; x; uÞ2ZC!R
n!R

(1.3)

and D3Rl is a compact set with 02D, we show that a CLF can be constructed in parallel

with the construction of stabilizing feedback. Under appropriate assumptions we are in a

position to provide a robust feedback state stabilizer of this system, which guarantees

exponential convergence of the solutions of the closed-loop system to the origin (Theorem

4.3). Moreover, sufficient conditions that guarantee the existence of a partial state feedback

that stabilizes the state of the system are provided in Corollary 4.7. Our work is based on

ideas given in [11,24], where the authors present backstepping strategies for the construction

of feedback stabilizers that guarantee the so-called “dead beat” property for the closed-loop

system, when the dynamics of (1.1) are autonomous and do not contain uncertainties. We

notice that controllers, which guarantee the “dead beat” property for discrete-time systems,

were also considered in [20].

Finally, it should be emphasized that all results presented in this paper automatically cover

the corresponding results in the time-invariant case. In order to illustrate this point, we also

present examples of autonomous systems (see Example 4.6 as well as the example of

section 2).
1.2. Notations

Throughout this paper, we adopt the following notations:

* For x2Rn; xj j denotes its Euclidean norm and x0 its transpose.

* ZC denotes the set of non-negative integers.

* KC denotes the class of positive C0 functions f : RC/ ð0;CNÞ. KN denotes the class of

continuous, strictly increasing functions a : RC/RC with að0ÞZ0

and lims/CNaðsÞZCN. By KL, we denote the set of all continuous functions

sZsðs; tÞ : RC!RC/RC with the properties: (i) for each tR0 the mapping

sð,; tÞ is continuous and increasing with sð0; tÞZ0; (ii) for each sR0, the

mapping sðs; ,Þ is non-increasing with limt/CNsðs; tÞZ0.

* MD denotes the set of all sequences dðtÞf g
N
0 with dðtÞ2D for all t2ZC, where

D3Rl.

* B denotes the open unit sphere in Rn. Let 3O0 and S4Rn. We define

SC3B :Zgs2S x2Rn; xKsj j!3f g.
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Remark 1.1. We would like to point out that for every mapping F : ZC!U/A, where

U4Rn and A4Rm is a convex set, we may define the mapping ~F : R!U/A, which

satisfies ~Fðt; xÞZFðt; xÞ for all ðt; xÞ2ZC!U and ~Fðt; xÞ :Z ð1KtC ½t�ÞFð½t�; xÞ

CðtK½t�ÞFð½t�C1; xÞ for all ðt; xÞ2ðRCnZCÞ!U, where ½t� :Zmax t2ZC; t% t
� �

denotes

the integer part of t2RC and ~Fðt; xÞZFð0; xÞ for all ðt; xÞ2ðKN; 0Þ!U (notice that ~F is

continuous with respect to t2R).
2. Motivating Example

In this section, an example of an autonomous system is presented, which cannot be robustly

globally uniformly asymptotically stabilized by continuous time-invariant state feedback or

(discontinuous) partial state feedback but it can be non-uniformly in time robustly globally

asymptotically stabilized by continuous time-varying partial state feedback even in the

presence of measurement errors. This example shows that continuous time-varying feedback

laws may be used for the robust stabilization of autonomous control systems as well. The

notion of robust uniform global asymptotic stability is given in [6] for discrete-time systems

with continuous dynamics but can be directly extended to the case of discontinuous

dynamics.

Consider the planar autonomous control system:

xðtC1ÞZ xðtÞ 2CxðtÞuðtÞð ÞCdðtÞyðtÞuðtÞ

yðtC1ÞZ expðK2mÞyðtÞ

ðxðtÞ; yðtÞÞ2R2; uðtÞ2R; dðtÞ2D :Z ½K1; 1�; t2ZC

(2.1)

We claim that for every mO0 there is no continuous time-invariant state feedback, which

robustly globally asymptotically stabilizes system (2.1). The proof of this claim is made by

contradiction. Suppose that there exists k2C0ðR2;RÞ so that zero is robustly globally

uniformly asymptotically stable for the closed-loop system (2.1) with uðtÞZkðxðtÞ; yðtÞÞ.

Let RO0, such that kðx; 0Þj j%R for all xj j%1. By virtue of the uniform robust Lyapunov

stability property for the closed-loop system (2.1) with uðtÞZkðxðtÞ; yðtÞÞ, we obtain the

existence of dO0 such that if x0j j!d then the solution of the closed-loop system (2.1) with

uðtÞZkðxðtÞ; yðtÞÞ, initial condition ðxðt0Þ; yðt0ÞÞZ ðx0; 0Þ, corresponding to zero input, i.e.

dðtÞh0 for all t2ZC, satisfies xðtÞj j!1=ð2RC2Þ for all tR t0 (notice that yðtÞZ0 for all

tR t0). Let x0s0 with x0j j!d. It is clear that the solution of the closed-loop system (4.1)

with uðtÞZkðxðtÞ; yðtÞÞ, initial condition ðxðt0Þ; yðt0ÞÞZ ðx0; 0Þ, corresponding to zero input,

i.e. dðtÞh0 for all t2ZC, satisfies xðtÞkðxðtÞ; yðtÞÞj j% ð1=2Þ for all tR t0. It follows from

system (2.1) that xðtC1Þj jR ð3=2Þ xðtÞj j for all tR t0. Thus, we obtain ð3=2ÞtKt0 x0j j% xðtÞj j!

1=ð2RC2Þ for all tR t0, which is clearly a contradiction.

System (2.1) can be stabilized by discontinuous state feedback. For example, the

discontinuous feedback:

kðx; yÞ :Z
0 if xj j% yj j

1
2

K2xK1 if xj jO yj j

1
2

8>>><
>>>:

(2.2)
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robustly globally asymptotically stabilizes system (2.1). To prove this fact notice that the

continuous, positive definite and radially unbounded function

Vðx; yÞ :Z xj jC
2 expðmÞ

expðm=2ÞK1
yj j

1
2 ;

satisfies the following inequality:

V xð2Cxkðx; yÞÞCd ykðx; yÞ; expðK2mÞy
� �

%exp Km=2
� �

Vðx; yÞ; c ðx; y; dÞ2R
2!½K1; 1�

and the above inequality implies uniform robust global asymptotic stability of zero for the

closed-loop system (2.1) with uðtÞZkðxðtÞ; yðtÞÞ.

However, for every mO0, there is no (discontinuous) time-invariant partial state feedback,

which depends only on x that robustly globally asymptotically stabilizes system (2.1). Again,

the proof of this claim is made by contradiction. Suppose that there exists k : R/R so that

zero is robustly globally uniformly asymptotically stable for the closed-loop system (2.1)

with uðtÞZkðxðtÞÞ. Similar arguments previously show that for every rO0, we must

necessarily have sup kðxÞj j; xj j%rf gZCN: This implies the existence of a sequence xi2Rf g

with xi/0 and kðxiÞj j/CN. Let 3O0 be arbitrary. By virtue of the uniform robust

Lyapunov stability property for the closed-loop system (2.1) with uðtÞZkðxðtÞÞ, we obtain

the existence of d2ð0; 3Þ such that if ðx0; y0Þj j%d then the solution of the closed-loop system

(2.1) with uðtÞZkðxðtÞÞ, initial condition ðxðt0Þ; yðt0ÞÞZ ðx0; y0Þ, corresponding to input

d2MD, satisfies xðtÞj j%3 for all tR t0. Without loss of generality we may assume that the

sequence xi2Rf g considered previously with xi/0 and kðxiÞj j/CN satisfies xij j!d=2.

Let y0Zd=2 and dZ1. We obtain:

xi 2CxikðxiÞ
� �

Cdy0kðxiÞ
�� ��R x2i Cdy0

�� �� kðxÞj jK2 xij jR
d

2
kðxiÞj jK2 xij j

� �
/CN

Since ðxi; y0Þj j%d the solution of the closed-loop system (2.1) with uðtÞZkðxðtÞÞ, initial

condition ðxðt0Þ; yðt0ÞÞZ ðxi; y0Þ, corresponding to input d2MD with dðt0ÞZ1; should satisfy

3R xi 2CxikðxiÞ
� �

Cdðt0Þy0kðxiÞ
�� ��/CN, which is clearly a contradiction.

On the other hand, consider the time-varying continuous partial state feedback law:

kðt; xÞ :Z

K2xK1 if expðmtÞ xj jR2

K2 expðmtÞ xj jK1
� �

xK1 if 1!expðmtÞ xj j!2

0 if expðmtÞ xj j%1

8>><
>>: (2.3)

It is proved next that the feedback defined above robustly globally stabilizes the origin for

system (2.1) non-uniformly in time even in the presence of measurement errors. Thus, it

should be emphasized that the (common) claim that time-varying feedback designs that

involve terms, which are unbounded with respect to time, are highly sensitive to

measurement errors is not generally true.

Consider the solution of the closed-loop system (2.1) with uðtÞZkðt; xðtÞCeðtÞÞ, where

eðtÞ denotes the measurement error. We assume 10% measurement error, i.e.

eðtÞj j% ð1=10Þ xðtÞj j for all tR t0. The solution of the closed-loop system (2.1) with

uðtÞZkðt; xðtÞCeðtÞÞ, initial condition ðxðt0Þ; yðt0ÞÞZ ðx0; y0Þ2R2, corresponding to input

d2MD, satisfies the following estimates:

yðtÞj j%exp K2mðtKt0Þ
� �

y0j j; c tR t0 (2.4a)
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xðtÞj j%exp ðKrtÞ x0j jCK1 CK2 expð2mt0Þ y0j j
� �

; c tR t0 C1 (2.4b)

for certain constants r;K1;K2O0. Indeed, equation (2.4a) is immediate (yðtÞ is the solution

of a linear difference equation). Inequality (2.4b) follows from the consideration of the

following cases:

* expðmtÞ xðtÞCeðtÞj jR2. In this case, using definitions (2.3) and (2.1) and the trivial

inequality xðtÞCeðtÞj jR ð9=10Þ xðtÞj j; which is combined with the inequality

eðtÞj j% ð1=10Þ xðtÞj j and gives

eðtÞj j

xðtÞCeðtÞj j
%

1

9
;

we obtain:

xðtC1Þj j%
2 xðtÞj j eðtÞj j

xðtÞCeðtÞj j
C

2 yðtÞj j

xðtÞCeðtÞj j
%

2

9
xðtÞj jCexpðmtÞ yðtÞj j

* 1!expðmtÞ xðtÞCeðtÞj j!2. In this case, using definition (2.3) we obtain

uðtÞj j%2 expðmtÞ. The trivial inequality xðtÞj j% xðtÞCeðtÞj jC eðtÞj j, combined with

the inequality eðtÞj j% ð1=10Þ xðtÞj j gives xðtÞj j% ð10=9Þ xðtÞCeðtÞj j and consequently

xðtÞj j% ð20=9Þ expðKmtÞ. Thus, we obtain:

xðtC1Þj j%2 xðtÞj jC xðtÞj j
2 uðtÞj jC yðtÞj j uðtÞj j%24 expðKmtÞC2 expðmtÞ yðtÞj j

* expðmtÞ xðtÞCeðtÞj j%1. In this case, using definitions (2.3) and (2.1) and the

trivial inequality xðtÞj j% xðtÞCeðtÞj jC eðtÞj j, which is combined with the inequality

eðtÞj j% ð1=10Þ xðtÞj j and gives xðtÞj j% ð10=9Þ xðtÞCeðtÞj j we obtain: xðtC1Þj j%2 xðtÞj j

%3 expðKmtÞ.

