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systems
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We give Lyapunov-like conditions for non-uniform in time output stabilization of discrete-time systems.
Particularly, it is proved that for a discrete-time control system there exists a (continuous) output
stabilizing feedback if and only if there exists a (strong) output control Lyapunov function (OCLF).
Moreover, strategies for the construction of continuous robust feedback stabilizers are presented.
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1. Introduction
In this paper, we study discrete-time systems of the form:

x(t + 1) = F(t,x(t),d(t), u®)), Y() = H(t, x(t))

n k m + (11)

x)eR”, Y)eR, dt)eD, ut)eR", t€Z
where DSR! is the set of disturbances or time-varying parameters and
F:ZtXR"XDXR" >R, H:ZH XR"— RE satisfy F(z,0,d,0)=0, H(z,0)= 0 for all
(t,d) € Z* X D. Specifically, we present necessary and sufficient conditions for the existence
of a (continuous) function k : Zt X R" — R™ with k(z,0) =0 for all t €Z" such that the
closed-loop system (1.1) with

u(t) = k(t, x(1)) (1.2)

is non-uniformly in time robustly globally asymptotically output stable (RGAOS, see [8]).
Notice that the case of state stabilization is also accounted in this framework, since it is
equivalent to the output stabilization of system (1.1) with output map H(t,x) : =x.
Time-varying discrete-time systems were recently studied in [6,8,17,21,22]. A preliminary
version of the present paper studying time-varying discrete-time systems without
disturbances and with the whole state vector as output map (i.e. state stabilization) was
given in [10]. It should be emphasized that in the present paper, we study the discrete-time
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systems per se, and not necessarily as the sampled-data representation of a continuous-time
system (see for instance [23] and the references therein).

1.1. Motivation

Time-varying control systems of the form (1.1) appear naturally when tracking control
problems are studied. However, the reader should not think that the use of time-varying
feedback is restricted to time-varying control systems. Time-varying feedback may be used
for stabilization of autonomous control systems. Section 2 of the present paper is devoted to
the presentation of an example: an autonomous planar system, which cannot be uniformly
stabilized by continuous time-invariant state feedback or (discontinuous) time-invariant
partial state feedback. On the other hand, there exists a continuous time-varying partial state
feedback, which robustly globally asymptotically stabilizes the origin non-uniformly in time,
even in the presence of measurement errors. Continuity of the dynamics of the closed-loop
system is a desired property, since it guarantees certain robustness properties (see [13,14]).
Thus, as the example presented in section 2 shows, time-varying feedback laws that induce
non-uniform in time asymptotic stability for the resulting closed-loop system may be the
only option for the solution of certain stabilization problems (and sometimes is not a “bad”
option).

Necessary and sufficient Lyapunov-like conditions for the existence of stabilizing ordinary
feedback have been given in the pioneering papers [3,5,25,27] for continuous-time systems,
where the concept of the (Robust) control Lyapunov function (CLF) was introduced. Explicit
formulae for the feedback law are also given in [19] for autonomous continuous-time control
systems. Recently, in [7], necessary and sufficient Lyapunov-like conditions were given for
the existence of a stabilizing ordinary time-varying feedback for continuous-time systems.
CLFs are also used for the expression of Lyapunov-like conditions for asymptotic
controllability of continuous-time systems (see for instance [1,16]).

For discrete-time systems Lyapunov functions were proposed in [28] for the construction
of continuous state stabilizing feedback. In [29,30] a special class of Lyapunov functions
(norms of R") was used to express necessary and sufficient conditions for local asymptotic
stabilization by means of time-invariant feedback. Recently, it was shown in [12,15] that the
existence of a smooth CLF for discrete-time systems is equivalent to asymptotic
controllability. This important result allowed the authors in [12,15] to construct stabilizing
(in general discontinuous) feedback for asymptotically controllable discrete-time systems.
A similar result for the existence of (discontinuous) feedback stabilizer was given in [2].
However, in [12,15] the authors prove in addition that the closed-loop system is robust for
perturbations of appropriate magnitude.

In the present paper, uncertain control systems of the form (1.1) are considered, where the
magnitude of the perturbation (i.e. the “size” of the set D) is a priori given and the problem of
the existence of an output stabilizing feedback law (1.2), which stabilizes the output of the
system for all possible disturbances with d(r) € D for all t € Z*, is studied. We show that the
existence of a output control Lyapunov function (OCLF) is a necessary and sufficient
condition for the existence of a stabilizing feedback that stabilizes the output of the system
(in general) non-uniformly in time (see [8,9] for the notion of non-uniform in time RGAOS
for discrete-time systems). Moreover, we provide necessary and sufficient Lyapunov-like
conditions for the continuity of the feedback stabilizer. Thus, the result contained in [2] is
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generalized in more than one direction. Since explicit formulae for the feedback law cannot
be given for the general nonlinear time-varying discrete-time case, we show that the actual
computation of the control action at each time can be achieved via a minimization procedure
(Proposition 3.10).

In section 4, we focus on the problem of state stabilization (i.e. when the stabilized output
is the state vector of the system), where the notion of the CLF is applicable. Exactly as in the
continuous-time case, in some cases the construction of a CLF is simpler than the
construction of a state stabilizing feedback. For the case of controllable triangular discrete-
time single input systems (i.e. u € R) of the form (1.1), where we suppose that there exist
continuous functions f; : ZF X R - R (i=1,...,n) with £i(t,0) = 0 for all > 0, such that

F(t,x,0,u) = (fi(t,x1, %), fo(t, X1, X0, X3), <os (8, X1 ooy Xy 1))
(1.3)
V(tx,u) €EZT XR" XR

and D CR! is a compact set with 0 € D, we show that a CLF can be constructed in parallel
with the construction of stabilizing feedback. Under appropriate assumptions we are in a
position to provide a robust feedback state stabilizer of this system, which guarantees
exponential convergence of the solutions of the closed-loop system to the origin (Theorem
4.3). Moreover, sufficient conditions that guarantee the existence of a partial state feedback
that stabilizes the state of the system are provided in Corollary 4.7. Our work is based on
ideas given in [11,24], where the authors present backstepping strategies for the construction
of feedback stabilizers that guarantee the so-called “dead beat” property for the closed-loop
system, when the dynamics of (1.1) are autonomous and do not contain uncertainties. We
notice that controllers, which guarantee the “dead beat” property for discrete-time systems,
were also considered in [20].

Finally, it should be emphasized that all results presented in this paper automatically cover
the corresponding results in the time-invariant case. In order to illustrate this point, we also
present examples of autonomous systems (see Example 4.6 as well as the example of
section 2).

1.2. Notations

Throughout this paper, we adopt the following notations:

* For x €R", |x| denotes its Euclidean norm and x’ its transpose.

* 7™ denotes the set of non-negative integers.

* Kt denotes the class of positive C? functions ¢ RT — (0,+x). K,, denotes the class of
continuous, strictly increasing functions a: RT >Rt with  a(0)=0
and limy_,,, a(s)=+%. By KL, we denote the set of all continuous functions
c=0(s,): RT XR" >R with the properties: (i) for each #>0 the mapping
a(+,t) is continuous and increasing with ¢(0,#)=0; (ii)) for each s>0, the
mapping o(s, ) is non-increasing with lim,,,.0(s,r)=0.

* Mp denotes the set of all sequences {d(r)}; with d(f) €D for all t€Z", where
DCR.

* B denotes the open unit sphere in R". Let ¢>0 and S<SR". We define
S+ eB: =U;g fx ER™; x—s| < ¢}
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Remark 1.1. We would like to point out that for every mapping F : Zt X Q — A, where
Q<=R" and A =R™ is a convex set, we may define the mapping F : R X Q — A, which
satisfies F(t,x)=F(t,x) for all (tx)€Z"XQ and Ft,x):=1—t+ [[DF(t],x)
+(t = [(DF([1] + 1,x) for all (¢,x) € (RT\Z") X Q, where [1] : =max{7 €Z"; 7 <1} denotes
the integer part of t €R" and F(z,x) = F(0,x) for all (,x) € (—®,0) X Q (notice that F is
continuous with respect to t €R).

2. Motivating Example

In this section, an example of an autonomous system is presented, which cannot be robustly
globally uniformly asymptotically stabilized by continuous time-invariant state feedback or
(discontinuous) partial state feedback but it can be non-uniformly in time robustly globally
asymptotically stabilized by continuous time-varying partial state feedback even in the
presence of measurement errors. This example shows that continuous time-varying feedback
laws may be used for the robust stabilization of autonomous control systems as well. The
notion of robust uniform global asymptotic stability is given in [6] for discrete-time systems
with continuous dynamics but can be directly extended to the case of discontinuous
dynamics.
Consider the planar autonomous control system:

x(t + 1) = ()2 + x(Hu(?)) + d@)y(u(t)
y(& + 1) = exp(2u)y(?) 2.1
(@), y0) €R%, u@)ER, dvyeD :=[-1,1], t€Z*

We claim that for every u > 0 there is no continuous time-invariant state feedback, which
robustly globally asymptotically stabilizes system (2.1). The proof of this claim is made by
contradiction. Suppose that there exists k € C°(R?;R) so that zero is robustly globally
uniformly asymptotically stable for the closed-loop system (2.1) with u(f) = k(x(¢), y(¢)).
Let R > 0, such that |k(x,0)| < R for all |x| < 1. By virtue of the uniform robust Lyapunov
stability property for the closed-loop system (2.1) with u(f) = k(x(¢), y(t)), we obtain the
existence of ¢ > 0 such that if |xy| < ¢ then the solution of the closed-loop system (2.1) with
u(t) = k(x(t), y(1)), initial condition (x(ty), y(ty)) = (%o, 0), corresponding to zero input, i.e.
d(H) =0 for all r €Z*, satisfies |x(7)| < 1/(2R + 2) for all ¢ > ¢, (notice that y(f) = 0 for all
t > ty). Let xy = 0 with |xg| < 0. It is clear that the solution of the closed-loop system (4.1)
with u(t) = k(x(r), y(¢)), initial condition (x(zy), y(y)) = (xg,0), corresponding to zero input,
ie. d(t) =0 for all t €Z", satisfies |x(D)k(x(2), y(#))| < (1/2) for all t> t,. It follows from
system (2.1) that |x(z + 1)| = (3/2)|x(?)| for all ¢ > t,. Thus, we obtain (3/2)"7|xy| < |x(2)|<
1/(2R + 2) for all ¢ > t;, which is clearly a contradiction.

