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FINITE-TIME GLOBAL STABILIZATION BY MEANS OF
TIME-VARYING DISTRIBUTED DELAY FEEDBACK∗

IASSON KARAFYLLIS†

Abstract. The paper contains certain results concerning the finite-time global stabilization
for triangular control systems described by retarded functional differential equations by means of
time-varying distributed delay feedback. These results enable us to present solutions to feedback
stabilization problems for systems with delayed input. The results are obtained by using the back-
stepping technique.
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1. Introduction. It is known that for finite-dimensional continuous-time control
systems with locally Lipschitz dynamics (e.g., ẋ = f(x, u), where f is locally Lipschitz
with respect to (x, u) ∈ �n ×�m), finite-time global stabilization cannot be achieved
by means of a locally Lipschitz feedback law. However, it has been shown that finite-
time global stabilization is possible by means of continuous (see [2, 3, 4, 6, 8] as well
as the reported results in [1]) or discontinuous feedback laws (see [14]).

Recently, the option of using feedback with delays has been considered for the
stabilization of continuous-time systems in various problems. The closed-loop system
may be considered as a system of time-varying retarded functional differential equa-
tions (RFDEs). For example, in [20] analytic driftless control systems of the following
form are considered:

ẋ(t) = f(x(t), u(t)) :=

m∑
i=1

fi(x(t))ui(t)

x(t) ∈ �n, u(t) := (u1(t), . . . , um(t))′ ∈ �m.

The authors in [20] provide strategies for the construction of control laws of the form
u(t) = k(t, x(t), x(lT )) for t ∈ [lT, (l+1)T ), where l is a nonnegative integer and T > 0
denotes the updating time-period of the control. Notice that this type of feedback is a
time-varying feedback with delays of the form u(t) = k(t, x(t), x([t/T ]T )), where [t/T ]
denotes the integer part of t/T , which is time-varying even if k is independent of time,
i.e., k(t, x, ξ) = k(x, ξ). The same comments apply for the synchronous controller
switching strategies proposed in [22]. The possibility of switching control laws using
distributed delays was recently exploited in [17]. Observers that make use of past
values of the state estimate and guarantee convergence in finite-time were considered
in [5, 19]. The ability of output discrete delay feedback to stabilize minimum phase
linear systems was studied in [9]. Recently, there has been an increasing interest in
the feedback stabilization problems of systems with delayed input (see [15, 18]) as
well as the application of the backstepping technique for the stabilization of nonlinear
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time-delay systems (see [10, 16]). An account of the use of delays in linear feedback
design is given in [21].

In the present work it is shown that finite-time global stabilization can be achieved
by time-varying locally Lipschitz distributed delay feedback. It is known that systems
described by time-varying RFDEs admit solutions that converge to the equilibrium
point in finite time (e.g., Property 5.1 in Chapter 3 in [7]). Using the backstepping
technique (see [13, 24]), the problem of finite-time global stabilization for nonlinear
triangular systems is studied and solved. Moreover, the approach proposed in this
paper is not limited to triangular finite-dimensional continuous-time control systems
but can be directly applied to nonlinear triangular systems described by RFDEs.
The case of delayed inputs is also considered. Among other cases, we address the
finite-time global stabilization problems for the following cases:

• The case of triangular control systems with no delays,

ẋi(t) = fi(t, x1(t), . . . , xi(t)) + xi+1(t), i = 1, . . . , n− 1;

ẋn(t) = fn(t, x(t)) + u(t),

x(t) := (x1(t), . . . , xn(t)) ∈ �n, u(t) ∈ �, t ≥ 0.

(1.1)

• The case of a chain of delayed integrators with no limitation on the size of
the delays,

ẋi(t) = xi+1(t− τi), i = 1, . . . , n− 1; ẋn(t) = u(t− τn),(1.2)

where x(t) = (x1(t), . . . , xn(t)) ∈ �n, u(t) ∈ � and τi ≥ 0 i = 1, . . . , n are
the delays.

• The case of triangular control systems with delayed drift terms:

ẋi (t) = fi(t, x1(t− τi,1), . . . , xi(t− τi,i)) + xi+1(t), i = 1, . . . , n− 1,

ẋn(t) = fn(t, x1(t− τn,1), . . . , xn(t− τn,n)) + u(t),(1.3)

x (t) := (x1(t), . . . , xn(t)) ∈ �n, u(t) ∈ �, t ≥ 0,

where mini=1,...,n−1 minj=1,... ,i τi,j > 0.
The construction of the proposed distributed delay feedback control is based on a

backstepping method, which is applicable to systems with delays. Roughly speaking,
the main idea that lies behind the integrator backstepping lemma is described next
(here (Tr(t)x = {x(t + θ); θ ∈ [−r, 0]} denotes the r-history of the state):

Suppose that the feedback y(t) = k(t, Tr(t)x) leads the state of the
system ẋ(t) = f(t, x(t), y(t)) to zero in finite time (say T > 0) and

that the feedback u(t) = k̃(t, Tr(t)x, Tr(t)y) guarantees the equality
y(t) = k(t, Tr(t)x) in finite time (say T ′ > 0) for the augmented
system ẋ(t) = f(t, x(t), y(t)); ẏ(t) = u(t). Then the feedback u(t) =

k̃(t, Tr(t)x, Tr(t)y) leads the state of the augmented system to zero
in finite time.