Thus in any case it holds that: xðtC1Þj j% ð2=9Þ xðtÞj jC24 expðKmtÞC2 expðmtÞ yðtÞj j. The

previous inequality in conjunction with equation (2.4a) gives: xðtC1Þj j% ð2=9Þ xðtÞj jC

24 expðKmtÞC2 expðKmtÞ expð2mt0Þ y0j j; which implies inequality (2.4b) for appropriate

r;K1;K2O0. By virtue of Lemma 3.3 in [8], estimates (2.4a,b) imply that zero is non-

uniformly in time RGAS for the closed-loop system (2.1) with uðtÞZkðt; xðtÞCeðtÞÞ,

eðtÞj j% ð1=10Þ xðtÞj j:

It should be also emphasized that the time-varying feedback law defined by equation (2.3)

has better properties than the discontinuous time-invariant feedback defined by equation

(2.2): (1) it is continuous and (2) it depends only on x. Continuity of the dynamics of the

closed-loop system is a desired property since it guarantees robustness to modeling errors

(see [13,14]). Of course, both feedback laws become ill-conditioned for large times (notice

that in both cases equation (2.4a) holds and consequently both feedback laws will have

exactly the same implementation problems for large times), although the discontinuous

feedback defined by equation (2.2) has additional problems when yj j is small (it becomes

unbounded even for small times).
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3. Control Lyapunov functions for discrete-time systems

We study time-varying discrete-time systems of the form (1.1) under the following

hypothesis:

(H1). There exist functions a2KN;g2KC such that: Fðt; x; d; uÞj j%a gðtÞ ðx; uÞj j
� �

for all

ðt; x; d; uÞ2ZC!Rn!D!Rm and H : ZC!Rn/Rk is continuous with Hðt; 0ÞZ0 for all

t2ZC.

Lemma 3.2 in [8] implies that hypothesis (H1) is fulfilled if the following (stronger)

hypothesis holds:

(H2). The mapping F : ZC!Rn!D!Rm/Rn is continuous with Fðt; 0; d; 0ÞZ0 for

all ðt; dÞ2ZC!D;D3Rl is a compact set and H : ZC!Rn/Rk is continuous with

Hðt; 0ÞZ0 for all t2ZC.

We next provide the notion of non-uniform in time stabilizability for general discrete-time

systems.

DEFINITION 3.1 We say that equation (1.1) is non-uniformly in time (continuously) robustly

globally output stabilizable, if there exist functions s2KL, a2KN and b;g;m2KC, a

(continuous) mapping k : ZC!Rn/Rm (called the feedback function) with

Fðt; x; d; kðt; xÞÞj j%a gðtÞ xj j
� �

for all ðt; x; dÞ2ZC!Rn!D such that for every ðt0; x0;

dðtÞf g
N
0 Þ2ZC!Rn!MD the unique solution xðtÞ, YðtÞZHðt; xðtÞÞ of the closed-loop system

(1.1) with (1.2) and initial condition xðt0ÞZx0, corresponding to input dðtÞf g
N
0 2MD, satisfies

the following estimate:

YðtÞj jCmðtÞ xðtÞj j%s bðt0Þ x0j j; tKt0
� �

;ctR t0 (3.1)

Specifically, we say that the function k : ZC!Rn/Rm is a non-uniform in time

(continuous) robust global asymptotic output stabilizer for equation (1.1). Moreover, if

equation (1.1) is non-uniformly in time (continuously) robustly globally output stabilizable

with output Hðt; xÞhx then we say that equation (1.1) is non-uniformly in time

(continuously) robustly globally state stabilizable and the function k : ZC!Rn/Rm is a

non-uniform in time (continuous) robust global asymptotic state stabilizer for equation (1.1).

Remark 3.2. (i) Notice that by virtue of Lemma 3.2 in [8], the existence of a2KN,g2KC

with ~Fðt; x; dÞ
�� ��%a gðtÞ xj j

� �
for all ðt; x; dÞ2ZC!Rn!D, where ~Fðt; x; dÞ :Z

Fðt; x; d; kðt; xÞÞ, is equivalent to the following properties: (i) For every bounded set

S3ZC!Rn the image set ~FðS!DÞ is bounded, (ii) ~Fðt; 0; dÞZ0 for all ðt; dÞ2ZC!D

and (iii) for every 3O0, t2ZC there exists dð3; tÞO0 such that

sup ~Fðt; x; dÞ
�� ��; xj j%dð3; tÞ; d2D

� �
!3. Clearly, these requirements are automatically

fulfilled if hypothesis (H1) holds and k : ZC!Rn/Rm is continuous with kðt; 0ÞZ0 for

all t2ZC.

(ii) The main result in [10] shows that if there exist functions s2KL, a2KN,b;g2KC,

a (continuous) mapping k : ZC!Rn/Rm with Fðt; x; d; kðt; xÞÞj j%a gðtÞ xj j
� �

for all

ðt; x; dÞ2ZC!Rn!D such that for every t0; x0; dðtÞf g
N
0

� �
2ZC!Rn!MD the unique

solution xðtÞ;YðtÞZHðt; xðtÞÞ of the closed-loop system (1.1) with (1.2) and initial condition

xðt0ÞZx0, corresponding to input dðtÞf g
N
0 2MD, satisfies the estimate

YðtÞj j%s bðt0Þ x0j j; tKt0
� �

, for all tR t0, then equation (1.1) is non-uniformly in time
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(continuously) robustly globally output stabilizable. However, this fact is not going to be

used in the present paper.

The following class of upper semi-continuous functions plays an important role in the

exploitation of the properties of Lyapunov functions for discrete-time systems.

DEFINITION 3.3 Let the upper semi-continuous function J : ZC!Rn!U/R, where

U4Rm is a convex set. The function Jðt; x; uÞ is quasi-convex with respect to u2U, if for

each fixed ðt; xÞ2ZC!Rn it holds that

Jðt; x; lu1 C ð1KlÞu2Þ%max Jðt; x; u1Þ;Jðt; x; u2Þf g;

for all l2ð0; 1Þ; ðu1; u2Þ2U!U
(3.2a)

The function Jðt; x; uÞ is strictly quasi-convex with respect to u2U, if for each fixed

ðt; xÞ2ZC!Rn it holds that

Jðt; x; lu1 C ð1KlÞu2Þ!max Jðt; x; u1Þ;Jðt; x; u2Þf g; for all l2ð0; 1Þ;

ðu1; u2Þ2U!U; with u1su2
(3.2b)

Clearly, if the mapping u2U/Jðt; x; uÞ is (strictly) convex for each fixed

ðt; xÞ2ZC!Rn, then Jðt; x; uÞ is (strictly) quasi-convex with respect to u2U. For

example, for all functions a2KN, k2C0ðZC!Rn;RmÞ and V2C0ðZC!Rn;RÞ, the

function Jðt; x; uÞ :ZVðt; xÞCa uKkðt; xÞj j
� �

is strictly quasi-convex with respect to

u2Rm. Notice that if Jðt; x; uÞ is strictly quasi-convex with respect to u2U, then for

each fixed ðt; xÞ2ZC!Rn there exists at most one u2U such that

Jðt; x; uÞZ infv2U Jðt; x; vÞ.

We next give the definition of the notion of (strong) OCLF for a discrete-time system used

in this paper. The definition is in the same spirit with the definition of the notion of robust

CLF given in [5] for continuous-time finite-dimensional control systems.

DEFINITION 3.4 We say that equation (1.1) admits an OCLF if there exists a function

V : ZC!Rn/RC; which satisfies the following properties:

(i) There exists a1; a22KN, b;m2KC such that:

a1 ðmðtÞx;Hðt; xÞÞj j
� �

%Vðt; xÞ%a2 bðtÞ xj j
� �

;cðt; xÞ2ZC!R
n (3.3a)

(ii) There exist functions r2KN with rðsÞ%s for all sR0, q2C0ðZC;RCÞ with

limt/CNqðtÞZ0 such that:

inf
u2Rm

sup
d2D

V tC1;Fðt; x; d; uÞð Þ%Vðt; xÞKr Vðt; xÞð ÞCqðtÞ;

c ðt; xÞ2ZC!R
n

(3.3b)

We say that equation (1.1) admits a strong-OCLF if there exists a continuous

function V : ZC!Rn/RC, which satisfies property (i) above as well as the

following property:

(iii) There exist functions r2KN with rðsÞ%s for all sR0, q2C0ðZC;RCÞ with

limt/CNqðtÞZ0 and an upper semi-continuous function J : ZC!Rn!Rm/R
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with Jðt; 0; 0ÞZ0 for all t2ZC, which is quasi-convex with respect to u2Rm such

that the following inequalities hold:

sup
d2D

V tC1;Fðt; x; d; uÞð Þ%Jðt; x; uÞ;cðt; x; uÞ2ZC!R
n!R

m; (3.3c)

inf
u2Rm

Jðt; x; uÞ%Vðt; xÞKr Vðt; xÞð ÞCqðtÞ;cðt; xÞ2ZC!R
n (3.3d)

For the case Hðt; xÞhx, we simply call V : ZC!Rn/RC a CLF.

Remark 3.5. Notice that property (iii) of Definition 3.4 implies property (ii). If the mapping

u/V tC1;Fðt; x; d; uÞð Þ is (quasi-) convex for each fixed ðt; x; dÞ2ZC!Rn!D, then the

mapping u/sup d2D V tC1;Fðt; x; d; uÞð Þ is (quasi-) convex for each fixed ðt; xÞ2ZC!Rn.

It follows that property (iii) is satisfied with Jðt; x; uÞ :Zsup d2D V tC1;Fðt; x; d; uÞð Þ.

The following proposition shows that the existence of a (strong) OCLF is a necessary and

sufficient condition for the existence of a (continuous) non-uniform in time robust global

asymptotic output stabilizer for equation (1.1). Let the following statements:

(a) System (1.1) admits an OCLF.

(b) System (1.1) admits a strong OCLF.

(c) System (1.1) is non-uniformly in time robustly globally output stabilizable.

(d) System (1.1) is non-uniformly in time continuously robustly globally output stabilizable.

PROPOSITION 3.6. Consider system (1.1) under hypothesis (H1). Then the following

implications hold: ðaÞ5 ðcÞ, ðbÞ0 ðdÞ. Moreover, if hypothesis (H2) holds for system (1.1)

then the implication ðdÞ0 ðbÞ also holds.

Remark 3.7. (i) The procedure of partition of unity used in the proof of implication ðbÞ0 ðdÞ

of Proposition 3.6 guarantees that the constructed feedback is actually a function of class CN.

Thus, under hypothesis (H2), the existence of a non-uniform in time continuous robust global

stabilizer is equivalent to the existence of a non-uniform in time smooth robust global

stabilizer.

(ii) The result of Proposition 3.6 extends the corresponding results in [2,13] in many

directions. For example, we do not have to impose the “small control” property in order to

guarantee that lim x/0 kðt; xÞZkðt; 0ÞZ0. Moreover, Proposition 3.6 covers the general

discrete-time case with disturbances (not covered by the corresponding results in [2,13])

under minimal assumptions concerning the regularity of the dynamics of (1.1). On the other

hand, Proposition 3.6 presents conditions that guarantee the regularity of the constructed

feedback (this is not the case with the corresponding results in [2,13]).

The proof of Proposition 3.6 relies on the following lemma, which provides sufficient

Lyapunov-like conditions for non-uniform in time RGAOS. For reasons of completeness we

state it here and we provide its proof in the Appendix.

LEMMA 3.8 Consider the time-varying discrete-time system:

xðtC1ÞZFðt; xðtÞ; dðtÞÞ; YðtÞZHðt; xðtÞÞ

xðtÞ2Rn;YðtÞ2Rk; dðtÞ2D; t2ZC
(3.4)

where D4Rl and F : ZC!Rn!D/Rn satisfies the following hypothesis:

(A1). There exist functions a2KN;g2KC such that Fðt; x; dÞj j%a g tð Þ xj j
� �

, for all

ðt; x; dÞ2ZC!Rn!D and H : ZC!Rn/Rk is continuous with Hðt; 0ÞZ0 for all t2ZC.
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Suppose that there exist functions V : ZC!X/RC, a1; a2; a32KN with a3ðsÞ%s for all

sR0, ~b; q; ~m2KC with limt/CN qðtÞZ0, satisfying the following inequalities for all

ðt; x; dÞ2ZC!Rn!D:

a1 ð ~mðtÞx;Hðt; xÞÞj j
� �

%Vðt; xÞ%a2 ~bðtÞ xj j
� �

(3.5a)

V tC1;Fðt; x; dÞð Þ%Vðt; xÞKa3 Vðt; xÞð ÞCqðtÞ (3.5b)

Then there exist functions s2KL,b;m2KC, such that for every t0; x0; dðtÞf g
N
0

� �
2ZC!