System (2.1) can be stabilized by discontinuous state feedback. For example, the
discontinuous feedback:

1
0 if <Pl
k(x,y) := (2.2)

2
2% it x>y
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robustly globally asymptotically stabilizes system (2.1). To prove this fact notice that the
continuous, positive definite and radially unbounded function

2exp(w) |

V,y) = x| + —————y[%
(e, y) 2= [x] expWz)_llyl

satisfies the following inequality:

V(x(2 + xk(x,y)) + d yk(x,y), exp(—2,u)y) <exp (—,u/2) V(x,y), Y ydeRX[-1,1]

and the above inequality implies uniform robust global asymptotic stability of zero for the
closed-loop system (2.1) with u(t) = k(x(), y(¥)).

However, for every u > 0, there is no (discontinuous) time-invariant partial state feedback,
which depends only on x that robustly globally asymptotically stabilizes system (2.1). Again,
the proof of this claim is made by contradiction. Suppose that there exists k : R — R so that
zero is robustly globally uniformly asymptotically stable for the closed-loop system (2.1)
with u(f) = k(x(¢)). Similar arguments previously show that for every r>0, we must
necessarily have sup{|k(x)|; |x| < r} = +o. This implies the existence of a sequence {x; € R}
with x; = 0 and |k(x;)] = +o. Let ¢>0 be arbitrary. By virtue of the uniform robust
Lyapunov stability property for the closed-loop system (2.1) with u(#) = k(x()), we obtain
the existence of 6 € (0, ¢) such that if |(xy, yy)| < ¢ then the solution of the closed-loop system
(2.1) with u(?)= k(x(¢)), initial condition (x(#y),y(ty)) = (xg,yg), corresponding to input
d € Mp, satisfies |x(r)| < e for all > t,. Without loss of generality we may assume that the
sequence {x; € R} considered previously with x; — 0 and |k(x;)| — + satisfies |x;| < 6/2.
Let yo = 6/2 and d = 1. We obtain:

i (2 + xik(x) + dyok ()| = [ + dyol k()| —2|x;| = (g |&(x;)] _lei|> - F®

Since |(x;, yg)| < 6 the solution of the closed-loop system (2.1) with u(¢) = k(x(¢)), initial
condition (x(fy), y(fy)) = (x;, ¥g), corresponding to input d € M, with d(#,) = 1, should satisfy
e ’xi (2 + x,-k(xl-)) + d(t())y()k(xi)’ — +o00, which is clearly a contradiction.

On the other hand, consider the time-varying continuous partial state feedback law:

—2x7! if exp(ur)|x| > 2
k(t,x) := ¢ =2(exp(ut)lx| —1)x™" if 1 <exp(ut)lx| <2 (2.3)
0 if exp(ut)|x| <1

It is proved next that the feedback defined above robustly globally stabilizes the origin for
system (2.1) non-uniformly in time even in the presence of measurement errors. Thus, it
should be emphasized that the (common) claim that time-varying feedback designs that
involve terms, which are unbounded with respect to time, are highly sensitive to
measurement errors is not generally true.

Consider the solution of the closed-loop system (2.1) with u(f) = k(¢, x(¢) + e(¢)), where
e(t) denotes the measurement error. We assume 10% measurement error, i.e.
le(n)] < (1/10)|x(r)] for all t>1t,. The solution of the closed-loop system (2.1) with
u(t) = k(t,x(t) + e(t)), initial condition (x(¢y), y(ty)) = (xg, o) € R2, corresponding to input
d € Mp, satisfies the following estimates:

ly(0)] < exp(—2ut —1¢)) lyol, V=1 (2.4a)
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[x()] < exp (—rt)(|x0| + K, +K, exp(2,ut0)|y0|), Vix>ty+1 (2.4b)

for certain constants r, K|, K, > 0. Indeed, equation (2.4a) is immediate (y(¢) is the solution
of a linear difference equation). Inequality (2.4b) follows from the consideration of the
following cases:

* exp(ut)|x(r) + e(r)] = 2. In this case, using definitions (2.3) and (2.1) and the trivial
inequality |x(¢) + e(t)| = (9/10)|x(¢)], which is combined with the inequality
le(r)] < (1/10)|x(?)| and gives

el 1

Jx(®) +e®] 9

we obtain:

2ROROL 2Ol <2 ol + exptunyo

|x(t + DI < |x(®) +e(®)]| |x(®) +e(®)| 9

* 1 <exp(ut)|x(t) + e(r)] <2. In this case, using definition (2.3) we obtain
|u()] < 2 exp(ut). The trivial inequality |x(f)| < |x(¢) + e(f)| + |e(t)|, combined with
the inequality |e(r)| < (1/10)|x(?)| gives |x(¥)| < (10/9)|x(¢) + e(r)| and consequently
[x()] < (20/9) exp(—ut). Thus, we obtain:

et + DI < 21D + P |u@)] + [y(0)][u(r)] < 24 exp(—ur) + 2 exp(un)|y(@)|

* exp(uh)|x(®) +e(®)| < 1. In this case, using definitions (2.3) and (2.1) and the
trivial inequality |x(2)| < |x(f) + e(?)| + |e(?)|, which is combined with the inequality
le(n)] < (1/10)|x(r)| and gives |x(t)| < (10/9)|x(¢) + e(t)| we obtain: |x(z + 1)| < 2|x(¢)]
<3 exp(—ut).

Thus in any case it holds that: |x(z + 1)] < (2/9)|x(2)| + 24 exp(—ut) + 2 exp(ut)|y(?)|. The
previous inequality in conjunction with equation (2.4a) gives: |x(t+ 1)| < (2/9)|x(¢)|+
24 exp(—ut) + 2 exp(—ut) exp(2uty)|yo|, which implies inequality (2.4b) for appropriate
r,K;,K; > 0. By virtue of Lemma 3.3 in [8], estimates (2.4a,b) imply that zero is non-
uniformly in time RGAS for the closed-loop system (2.1) with u(t) = k(¢, x(¥) + e(2)),
le()] < (1/10)|x(1)].

It should be also emphasized that the time-varying feedback law defined by equation (2.3)
has better properties than the discontinuous time-invariant feedback defined by equation
(2.2): (1) it is continuous and (2) it depends only on x. Continuity of the dynamics of the
closed-loop system is a desired property since it guarantees robustness to modeling errors
(see [13,14]). Of course, both feedback laws become ill-conditioned for large times (notice
that in both cases equation (2.4a) holds and consequently both feedback laws will have
exactly the same implementation problems for large times), although the discontinuous
feedback defined by equation (2.2) has additional problems when |y| is small (it becomes
unbounded even for small times).
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3. Control Lyapunov functions for discrete-time systems

We study time-varying discrete-time systems of the form (1.1) under the following
hypothesis:

(H1). There exist functions a € Ko,y €K' such that: |F(t,x,d, u)| < a(y(t)|(x, u)|) for all
(t,x,d,u) EZT XR" XD XR" and H : Z+ X R" — R* is continuous with H(t,0) = 0 for all
rezt.

Lemma 3.2 in [8] implies that hypothesis (H1) is fulfilled if the following (stronger)
hypothesis holds:

(H2). The mapping F : Z* XR" XD XR™ > R" is continuous with F(t,0,d,0)=0 for
all (t,dy€Z" XD,D cR is a compact set and H : ZW X R" — RX is continuous with
H(t,0)=0 for all t€Z".

We next provide the notion of non-uniform in time stabilizability for general discrete-time
systems.

DErINITION 3.1 We say that equation (1.1) is non-uniformly in time (continuously) robustly
globally output stabilizable, if there exist functions ¢ EKL, a €K, and B,7v,u €K', a
(continuous) mapping k:Z" XR"—>R™ (called the feedback function) with
|F(t,x,d, k(t,x))| < a(y(r)|x|) for all (t,x,d)EZ" XR" XD such that for every (ty,x,,
{dO}) €EZT XR" X M, the unique solution x(t), Y(t) = H(t, x(1)) of the closed-loop system
(1.1) with (1.2) and initial condition x(ty) = xo, corresponding to input {d(t)}; € My, satisfies
the following estimate:

[Y ()] + u()|x(0)] < o (Bo)|xol. 1 —10), V1> 1 3.1

Specifically, we say that the function k:Z' XR"—>R™ is a non-uniform in time
(continuous) robust global asymptotic output stabilizer for equation (1.1). Moreover, if
equation (1.1) is non-uniformly in time (continuously) robustly globally output stabilizable
with output H(t,x) =x then we say that equation (1.1) is non-uniformly in time
(continuously) robustly globally state stabilizable and the function k : Zt X R" — R™ is a
non-uniform in time (continuous) robust global asymptotic state stabilizer for equation (1.1).

Remark 3.2. (i) Notice that by virtue of Lemma 3.2 in [8], the existence of a €K,y EK"
with |F(t,x,d)|<a(y(®|x]) for all (t,x,d)€Z"XR" XD, where F(t,x,d):=
F(t,x,d, k(t,x)), is equivalent to the following properties: (i) For every bounded set
S CZ" XR" the image set F(S X D) is bounded, (ii) F(t,0,d)=0 for all (t,d) EZ* XD
and (iii) for every e>0, t€Z" there exists 6(,)>0 such that
sup{|F t,x,d)|; |x| < 6(e, 1), d ED} <e. Clearly, these requirements are automatically
fulfilled if hypothesis (H1) holds and k : Z™ X R" — R™ is continuous with k(¢,0) = 0 for
all rez™.

(ii) The main result in [10] shows that if there exist functions ¢ EKL, a EK..8,y €K™,
a (continuous) mapping k: Zt X R" - R" with |F(t,x,d,k(t, x)| < a(v(t)|x|) for all
(t,x,d) EZ" XR" XD such that for every (fo,x,{d(D)}5) EZ" XR* X M) the unique
solution x(#), Y(r) = H(t, x(¢)) of the closed-loop system (1.1) with (1.2) and initial condition
x(ty) = xp, corresponding to input {d()}y EMp, satisfies the estimate
[Y(0)] < U(B(t0)|x0|, t —to), for all 1> 1ty, then equation (1.1) is non-uniformly in time
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(continuously) robustly globally output stabilizable. However, this fact is not going to be
used in the present paper.