The explanation of the conclusion is simple: the first T ′ time units are used in order to
achieve y(t) = k(t, Tr(t)x); the next T time units are used in order to achieve x(t) = 0
and finally the last r time units are used in order to achieve x(t + θ) = 0; θ ∈ [−r, 0],
which directly implies y(t) = 0. The idea above can be applied for the design of
controllers using a step-by-step procedure (backstepping method).

The structure of the paper is as follows. In section 2, the reader can find definitions
and technical results that will be used in later sections of this work. Section 2 is divided
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into two subsections. In the first subsection (section 2.1) we present differentiability
notions for functionals. In the second subsection (section 2.2) we give the notion of
finite-time stabilizability of control systems as well as some preliminary results for the
scalar case. Section 3 contains the statement and the proofs of the main results of
the paper. Examples are presented in section 4, where the main results of the paper
can be directly applied. The conclusions of the paper are given in section 5.

Notation. Throughout this paper we adopt the following notation:
• For a vector x ∈ �n we denote by |x| its Euclidean norm. For x ∈ C0([−r, 0];

�n) we define ‖x‖r := maxθ∈[−r,0] |x(θ)|.
• By Cj(A)(Cj(A; Ω)), where j ≥ 0 is a nonnegative integer, we denote the

class of functions (taking values in Ω) that have continuous derivatives of
order j on A.

• We denote by K+ the class of positive C∞ functions defined on �+. We say
that an increasing and continuous function ρ : �+ → �+ with ρ(0) = 0 is of
class K∞ if lims→+∞ ρ(s) = +∞.

• Z+ denotes the set of positive integers and �+ the set of nonnegative real
numbers. For every real number R, [R] denotes its integer part, i.e., [R] :=
max{x;x ≤ R, x integer}.

• A continuous mapping f : I × C0([−r, 0];�n) × U → �k, where �+ ⊆ I ⊆
�, U ⊆ �m, is said to be completely locally Lipschitz with respect to (x, u) ∈
C0([−r, 0];�n)×U if for every bounded set S ⊂ I×C0([−r, 0];�n)×U there
exists L ≥ 0 such that |f(t, x, u) − f(t, y, v)| ≤ L‖x − y‖r + L|u − v| for all
(t, x, u) ∈ S, (t, y, v) ∈ S. Notice that a mapping f : I×C0([−r, 0];�n)×U →
�k, where �+ ⊆ I ⊆ �, U ⊆ �m, which is completely locally Lipschitz
with respect to (x, u) ∈ C0([−r, 0];�n) × U , is also defined on I × C0([−r −
σ, 0];�n)×U , for every σ ≥ 0, and is completely locally Lipschitz with respect
to (x, u) ∈ C0([−r − σ, 0];�n) × U , for every σ ≥ 0.

• Let x : [a − r, b) → �n with b > a ≥ 0 and r ≥ 0. By Tr(t)x we denote
the “history” of x from t − r to t, i.e., Tr(t)x := {x(t + θ); θ ∈ [−r, 0]}, for
t ∈ [a, b).

2. Definitions and technical results. Consider the following control system
described by retarded functional differential equations (RFDEs):

ẋ(t) = f(t, Tr(t)x, u(t− τ(t))); x(t) ∈ �n, u(t) ∈ U, t ≥ 0,(2.1)

where 0 ∈ U ⊆ �m, f : �+ ×C0([−r, 0];�n)×U → �n is completely locally Lipschitz
with respect to (x, u) ∈ C0([−r, 0];�n) × U with f(t, 0, 0) = 0 for all t ≥ 0 and
τ : �+ → �+ is a bounded continuous function. We denote by x(t) = x(t, t0, x0, u) ∈
�n the solution of (2.1) initiated from t0 ≥ 0 with initial condition Tr(t0)x = x0 ∈
C0([−r, 0];�n) and corresponding to u ∈ C0(�;U). By virtue of Theorem 3.2 in [7],
for every (t0, x0, u) ∈ �+ ×C0([−r, 0];�n)×C0(�;U) there exists tmax(t0, x0, u) > t0
(called the maximal existence time) such that the solution x(t) = x(t, t0, x0, u) ∈ �n