Rn!MD the unique solution xðtÞ, YðtÞZHðt; xðtÞÞ of system (3.4) with initial condition

xðt0ÞZx0, corresponding to input dðtÞf g
N
0 2MD, satisfies estimate (3.1).

The following example illustrates the use of the OCLF for discrete-time systems.

Example 3.9. Consider the following linear time-varying planar discrete-time system:

x1ðtC1ÞZtx1ðtÞCx2ðtÞC
dðtÞ

1C2ðtC1ÞðtC3Þ
x1ðtÞ

x2ðtC1ÞZx3ðtÞCuðtÞ

x3ðtC1ÞZexp ð1Þx3ðtÞ

YðtÞZðx1ðtÞ;x2ðtÞÞ2R2;

xðtÞ :Zðx1ðtÞ;x2ðtÞ;x3ðtÞÞ2R3;uðtÞ2R;

dðtÞ2D :Z
h
K

1

2
;
1

2

i
;t2ZC

(3.6)

Define the continuous function:

Vðt; x1; x2; x3Þ :Z x1j jC x2j jC2ðtC2Þ tx1 Cx2j jCexp ðK2tÞ x3j j (3.7)

Notice that the following inequality holds for all ðt; xÞ2ZC!R3:
1

2
ðY ; exp ðK2tÞxÞj j%Vðt; xÞ%3ðtC1ÞðtC2Þ xj j (3.8)

Furthermore, we obtain:

inf
u2R

sup
d2D

V tC1; tx1 Cx2 C
dx1

1C2ðtC1ÞðtC3Þ
; x3 Cu; exp ð1Þx3

� �

Z inf
u2R

sup
d2D

�
tx1 Cx2 C

dx1
1C2ðtC1ÞðtC3Þ

����
����C x3 Cuj jC2ðtC3Þ

ðtC1Þtx1 C ðtC1Þx2 C
ðtC1Þ dx1

1C2ðtC1ÞðtC3Þ
Cx3 Cu

����
����Cexp ðK2tK1Þ x3j j

�
% inf

u2R
sup
d2D

ð tx1 Cx2j jC x3 Cuj jC2ðtC3Þ ðtC1Þtx1 C ðtC1Þx2 Cx3 Cuj j

C dj j x1j jCexp ðK2tK1Þ x3j jÞ dj j%
1

2

� �

% inf
u2R

ð tx1 Cx2j jC x3 Cuj jC2ðtC3Þ ðtC1Þtx1 C ðtC1Þx2 Cx3 Cuj jC
1

2
x1j j

Cexp ðK2tK1Þ x3j jÞðset uZKx3KðtC1Þðtx1 Cx2ÞÞ

% ðtC2Þ tx1 Cx2j jC
1

2
x1j jCexp ðK2tK1Þ x3j j%

1

2
Vðt; x1; x2; x3Þ
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Thus, we conclude that V as defined by equation (3.7) is a strong OCLF for system (3.6)

and particularly satisfies properties (i), (iii) of Definition 3.4 with

Jðt; x; uÞ :Z tx1 Cx2j jC x3 Cuj jC2ðtC3Þ ðtC1Þtx1 C ðtC1Þx2 Cx3 Cuj jC
1

2
x1j j

Cexp ðK2tK1Þ x3j j

a1ðsÞ :Z
1

2
s; a2ðsÞ :Z s;bðtÞ :Z 3ðtC1ÞðtC2Þ;mðtÞ :Z exp ðK2tÞ; rðsÞ :Z

1

2
s and

qðtÞh0

Lemma 3.8 implies that the continuous feedback function kðt;xÞ :ZKx3KðtC1Þ ðtx1Cx2Þ

is a non-uniform in time continuous robust global asymptotic output stabilizer.

Universal explicit formulae for the stabilizing feedback law (1.2) cannot be given for the

general nonlinear time-varying discrete-time case (1.1). However, the following proposition

provides means for the computation of the control action, via a minimization procedure for a

class of discrete-time systems (1.1) that satisfies the following hypothesis:

(H3). There exist a32KN and continuous positive mappings g; d : ZC!Rn/ ð0;CNÞ such

that the following inequality holds:

a3ðgðt; xÞÞmaxfjujKdðt; xÞ; 0gÞ% jFðt; x; d; uÞj; cðt; x; d; uÞ2ZC!R
n!D!R

m (3.9)

Hypothesis (H3) guarantees that lim Fðt; x; d; uÞj jZCNas uj j/CN, i.e. the dynamics of

equation (1.1) are “radially unbounded” with respect to u2Rm. The proof of the following

proposition can be found in the Appendix.

PROPOSITION 3.10 Consider system (1.1) under hypotheses (H1) and (H3) and suppose that

equation (1.1) admits a strong OCLF V : RC!Rn/RC, which in addition to properties (i)

and (iii) of Definition 3.4 satisfies the following property:

(iv) The function Jðt; x; uÞ defined in property (iii) of Definition 3.4 is continuous and

strictly quasi-convex with respect to u2Rm.

Define:

~Vðt; xÞ :Z inf fJðt; x; uÞ; u2R
mg (3.10)

Mðt; xÞ :Z fu2R
m : ~Vðt; xÞZJðt; x; uÞg (3.11)

Then there exists a continuous mapping k : ZC!Rn/Rm with kðt; 0ÞZ0 for all t2ZC

such that

Mðt; xÞ :Z kðt; xÞf g;cðt; xÞ2ZC!R
n (3.12)

Moreover, the continuous mapping kðt; xÞ is a non-uniform in time robust global

asymptotic stabilizer for equation (1.1).

Example 3.11. Consider the state stabilization problem for the following three-dimensional

discrete-time system:
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x1ðtC1ÞZ d1ðtÞ exp ðtÞx2ðtÞ

x2ðtC1ÞZ x2ðtÞx3ðtÞCd2ðtÞ exp ðKtK1Þx1ðtÞ

x3ðtC1ÞZ f ðt; xðtÞÞCuðtÞ

YðtÞZ xðtÞ :Z ðx1ðtÞ; x2ðtÞ; x3ðtÞÞ2R
3; uðtÞ2R;

dðtÞ :Z ðd1ðtÞ; d2ðtÞÞ2D

:Z K1; 1½ �! K
1

4
;
1

4

� 	
; t2ZC

(3.13)

where f : RC!R3/R is a continuous mapping with f ðt; 0; 0; 0ÞZ0 for all t2ZC. Define

the following smooth function:

Vðt; x1; x2; x3Þ :Z x21 C ð1C2 exp ð2tÞÞx22 Cx23 C8ð1Cexp ð2tC2ÞÞx22x
2
3 (3.14)

Notice that the following inequality holds for all ðt; x1; x2; x3Þ2ZC!R3:

xj j
2%Vðt; x1; x2; x3Þ%3 exp ð2tÞ xj j

2 C16 exp ð2tC2Þ xj j
4 (3.15)

and that by virtue of the trivial inequality x2x3Cd2 exp ðKtK1Þx1
� �2

%2x22x
2
3C ð1=8Þ exp

ðK2tK2Þx21 (which holds since d2j j% ð1=4ÞÞ, we obtain for all ðt; x; dÞ2ZC!R3!D

V tC1; d1 exp ðtÞx2; x2x3 Cd2 exp ðKtK1Þx1; f ðt; xÞCu
� �
:Z d21

�� �� exp ð2tÞx22 C ð1C2 exp ð2tC2ÞÞ x2x3 Cd2 exp ðKtK1Þx1
� �2

C 1C8ð1Cexp ð2tC4ÞÞ x2x3 Cd2 exp ðKtK1Þx1
� �2h i

ðf ðt; xÞCuÞ2

%exp ð2tÞx22 C2ð1C2 exp ð2tC2ÞÞx22x
2
3 C

3

8
x21

C 1C16ð1Cexp ð2tC4ÞÞ x22x
2
3 Cexp ðK2tK2Þx21

� �
 �
ðf ðt; xÞCuÞ2

Notice that the continuous map

Jðt; x; uÞ :Z exp ð2tÞx22 C2ð1C2 exp ð2tC2ÞÞx22x
2
3 C

3

8
x21

C 1C16ð1Cexp ð2tC4ÞÞ x22x
2
3 Cexp ðK2tK2Þx21

� �
 �
ðf ðt; xÞCuÞ2

is strictly convexwith respect to u2R for each fixed ðt; xÞ2ZC!R3. Furthermore, we obtain:

sup
d2D

V tC1; d exp ðtÞx2; x2x3; f ðt; xÞCu
� �

%Jðt; x; uÞ; inf
u2R

Jðt; x; uÞ%
1

2
Vðt; x1; x2; x3Þ

Thus, we conclude thatV as defined by equation (3.14) is a strong CLF for system (3.13) and

satisfies properties (i), (iii) of Definition 3.4, a1ðsÞ :Zs2=2, a2ðsÞ :Z3s2C16s4, mðtÞZ1,

bðtÞ :Zexp ðtC1Þ, rðsÞ :Zs=2 and qðtÞh0. Notice that hypotheses (H2) and (H3) are

satisfied and particularly inequality (3.9) holds since we have:

max f0; uj jK f ðt; xÞj jg% uC f ðt; xÞj j% Fðt; x; d; uÞj j, for all ðt; x; d; uÞ2ZC!Rn!D!R.

Moreover, the set-valued map Mðt; xÞ as defined by equation (3.11) satisfies:

Mðt; xÞ :ZfKf ðt; xÞg, for all ðt; xÞ2ZC!R3. We conclude that the continuous feedback

function kðt; xÞ :ZKf ðt; xÞ, robustly globally asymptotically stabilizes the origin for equation

(3.13). ,
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4. Sufficient conditions for robust feedback state stabilization

In this section, we focus on the continuous state stabilization problem for discrete-time

systems. Exactly as in the continuous-time case, in some cases the construction of a CLF is

performed simultaneously with the construction of a state stabilizing feedback. In this

section, we present certain classes of discrete-time systems of the form (1.1) for which a CLF

can be constructed in parallel with the construction of robust feedback state stabilizers that

guarantee exponential convergence of the solutions of the closed-loop system to the origin.

First, the reader is introduced to the notion of non-uniform robust global K-exponential

stability (RGK-ES) for discrete-time systems, which is a generalization of the corresponding

notion introduced in [18] for continuous-time systems. Consider a finite-dimensional

discrete-time system:

xðtC1ÞZFðt; xðtÞ; dðtÞÞ

xðtÞ2Rn; dðtÞ2D3Rl; t2ZC
(4.1)

where D3Rl and F : ZC!Rn!D/Rn with Fðt; 0; dÞZ0 for all ðt; dÞ2ZC!D.

DEFINITION 4.1 We say that zero is non-uniformly RGK-ES for equation (4.1) with constant

cO0 if there exist functions a2KN, b2KC such that for every ðt0; x0; dðtÞf g
N
0 Þ2ZC!

Rn!MD the solution xðtÞ of equation (4.1) with initial condition xðt0ÞZx0 and

corresponding to dðtÞf g
N
0 2MD satisfies the estimate:

xðtÞj j%exp KcðtKt0Þ
� �

a bðt0Þ x0j j
� �

;ctR t0 (4.2)

The following lemma provides sufficient conditions for non-uniform in time RGK-ES and

its proof can be found in the Appendix.