The following class of upper semi-continuous functions plays an important role in the
exploitation of the properties of Lyapunov functions for discrete-time systems.

DEerFINITION 3.3 Let the upper semi-continuous function W : ZT XR" XU — R, where
U =R is a convex set. The function W(t, x, u) is quasi-convex with respect to u € U, if for
each fixed (t,x) €ZT X R" it holds that

W(t,x, Auy + (1 —Duy) < max {W(t, x, up), W, x, u,)},
(3.2a)
for all A€(0,1),(u;,u,) €U XU

The function W(t,x,u) is strictly quasi-convex with respect to u € U, if for each fixed
(t,x) €ZT XR" it holds that

W(t,x, Aup + (1 —Duy) <max {W(t,x,u;), W(t,x,uy)}, for all 21€(0,1),

(3.2b)
(U, up) €U XU, with u; #u,

Clearly, if the mapping u€U— W(t,x,u) is (strictly) convex for each fixed
(t,x) €ZT XR", then W(t,x,u) is (strictly) quasi-convex with respect to u &€ U. For
example, for all functions a €K, k€ C(Z" XR";R™) and V € CO(Zt X R";RN), the
function W(t,x, u):=V(t,x)+a(|u—k(t,x)|) is strictly quasi-convex with respect to
u €R™. Notice that if W(s,x,u) is strictly quasi-convex with respect to u € U, then for
each fixed (f,x)€Z" XR" there exists at most one wu<€U such that
W(t,x,u) = inf cy W(2, x, V).

We next give the definition of the notion of (strong) OCLF for a discrete-time system used
in this paper. The definition is in the same spirit with the definition of the notion of robust
CLF given in [5] for continuous-time finite-dimensional control systems.

DEerINITION 3.4 We say that equation (1.1) admits an OCLF if there exists a function
V 1 Zt XR" > R, which satisfies the following properties:

(i) There exists a,,a, €K, B, €K™ such that:

ay (| (o, H@t, o)) < V(I x) < ap (B0l ) V(@5 x) €27 X R (3.3a)

(i1) There exist functions p €K, with p(s)<s for all s>0, g€ Co(zt RY) with
lim,, . g(t) = 0 such that:
inf sup V(@ + 1,F(t,x,d,u)) < V(t,x) —p(V(t,x)) + q(2),
u€R™ yep
(3.3b)
V(t,x)EZT XR"

We say that equation (1.1) admits a strong-OCLF if there exists a continuous
function 'V : Zt X R" — R, which satisfies property (i) above as well as the
following property:

(iii) There exist functions p € K, with p(s)<s for all s>0, g€ C%Z";R") with
lim,_, ., q(t)=0 and an upper semi-continuous function W : Z+ X R" X R"™ —> R
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with W(t,0,0) =0 for all t €Z", which is quasi-convex with respect to u € R™ such
that the following inequalities hold:
sup V(t + 1, F(t,x,d,u)) < W(t,x,u),YV(t,x,u) EZT XR" X R", (3.3¢)
deD

inf Wt u) < V(1,0 —p(V(1,2) + ¢(0).¥(1,x) € ZTXR" (3.3d)

For the case H(t,x) = x, we simply call V : Z¥ X R"—>R* a CLF.

Remark 3.5. Notice that property (iii) of Definition 3.4 implies property (ii). If the mapping
u—V(t+1,F(t,x,d,u)) is (quasi-) convex for each fixed (¢, x, d) €Z" XR" X D, then the
mapping u — sup 4ep V(t + 1, F(t,x,d, u)) is (quasi-) convex for each fixed (t,x) € ZT X R
It follows that property (iii) is satisfied with W (¢, x,u) : =sup 4ep V( + 1, F(t, x,d, u)).

The following proposition shows that the existence of a (strong) OCLF is a necessary and
sufficient condition for the existence of a (continuous) non-uniform in time robust global
asymptotic output stabilizer for equation (1.1). Let the following statements:

(a) System (1.1) admits an OCLF.

(b) System (1.1) admits a strong OCLF.

(c) System (1.1) is non-uniformly in time robustly globally output stabilizable.

(d) System (1.1) is non-uniformly in time continuously robustly globally output stabilizable.

ProrosiTION 3.6. Consider system (1.1) under hypothesis (H1). Then the following
implications hold: (a) < (¢), (b) = (d). Moreover, if hypothesis (H2) holds for system (1.1)
then the implication (d) = (b) also holds.

Remark 3.7. (i) The procedure of partition of unity used in the proof of implication (b) = (d)
of Proposition 3.6 guarantees that the constructed feedback is actually a function of class C*.
Thus, under hypothesis (H2), the existence of a non-uniform in time continuous robust global
stabilizer is equivalent to the existence of a non-uniform in time smooth robust global
stabilizer.

(i) The result of Proposition 3.6 extends the corresponding results in [2,13] in many
directions. For example, we do not have to impose the “small control” property in order to
guarantee that lim ,_,q k(z,x) = k(¢,0) = 0. Moreover, Proposition 3.6 covers the general
discrete-time case with disturbances (not covered by the corresponding results in [2,13])
under minimal assumptions concerning the regularity of the dynamics of (1.1). On the other
hand, Proposition 3.6 presents conditions that guarantee the regularity of the constructed
feedback (this is not the case with the corresponding results in [2,13]).

The proof of Proposition 3.6 relies on the following lemma, which provides sufficient
Lyapunov-like conditions for non-uniform in time RGAOS. For reasons of completeness we
state it here and we provide its proof in the Appendix.

Lemma 3.8 Consider the time-varying discrete-time system:
x(t + 1) = F(t,x(1),d(®), Y() = H(t,x(0)
x(t) ER" Y1) ERF, dryeD,t€zZ"
where D SR and F : Zt X R" X D — R" satisfies the following hypothesis:

(3.4)

(Al). There exist functions a €K,y €K' such that |F(t,x,d)| < a(y(r)|x|), for all
(t,x,d) EZ" XR" XD and H : Z% X R" — R* is continuous with H(t,0)= 0 forallt €Z".
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Suppose that there exist functions V : Z¥ XX — R, a;, a,, a; € K., with a;(s) < s for all
>0, B,q. i €K with lim, ., q(t)=0, satisfying the following inequalities for all
(t,x,d) EZT XR* X D:

a (|(@@Ox, Ht,x))|) < V(t,x) < ay (B(0)]x]) (3.52)
Vit + 1,F(,x,d) < V(t,x) —az(V(t,x)) + q(t) (3.5b)

Then there exist functions ¢ € KL,8, u € K™, such that for every (to,xo, {d(t)}g’) ezZtx
R" X Mp the unique solution x(t), Y(t) = H(t,x(t)) of system (3.4) with initial condition
x(ty) = xy, corresponding to input {d(t)}y € Mp, satisfies estimate (3.1).

The following example illustrates the use of the OCLF for discrete-time systems.

Example 3.9. Consider the following linear time-varying planar discrete-time system:
d(t)

x(t+1)=tx;(t) +x,(8) + 1120+ 1)(H_3)x1(t)

Xp(t+ 1) =x3(8) + u(r)

x3(r+ 1) = exp(Dx3(1)

Y(1) = (x,(1),x,(t)) €R?, (3.6)

x(1):= (0, (1),x,(0),%3(0) ER*u(r) ER,

11

d(t)ED:= {—5,5},ZEZ+

Define the continuous function:
V(t,x1, %0, x3) := |x;| + |x2] + 2@ + 2)|tx; + x5| + exp (—21)|x3] 3.7
Notice that the following inequality holds for all (r,x) €Z" X R*:
%|(Y, exp (—20x)| < V(t,x) < 3(t + 1)t + 2)x] (3.8)

Furthermore, we obtain:

inf supV(¢t+ 1,66, +x, + i
= TR T T e+ 3)

+ dn
1+2(+ Dt +3)

(t + 1) dx,

t+ it t+1 —2r—1
(t+ Dxy + (¢ + )x2+1+2(t+1)(t+3)+x3+u +exp ( )|x3|>

<inf sup (Jax; + x| + |x3 +u| + 2@ + 3)|(¢ + Dixy + (& + Dxy, +x3 + u|
u€R  4ep

X3 + u,exp (1)x3)

=inf sup < ) +x, + |x3 +ul +2(r +3)

ueR deD

1
1l +exp (2= D101 <5 )

1
< ig{ (Jtx; + x| + |x3 +u| +2(t +3)|(t + Dexy + (£ + Dxy + x3 + u +§|x1|
+exp (2t —Dxs])(set u = —x3 — (¢t + D)(tx; + x,))

1 1
< (f + 2)|tx1 +X2| +§|X1| + exp (—Zt—l)l}Cgl SEV(I,xl,Xz,)C:;)



Conditions for stabilization of discrete-time systems 751

Thus, we conclude that V' as defined by equation (3.7) is a strong OCLF for system (3.6)
and particularly satisfies properties (i), (iii) of Definition 3.4 with

1
W(t,x,u) := |tx; + x| + |x3 +u| +2(t +3)|(r + Dtx; + (£ + Dxy +x3 + 1] +§|x1|

+exp (2t —1)|x;3|
a|(s): = %s, ar(s) :=s,06(t) :=3(t + D)t +2), u(t) := exp (=21), p(s) := %s and
g =0

Lemma 3.8 implies that the continuous feedback function k(¢,x): = —x3 — (¢ + 1) (#x; +x5)
is a non-uniform in time continuous robust global asymptotic output stabilizer.

Universal explicit formulae for the stabilizing feedback law (1.2) cannot be given for the
general nonlinear time-varying discrete-time case (1.1). However, the following proposition
provides means for the computation of the control action, via a minimization procedure for a
class of discrete-time systems (1.1) that satisfies the following hypothesis:

(H3). There exist a; € K,, and continuous positive mappings v,d : Z+ X R" — (0, +%) such
that the following inequality holds:

a;(y(t, x))max{lul —6(t,x),0D) < |F(t,x,d,w)|, Yt x,d,u) EZT XR" XD XR" (3.9)

Hypothesis (H3) guarantees that lim |F(¢, x, d, u)| = +% as |u| — +o, i.e. the dynamics of
equation (1.1) are “radially unbounded” with respect to u € R™. The proof of the following
proposition can be found in the Appendix.