of (2.1) initiated from t0 ≥ 0 with initial condition Tr(t0)x = x0 and corresponding to
u ∈ C0(�;U), is defined on [t0−r, tmax), is continuous on [t0−r, tmax) and continuously
differentiable on [t0, tmax) and cannot be further continued, i.e., if tmax < +∞, then
lim supt→t−max

|x(t)| = +∞. When r = 0 we identify the space C0([−r, 0];�n) with the
finite-dimensional space �n and we obtain the familiar finite-dimensional continuous-
time case. Consequently, all of the following definitions and results hold also for
finite-dimensional continuous-time systems.
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This section is divided into two subsections. In the first subsection (section 2.1)
we present the differentiability notions for functionals used in the present paper. In
the second subsection (section 2.2) we give the notion of finite-time stabilizability of
control systems as well as some preliminary results for the scalar case.

2.1. Differentiability notions. In order to study the properties of control sys-
tem (2.1), we must clarify the differentiability properties of functionals along the
solutions of (2.1). The following definition provides the notions of ultimate differen-
tiability and differentiability of functionals along the solutions of (2.1).

Definition 2.1. Let a functional ϕ : I × C0([−r, 0];�n) → �, where �+ ⊆ I ⊆
�, ϕ(t, x) being completely locally Lipschitz with respect to x ∈ C0([−r, 0];�n), with
ϕ(t, 0) = 0 for all t ∈ I. We say that

• ϕ is ultimately differentiable along the solutions of (2.1) with time constant
T ≥ 0, if there exists a constant T ≥ 0 and a functional Dϕ : I × C0([−r, 0];
�n)×U → � (called the derivative of ϕ along the solutions of (2.1) with Dϕ(t,
x, u) being completely locally Lipschitz with respect to (x, u) ∈ C0([−r, 0];�n)×
U and Dϕ(t, 0, 0) = 0 for all t ∈ I, such that for every (t0, x0, u) ∈ �+ ×
C0([−r, 0];�n) × C0(�;U) for which t0 + T < tmax(t0, x0, u), the mapping
t → ϕ(t, Tr(t)x) is of class C1 on [t0 + T, tmax) and it holds that

d

dt
ϕ(t, Tr(t)x) = Dϕ(t, Tr(t)x, u(t− τ(t))) ∀t ∈ [t0 + T, tmax).

• ϕ is differentiable along the solutions of (2.1), if ϕ is ultimately differentiable
along the solutions of (2.1) with time constant T = 0.

If ϕ(t, x) = q(t, x(0)), where q ∈ C1(�+ × �n;�) is a function with locally Lipschitz
derivatives and q(t, 0) = 0 for all t ≥ 0, then ϕ is differentiable along the solutions
of (2.1) with Dϕ(t, x, u) := ∂q

∂t (t, x(0)) + ∂q
∂x (t, x(0))f(t, x, u) for all (t, x, u) ∈ �+ ×

C0([−r, 0];�n) × U . This remark holds particularly for the case r = 0, where the
functional ϕ(t, x) is an ordinary function ϕ : �+ × �n → � with ϕ(t, 0) = 0 for all
t ≥ 0. However, when delays are involved, the notion of ultimate differentiability of a
functional is useful. The following example illustrates this point.

Example 2.2. Consider the following system:

ẋ1(t) = x2(t); ẋ2(t) = u(t)

(x1(t), x2(t)) ∈ �2, u(t) ∈ �.
(2.2)

Let r > 0 and consider the functional ϕ(t, x) := x1(−r) defined on �+ ×C0([−r, 0];
�2). It can be shown that ϕ is ultimately differentiable along the solutions of (2.2)
with time constant T = r > 0 but ϕ is not differentiable along the solutions of (2.2).
Moreover, we have Dϕ(t, x, u) := x2(−r), since ẋ1(t− r) = x2(t− r) for all t ≥ t0 + r.
A more demanding notion of differentiability of functionals along the solutions of (2.1)
is given next.