LEMMA 4.2 Suppose that there exist functions V : ZC!Rn/RC, a22KN, b2KC and

constants l2ð0; 1Þ, p;KO0 such that the following inequalities are satisfied for all

ðt; x; dÞ2ZC!Rn!D:

K xj j
p%Vðt; xÞ%a2 bðtÞ xj j

� �
(4.3)

V tC1;Fðt; x; dÞð Þ%l V ðt; xÞ (4.4)

Then zero is non-uniformly in time RGK-ES for equation (4.1) with constant

cZKlog ðlÞ=p.

The following theorem is the main result of this section and provides sufficient conditions

for the robust stabilization of system (1.1).

THEOREM 4.3 Consider system (1.1) under hypothesis (H2) with u2R,D3Rl being compact

with 02D and suppose that there exist continuous functions fi : Z
C!RiC1/R (iZ1; :::; n)

with fiðt; 0ÞZ0 for all t2ZC, such that equation (1.3) holds. Furthermore, suppose that

there exist continuous functions ki : Z
C!Ri/R ðiZ1;.; nÞ with kiðt; 0ÞZ0 for all

t2ZC such that the following identities hold for all ðt; xÞ2ZC!Rn:

f1ðt; x1; k1ðt; x1ÞÞZ 0 (4.5)

fiðt; x1;.; xi; kiðt; x1;.; xiÞÞZ kiK1ðtC1; f1ðt; x1; x2Þ;.; fiK1ðt; x1;.; xiÞÞ;

for iZ 2;.; n
(4.6)
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Consider the following vector fields defined on RC!Rn:

~Fðt; xÞ :ZFðt; x; 0; knðt; xÞÞ (4.7)

Fð0Þðt; xÞ :Z x (4.8a)

FðiÞðt; xÞ :Z ~FðtC iK1;FðiK1Þðt; xÞÞ; for iR1 (4.8b)

Let p2C0ðRn;RCÞ a positive definite function with pð0ÞZ0 that satisfies pðxÞRK xj j for all

x2Rn for certain constant KO0 and let a pair of constants gO1, l2ð0; 1Þ. Let

Dðg; lÞ4D the set of all d2D that satisfies the following property:XnK1

iZ0

gip FðiÞðtC1;Fðt; x; d; knðt; xÞÞÞ
� �

%l
XnK1

iZ0

gip FðiÞðt; xÞ
� �

; c ðt; xÞ2ZC!R
n (4.9)

Then the following statements hold:

(i) For every pair gO1, l2ð0; 1Þ with lgR1, the set Dðg; lÞ4D is a non-empty

compact set with 02Dðg; lÞ.

(ii) For every pair gO1, l2ð0; 1Þ with lgR1, zero is non-uniformly in time RGK-ES

with constant cZKlog ðlÞ for the closed-loop system (1.1) with uðtÞZknðt; xðtÞÞ and

dðtÞ2Dðg; lÞ.

The main idea that lies behind the proof of Theorem 4.3 is to construct a continuous

feedback that guarantees the so-called “dead-beat property of order n” (see [24]) for the

nominal system (1.1) with dZ0. Then by making use of a CLF for the nominal closed-loop

system, we establish RGK-ES for disturbances that belong to an appropriate set, namely, the

set Dðg; lÞ4D. The proof of Theorem 4.3 is based on the following lemma, which is similar

to Theorem 3.2 in [24].

LEMMA 4.4 (FINITE-TIME STABILIZATION AND EXPLICIT CONSTRUCTION OF CLFS FOR TRIANGULAR

SINGLE INPUT SYSTEMS). Consider the single input discrete-time system

xðtC1ÞZFðt; xðtÞ; uðtÞÞ

uðtÞ2R; xðtÞ :Z ðx1ðtÞ;.; xnðtÞÞ2Rn; t2ZC
(4.10a)

where

Fðt; x; uÞZ f1ðt; x1; x2Þ; f2ðt; x1; x2; x3Þ;.; fnðt; x1;.; xn; uÞ
� �0

(4.10b)

for certain continuous mappings fi : Z
C!RiC1/R (iZ1; :::; n) with fiðt; 0ÞZ0 for all

t2ZC. Suppose that there exist continuous functions ki : Z
C!Ri/R (iZ1; :::; n) with

kiðt; 0ÞZ0 for all t2ZC such that the identities (4.5), (4.6) hold for all ðt; xÞ2ZC!Rn.

Then zero is non-uniformly in time RGK-ES for the closed-loop system (4.10a) with

uðtÞZknðt; xðtÞÞ, namely, the system

xðtC1ÞZ ~Fðt; xðtÞÞ (4.11)

where

~Fðt; xÞ :ZFðt; x; knðt; xÞÞ (4.12)

Moreover, the closed-loop system (4.10a) with uðtÞZknðt; xðtÞÞ (system (4.11)), has the

dead-beat property of order n, i.e. for every ðt0; x0Þ2ZC!Rn, the unique solution xðtÞ of the

closed-loop system (4.10a) with uðtÞZknðt; xðtÞÞ and initial condition xðt0ÞZx0 satisfies:

xðtÞZ 0; for all tR t0 Cn (4.13)
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Furthermore, let p2C0ðRn;RCÞ a positive definite function with pð0ÞZ0 that

satisfies pðxÞRK xj j for all x2Rn for certain constant KO0 and the vector fields

ðt; xÞ2ZC!Rn/FðiÞðt; xÞ2Rn defined by (4.8a and b) with ~F defined by equation (4.12).

Then for every gO1 the continuous function Vg : ZC!Rn/RC defined by:

Vgðt; xÞ :Z
XnK1

iZ0

gip FðiÞðt; xÞ
� �

(4.14)

is a CLF for equation (4.10a). Particularly, for every gO1 there exist functions a22KN and

b2KC such that

K xj j%Vgðt; xÞ%a2 bðtÞ xj j
� �

; c ðt; xÞ2ZC!R
n (4.15a)

Vg tC1;Fðt; x; uÞð Þ%Jgðt; x; uÞ; c ðt; x; uÞ2ZC!R
n!R (4.15b)

inf
u2Rm

Jgðt; x; uÞ%Jgðt; x; knðt; xÞÞ%
1

g
Vgðt; xÞ; c ðt; xÞ2ZC!R

n (4.15c)

where the function Jg : RC!Rn!R/RC is quasi-convex with respect to u2R with

Jgðt; 0; 0ÞZ0 for all t2ZC and is defined by:

Jgðt; x; uÞ :Z sup VgðtC1;Fðt; x; knðt; xÞCvÞ; vj j% uKknðt; xÞj j
� �

(4.16)

Proof. By definition of the vector fields FðiÞðt; xÞ, we notice that for every ðt0; x0Þ2ZC!Rn

the solution of equation (4.11) with initial condition xðt0ÞZx0 satisfies xðt0C iÞZFðiÞðt0; x0Þ

for all iR t. In order to prove that system (4.11) satisfies the dead-beat property of order n, it

suffices to show that FðnÞðt; xÞh0 for all ðt; xÞ2ZC!Rn. Using induction arguments, it is

established that

FðiÞðtC1; ~Fðt; xÞÞZFðiC1Þðt; xÞ and FðiÞðt; 0Þ :Z 0; for all iR0 (4.17)

The proof of the above relations is easy and is left to the reader. Define the sets SðiÞðtÞ4Rn

for t2ZC by the following formulae:

Sð0ÞðtÞ :ZR
n (4.18a)

SðiÞðtÞ :Z x2SðiK1ÞðtÞ : xnKiC1 Z knKiðt; x1; :::; xnKiÞ
� �

; for 1% i%nK1 (4.18b)

SðiÞðtÞ :Z f0g; for iRn (4.18c)

where ki : R
C!Ri/RðiZ1;.; nÞ are the functions involved in equations (4.5) and (4.6).

Notice that the definitions of the sets SðiÞðtÞ above imply that for 1% i%nK1:

SðiÞðtÞ :Z x2R
n : xn Z knK1ðt; x1;.; xnK1Þ;.; xnKiC1 Z knKiðt; x1;.; xnKiÞf g (4.19)

Next, we make the following claim.

Claim: FðiÞðt; xÞ2SðiÞðtC iÞ, for all iR0.

Clearly, definitions (4.8a) and (4.18a) implies that the above claim is true for iZ0.

In order to prove the above claim, by virtue of definition (4.8b), it suffices to prove the

following implication:

“ If x2SðiÞðtC iÞ then ~FðtC i; xÞ2SðiC1ÞðtC iC1Þ”
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Since ~Fðt; 0ÞZ0 for all tR0, it follows that the above implication is true for iRn. For the

case 0% i%nK1, the above implication is an immediate consequence of equation (4.17) and

properties (4.5) and (4.6).

Notice that the previous claim and definition (4.18c) implies that:

FðnÞðt; xÞh0; for all ðt; xÞ2ZC!R
n (4.20)

Thus, system (4.11) satisfies the dead-beat property of order n.

Let gO1 and consider the function Vg : RC!Rn/RC defined by equation (4.14). Since

all vector fields FðiÞðt; xÞðiR0Þ defined by equation (4.8a and b) and p are continuous on

RC!Rn with FðiÞðt; 0ÞZ0, pð0ÞZ0 for all tR0, by virtue of Lemma 3.2 in [8], there exist

a22KN and b2KC such that the right-hand side inequality (4.15a) holds. The left-hand side

inequality (4.15a) is immediate consequence of definitions (4.8a) and (4.14) and the fact that

pðxÞRK xj j for all x2Rn. Inequality (4.15b) is immediate consequence of definition (4.16).

We next prove inequality (4.15c). Notice that by virtue of definition (4.14) and property

(4.17) we have for all ðt; xÞ2ZC!Rn:

VgðtC1; ~Fðt; xÞÞZ
XnK1

iZ0

gip FðiÞðtC1; ~Fðt; xÞÞ
� �

Z
XnK1

iZ0

gip FðiC1Þðt; xÞ
� �

Z
Xn
iZ1

giK1p FðiÞðt; xÞ
� �

Consequently, it follows from equation (4.20), definitions (4.12) and (4.16) and the above

equality:

Jgðt; x; knðt; xÞÞZVgðtC1; ~Fðt; xÞÞZ
1

g

XnK1

iZ1

gip FðiÞðt; xÞ
� �

%
1

g

XnK1

iZ0

gip FðiÞðt; xÞ
� �

Z
1

g
Vgðt; xÞ

We conclude that inequality (4.15c) holds. The proof of the fact that the function

Jgðt; x; uÞ is quasi-convex with respect to u2R is identical to the proof of implication

ðdÞ0 ðbÞ of Proposition 3.6 and is omitted. It follows from Lemma 4.2 that zero is non-

uniformly in time RGK-ES with constant cZ log ðgÞO0 for the closed-loop system (4.10a)

with uðtÞZknðt; xðtÞÞ. The proof is complete. ,

Proof of Theorem 4.3. Notice that for the case dZ0, it follows from equation (1.3) that

system (1.1) has the triangular structure (4.10). Thus, Lemma 4.4 holds and equation (4.9) for

dZ0 and 1=g%l!1, is a consequence of inequality (4.15c). This proves thatDðg; lÞ4D is

non-empty set with 02Dðg; lÞ. Compactness of statement Dðg; lÞ4D follows from

compactness ofD and continuity of all mappings involved in equation (4.9) with respect to d.

We next prove statement (ii). Let the Lyapunov function Vg : ZC!Rn/RC defined by

equation (4.14) and notice that inequality (4.9) in conjunction with definition (4.14) implies:

VgðtC1;Fðt; x; d; knðt; xÞÞ%lVgðt; xÞ; c ðt; x; dÞ2ZC!R
n!Dðg; lÞ (4.21)

It follows from equations (4.15) and (4.21) in conjunction with Lemma 4.2, that zero is

non-uniformly in time RGK-ES with constant cZKlog ðlÞ for the closed-loop system (1.1)

with uðtÞZknðt; xðtÞÞ and dðtÞ2Dðg; lÞ. The proof is complete. ,



Conditions for stabilization of discrete-time systems 757
We illustrate the result of Theorem 4.3 by presenting two examples. Both examples

illustrate a trade-off between the convergence rate (c) and the size of the disturbance set

Dðg; lÞ4D. The first example is an application of Theorem 4.3 to a linear two-dimensional

time-varying discrete-time system.