ProprosiTION 3.10 Consider system (1.1) under hypotheses (H1) and (H3) and suppose that
equation (1.1) admits a strong OCLF V : Rt X R" — R*, which in addition to properties (i)
and (iii) of Definition 3.4 satisfies the following property:

(iv) The function W(t,x,u) defined in property (iii) of Definition 3.4 is continuous and
strictly quasi-convex with respect to u € R™.

Define:

V(t,x) := inf {W(t, x, u); u € R"} (3.10)

M(t,x) := {u €R™ : V(t,x) = W(t,x,u)} (3.11)

Then there exists a continuous mapping k : Zt X R" — R™ with k(t,0)=0 for all t EZ"
such that

M(1,x) := {k(t, )}, Y(t,x) EZT X R" (3.12)

Moreover, the continuous mapping k(t,x) is a non-uniform in time robust global
asymptotic stabilizer for equation (1.1).

Example 3.11. Consider the state stabilization problem for the following three-dimensional
discrete-time system:
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xi(t+ 1) = d;(2) exp (£)x,(7)
Xt + 1) = xp(D)x3(r) + do(1) exp (— — Dx (1)
x3(7 + 1) = f(t, x(1)) + u(t)
Y(1) = x(1) 1 = (x, (), x2(8), x3(8)) € R, u(r) ER, (3.13)
d(n) : = (d(0),dr (1) €D

11
c=[-1, 11X |—,~|,tez?
-1.1] [4 4}

where £ : RT X R3 — R is a continuous mapping with £(z,0,0,0)= 0 for all € Z". Define
the following smooth function:

V1,1, X0, %3) := x7 + (1 + 2 exp 20)x3 + x5 + 8(1 + exp (21 + 2))x3x3 (3.14)
Notice that the following inequality holds for all (¢, x;,x,,x3) € 7T X R3:
|X|? < V(t, x1, %0, x3) < 3 exp 20)|x]* + 16 exp (21 + 2)|x|* (3.15)

and that by virtue of the trivial inequality (x,x; + dj exp (=1 — D)x;)* < 2x3x% + (1/8) exp
(—2t —2)x7 (which holds since |d,| < (1/4)), we obtain for all (#,x,d) € Z* X R* X D
V(t + 1,d, exp ()xy,xpx3 + dy exp (=t — Dx;, f(t,x) + u)
i= |d| exp 2023 + (1 + 2 exp (21 + 2)) (x5 + dy exp (— — 1)x; )’
+ [1 +8(1 + exp (21 + 4)) (x2x3 + d exp (—1 — 1)x1)2} (1, ) + u)’

3
<exp (20)x5 + 2(1 + 2 exp (2t + 2)x3x3 + gﬁ
+ [1 4+ 16(1 + exp 2t + 4)) (3343 + exp (2t —2)x7) | (f(£,x) + )’

Notice that the continuous map
2 22,32
W(t,x,u) :=exp 21)x; +2(1 +2exp 2t + 2))x3x3 + gx]
+ [1+16(1 4 exp 2t + ) (333 + exp (=2t —2)x7) | (F(1, ) + u)’

is strictly convex with respect to u € ‘R for each fixed (¢, x) € 77 X R3. Furthermore, we obtain:

sup V(t + 1,d exp (£)xy, x,x3, f (¢, x) + u) < W(t,x,u);, inf W(t,x,u)< l V(t, x1,xp,x3)
deD ueR 2

Thus, we conclude that V as defined by equation (3.14) is a strong CLF for system (3.13) and
satisfies properties (i), (iii) of Definition 3.4, a;(s) : =s*/2, ay(s) : =35> + 16s*, u(t)=1,
B(t) : =exp (t+ 1), p(s):=s/2 and ¢(t) =0. Notice that hypotheses (H2) and (H3) are
satisfied and  particularly  inequality (3.9) holds since we  have:
max {0, |Ju| — [f(t, )|} < |u+ f(t,x)| < |F(t,x,d,u)|, for all (t,x,d,u) EZ" XR" XD XR.
Moreover, the set-valued map M(z,x) as defined by equation (3.11) satisfies:
M(t,x) : ={—f(t,x)}, for all (r,x) EZ" XR>. We conclude that the continuous feedback
function k(z, x) : = —f(t, x), robustly globally asymptotically stabilizes the origin for equation
(3.13). d
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4. Sufficient conditions for robust feedback state stabilization

In this section, we focus on the continuous state stabilization problem for discrete-time
systems. Exactly as in the continuous-time case, in some cases the construction of a CLF is
performed simultaneously with the construction of a state stabilizing feedback. In this
section, we present certain classes of discrete-time systems of the form (1.1) for which a CLF
can be constructed in parallel with the construction of robust feedback state stabilizers that
guarantee exponential convergence of the solutions of the closed-loop system to the origin.
First, the reader is introduced to the notion of non-uniform robust global K-exponential
stability (RGK-ES) for discrete-time systems, which is a generalization of the corresponding
notion introduced in [18] for continuous-time systems. Consider a finite-dimensional
discrete-time system:

x(t + 1) = F(t, x(t), d(t))

4.1)
x)eR,dnebDcR ezt

where D CR! and F : Zt X R" X D — R" with F(t,0,d)= 0 for all (r,d) €Z" X D.

DErINITION 4.1 We say that zero is non-uniformly RGK-ES for equation (4.1) with constant
c¢> 0 if there exist functions a €K, B8E K" such that for every (ty,xy,{d(1)}y) € ZTX
R" X Mp the solution x(t) of equation (4.1) with initial condition x(ty)=x, and
corresponding to {d(t)}; € Mp, satisfies the estimate:

[x(0)] < exp (—c(r —19))a(B(to)|xol), Vi > 1, 4.2)

The following lemma provides sufficient conditions for non-uniform in time RGK-ES and
its proof can be found in the Appendix.

LemMA 4.2 Suppose that there exist functions V : ZW XR"—>R', a, €K, BEKT and
constants A€ (0,1), p, K> 0 such that the following inequalities are satisfied for all
(t,x,d) EZT XR" X D:

Kl < V(t, 0 < ay (B(0)]x]) 4.3)

Vit + 1L,Fit,x,d) <AV (t,x) 4.4)

Then zero is non-uniformly in time RGK-ES for equation (4.1) with constant
c=—log (A)/p.

The following theorem is the main result of this section and provides sufficient conditions

for the robust stabilization of system (1.1).

TrEOREM 4.3 Consider system (1.1) under hypothesis (H2) with u € R,D CR! being compact
with 0 € D and suppose that there exist continuous functions f, : Z# X R >R (i=1,...,n)
with fi(t,0)=0 for all t EZ", such that equation (1.3) holds. Furthermore, suppose that
there exist continuous functions k; : Z" XR' >R (i=1,...,n) with ki(t,0)=0 for all
t €EZ" such that the following identities hold for all (t,x) € ZT X R":

Sit,x, ki (t,x)) =0 4.5)

ﬁ(t,xl, ...,xi,ki(t,xl, ...,xi)) = ki—l(t + l,fl(t,xl,xz), ...,f;'_l(f,xl, ...,x,-)),

4.6
for i=2,..,n (4.6)
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Consider the following vector fields defined on Rt X R":

F(t,x) := F(t,x,0,k,(t,x)) 4.7)
FOUx) :=x (4.82)
FO4t,x):=F@t+i—1,F" V@, x), for i>1 (4.8b)

Let p € CO(R"; RY) a positive definite function with p(0) = 0 that satisfies p(x) > K|x| for all
x €R" for certain constant K> 0 and let a pair of constants y>1, A€ (0,1). Let
D(7y,A) ED the set of all d € D that satisfies the following property:

n—1 n—l1
> ¥p(FO + 1L, F(tx,d by, x)) <2 ¥ p(FOx), V(x)€Z™XR" (49)
=0 i=0

Then the following statements hold:

(1) For every pair y>1, A€(0,1) with Ay>1, the set D(y,A) SD is a non-empty
compact set with 0 € D(vy, A).

(i) For every pair y> 1, A€(0,1) with Ay > 1, zero is non-uniformly in time RGK-ES
with constant ¢ = — log (A) for the closed-loop system (1.1) with u(t) = k,(t,x(t)) and
d(t) € D(v, A).

The main idea that lies behind the proof of Theorem 4.3 is to construct a continuous
feedback that guarantees the so-called “dead-beat property of order n” (see [24]) for the
nominal system (1.1) with d = 0. Then by making use of a CLF for the nominal closed-loop
system, we establish RGK-ES for disturbances that belong to an appropriate set, namely, the
set D(7y, A) € D. The proof of Theorem 4.3 is based on the following lemma, which is similar
to Theorem 3.2 in [24].

LEmMA 4.4 (FINITE-TIME STABILIZATION AND EXPLICIT CONSTRUCTION OF CLFS FOR TRIANGULAR
SINGLE INPUT SYSTEMS). Consider the single input discrete-time system

x(t + 1) = F(t, x(1), u(t))

4.10
u(®) ER,x(1) := (x,(t), ..., x,(1) ER",t€Z™ (100

where

F(t,x,u) = (fl(t,xl,xz),fz(t,xl,xz,x3), e[t X1, ...,x,,,u))/ (4.10b)

for certain continuous mappings f; : Z¥ X RN >R (i=1,...,n) with f(t,0)=0 for all
t EZ". Suppose that there exist continuous functions k; : ZV XR >R (i=1,...,n) with
ki(t,0)=0 for all t EZ such that the identities (4.5), (4.6) hold for all (t,x) EZT X R".
Then zero is non-uniformly in time RGK-ES for the closed-loop system (4.10a) with
u(t) = k, (t,x(t)), namely, the system

x(t + 1) = F(t,x(1)) 4.11)

where
F(t,x) := F(t, x, k,(t,x)) (4.12)
Moreover, the closed-loop system (4.10a) with u(t) = k,(t,x(t)) (system (4.11)), has the
dead-beat property of order n, i.e. for every (ty, xo) € ZT X R", the unique solution x(t) of the
closed-loop system (4.10a) with u(t) = k,(t,x(¢)) and initial condition x(ty) = x, satisfies:
x(t) =0, for all t>t)+n 4.13)
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Furthermore, let p € CO(R";RT) a positive definite function with p(0)=0 that
satisfies p(x) > K|x| for all x €R" for certain constant K> 0 and the vector fields
(t,x) EZT XR"— FO(t,x) ER" defined by (4.8a and b) with F defined by equation (4.12).
Then for every v > 1 the continuous function V., : Zt X R" > R defined by:

n—I1

V,(t.x) =Y ' p(FO.x) (4.14)

i=0

is a CLF for equation (4.10a). Particularly, for every v > 1 there exist functions a, € K, and
B €K' such that

Klx| <V, (t,0)<ay(B0D]x]), V(tx)EZT XR" (4.15a)

V,(t+ LF(tx,w) < W (t,x,u), Y(txu)eZ™ XR"XR (4.15b)

inf W (t,x,u) < W, (1, x, k,(t,x)) < ! V,(tx), Y(x)y ezt xR (4.15¢)
ueER™ Y

where the function W, : RT X R XR > RT is quasi-convex with respect to u €R with
W, (1,0,00=0forall t = Zt and is defined by:

W (t,x,u) := sup{ V,(t + 1, F(t,x, k,(t,x) + v); [o| < |u —k,(t,%)| } (4.16)

Proof. By definition of the vector fields F(z, x), we notice that for every (fy, x,) €ZT X R"
the solution of equation (4.11) with initial condition x(,) = x, satisfies x(t, + i) = F(t,, x,)
for all i > ¢. In order to prove that system (4.11) satisfies the dead-beat property of order n, it
suffices to show that F™(z,x) = 0 for all (z,x) €ZT X R". Using induction arguments, it is
established that

FO% +1,F(t,x) = F'™Y(t,x) and F9@,0):=0, for all i>0 4.17)

The proof of the above relations is easy and is left to the reader. Define the sets S (1) = R"
for t €Z* by the following formulae:

SO :=R" (4.18a)
SO = {x €SV 1 Xy = kit X14 X, )}, for 1<i<n—1 (4.18b)

SO :=1{0}, for i>n (4.18¢)

where k; : R X R’ > R(@i= 1, ..., n) are the functions involved in equations (4.5) and (4.6).
Notice that the definitions of the sets S’(r) above imply that for 1 <i<n—1:

SO = fx €N x, = Kyt (1,1 <o s Xyt s Xi = ki (BX1, s X))} (4.19)
Next, we make the following claim.

Claim: FO(t,x) € S”(t + i), for all i > 0.

Clearly, definitions (4.8a) and (4.18a) implies that the above claim is true for i=0.
In order to prove the above claim, by virtue of definition (4.8b), it suffices to prove the
following implication:

“IfxeSD(t+ i) then F(t+i,x) €SV +i+1)”
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Since F(z, 0) = 0 for all # > 0, it follows that the above implication is true for i > n. For the
case 0 < i< n—1, the above implication is an immediate consequence of equation (4.17) and
properties (4.5) and (4.6).

Notice that the previous claim and definition (4.18c) implies that:

F,x) =0, for all (t,x)€Z" XR" (4.20)

Thus, system (4.11) satisfies the dead-beat property of order n.

Let v > 1 and consider the function V., : Rt X R" — R defined by equation (4.14). Since
all vector fields F(t,x)(i > 0) defined by equation (4.8a and b) and p are continuous on
R X R with FO(r,0)= 0, p(0) = 0 for all > 0, by virtue of Lemma 3.2 in [8], there exist
a, €K, and 8 € K such that the right-hand side inequality (4.15a) holds. The left-hand side
inequality (4.15a) is immediate consequence of definitions (4.8a) and (4.14) and the fact that
p(x) = K|x| for all x € R". Inequality (4.15b) is immediate consequence of definition (4.16).
We next prove inequality (4.15c). Notice that by virtue of definition (4.14) and property
(4.17) we have for all (t,x) €ZT X R":

n—l1

n—1
Vot + LE@x) =Y ¥p(FO+ 1L,F@ex)) =Y vp(F™0,x)
=0 i=

=> 7 p(Fe)
i=1

Consequently, it follows from equation (4.20), definitions (4.12) and (4.16) and the above
equality:

W (t,x, k, (1,)) = V., (t + 1, F(t,x)) = Z Yp(FO(t,x)) < Z Y'p(FO(t,x))

1
=—V.,(tx)
¥ Y

We conclude that inequality (4.15¢) holds. The proof of the fact that the function
W, (t,x,u) is quasi-convex with respect to u €R is identical to the proof of implication
(d) = (b) of Proposition 3.6 and is omitted. It follows from Lemma 4.2 that zero is non-
uniformly in time RGK-ES with constant ¢ = log () > 0 for the closed-loop system (4.10a)
with u(t) = k,,(¢, x(t)). The proof is complete. O

Proof of Theorem 4.3. Notice that for the case d =0, it follows from equation (1.3) that
system (1.1) has the triangular structure (4.10). Thus, Lemma 4.4 holds and equation (4.9) for
d=0and 1/y < A< 1, is a consequence of inequality (4.15c). This proves that D(y, A) S D is
non-empty set with 0 € D(y,A). Compactness of statement D(y,A) D follows from
compactness of D and continuity of all mappings involved in equation (4.9) with respect to d.
We next prove statement (ii). Let the Lyapunov function V. : Z" XR"— R defined by
equation (4.14) and notice that inequality (4.9) in conjunction with definition (4.14) implies:

V(1 + 1, F(t, x,d, ky(1,) < AV, (1, %),V (6,x5,d) €ZT XR" X D(y, ) 4.21)

It follows from equations (4.15) and (4.21) in conjunction with Lemma 4.2, that zero is
non-uniformly in time RGK-ES with constant ¢ = —log (1) for the closed-loop system (1.1)
with u(r) = k, (¢, x(t)) and d(t) € D(v, A). The proof is complete. O



Conditions for stabilization of discrete-time systems 757

We illustrate the result of Theorem 4.3 by presenting two examples. Both examples
illustrate a trade-off between the convergence rate (c¢) and the size of the disturbance set
D(v, A) € D. The first example is an application of Theorem 4.3 to a linear two-dimensional
time-varying discrete-time system.

Example 4.5. Consider the linear planar time-varying system:
d(1)

xl(t + l) = txl(t) + 1 +m )Cz(l‘)

X(t + 1) = x, () + ut) (4.22)

(x1(8), (1)) ER%, u() ER,d(r) ED := [-1,1],t €Z"

Notice that the dynamics of system (4.22) satisfy equation (1.3) with fi(f,x1,x,) : =
tx, + x, and f5(1,x,, Xp, ) 1= 1*x, + u. Moreover, equations (4.5) and (4.6) are satisfied for
ky(t,x)) : =—1x; and k (1, X1, X5) : = —12x, —1(¢ + 1)x; — (¢ + 1)x,. Consequently, the vector
fields FU(t, x) are defined by equation (4.8a and b):

FO®x) : =(x1,x)", FOU,x) : =(tx; 4 xp, =1t + Dx— 1t + Dxy)’

We select p(x;,x,) : =|x{| + |x,]. Thus, inequality (4.9) is equivalent to the following
inequality:

d
tx] + (1 +7([ + 1)([ + 3))X2

+ At 4 2)|tx, + xo (4.23)

+ (t + Dltx) + x| + v [dp| < Alxy| + Alxg|

Clearly, inequality (4.23) is satisfied for all (f,x;,x,) €RT XR? if Ay>1 and
|[d] < (3A)/(1 + 3v). Thus, we conclude that zero is non-uniformly RGK-ES with constant
c¢> 0, for the closed-loop system (4.22) with u(t) = —12x, (1) — 1(t + Dx (1) — (t + Dxy(£)
and d@)ED(y,) for y=exp()=1/4 ie. for dp)e{de[-1,1]:|d<
(3/(exp (¢) + 3 exp (2¢))}. Notice that larger values for the convergence constant ¢ >0
give smaller values for the radius of the disturbance set D(y, 7).

Our second example is the application of Theorem 4.3 to an autonomous non-linear
discrete-time system.

Example 4.6. Consider the non-linear planar autonomous system:
xi (1 + 1) = (1 +d@)|x (0] —x3(1)
X (t + 1) = x5(2) + u(r) (4.24)
(1 (0), x2(0)) ER%, u(t) ER,d(r) €D = [-1,1],t €Z"

Notice that the dynamics of system (4.24) satisfies equation (1.3) with f(z,x;,x,) :=
|x;| —x3 and f5(t,x,, x5, u) : =x, + u. Moreover, equations (4.5) and (4.6) are satisfied for
ky(t,x)) : =|x;|Y? and ky(t,x;,%,) 1 =—x, + ||x1| —x%|(”2). Consequently, the vector fields
F9(z, x) are defined by equation (4.8a and b):

F(O)(t,x) = (xl,xz)l,
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1 2 215
FOx) = (Il =3, [l =53]

We select p(x;,x;) : =|x;| + |x;|. Thus, inequality (4.9) is equivalent to the following
inequality:
1
|1+ Dy =] + [l =3 + ]|+ Dl =53] = [ | =3
1
([ + ey | =3 ] =[] =23 (4.25)
1
< A | + 2| + Al | =23 | + v Al | =3

Clearly, inequality (4.25) is satisfied for all (xl,xz)EiRZ if Ay>1 and

|d| < min lfr—y,i—i,w} Thus, we conclude that zero is non-uniformly RGK-ES with
constant ¢ > 0, for the closed-loop system (4.24) with u(¢) = —x,(¢) + Hx, 6] —x%(t)|(l/2) and
d(tyeD(y,2) for y=exp(c)+1 and A=exp (—), ie. for dp)e{de[—1,1]: |d|<
(1/(exp (2c)(exp (¢) + 1)%))}. Notice again that larger values for the convergence constant

¢ > 0 give smaller values for the radius of the disturbance set D(v, A).

The following corollary provides sufficient conditions for robust partial state feedback
stabilization of time-varying discrete-time systems with guaranteed exponential rate of
convergence of the solutions of the closed-loop system to the equilibrium.