Example 4.5. Consider the linear planar time-varying system:

x1ðtC1ÞZ tx1ðtÞC 1C
dðtÞ

ðtC1ÞðtC3Þ

0
@

1
Ax2ðtÞ

x2ðtC1ÞZ t2x2ðtÞCuðtÞ

ðx1ðtÞ; x2ðtÞÞ2R2; uðtÞ2R; dðtÞ2D :Z ½K1; 1�; t2ZC

(4.22)

Notice that the dynamics of system (4.22) satisfy equation (1.3) with f1ðt; x1; x2Þ :Z
tx1Cx2 and f2ðt; x1; x2; uÞ :Z t2x2Cu. Moreover, equations (4.5) and (4.6) are satisfied for

k1ðt; x1Þ :ZKtx1 and k2ðt; x1; x2Þ :ZKt2x2KtðtC1Þx1KðtC1Þx2. Consequently, the vector

fields FðiÞðt; xÞ are defined by equation (4.8a and b):

Fð0Þðt; xÞ :Z x1; x2
� �0

, Fð1Þðt; xÞ :Z tx1Cx2;KtðtC1ÞxK1ðtC1Þx2
� �0

We select pðx1; x2Þ :Z x1j jC x2j j. Thus, inequality (4.9) is equivalent to the following

inequality:

tx1 C 1C
d

ðtC1ÞðtC3Þ

� �
x2

����
����C ðtC1Þ tx1 Cx2j jCg dx2j j%l x1j jCl x2j j

CglðtC2Þ tx1 Cx2j j (4.23)

Clearly, inequality (4.23) is satisfied for all ðt; x1; x2Þ2RC!R2 if lgR1 and

dj j% ð3lÞ=ð1C3gÞ. Thus, we conclude that zero is non-uniformly RGK-ES with constant

cO0, for the closed-loop system (4.22) with uðtÞZKt2x2ðtÞKtðtC1Þx1ðtÞKðtC1Þx2ðtÞ

and dðtÞ2Dðg; lÞ for gZexp ðcÞZ1=l, i.e. for dðtÞ2fd2½K1; 1� : dj j%

ð3=ðexp ðcÞC3 exp ð2cÞÞg. Notice that larger values for the convergence constant cO0

give smaller values for the radius of the disturbance set Dðg; lÞ.

Our second example is the application of Theorem 4.3 to an autonomous non-linear

discrete-time system.

Example 4.6. Consider the non-linear planar autonomous system:

x1ðtC1ÞZ ð1CdðtÞÞ x1ðtÞj jKx22ðtÞ

x2ðtC1ÞZ x2ðtÞCuðtÞ

ðx1ðtÞ; x2ðtÞÞ2R2; uðtÞ2R; dðtÞ2D :Z ½K1; 1�; t2ZC

(4.24)

Notice that the dynamics of system (4.24) satisfies equation (1.3) with f1ðt; x1; x2Þ :Z
x1j jKx22 and f2ðt; x1; x2; uÞ :Zx2Cu. Moreover, equations (4.5) and (4.6) are satisfied for

k1ðt; x1Þ :Z x1j j
ð1=2Þ and k2ðt; x1; x2Þ :ZKx2C x1j jKx22

�� ��ð1=2Þ. Consequently, the vector fields
FðiÞðt; xÞ are defined by equation (4.8a and b):

Fð0Þðt; xÞ :Z x1; x2
� �0

;
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Fð1Þðt; xÞ :Z x1j jKx22; x1j jKx22
�� ��12� 0

We select pðx1; x2Þ :Z x1j jC x2j j. Thus, inequality (4.9) is equivalent to the following

inequality:

ð1CdÞ x1j jKx22
�� ��C x1j jKx22

�� ��12 Cg ð1CdÞ x1j jKx22
�� ��K x1j jKx22

�� ���� ��
Cg ð1CdÞ x1j jKx22

�� ��K x1j jKx22
�� ���� ��12

%l x1j jCl x2j jCgl x1j jKx22
�� ��Cgl x1j jKx22

�� ��12
(4.25)

Clearly, inequality (4.25) is satisfied for all ðx1; x2Þ2R2 if lgO1 and

dj j%min l
1Cg

; l
2

g2 ;
ðglK1Þ2

g2

n o
. Thus, we conclude that zero is non-uniformly RGK-ES with

constant cO0, for the closed-loop system (4.24) with uðtÞZKx2ðtÞC x1ðtÞj jKx22ðtÞ
�� ��ð1=2Þ and

dðtÞ2Dðg; lÞ for gZexp ðcÞC1 and lZexp ðKcÞ, i.e. for dðtÞ2fd2½K1; 1� : dj j%

ð1=ðexp ð2cÞðexp ðcÞC1Þ2ÞÞg. Notice again that larger values for the convergence constant

cO0 give smaller values for the radius of the disturbance set Dðg; lÞ.

The following corollary provides sufficient conditions for robust partial state feedback

stabilization of time-varying discrete-time systems with guaranteed exponential rate of

convergence of the solutions of the closed-loop system to the equilibrium.

COROLLARY 4.7 (PARTIAL STATE FEEDBACK STABILIZATION). Consider the single input discrete-

time system:

wðtC1ÞZGðt;wðtÞ; dðtÞ; xðtÞ; uðtÞÞ

xiðtC1ÞZ fiðt; x1ðtÞ;.; xiðtÞ; xiC1ðtÞÞ iZ 1;.; nK1

xnðtÞ Z fnðt; xðtÞ; uðtÞÞ

xðtÞ : Z ðx1ðtÞ;.; xnðtÞÞ2Rn;wðtÞ2Rl; uðtÞ2R; dðtÞ2D; t2ZC

(4.26)

where D3Rm is a compact set, fi : Z
C!RiC1/R (iZ1; :::; n) and G : ZC!Rl!D!

Rn!R/Rl are continuous mappings with fiðt; 0ÞZ0, Gðt; 0; d; 0; 0ÞZ0 for all

ðt; dÞ2ZC!D. Suppose that there exist continuous functions ki : Z
C!Ri/R

(iZ1; :::; n) with kiðt; 0ÞZ0 for all t2ZC such that the identities (4.5) and (4.6) hold for

all ðt; xÞ2ZC!Rn. Moreover, suppose that 02Rl is non-uniformly in time RGK-ES with

constant cO0 for the system:

wðtC1ÞZGðt;wðtÞ; dðtÞ; 0; 0Þ

wðtÞ2Rl; dðtÞ2D; t2ZC
(4.27)

Then 02Rl!Rn is non-uniformly in time RGK-ES with constant cO0 for the closed-

loop system (4.26) with uðtÞZknðt; xðtÞÞ.

Proof. Since zero is non-uniformly in time RGK-ES with constant cO0 for equation (4.27),

there exist functions a2KN, b2KC such that for every t0;w0; dðtÞf g
N
0

� �
2ZC!Rl!MD

the solution wðtÞ of equation (4.27) with initial condition wðt0ÞZw0 and corresponding to

dðtÞf g
N
0 2MD satisfies the estimate:

wðtÞj j%exp KcðtKt0Þ
� �

a bðt0Þjw0j
� �

; c tR t0 (4.28)
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Moreover, by virtue of Lemma 4.3, the component xðtÞ of the solution of the closed-loop

system (4.26) with uðtÞZknðt; xðtÞÞ satisfies equation (4.13). Thus, we obtain that for every

t0; x0;w0; dðtÞf g
N
0

� �
2ZC!Rn!Rl!MD, the solution wðtÞ of the closed-loop system (4.26)

with uðtÞZknðt; xðtÞÞ, initial condition ðxðt0Þ;wðt0ÞÞZ ðx0;w0Þ and corresponding to

dðtÞf g
N
0 2MD satisfies the estimate:

wðtÞj j%exp KcðtKt0KnÞ
� �

a b t0 Cn
� �

wðt0 CnÞj j
� �

; c tR t0 Cn (4.29)

By virtue of continuity of the mappings fi : Z
C!RiC1/R ðiZ1;.; nÞ,

kn : Z
C!Rn/R, G : ZC!Rl!D!Rn!R/Rl and the facts that D3Rm is a compact

set, fiðt; 0ÞZ0, Gðt; 0; d; 0; 0ÞZ0, knðt; 0ÞZ0 for all ðt; dÞ2ZC!D, we may prove that the

closed-loop system (4.26) with uðtÞZknðt; xðtÞÞ is robustly forward complete (RFC, see [8])

and that 02Rl!Rn is a robust equilibrium point for the closed-loop system (4.26) with

uðtÞZknðt; xðtÞÞ. The proof of this observation is made by using Remark 3.2(i) and following

the same methodology with the proof of Lemma 3.8 (see Appendix). Details are left to the

reader. Using Lemma 3.5 in [8], we guarantee the existence of a02KN, m2KC such that for

every ðt0; x0;w0; dðtÞf g
N
0 Þ2ZC!Rn!Rl!MD the solution ðxðtÞ;wðtÞÞ of the closed-loop

system (4.26) with uðtÞZknðt; xðtÞÞ, initial condition ðxðt0Þ;wðt0ÞÞZ ðx0;w0Þ and correspond-

ing to dðtÞf g
N
0 2MD satisfies the estimate:

jðxðtÞ;wðtÞÞj%mðtÞ a0ðjðx0;w0ÞjÞ; ctR t0 (4.30)

Combining estimate (4.29) with (4.30) we obtain:

wðtÞj j%exp KcðtKt0Þ
� �

exp ðncÞa M t0
� �

a0 ðx0;w0Þj j
� �� �

CMðt0Þa
0 ðx0;w0Þj j
� �
 �

c tR t0;
(4.31)

where Mðt0Þ :Zexp ðcðt0CnÞÞmaxt0%t%t0Cn ð1CmðtÞÞð1CbðtÞÞ. Thus, using Lemma 2.3 in

[7], we conclude that there exist functions ~a2KN, ~b2KC such that for every

ðt0; x0;w0; dðtÞf g
N
0 Þ2ZC!Rn!Rl!MD, the solution ðxðtÞ;wðtÞÞ of the closed-loop system

(4.26) with uðtÞZknðt; xðtÞÞ, initial condition ðxðt0Þ;wðt0ÞÞZ ðx0;w0Þ and corresponding to

dðtÞf g
N
0 2MD satisfies the estimate:

wðtÞj j%exp KcðtKt0Þ
� �

~a ~bðt0Þ ðx0;w0Þj j
� �

; c tR t0 (4.32)

By virtue of Lemma 4.3, the component xðtÞ of the solution of the closed-loop system

(4.26) with uðtÞZknðt; xðtÞÞ satisfies a similar estimate of the form (4.32). The proof is

complete. ,

Example 4.8. Consider the following planar system:

wðtC1ÞZ exp ðKcÞwðtÞCdðtÞ gðt; xðtÞ; uðtÞÞ

xðtC1ÞZ f ðt; xðtÞÞCuðtÞ

ðwðtÞ; xðtÞÞ2R!R; dðtÞ2½K1; 1�; uðtÞ2R; t2ZC

(4.33)

where cO0 is a constant, f : ZC!R/R and g : ZC!R2/R are continuous mappings

with f ðt; 0ÞZgðt; 0; 0ÞZ0 for all t2ZC. The above system has the form (4.26) and

furthermore zero is RGK-ES with constant cO0 for the subsystem obtained for xZuZ0:

wðtC1ÞZexp ðKcÞwðtÞ, wðtÞ2R; t2ZC. Thus, Corollary 4.7 guarantees that zero will be

non-uniformly in time RGK-ES with constant cO0 for the closed-loop system (4.33) with

the partial state feedback law uðtÞZKf ðt; xðtÞÞ.
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5. Conclusions

Necessary and sufficient Lyapunov-like conditions for non-uniform in time robust output

stabilization of discrete-time systems are given. Particularly, it is proved that for a finite-

dimensional discrete-time control system there exists a (continuous) output stabilizing

feedback if and only if there exists a (strong) OCLF. Moreover, methodologies for the

construction of continuous robust feedback stabilizers are presented.
Acknowledgements

The authors would like to thank Professor A. R. Teel for his suggestions and his comments

concerning the use of the main result in [14] for the proof of implication ðdÞ0 ðbÞ of

Proposition 3.6. The authors would also like to thank the anonymous reviewers of the paper

[10] for providing many references relevant to the results of the present paper, which were

initially unknown to the authors.
References

[1] Albertini, F. and Sontag, ED., 1999, Continuous control-Lyapuonv functions for asymptotically controllable
time-varying systems. International Journal of Control, 72, 1163–1173.