CoROLLARY 4.7 (PARTIAL STATE FEEDBACK STABILIZATION). Consider the single input discrete-
time system:

w(t + 1) = G(t, w(t), d(2), x(1), u(t))

Xt + 1) =[x, (0, .o x, (D, X0, (D) i =1,..,n—1

X, (1) = fu(t, x(0), u(?))

x(): =), ..., x,(0)) ERLw) €RLu(t) ER,dr)eD,t ezt

(4.26)

where D CR™ is a compact set, f; : ZEXRTI SR (i=1,....n) and G: ZT X R X DX
R XR—> R are continuous mappings with fi(t,00=0, G(t,0,d,0,00=0 for all
(t,d) EZT X D. Suppose that there exist continuous functions k;:Z" XR —>R
(i=1,....,n) with k;(t,0)= 0 for all t €Z% such that the identities (4.5) and (4.6) hold for
all (t,x) €Z" X R". Moreover, suppose that 0 €R' is non-uniformly in time RGK-ES with
constant ¢ > 0 for the system:

w(t + 1) = G(t,w(t),d(1),0,0)

4.27)
wi@) R, d)eD,teZ"

Then 0 € R! X R" is non-uniformly in time RGK-ES with constant ¢ > 0 for the closed-
loop system (4.26) with u(t) = k,(t, x(¢)).

Proof. Since zero is non-uniformly in time RGK-ES with constant ¢ > 0 for equation (4.27),
there exist functions a €K,,, 8 €K such that for every (to, wo, {d(t)}8°) eZt XR XM,
the solution w(¢) of equation (4.27) with initial condition w(ty,) = w, and corresponding to
{d(t)}; € M) satisfies the estimate:

lw(®)| < exp (—c(t —t9))a(B(tp)lwol), V=1 (4.28)
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Moreover, by virtue of Lemma 4.3, the component x(#) of the solution of the closed-loop
system (4.26) with u(f) = k,(t, x(¢)) satisfies equation (4.13). Thus, we obtain that for every
(to, X0, wo, {d(D}5) € ZT X R" X R X M), the solution w(t) of the closed-loop system (4.26)
with u(t) =k, (t,x(¢)), initial condition (x(¢y), w(#y)) = (xy, W) and corresponding to
{d(H)}y € M) satisfies the estimate:

[w(®)| < exp (—c(t—to —n))a(ﬁ(to + n)|w(t0 + n)|), Vi>ty+n (4.29)

By virtue of continuity of the mappings f:ZT XRT' >R (i=1,....n),
ky: ZF XR" >R, G: Z" XR XD XR" XR— R’ and the facts that D C R™ is a compact
set, f;(t,0)=0, G(¢,0,d,0,0)=0, k,(¢,0)= 0 for all (¢,d) € 7T XD, we may prove that the
closed-loop system (4.26) with u(t) = k,(¢, x(¢)) is robustly forward complete (RFC, see [8])
and that 0 €R' X R" is a robust equilibrium point for the closed-loop system (4.26) with
u(t) = k,(t,x(¢)). The proof of this observation is made by using Remark 3.2(i) and following
the same methodology with the proof of Lemma 3.8 (see Appendix). Details are left to the
reader. Using Lemma 3.5 in [8], we guarantee the existence of d EKye, uE K™ such that for
every (9, X, Wo, {d(D}) EZT X R" X R! X M), the solution (x(£), w(t)) of the closed-loop
system (4.26) with u(t) = k,,(t, x(¢)), initial condition (x(zy), w(ty)) = (xg, wy) and correspond-
ing to {d()}; € M) satisfies the estimate:

| Ge(0), ()| < pu(e) @' ([ (xg wo)D), V221 (4.30)
Combining estimate (4.29) with (4.30) we obtain:

Iw(1)| < exp (—c(t —1y)) [exp (nc)a(M (ty)a' (I(xo, wo)l)) + M(to)a' (1(xo, wo)l) |

431

where M(%) :=exp (c(ty + n)) max, <<+, (1+ w@)(1+ B(z)). Thus, using Lemma 2.3 in
[7], we conclude that there exist functions d &€ K., 5’ €K' such that for every
(f9> X0, Wo, {d(D}) €EZT X R" X R! X M), the solution (x(r), w(z)) of the closed-loop system
(4.26) with u(r) = k,(t, x(¢)), initial condition (x(#y), w(ty)) = (xo, wo) and corresponding to
{d(H)}y € M) satisfies the estimate:

lw(0)] < exp (—c(t —19))a(Bto)| (o, wo)l), V=1, (4.32)

By virtue of Lemma 4.3, the component x(f) of the solution of the closed-loop system
(4.26) with u(r) =k, (t,x(¢)) satisfies a similar estimate of the form (4.32). The proof is
complete. Il

Example 4.8. Consider the following planar system:
w(t + 1) = exp (—c)w(t) + d(1) g(t, x(1), u(r))
x(t + 1) = f,x(1) + u@) (4.33)
W@, x() ERXR, di)e[-1,1], u@®)ER, r€Z"
where ¢> 0 is a constant, f : Z" X R — R and g : Z" X R?> > R are continuous mappings
with f(z,0)=g(t,0,0)=0 for all t€Z". The above system has the form (4.26) and
furthermore zero is RGK-ES with constant ¢ > 0 for the subsystem obtained for x=u = 0:
w(t+ 1) = exp (—c)w(t), w(t) ER,t €Z". Thus, Corollary 4.7 guarantees that zero will be

non-uniformly in time RGK-ES with constant ¢ > 0 for the closed-loop system (4.33) with
the partial state feedback law u(¢) = —f (¢, x(¢)).
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5. Conclusions

Necessary and sufficient Lyapunov-like conditions for non-uniform in time robust output
stabilization of discrete-time systems are given. Particularly, it is proved that for a finite-
dimensional discrete-time control system there exists a (continuous) output stabilizing
feedback if and only if there exists a (strong) OCLF. Moreover, methodologies for the
construction of continuous robust feedback stabilizers are presented.
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Appendix

Proof of Lemma 3.8. It suffices to show that system (3.4) is non-uniformly in time robustly
globally asymptotically output stable (RGAOS, see [8]) and 0 € R" is a robust equilibrium
point for equation (3.4) (see [8] for the precise definition of a robust equilibrium point). Then
by virtue of Theorem 3.6 in [8], there exist functions ¢ €KL, 3, u € K™, such that for every
(to,xo, {d(t)}8°) €Z" X R" X Mp, the unique solution x(¢), Y(t) = H(t, x(t)) of system (3.4)
with initial condition x(#,) = x,, corresponding to input {d(r)}; € M, satisfies estimate (3.1).
In order to show that system (3.4) is non-uniformly in time RGAOS, it suffices to show that:

(1) System (3.4) is RFC (see [8])

(2) 0 €M™ is a robust equilibrium point for (3.4)

(3) The output attractivity property for system (3.4) is satisfied, i.e. for every e >0, T €Z"
and R > 0, there exists a 7 : =7(¢, T, R) € Z", such that:

|x0|SR’t0€[O’ T]:> |H(t,x(t,t0,x0;d))|ﬁs, Vte[t() +T7 +OO)’ VdEMD

where x(z, ty, xo; d) denotes the unique solution of system (3.4) with initial condition
x(ty) = x, corresponding to input {d()}; € Mp,.

Then by virtue of Lemma 3.3 in [8], it follows that system (3.4) is non-uniformly in
time RGAOS. Concerning the proof of (1), we notice that by virtue of Definition 2.2 in [8]
it suffices to show that for every r>0, T>0, it holds that sup {|x(z, 1, xo;d)|;
s€[0,T], x| < r,t0€[0,T],d €Mp} <+oo. Particularly, this follows by considering
arbitrary r>0, T €Z', then defining recursively the sequence of sets in R" by
A(k) : =f([0,2T] X A(k—1) X D) for k=1,...,T with A(0) : ={x € X;|x| <r}, which are
bounded by virtue of hypothesis (Al) and finally noticing that {x(zy, + k, ¢y, xo; d); |xo|
<rty<T,k<T,deMp}<A(k) for all k=0,..,T, where x(t,ty,x0;d) denotes the
unique solution of equation (3.4) initiated from x, € R" at time 7y > 0 and corresponding
to input d € M),

Concerning the proof of (2), we notice that by virtue of Definition 2.3 in [8] it suffices to
show that for every ¢> 0, N € Z" and T > 0 there exists 6 : =d(e, N, T) € (0, €] such that:
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[Xo] < 8,15 €10, T]=> sup {|x(t, tg, x0; D|; 10 < t <ty + N,d EMp}< ¢

We prove this fact by induction on N € Z". First notice that the fact holds for N=0
(by selecting 0(¢,0,T) = ¢). We next assume that the fact holds for some N € Z" and we
prove it for the next integer N + 1. In order to have |x(fy + N + 1, ty, xo; d)| < ¢, by virtue of
hypothesis (A1) it suffices to have:

a’'(e)
max {y(#);0<t<T + N}

It follows that the selection 5(8,N +1,7) : = min {5(8,N, T), 5(R(8,N, T),N, T)} >0
guarantees that sup {|x(z, 19, Xo; d)|; to < t <ty + N,d EMp} < min {e,R(e, N,T)} and
sup {|x(ty + N + 1,19, xo:d)|; d € Mp} < &, for all |xy| < 6,1, [0, T].

Concerning the proof of (3), we notice that by virtue of inequality equation (3.5a), it
suffices to show that for every ¢> 0, R> 0 there exists 7:=7(¢,R) €7 such that the
following implication holds:

|x(t0 +N, t(),.X();d)l < R(E,N, T) =

Vi) <R=V<eVt>t,+1, YdEM, (A1)

where V(t) : =V(¢, x(t, ty, Xo; d)).
First we prove inductively the following fact:

VOVt +a ' M) +M, Vi>tyezZ*, VdeM, (A2)

where M : =sup,>( ¢g(¢). Indeed, notice that (A2) holds for ¢ = ¢,. Suppose that (A2) holds for
some t € Z" with > t,. Consider the cases:

* if a(V(t)) > M then equation (3.5b) implies V(t+ 1) < V(¢) and consequently (A2)
holds for ¢+ 1.

*if a(V(H))<M or equivalently if V(r)<a '(M) then equation (3.5b) implies
V(t+ 1)< V() +M<a'(M)+ M and consequently (A2) holds for ¢+ 1.

Let arbitrary ¢ > 0 and let s(¢) > 0 the unique solution of the equation a'(2s)+ s=e. Let
t(e) e Z" such that q(t) < s(e) for all £ > ¢, (¢). Clearly, by virtue of equation (3.5b), we have

Vit + DS V(@) —a(V(t) + s(e), YVt =ty + t1(¢) (A3)

Next we prove the following claim: if V(f) < ¢ for some t=T €Z1 with T> #, + #,(¢)
then V(¢) < ¢ holds for all #> T. Consider the cases:

*if a(V(2)) > s(¢) then (A3) implies V(z + 1) < V(¢) and consequently V(¢) < ¢ holds for
t+ 1.

*if a(V(1)) < s(e) or equivalently if V(r) < a ' (s(¢)) then (A3) implies V(¢ + 1) < V(£)+
s(e) < a'(s(e)) + s(e) < a 1(2s(¢)) + s(¢) = & and consequently V(¢) < ¢ holds for ¢+ 1.

We are now in a position to show that implication (Al) holds for
7(e,R) : =1+t (e) + [(R+ a ' (M) + M)I(s(¢))], where M : =sup,o q(f). The proof of
implication (Al) is made by contradiction. Suppose that there exists ¢>0, R>0,
(to,Xo,d) EZT X R" X M, with V(t,) < R and there exists T € Z" with T > 1, + 7(e, R) such
that V(T) > ¢. By virtue of the previous claim, this implies that V(#) > ¢ = a '(2s(e)) + s(e)
for all t=1y+¢#(e),...,T. Consequently, we have —a(V(¢))+ s(e) <—s(e) for all
t=ty+ t;(e),..., T. Thus, we obtain from (A3):
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Vit + D)<V —s(e), for all =1, +1),...T. (A4)

Clearly, inequality (A4) implies that V(T) < V(ty + t;(¢)) —s(e)(T —ty —t1(¢)) and this
estimate in conjunction with (A2) (which implies V(ty + t,(¢)) < R+ a~' (M) + M) and our
assumption T >t + t,(e) + (R+ a '(M) + M)/(s(¢)) gives V(T)<0. Clearly, this impli-
cation is in contradiction with the assumption V(T) > ¢. The proof is complete. U

Proof of Proposition 3.6. (b) = (d) Suppose that equation (1.1) admits a strong OCLF.
Without loss of generality, we may assume that the function ¢ € C%Z";R") with
lim,_, ., g(f)=0 involved in equation (3.3d) is positive for all tE€Z". We proceed by
noticing some facts.

Fact I For all (¢, xy) € ZT X R", there exists uy € R™ and a neighbourhood N(¢, x5) CR",
such that
x €N, x) = W(t, x, up) < V(£,x) = p(V(£,x)) + 449(1) (AS5)
Moreover, if x, = 0, then we may select uy = 0.
Proof of Fact I: By virtue of equation (3.3d) and since g(¢) > 0 for all t € Z" it follows that
for all (1,x0) €ZT X R", there exists u, €R™ such that
W(t, xo, ug) < V(t,x9) — p(V (¢, x0)) + 24q(1) (A6)

If xo=0 (and since W(z,0,0)=0 for all t€Z") then we may select u,=0. Since the
mapping x— W(t,x,u) is upper semi-continuous and the mapping x €R" — V(r,x) —
p(V(t,x)) is continuous, there exists a neighbourhood N(t, xO) CR" around x, such that for
all x e N(t, xo) :

W(t, x, ug) < W(t, xg, up) + q(t)
V(t,x0) —p(V(t,x9)) < V(t,x) — p(V(2,x)) + q(t)

Inequalities (A6) and (A7) imply property (AS).

(A7)

Fact II: For each fixed t €Z' there exists a family of open sets (Q;’))je,(,) with
QJ(.’) C R"\{0} for all j € J(¢), which consists a locally finite open covering of R"\{0} and a
family of points (" );csq, with u{” €R" for all j € J(¢), such that

xE Q;’) =\ (t, X, u}t)) < V(t,x) —p(V(t,x)) + 4q(t) (A8)

This fact is an immediate consequence of Fact L.

By virtue of Fact II and standard partition of unity arguments, it follows that for each fixed
t EZ" there exists a family of smooth functions 08) R — [0, 1], 0}’) :R"— [0, 1], with
0°(x)=0 if x&Q" CR\{0} and 6’(x)=0 if x &€N(1,0), where N(#,0) CR" is the
neighbourhood provided by Fact I for x, = 0 and uy = 0, 08) )+ > e 0}') (x) being locally
finite and Bg)(x) + Zjﬁj(-’)(x) =1 for all x €R". We define for each fixed r € Z":

k(t,x) 1= Z 01 (o (A9)

JEI@®)

Clearly, k as defined by (A9) is a smooth function. Notice that 0 & QJ(-’) for all j €J and
consequently by definition (A9) we have k(¢,0) =0 for all t € Z". 1t also follows from the
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fact that W is quasi-convex with respect to u € R™ and definition (A9) that:

W k() =W 3 000u” | < max {w(nxu)} (A10)
. i€ (1.x)
JET (1) !

where J'(t,x) = {{;,E J()U{0};0”(x) £ 0} is a finite set. For each j € J'(#, x) we obtain that
xe Q;') or x €N(z,0). Consequently, by virtue of (A8) or (A5) we have that
‘P(t, X, u;’) < V(t,x) —p(V(t,x)) + 4q(t), for all jE€J'(t,x). Combining the previous
inequality with inequality (3.3c), we conclude that the following property holds:

V(t + 1, F(t,x, d, k(,x))) < W(t, x, k(t, X)) < V(t, x) — p(V (2, X)) + 44q(7),
(A11)
Y (t,x,dy€ZT XR"XD

It follows from (A11), Remark 3.2(i) and Lemma 3.8 that system (1.1) is non-uniformly in
time continuously robustly globally output stabilizable and k defined by equation (A9) is a
non-uniform in time continuous robust global asymptotic output stabilizer.

(a) = (c) Suppose that equation (1.1) admits an OCLF. Without loss of generality, we may
assume that the function g € C%(Z"; R) with lim,_, ., ¢(f) = 0 involved in equation (3.3b) is
positive for all +€Z". By property (ii) of Definition 3.4 it follows that for every
(t,x) €ZT X R", there exists u(z, x) €R™ such that

V(t + 1, F(t,x,d, u(t,x) < V(t,x) — p(V(t,x)) +2q(1), Y (t.x,d)EZT XR" XD (Al2)
Moreover, inequality (A12) in conjunction with inequality (3.3a) implies that:
a; (,u(t)|F(t, x,d, u(t, x)|) <a (ﬁ(t)|x|) +2q(), V(t,xde ZTXR" XD (A13)

By virtue of hypothesis (H1) there exist functions a € K.,, y €K' such that: |F(t, x, d, u)|
Sa(y(r)|(x, u)|) for all (t,x,d,u) €EZT XR" XD XR™. This fact in conjunction with
equation (3.3a) implies that:

V(t + 1,F(t,x,d,0) < V(t,x) — p(V(t,x)) + 24(1),
(A14)
V(t,dy€Z" XD, Vxe&S()

where  S(1) : ={x € R |x| < (/v())a (/B + D))a;' 2q(1))}. We define for all
(t,x) EZT X R™:

{ 0 if x€S(@)
k(t,x) := (A15)
u(t,x) if x&S@)

By virtue of hypothesis (H1), we obtain |F(t,x,d,k(t,x))| < a(y(t)lxl) for all
(t,d) €ZT XD and x € 5(¢). Clearly, by virtue of the previous inequality, inequality (A13)
, definition (A15) and Remark 3.2(i), it follows that there exist functions @’ € K., v/ €K™
such that: |F(t,x,d, k(t,x)| < a' (v'(t)|x|) for all (£, x,d) € Z* X R" X D. Moreover, by virtue
of equations (A12) and (A14) and definition (A15) we have:

V(t + 1,F(t,x,d, k(t, x))) < V(t,x) — p(V(t, %)) + 29(t), Y (t,x,d) EZT XR" XD

It follows from Lemma 3.8 that system (1.1) is non-uniformly in time robustly globally
output stabilizable and k defined by equation (A15) is a non-uniform in time robust global
asymptotic output stabilizer.



Conditions for stabilization of discrete-time systems 765

(c)=>(a) Suppose that there exist ¢ EKL, a €K,.0,v,u €K' and a mapping
k:Zt XR"'— R" with |F(t,x,d, k(1,x))] < a(y@®)|x]) for all (z,x,d) €RT X R" X D, such
that for every (ty, Xo, {d(1)}§) € ZT X R" X M, the unique solution x(¢) = x(t, ty, Xo: d), Y (t)=
H(t, x(t, 1y, x9; d)) of the closed-loop system (1.1) with (1.2) and initial condition x(zy) = x,
corresponding to input {d(¢)}; € M), satisfies estimate (3.1). By virtue of Proposition 7 in
[26], there exist functions a;,a, € K, such that: (s, ) < a;"' (exp(—2)a,(s)), for all 5,7> 0.
Thus estimate (3.1) in conjunction with the above inequality implies:

ay (| (u(0)x(t, to, x03 d), H(t, x(1, tg, %03 d)) |) < exp(=2(t — 1)) a (B(t0)|x0])

N (A16)
V(to,XO,d)EZ XER"XMD and Z‘Zto,

Define:

)i t>10, d EMp}
(A17)

V(. x0) := sup{exp (¢ —to)a (| (u(®)x(t, to, xo; d), H(t, x(t, 1, X0; d))

Inequalities (3.3a) are immediate consequences of definition (A17) and estimate (A16).
Moreover, notice that definition (A17) implies that:

V(ty + 1, F(ty, x, d(ty), k(19 X0))) = V(ty + 1,x(tg + 1,19, xp; d)) < exp(—=1)V(ty, xp),
Y (tg, X0, d) EZT X R" X M
(A18)

Clearly, property (ii) of Definition 3.4 is an immediate consequence of inequality (A18).
Particularly, property (ii) of Definition 3.4 holds with p(s) : =(1 —exp(—1))s and ¢(¢) = 0.

(d)=(b) under hypothesis (H2). This implication is an immediate consequence of the
main result in [9]. However, we are going to use instead the main result in [14] in order to
prove the existence of a strong OCLF for (1.1). The methodology for the proof of this
implication was suggested by Prof. Teel and shows the close connection between the non-
uniform in time notions of stability and the notion of stability with respect to two measures
for finite-dimensional discrete-time systems.