[2] Amicucci, G.L., Monaco, S. and Normand-Cyrot, D., 1997, Control Lyapunov stabilization of affine discrete-
time systems. In Proceedings of the 36th Conference on Decision and Control, San Diego, California, USA,
pp. 923–924.

[3] Artstein, Z., 1983, Stabilization with Relaxed Controls. TMA 7, Nonlinear Analysis, 1163–1173.
[4] Aubin, J.P. and Frankowska, H., 1990, Set-Valued Analysis (Boston: Birkhauser).
[5] Freeman, R.A. and Kokotovic, PV., 1996, Inverse optimality in robust stabilization. SIAM Journal on Control

and Optimization, 34(4), 1365–1391.
[6] Jiang, Z.P. and Wang, Y., 2002, A converse Lyapunov theorem for discrete-time systems with disturbances.

Systems and Control Letters, 45(1), 49–58.
[7] Karafyllis, I. and Tsinias, J., 2003, A converse Lyapunov theorem for non-uniform in time global asymptotic

stability and its application to feedback stabilization. SIAM Journal on Control and Optimization, 42(3),
936–965.

[8] Karafyllis, I., 2004, The non-uniform in time small-gain theorem for a wide class of control systems with
outputs. European Journal of Control, 10, 307–323.

[9] Karafyllis, I., 2006, Non-uniform in time robust global asymptotic output stability for discrete-time systems.
International Journal of Robust and Nonlinear Control, 16, 191–214.

[10] Karafyllis, I. and Kotsios, S., 2004, Conditions for global asymptotic stabilization of discrete-time systems.
In Proceedings of NOLCOS, Stuttgart, Germany.

[11] Kazakos, D. and Tsinias, J., 1994, The input to state stability condition and global stabilization of discrete-time
systems. IEEE Transactions on Automatic Control, 39(10), 2111–2113.

[12] Kellett, C.M. and Teel, AR., 2004, Discrete-time asymptotic controllability implies smooth control-Lyapunov
function. Systems and Control Letters, 52(5), 349–359.

[13] Kellett, C.M. and Teel, AR., 2004, Smooth Lyapunov functions and robustness of stability for difference
inclusions. Systems and Control Letters, 52(5), 395–405.

[14] Kellett, C.M. and Teel, A.R., 2003, Results on converse Lyapunov theorems for difference inclusions.
In Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, pp. 3627–3632.

[15] Kellett, C.M. and Teel, AR., 2003, Results on Discrete-time Control-Lyapunov Functions In Proceedings of the
42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, pp. 5961–5966.

[16] Kellett, C.M. and Teel, AR., 2004, Weak converse Lyapunov theorems and control-Lyapunov functions. SIAM
Journal on Control and Optimization, 42(6), 1934–1959.

[17] Kloeden, P.E. and Schmalfuss, B., 1998, Asymptotic behaviour of nonautonomous difference inclusions.
Systems and Control Letters, 33, 275–280.

[18] Lefeber, E., Robertsson, A. and Nijmeijer, H., 1999, Linear controllers for tracking chained-form systems.
In: D. Aeyels, F. Lamnabhi-Lagarrigue and A. van der Schaft (Eds) Stability and Stabilization of Nonlinear
Systems, Lecture Notes in Control and Information Sciences 246 (London: Springer-Verlag), pp. 183–199.

[19] Lin, Y. and Sontag, ED., 1991, A universal formula for stabilization with bounded controls. Systems and
Control Letters, 16, 393–397.



Conditions for stabilization of discrete-time systems 761
[20] Nesic, D. and Bastin, G., 1999, Stabilizability and dead-beat controllers for two classes of Wiener-
Hammerstein models. IEEE Transactions on Automatic Control, 44(11), 2068–2072.

[21] Nesic, D. and Loria, A., 2003, On uniform boundedness of parameterized discrete-time cascades with decaying
inputs: applications to cascades. Systems and Control Letters, 49(3), 163–174.

[22] Nesic, D. and Loria, A., 2004, On uniform asymptotic stability of time-varying parameterized discrete-time
cascades. IEEE Transactions on Automatic Control, 49(6), 875–887.

[23] Nesic, D. and Teel, A., 2004, A framework for stabilization of nonlinear sampled-data systems based on their
approximate discrete-time models. IEEE Transactions on Automatic Control, 49(7), 1103–1122.

[24] Simoes, C., Nijmeijer, H. and Tsinias, J., 1996, Nonsmooth stabilizability and feedback linearization of
discrete-time nonlinear systems. International Journal of Robust and Nonlinear Control, 6(3), 171–188.

[25] Sontag, E.D., 1989, A “Universal” construction of Artstein’s theorem on nonlinear stabilization. Systems and
Control Letters, 13, 117–123.

[26] Sontag, E.D., 1998, Comments on integral variants of ISS. Systems and Control Letters, 34, 93–100.
[27] Tsinias, J., 1989, Sufficient Lyapunov like conditions for stabilization. Mathematics of Control, Signals, and

Systems, 2, 343–357.
[28] Tsinias, J., Kotsios, S. and Kalouptsidis, N., 1989, Topological dynamics of discrete-time systems. In Proc. of

MTNS, II (Basle: Birkhauser), pp. 457–463.
[29] Tsinias, J., 1989, Stabilizability of discrete-time nonlinear systems. IMA Journal of Mathematical Control and

Information, 135–150.
[30] Tsinias, J. and Kalouptsidis, N., 1990, Output feedback stabilization of discrete-time control systems. IMA

Journal of Mathematical Control and Information, 257–268.
Appendix

Proof of Lemma 3.8. It suffices to show that system (3.4) is non-uniformly in time robustly

globally asymptotically output stable (RGAOS, see [8]) and 02Rn is a robust equilibrium

point for equation (3.4) (see [8] for the precise definition of a robust equilibrium point). Then

by virtue of Theorem 3.6 in [8], there exist functions s2KL, b;m2KC, such that for every

t0; x0; dðtÞf g
N
0

� �
2ZC!Rn!MD, the unique solution xðtÞ, YðtÞZHðt; xðtÞÞ of system (3.4)

with initial condition xðt0ÞZx0, corresponding to input dðtÞf g
N
0 2MD, satisfies estimate (3.1).

In order to show that system (3.4) is non-uniformly in time RGAOS, it suffices to show that:

(1) System (3.4) is RFC (see [8])

(2) 02Rn is a robust equilibrium point for (3.4)

(3) The output attractivity property for system (3.4) is satisfied, i.e. for every 3O0, T2ZC

and RR0, there exists a t :Zt 3; T ;Rð Þ2ZC, such that:

x0j j%R; t02½0;T�0 Hðt; xðt; t0; x0; dÞÞj j%3; c t2½t0 Ct;CNÞ; cd2MD

where xðt; t0; x0; dÞ denotes the unique solution of system (3.4) with initial condition

xðt0ÞZx0, corresponding to input dðtÞf g
N
0 2MD.

Then by virtue of Lemma 3.3 in [8], it follows that system (3.4) is non-uniformly in

time RGAOS. Concerning the proof of (1), we notice that by virtue of Definition 2.2 in [8]

it suffices to show that for every rR0, TR0, it holds that sup xðt; t0; x0; dÞj j;f

s2½0;T�; x0j j%r; t02½0;T�; d2MDg!CN. Particularly, this follows by considering

arbitrary rR0, T2ZC, then defining recursively the sequence of sets in Rn by

AðkÞ :Zf ð½0; 2T�!AðkK1Þ!DÞ for kZ1; :::; T with Að0Þ :Zfx2X; xj j%rg, which are

bounded by virtue of hypothesis (A1) and finally noticing that xðt0Ck; t0; x0; dÞ; x0j jf

%r; t0%T ; k%T ; d2MDg4AðkÞ for all kZ0; :::; T , where xðt; t0; x0; dÞ denotes the

unique solution of equation (3.4) initiated from x02Rn at time t0R0 and corresponding

to input d2MD.

Concerning the proof of (2), we notice that by virtue of Definition 2.3 in [8] it suffices to

show that for every 3O0, N2ZC and TR0 there exists �d :Z�dð3;N; TÞ2ð0; 3� such that:
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x0j j% �d; t02½0; T�0sup xðt; t0; x0; dÞj j; t0% t% t0 CN; d2MDf g%3

We prove this fact by induction on N2ZC. First notice that the fact holds for NZ0

(by selecting �dð3; 0; TÞZ3). We next assume that the fact holds for some N2ZC and we

prove it for the next integer NC1. In order to have xðt0CNC1; t0; x0; dÞj j%3, by virtue of

hypothesis (A1) it suffices to have:

xðt0 CN; t0; x0; dÞj j%Rð3;N;TÞ :Z
aK1ð3Þ

max gðtÞ; 0% t%T CNf g

It follows that the selection �dð3;NC1;TÞ :Zmin �dð3;N;TÞ; �d Rð3;N;TÞ;N;Tð Þ
� �

O0

guarantees that sup xðt; t0; x0; dÞj j; t0% t% t0CN; d2MDf g%min f3;Rð3;N; TÞg and

sup xðt0CNC1; t0; x0; dÞj j; d2MDf g%3, for all x0j j% �d; t02½0;T�.

Concerning the proof of (3), we notice that by virtue of inequality equation (3.5a), it

suffices to show that for every 3O0, RR0 there exists t :Ztð3;RÞ2ZC such that the

following implication holds:

Vðt0Þ%R0VðtÞ%3;ctR t0 Ct; cd2MD (A1)

where VðtÞ :ZVðt; xðt; t0; x0; dÞÞ.
First we prove inductively the following fact:

VðtÞ%Vðt0ÞCaK1ðMÞCM; c tR t02ZC; cd2MD (A2)

whereM :ZsuptR0 qðtÞ. Indeed, notice that (A2) holds for tZ t0. Suppose that (A2) holds for

some t2ZC with tR t0. Consider the cases:

* if aðVðtÞÞRM then equation (3.5b) implies VðtC1Þ%VðtÞ and consequently (A2)

holds for tC1.

* if aðVðtÞÞ!M or equivalently if VðtÞ!aK1ðMÞ then equation (3.5b) implies

VðtC1Þ%VðtÞCM!aK1ðMÞCM and consequently (A2) holds for tC1.

Let arbitrary 3O0 and let sð3ÞO0 the unique solution of the equation aK1ð2sÞCsZ3. Let

t1ð3Þ2ZC such that qðtÞ%sð3Þ for all tR t1ð3Þ. Clearly, by virtue of equation (3.5b), we have

VðtC1Þ%VðtÞKaðVðtÞÞCsð3Þ;ctR t0 C t1ð3Þ (A3)

Next we prove the following claim: if VðtÞ%3 for some tZT2ZC with TR t0C t1ð3Þ

then VðtÞ%3 holds for all tRT . Consider the cases:

* if aðVðtÞÞRsð3Þ then (A3) implies VðtC1Þ%VðtÞ and consequently VðtÞ%3 holds for

tC1.