Suppose that there exist functions ¢ €KL, 8,y €K', a continuous mapping
k:Z" XR"—R™, such that for every (fg,Xg,d) EZ XR" XM, the unique solution
x(t) = x(t, ty, xo; d), Y(#)= H(t,x(t)) of the closed-loop system (1.1) with (1.2) and initial
condition x(#;) = x,, corresponding to input d € M), satisfies estimate (3.1). We next
consider the following autonomous system:

1 _
Y+ 1) = mF(w(z), bw@)y(0), d()), w(t + 1) = w(t) + 1 A0

Y (1) = Hw(t), b(w(0)y(1)), (1), w(t)) ER" X I, Y(t) €R¥,d(r) €D

where [:=Uiez (k=3 k+1), ICR, Fw,y,d)=F(p(w),y,d,k(p(w),y)), Hw,y) : =
H(pWw),y), b(w) : =1/(u(p(w))) and p : [ — Z" is the mapping that maps each w €1 to its
closest integer. Notice that this mapping is well defined on I and is continuous on I.
Moreover, by virtue of hypothesis (H2) it follows that the mappings F, H are continuous on
their domains and that for each (wy, yo, {d()};) € X R" X M}, the unique solution of (A19)
with initial condition y(0) = y,, corresponding to input {d(t)}§ € M, satisfies for all t € Z":
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y(©) = u(pwo) + 1)x(p(wy) + 1, p(wp), b(wg)yo; d)
Y(1) = H(p(wp) + 1, x(p(wp) + 1, p(wp), b(wp)yo; d))

where d € M}, satisfies d(p(wg) + £) = d(¢) for all t € Z". It follows from estimate (3.1) that
for each (wy, yo, {d(D)}5) E1 X R" X Mp the unique solution of equation (A19) with initial
condition y(0) = y,, corresponding to input {d(¢)}; € M, satisfies for all t € Z*:

Y] + [y®] < o (Bpwo)bwo)lyol, 1) (A2D)
Clearly, the solutions of equation (A19) are solutions of the difference inclusion:

G + 1), w(t + 1)) € Fw(1), y(1)

(A20)

(A22)

- 1 _
Fw,y) := ——F(w,b ,d), 1];deD y <R"XI
(%) b 1y 0% DO D, +

and each solution of the difference inclusion (A22) is a solution of equation (A19) for some
{d(H)}; €Mp. Estimate (A21) implies that the difference inclusion (A22) is strongly KL-
stable with respect to the measures (w;,w,) in the sense described in [14], where
w(y,w) : =|y| + ’['_I(W, b(w)y)| and w,(y,w) : =6(p(w))b(w)|y|. Moreover, by virtue of
hypothesis (H2), it is immediate to verify that the set-valued map F as defined by equation
(A22) satisfies the basic conditions and is continuous on the open set R” X I C R"*! in the
sense of Definitions 5, 6 in [14], respectively. Thus by virtue of Theorem 2 in [14], it follows
that the difference inclusion (A22) is robustly strongly KL-stable with respect to the measures
(w1, w,) in the sense described in [14]. By virtue of Theorem 1 in [14], there exist functions
a;,a, € K, and a continuous function U : I X R" — R+ such that

ay (|, How, bw)y)|) < Uw, y) < ay (Bpw)bW)y|),Y(w,y) €1 X R" (A23)

U <W + 1, F(w, b(w)y, d)) <exp(—DHUWw,y), Y w,y,d)€IXR" XD (A24)

1
bw + 1)
Finally, we define:
V(t,x) = U@, w)x), Y@x)ezZt XN (A25)

We next prove that V is a strong OCLF for (1.1). Obviously property (i) of Definition 3.4 is
a consequence of inequality (A23). Define

W(t,x,u) :=sup{V(t + 1,F(t,x,d, k(t,x) +v); d €D, |v| < |u—k(t, x)|} (A26)

Inequalities (3.3c,d) with p(s) : =(1 —exp(—1))s and ¢(r) =0 are immediate conse-
quences of inequality (A24) and definitions (A25), (A26). Finally, we prove that the function
W as defined by equation (A26) is quasi-convex with respect to u € R™. Notice that the
continuous maps F : ZF XR* XD XR" >R, k: Z" XR" >R and V : ZV X R" —> R
can be continuously extended to F :RXR'XDXR"—>R", k:RXR"—>R" and
ViR XR"—> R, respectively (see Remark 1.1). Under hypothesis (H2), it follows from
compactness of D CR!, continuity of F: RT XR" XD XR" > R", k: Rt XR" > R,
Vi Rt XR" > R and Theorem 1.4.16 in [4] that the function W as defined by (A26) is
continuous. Clearly, definition (A26) implies W(#,0,0)=0 for all teZ". Let
(t,x) EZT XR", uy,u, ER™ and A €0, 1]. Definition (A26) implies:
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W(t,x, Aup + (1 —NDuy)<
sup{V(t + 1, F(t,x,d, k(t,x) + v);d €D, |v| < A|u; —k(t,x)| + (1 —D|uy —k(z, )|}
<sup {V(t + 1,F(t,x,d, k(t,x) + v);d €D, |v| < max{|u; —k(t,x)|, |up, —k(t,x)|}}

If max{|u; —k(t,x)|, |uy —k(t,x)|} = |u; —k(t,x)| then the above inequality implies
W(t,x, Aup + (1 —Duy) K W(t,x,uy). Similarly, if max{|u; —k(t,x)|, |u, —k(, x)|}=
|, —k(t,x)| then we obtain W(z,x, Au; + (1 —Du,) < W(t, x,uy). Thus in any case it holds
that W(z, x, Au; + (1 — Duy) < max{W(t, x, uy), ¥(t, x, uy)}. The proof is complete. |

Proof of Proposition 3.10. Define:

p(t,x) := 6(t,x) + a3’ (—all(llf(t x,0) + 1)) (A27)

1
76,0 @\
and notice that the mapping x — p(t,x) is a continuous, positive function for each fixed
t € Z". Definitions (3.10), (A27) and inequalities (3.3a,c) and (3.9) imply that for each fixed
tE€Z" we have:

V(t,x) = min (inf{‘If(t, x, u); |u] < p(t, x)}, inf{W(t, x, u); lu| > p(t, x)})
> min(inf{‘l—‘(r, x, u); |ul < pt, x)}, inf{a, (u()|F(t, x,d, u)|); d €D, |u| > p(t, x)})
> min(inf{llf(t, x,u); lul < p(t,x)}, P(,x,0) + 1)

Clearly, since V(t,x) < W(t,x,0), the latter inequality implies that the case
min (inf{‘P(t, x,u); |u] < p(t,x)}, W(tx0)+ 1) = W(t,x,0)+ 1 cannot happen. Thus, we
conclude that:

V(t,x) = inf{W(t,x,u) : |u| < p(t,x)} = —sup{—W(t,x,u) : |u] <p(t,x)} (A28)

Moreover, it follows that the set-valued map M(¢, x) S R™, as defined by (3.11), is non-
empty and bounded for each fixed tEZ". Notice that the continuous maps
P ZEXRXR" >R and p:ZT XR"—>RT can be continuously extended to
P RXRXR™ >R and p: R XR"— R, respectively (see Remark 1.1). Continuity
of the mapping x — V(t,x) follows immediately by equalities (A28) in conjunction with
Theorem 1.4.16 in [4] and the lower and upper semi-continuity of the set-valued map
x— S8(t,x) : ={u €R™; |u| < p(t, x)}. Moreover, by continuity of the mapping x — V(z,x) it
follows that for each fixed t €Z" the set M(z,x) SR™ is compact. We finish the proof by
establishing that the set-valued map x— M(¢,x), as defined by (3.11), is upper
semi-continuous for each fixed + € Zt. It suffices to prove that for every (f,x) €ZT X R"
and for every ¢ > 0 there exists 6 > 0 such that

|x' —x| < 6= M(t,x") CM(t,x) + B (A29)

The proof will be made by contradiction. Suppose the contrary: there exists (7, x) € ZT X R"
and ¢ > 0, such that for all 6 > 0, there exists x’ € {x} + 6B and u' € M(¢, x") with |u’ — u| >e,
for all u € M(z, x). Clearly, this implies the existence of a sequence { (x';, ;) } ;11 with x'; — x,
u'; €M(t,x';) and |u’j — u’ > ¢, forallu €M(s,x)andj= 1,2, .... Onthe other hand, since '; is
bounded, it contains a convergent subsequence u'; — i & M(Z, x). By continuity of the mappings
x> V(t,x) and (x,u) ER"XR™ > W(t,x,u), we have: V(,x')— V(t,x) and
V(t,x',)=W(t,x'";,u';) > W(t,x,ii). Consequently, we must have: V(z, x) = W(t, x, i), which,
by virtue of definition (3.11) implies that iz € M(¢, x), a contradiction. Notice that the fact that the
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mapping u— W(t,x,u) is strictly quasi-convex guarantees that the set-valued map M(z, x)
defined by (3.11) is a singleton for all (z,x) €Z" XR". Thus there exists a function
k:Z" XR"— R" withk(t,0) = 0 forall € Z" with the mapping x — k(t, x) being continuous
for each fixed r€Z" and in such a way that equation (3.12) is satisfied. Consequently,
inequalities (3.3c,d) imply that the following property holds:

V(t + 1,F(t,x,d, k(t,x))) < V(t,x) — p(V(t,x)) + 4q(t) ¥ (t,x,d) EZT XR" XD,

It follows from Remark 3.2(i), hypothesis (H1) and Lemma 3.8 that system (1.1) is non-
uniformly in time continuously robustly globally output stabilizable and k defined by (3.12) is a
non-uniform in time robust global asymptotic output stabilizer for (1.1). U

Proof of Lemma 4.2. Consider the solution x(¢#) of equation (4.1) with arbitrary initial
condition x(#y) = x, corresponding to arbitrary input {d(#)}; € M. Using equation (4.4) and
(trivial) induction arguments, it can be shown that for all ¢>1¢, it holds that:
V(t, x(1)) < A7V(ty, x). The previous estimatle in conjunction with inequality (4.3) implies
(4.2) with ¢ : = —log(Q)/p, a(s) : = (K_laz(s))'_’. It follows that zero is non-uniformly in time
RGK-ES for (4.1) with constant ¢ = —log(A)/p. O
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