* if aðVðtÞÞ!sð3Þ or equivalently if VðtÞ!aK1ðsð3ÞÞ then (A3) implies VðtC1Þ%VðtÞC

sð3Þ!aK1ðsð3ÞÞCsð3Þ%aK1ð2sð3ÞÞCsð3ÞZ3 and consequently VðtÞ%3 holds for tC1.

We are now in a position to show that implication (A1) holds for

tð3;RÞ :Z1C t1ð3ÞC ½ðRCaK1ðMÞCMÞ=ðsð3ÞÞ�, where M :ZsuptR0 qðtÞ. The proof of

implication (A1) is made by contradiction. Suppose that there exists 3O0, RR0,

ðt0; x0; dÞ2ZC!Rn!MD with Vðt0Þ%R and there exists T2ZCwith TR t0Ctð3;RÞ such

that VðTÞO3. By virtue of the previous claim, this implies that VðtÞO3ZaK1ð2sð3ÞÞCsð3Þ

for all tZ t0C t1ð3Þ; :::; T . Consequently, we have KaðVðtÞÞCsð3Þ%Ksð3Þ for all

tZ t0C t1ð3Þ; :::; T . Thus, we obtain from (A3):
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VðtC1Þ%VðtÞKsð3Þ; for all tZ t0 C t1ð3Þ;.; T : (A4)

Clearly, inequality (A4) implies that VðTÞ%Vðt0C t1ð3ÞÞKsð3ÞðTKt0Kt1ð3ÞÞ and this

estimate in conjunction with (A2) (which implies Vðt0C t1ð3ÞÞ%RCaK1ðMÞCM) and our

assumption TR t0C t1ð3ÞC ðRCaK1ðMÞCMÞ=ðsð3ÞÞ gives VðTÞ%0. Clearly, this impli-

cation is in contradiction with the assumption VðTÞO3. The proof is complete. ,

Proof of Proposition 3.6. ðbÞ0 ðdÞ Suppose that equation (1.1) admits a strong OCLF.

Without loss of generality, we may assume that the function q2C0ðZC;RCÞ with

limt/CN qðtÞZ0 involved in equation (3.3d) is positive for all t2ZC. We proceed by

noticing some facts.

Fact I: For all ðt; x0Þ2ZC!Rn, there exists u02Rm and a neighbourhood Nðt; x0Þ3Rn;

such that

x2Nðt; x0Þ0Jðt; x; u0Þ%Vðt; xÞKrðVðt; xÞÞC4qðtÞ (A5)

Moreover, if x0Z0, then we may select u0Z0.

Proof of Fact I: By virtue of equation (3.3d) and since qðtÞO0 for all t2ZC it follows that

for all ðt; x0Þ2ZC!Rn, there exists u02Rm such that

Jðt; x0; u0Þ%Vðt; x0ÞKrðVðt; x0ÞÞC2qðtÞ (A6)

If x0Z0 (and since Jðt; 0; 0ÞZ0 for all t2ZC) then we may select u0Z0. Since the

mapping x/Jðt; x; uÞ is upper semi-continuous and the mapping x2Rn/Vðt; xÞK

rðVðt; xÞÞ is continuous, there exists a neighbourhood N t; x0
� �

3Rn around x0 such that for

all x2N t; x0
� �

:

Jðt; x; u0Þ%Jðt; x0; u0ÞCqðtÞ

Vðt; x0ÞKrðVðt; x0ÞÞ%Vðt; xÞKrðVðt; xÞÞCqðtÞ
(A7)

Inequalities (A6) and (A7) imply property (A5).

Fact II: For each fixed t2ZC there exists a family of open sets ðUðtÞ
j Þj2JðtÞ with

UðtÞ
j 3Rnnf0g for all j2JðtÞ, which consists a locally finite open covering of Rnnf0g and a

family of points ðuðtÞj Þj2JðtÞ with uðtÞj 2Rm for all j2JðtÞ, such that

x2UðtÞ
j 0J t; x; uðtÞj

� 
%Vðt; xÞKrðVðt; xÞÞC4qðtÞ (A8)

This fact is an immediate consequence of Fact I.

By virtue of Fact II and standard partition of unity arguments, it follows that for each fixed

t2ZC there exists a family of smooth functions q
ðtÞ
0 : Rn/ ½0; 1�, qðtÞj : Rn/ ½0; 1�, with

q
ðtÞ
j ðxÞZ0 if x;UðtÞ

j 3Rnnf0g and q
ðtÞ
0 ðxÞZ0 if x;N t; 0ð Þ, where N t; 0ð Þ3Rn is the

neighbourhood provided by Fact I for x0Z0 and u0Z0, qðtÞ0 ðxÞC
P

j2JðtÞq
ðtÞ
j ðxÞ being locally

finite and q
ðtÞ
0 ðxÞC

P
jq

ðtÞ
j ðxÞZ1 for all x2Rn. We define for each fixed t2ZC:

kðt; xÞ :Z
X
j2JðtÞ

q
ðtÞ
j ðxÞuðtÞj (A9)

Clearly, k as defined by (A9) is a smooth function. Notice that 0;UðtÞ
j for all j2J and

consequently by definition (A9) we have kðt; 0ÞZ0 for all t2ZC. It also follows from the
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fact that J is quasi-convex with respect to u2Rm and definition (A9) that:

Jðt; x; kðt; xÞÞZJ t; x;
X

j2J 0ðt;xÞ

q
ðtÞ
j ðxÞuðtÞj

0
@

1
A% max

j2J 0ðt;xÞ
J t; x; uðtÞj

� n o
(A10)

where J 0ðt; xÞZ j2JðtÞg f0g; qðtÞj ðxÞs0
n o

is a finite set. For each j2J 0ðt; xÞ we obtain that

x2UðtÞ
j or x2N t; 0ð Þ. Consequently, by virtue of (A8) or (A5) we have that

J t; x; uðtÞj

� 
%Vðt; xÞKr Vðt; xÞð ÞC4qðtÞ, for all j2J 0ðt; xÞ. Combining the previous

inequality with inequality (3.3c), we conclude that the following property holds:

V tC1;Fðt; x; d; kðt; xÞÞð Þ%Jðt; x; kðt; xÞÞ%Vðt; xÞKr Vðt; xÞð ÞC4qðtÞ;

c ðt; x; dÞ2ZC!R
n!D

(A11)

It follows from (A11), Remark 3.2(i) and Lemma 3.8 that system (1.1) is non-uniformly in

time continuously robustly globally output stabilizable and k defined by equation (A9) is a

non-uniform in time continuous robust global asymptotic output stabilizer.

ðaÞ0 ðcÞ Suppose that equation (1.1) admits an OCLF. Without loss of generality, we may

assume that the function q2C0ðZC;RCÞwith limt/CN qðtÞZ0 involved in equation (3.3b) is

positive for all t2ZC. By property (ii) of Definition 3.4 it follows that for every

ðt; xÞ2ZC!Rn, there exists uðt; xÞ2Rm such that

V tC1;Fðt; x; d; uðt; xÞÞð Þ%Vðt; xÞKr Vðt; xÞð ÞC2qðtÞ; c ðt; x; dÞ2ZC!R
n!D (A12)

Moreover, inequality (A12) in conjunction with inequality (3.3a) implies that:

a1 mðtÞ Fðt; x; d; uðt; xÞj j
� �

%a2 bðtÞ xj j
� �

C2qðtÞ; c ðt; x; dÞ2ZC!R
n!D (A13)

By virtue of hypothesis (H1) there exist functions a2KN, g2KC such that: Fðt; x; d; uÞj j

%a gðtÞ ðx; uÞj j
� �

for all ðt; x; d; uÞ2ZC!Rn!D!Rm. This fact in conjunction with

equation (3.3a) implies that:

V tC1;Fðt; x; d; 0Þð Þ%Vðt; xÞKr Vðt; xÞð ÞC2qðtÞ;

c ðt; dÞ2ZC!D; cx2SðtÞ
(A14)

where SðtÞ :Zfx2Rn; xj j% ð1=gðtÞÞaK1ðð1=ðbðtC1ÞÞÞÞaK1
2 ð2qðtÞÞg. We define for all

ðt; xÞ2ZC!Rn:

kðt; xÞ :Z
0 if x2SðtÞ

uðt; xÞ if x;SðtÞ

(
(A15)

By virtue of hypothesis (H1), we obtain Fðt; x; d; kðt; xÞÞj j%a gðtÞ xj j
� �

for all

ðt; dÞ2ZC!D and x2SðtÞ. Clearly, by virtue of the previous inequality, inequality (A13)

, definition (A15) and Remark 3.2(i), it follows that there exist functions a02KN, g
02KC

such that: Fðt; x; d; kðt; xÞÞj j%a0 g0ðtÞ xj j
� �

for all ðt; x; dÞ2ZC!Rn!D. Moreover, by virtue

of equations (A12) and (A14) and definition (A15) we have:

V tC1;Fðt; x; d; kðt; xÞÞð Þ%Vðt; xÞKr Vðt; xÞð ÞC2qðtÞ; c ðt; x; dÞ2ZC!R
n!D

It follows from Lemma 3.8 that system (1.1) is non-uniformly in time robustly globally

output stabilizable and k defined by equation (A15) is a non-uniform in time robust global

asymptotic output stabilizer.



Conditions for stabilization of discrete-time systems 765
(c)0(a) Suppose that there exist s2KL, a2KN,b;g;m2KC and a mapping

k : ZC!Rn/Rm with Fðt; x; d; kðt; xÞÞj j%a gðtÞ xj j
� �

for all ðt; x; dÞ2RC!Rn!D, such

that for every ðt0; x0; dðtÞf g
N
0 Þ2ZC!Rn!MD the unique solution xðtÞZxðt; t0; x0; dÞ, YðtÞZ

Hðt; xðt; t0; x0; dÞÞ of the closed-loop system (1.1) with (1.2) and initial condition xðt0ÞZx0,

corresponding to input dðtÞf g
N
0 2MD, satisfies estimate (3.1). By virtue of Proposition 7 in

[26], there exist functions a1; a22KN such that: sðs; tÞ%aK1
1 expðK2tÞa2ðsÞ
� �

, for all s; tR0.

Thus estimate (3.1) in conjunction with the above inequality implies:

a1 mðtÞxðt; t0; x0; dÞ;Hðt; xðt; t0; x0; dÞ
� ��� ��� �

%exp K2ðtKt0Þ
� �

a2 bðt0Þ x0j j
� �

c ðt0; x0; dÞ2ZC!R
n!MD and tR t0;

(A16)

Define:

Vðt0; x0Þ :Z sup exp tKt0
� �

a1 mðtÞxðt; t0; x0; dÞ;Hðt; xðt; t0; x0; dÞ
� ��� ��� �

; tR t0; d2MD

� �
(A17)

Inequalities (3.3a) are immediate consequences of definition (A17) and estimate (A16).

Moreover, notice that definition (A17) implies that:

Vðt0 C1;Fðt0; x0; dðt0Þ; kðt0; x0ÞÞÞZVðt0 C1; xðt0 C1; t0; x0; dÞÞ%expðK1ÞVðt0; x0Þ;

c ðt0; x0; dÞ2ZC!R
n!MD

(A18)

Clearly, property (ii) of Definition 3.4 is an immediate consequence of inequality (A18).

Particularly, property (ii) of Definition 3.4 holds with rðsÞ :Zð1KexpðK1ÞÞs and qðtÞh0.

(d)0(b) under hypothesis (H2). This implication is an immediate consequence of the

main result in [9]. However, we are going to use instead the main result in [14] in order to

prove the existence of a strong OCLF for (1.1). The methodology for the proof of this

implication was suggested by Prof. Teel and shows the close connection between the non-

uniform in time notions of stability and the notion of stability with respect to two measures

for finite-dimensional discrete-time systems.

Suppose that there exist functions s2KL, b;m2KC, a continuous mapping

k : ZC!Rn/Rm, such that for every ðt0; x0; dÞ2ZC!Rn!MD the unique solution

xðtÞZxðt; t0; x0; dÞ, YðtÞZHðt; xðtÞÞ of the closed-loop system (1.1) with (1.2) and initial

condition xðt0ÞZx0, corresponding to input d2MD, satisfies estimate (3.1). We next

consider the following autonomous system:

yðtC1ÞZ
1

bðwðtÞC1Þ
�F wðtÞ; bðwðtÞÞyðtÞ; dðtÞ
� �

;wðtC1ÞZwðtÞC1

�YðtÞZ �HðwðtÞ; bðwðtÞÞyðtÞÞ; ðyðtÞ;wðtÞÞ2Rn!I; �YðtÞ2Rk; dðtÞ2D

(A19)

where I :Zgk2ZC kK1
4
; kC 1

4

� �
, I3R, �Fðw; y; dÞZFðpðwÞ; y; d; kðpðwÞ; yÞÞ, �Hðw; yÞ :Z

HðpðwÞ; yÞ, bðwÞ :Z1=ðmðpðwÞÞÞ and p : I/ZC is the mapping that maps each w2I to its

closest integer. Notice that this mapping is well defined on I and is continuous on I.

Moreover, by virtue of hypothesis (H2) it follows that the mappings �F; �H are continuous on

their domains and that for each ðw0; y0; dðtÞf g
N
0 Þ2I!Rn!MD the unique solution of (A19)

with initial condition yð0ÞZy0, corresponding to input dðtÞf g
N
0 2MD, satisfies for all t2ZC:
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yðtÞZm pðw0ÞC t
� �

xðpðw0ÞC t; pðw0Þ; bðw0Þy0; �dÞ

�YðtÞZHðpðw0ÞC t; xðpðw0ÞC t; pðw0Þ; bðw0Þy0; �dÞÞ
(A20)

where �d2MD satisfies �dðpðw0ÞC tÞZdðtÞ for all t2ZC. It follows from estimate (3.1) that

for each ðw0; y0; dðtÞf g
N
0 Þ2I!Rn!MD the unique solution of equation (A19) with initial

condition yð0ÞZy0, corresponding to input dðtÞf g
N
0 2MD, satisfies for all t2ZC:

�YðtÞ
�� ��C yðtÞj j%s bðpðw0ÞÞbðw0Þ y0j j; t

� �
(A21)

Clearly, the solutions of equation (A19) are solutions of the difference inclusion:

ðyðtC1Þ;wðtC1ÞÞ2 ~FðwðtÞ; yðtÞÞ

~Fðw; yÞ :Z
1

bðwC1Þ
�Fðw; bðwÞy; dÞ;wC1

0
@

1
A; d2D

8<
:

9=
;4Rn!I

(A22)

and each solution of the difference inclusion (A22) is a solution of equation (A19) for some

dðtÞf g
N
0 2MD. Estimate (A21) implies that the difference inclusion (A22) is strongly KL-

stable with respect to the measures ðu1;u2Þ in the sense described in [14], where

u1ðy;wÞ :Z yj jC �Hðw; bðwÞyÞ
�� �� and u2ðy;wÞ :ZbðpðwÞÞbðwÞ yj j. Moreover, by virtue of

hypothesis (H2), it is immediate to verify that the set-valued map ~F as defined by equation

(A22) satisfies the basic conditions and is continuous on the open set Rn!I3RnC1 in the

sense of Definitions 5, 6 in [14], respectively. Thus by virtue of Theorem 2 in [14], it follows

that the difference inclusion (A22) is robustly strongly KL-stable with respect to the measures

ðu1;u2Þ in the sense described in [14]. By virtue of Theorem 1 in [14], there exist functions

a1; a22KN and a continuous function U : I!Rn/RC such that

a1 ðy; �Hðw; bðwÞyÞÞ
�� ��� �

%Uðw; yÞ%a2 bðpðwÞÞbðwÞ yj j
� �

;cðw; yÞ2I!R
n (A23)

U wC1;
1

bðwC1Þ
�Fðw; bðwÞy; dÞ

� �
%expðK1ÞUðw; yÞ; c ðw; y; dÞ2I!R

n!D (A24)

Finally, we define:

Vðt; xÞ :ZUðt;mðtÞxÞ; c ðt; xÞ2ZC!R
n (A25)

We next prove that V is a strong OCLF for (1.1). Obviously property (i) of Definition 3.4 is

a consequence of inequality (A23). Define

Jðt; x; uÞ :Z sup VðtC1;Fðt; x; d; kðt; xÞCvÞ; d2D; vj j% uKkðt; xÞj jf g (A26)

Inequalities (3.3c,d) with rðsÞ :Zð1KexpðK1ÞÞs and qðtÞh0 are immediate conse-

quences of inequality (A24) and definitions (A25), (A26). Finally, we prove that the function

J as defined by equation (A26) is quasi-convex with respect to u2Rm. Notice that the

continuous maps F : ZC!Rn!D!Rm/Rn, k : ZC!Rn/Rm and V : ZC!Rn/RC

can be continuously extended to F : R!Rn!D!Rm/Rn, k : R!Rn/Rm and

V : R!Rn/RC, respectively (see Remark 1.1). Under hypothesis (H2), it follows from

compactness of D3Rl, continuity of F : RC!Rn!D!Rm/Rn, k : RC!Rn/Rm,

V : RC!Rn/RC and Theorem 1.4.16 in [4] that the function J as defined by (A26) is

continuous. Clearly, definition (A26) implies Jðt; 0; 0ÞZ0 for all t2ZC. Let

ðt; xÞ2ZC!Rn, u1; u22Rm and l2½0; 1�. Definition (A26) implies:
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Jðt; x; lu1 C ð1KlÞu2Þ%

supfVðtC1;Fðt; x; d; kðt; xÞCvÞ; d2D; vj j%l u1Kkðt; xÞj jC ð1KlÞ u2Kkðt; xÞj jg

%sup VðtC1;Fðt; x; d; kðt; xÞCvÞ; d2D; vj j%max u1Kkðt; xÞj j; u2Kkðt; xÞj jf gf g

If max u1Kkðt; xÞj j; u2Kkðt; xÞj jf gZ u1Kkðt; xÞj j then the above inequality implies

Jðt; x; lu1C ð1KlÞu2Þ%Jðt; x; u1Þ. Similarly, if max u1Kkðt; xÞj j; u2Kkðt; xÞj jf gZ
u2Kkðt; xÞj j then we obtain Jðt; x; lu1C ð1KlÞu2Þ%Jðt; x; u2Þ. Thus in any case it holds

that Jðt; x; lu1C ð1KlÞu2Þ%max Jðt; x; u1Þ;Jðt; x; u2Þf g. The proof is complete. ,

Proof of Proposition 3.10. Define:

pðt; xÞ :Z dðt; xÞC
1

gðt; xÞ
aK1
3

1

mðtÞ
aK1
1 Jðt; x; 0ÞC1ð Þ

� �
(A27)

and notice that the mapping x/pðt; xÞ is a continuous, positive function for each fixed

t2ZC. Definitions (3.10), (A27) and inequalities (3.3a,c) and (3.9) imply that for each fixed

t2ZC we have:

~Vðt; xÞZmin inf Jðt; x; uÞ; uj j%p t; xð Þf g; inf Jðt; x; uÞ; uj jOp t; xð Þf g
� �

Rmin inf Jðt; x; uÞ; uj j%p t; xð Þf g; inf a1ðmðtÞ Fðt; x; d; uÞj jÞ; d2D; uj jOp t; xð Þf g
� �

Rmin inf Jðt; x; uÞ; uj j%p t; xð Þf g; Jðt; x; 0ÞC1
� �

Clearly, since ~Vðt; xÞ%Jðt; x; 0Þ, the latter inequality implies that the case

min inf Jðt; x; uÞ; uj j%p t; xð Þf g; Jðt; x; 0ÞC1
� �

ZJðt; x; 0ÞC1 cannot happen. Thus, we

conclude that:

~Vðt; xÞZ inf Jðt; x; uÞ : uj j%pðt; xÞf gZKsupKJðt; x; uÞ : uj j%pðt; xÞf g (A28)

Moreover, it follows that the set-valued map Mðt; xÞ4Rm, as defined by (3.11), is non-

empty and bounded for each fixed t2ZC. Notice that the continuous maps

J : ZC!Rn!Rm/RC and p : ZC!Rn/RC can be continuously extended to

J : R!Rn!Rm/RC and p : R!Rn/RC, respectively (see Remark 1.1). Continuity

of the mapping x/ ~Vðt; xÞ follows immediately by equalities (A28) in conjunction with

Theorem 1.4.16 in [4] and the lower and upper semi-continuity of the set-valued map

x/Sðt; xÞ :Z u2Rm; uj j%pðt; xÞf g. Moreover, by continuity of the mapping x/ ~Vðt; xÞ it
follows that for each fixed t2ZC the set Mðt; xÞ4Rm is compact. We finish the proof by

establishing that the set-valued map x/Mðt; xÞ, as defined by (3.11), is upper

semi-continuous for each fixed t2ZC. It suffices to prove that for every ðt; xÞ2ZC!Rn

and for every 3O0 there exists dO0 such that

x0Kx
�� ��!d0Mðt; x0Þ3Mðt; xÞC3B (A29)

The proof will be made by contradiction. Suppose the contrary: there exists ðt; xÞ2ZC!Rn

and 3O0, such that for all dO0, there exists x02fxgCdB and u02Mðt; x0Þ with u0Ku
�� ��R3,

for all u2Mðt; xÞ. Clearly, this implies the existence of a sequence x0j; u
0
j

� �� �N
jZ1 with x

0
j/x,

u0j2Mðt; x0jÞ and u0jKu
�� ��R3, for all u2Mðt; xÞ and jZ1; 2;.. On the other hand, since u0j is

bounded, it contains a convergent subsequence u0i/ �u;Mðt; xÞ. By continuity of themappings

x/ ~Vðt; xÞ and ðx; uÞ2Rn!Rm/Jðt; x; uÞ, we have: ~Vðt; x0iÞ/ ~Vðt; xÞ and
~Vðt; x0iÞZJðt; x0i; u

0
iÞ/Jðt; x; �uÞ. Consequently, we must have: ~Vðt; xÞZJðt; x; �uÞ, which,

byvirtue of definition (3.11) implies that �u2Mðt; xÞ, a contradiction.Notice that the fact that the
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mapping u/Jðt; x; uÞ is strictly quasi-convex guarantees that the set-valued map Mðt; xÞ

defined by (3.11) is a singleton for all ðt; xÞ2ZC!Rn. Thus there exists a function

k : ZC!Rn/Rm with kðt; 0ÞZ0 for all t2ZCwith themapping x/kðt; xÞ being continuous

for each fixed t2ZC and in such a way that equation (3.12) is satisfied. Consequently,

inequalities (3.3c,d) imply that the following property holds:

V tC1;Fðt; x; d; kðt; xÞÞð Þ%Vðt; xÞKr Vðt; xÞð ÞC4qðtÞ c ðt; x; dÞ2ZC!R
n!D;

It follows from Remark 3.2(i), hypothesis (H1) and Lemma 3.8 that system (1.1) is non-

uniformly in time continuously robustly globally output stabilizable and k defined by (3.12) is a

non-uniform in time robust global asymptotic output stabilizer for (1.1). ,

Proof of Lemma 4.2. Consider the solution xðtÞ of equation (4.1) with arbitrary initial

condition xðt0ÞZx0, corresponding to arbitrary input dðtÞf g
N
0 2MD. Using equation (4.4) and

(trivial) induction arguments, it can be shown that for all tR t0 it holds that:

Vðt; xðtÞÞ%ltKt0Vðt0; x0Þ. The previous estimate in conjunction with inequality (4.3) implies

(4.2) with c :ZKlogðlÞ=p, aðsÞ :Z KK1a2ðsÞ
� �1

p . It follows that zero is non-uniformly in time

RGK-ES for (4.1) with constant cZKlogðlÞ=p. ,
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