Definition 2.3. Let 0 ≤ μ ≤ r. A functional p defined on I × C0([−(r −
μ), 0];�n), where �+ ⊆ I ⊆ �, p(t, x) being completely locally Lipschitz with respect
to x ∈ C0([−(r − μ), 0];�n), with p(t, 0) = 0 for all t ∈ I, is called l-differentiable
along the solutions of (2.1) with delay μ, if there exist functionals Dip, i = 1, 2, . . . , l,
called the ith derivatives of p, defined on I×C0([−(r−μ), 0];�n), each Dip(t, x) being
completely locally Lipschitz with respect to x ∈ C0([−(r−μ), 0];�n) with Dip(t, 0) = 0
for all t ∈ I, such that for every (t0, x0, u) ∈ �+ × C0([−r, 0];�n) × C0(�;U), the
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mapping t → p(t, Tr−μ(t− μ)x) is of class Cl on [t0, tmax + μ) and it holds that

di

dti
p(t, Tr−μ(t− μ)x) = Dip(t, Tr−μ(t− μ)x) ∀t ∈ [t0, tmax + μ), i = 1, 2, . . . , l.

Remark 2.4. (i) If p : I × C0([−(r − μ), 0];�n) → �, where �+ ⊆ I ⊆ �,
0 ≤ μ ≤ r, is l-differentiable along the solutions of (2.1) with delay μ, then its
derivatives Dip : I × C0([−(r − μ), 0];�n) → �, i = 1, 2, . . . , l − 1, are functionals
which are (l − i)-differentiable along the solutions of (2.1) with delay μ.

(ii) If p : I × C0([−(r − μ), 0];�n) → �, where �+ ⊆ I ⊆ �, 0 ≤ μ ≤ r, is
l-differentiable along the solutions of (2.1) with delay μ, then for every τ ∈ [0, μ]
the functional k(t, x) := p(t + τ, x) is l-differentiable along the solutions of (2.1)
with delay μ− τ with derivatives Dik(t, x) = Dip(t + τ, x). Moreover, the functional
k(t, x) := p(t+τ, Tr′(τ−μ)x), where r′ ≥ r+τ−μ is differentiable along the solutions
of (2.1) with derivative Dk(t, x) = Dp(t + τ, Tr′(τ − μ)x).

The following definition clarifies the notion of a periodic functional.
Definition 2.5. Let a functional ϕ : I×C0([−r, 0];�n) → �, where �+ ⊆ I ⊆ �,

ϕ(t, x) being completely locally Lipschitz with respect to x ∈ C0([−r, 0];�n), with
ϕ(t, 0) = 0 for all t ∈ I. We say that ϕ is T -periodic if there exists T > 0 such that
ϕ(t + T, x) = ϕ(t, x) for all (t, x) ∈ I × C0([−r, 0];�n).

The following lemma provides classes of functionals, which are l-differentiable
with delay μ along the solutions of (2.1) and are going to be used extensively in the
next section.

Lemma 2.6. The following statements hold:
(i) The functional

k(t, x) :=

∫ −μ

−2μ

μ−1h

(
s

μ

)
ϕ(t + s, TR(s + μ)x)ds(2.3)

defined on � × C0([−R − μ, 0];�n), where μ > 0, R ≥ 0, h ∈ Cl(�;�+)
with h(s) = 0 for all s /∈ (−2,−1) and ϕ : � × C0([−R, 0];�n) → �, ϕ(t, x)
being completely locally Lipschitz with respect to x ∈ C0([−R, 0];�n), with
ϕ(t, 0) = 0 for all t ∈ �, is l-differentiable along the solutions of (2.1) with
delay μ, with derivatives for i = 1, 2, . . . , l:

Dik(t, x) :=
(−1)i

μi+1

∫ −μ

−2μ

dih

dti

(
s

μ

)
ϕ(t + s, TR(s + μ)x)dw(2.4)

Moreover, if ϕ is T -periodic (or linear), then k and its derivatives Dik (i =
1, . . . , l) are T -periodic (or linear).

(ii) Let a ∈ Cl(�;�) and p : �×C0([−R− μ, 0];�n) → � a (l + i)-differentiable
functional along the solutions of (2.1) with delay μ. The functional

k(t, x) := Dip(t, x) + a(t)

∫ −μ

−2μ

μ−1h

(
s

μ

)
ϕ(t + s, TR(s + μ)x)ds(2.5)

defined on �×C0([−R− μ, 0];�n), where μ > 0, R ≥ 0, h ∈ Cl(�;�+) with
h(s) = 0 for all s /∈ (−2,−1), Dip is the ith derivative of p and ϕ : � ×
C0([−R, 0];�n) → �, ϕ(t, x) being completely locally Lipschitz with respect
to x ∈ C0([−R, 0];�n), with ϕ(t, 0) = 0 for all t ∈ �, is l-differentiable along
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the solutions of (2.1) with delay μ. Moreover, if a ∈ Cl(�;�+), ϕ, p, and
its derivatives Djp (j = 1, . . . , l + i) are T -periodic, then it follows that k
and its derivatives Djk (j = 1, . . . , l) are T -periodic. Finally, if ϕ, p, and
its derivatives Djp (j = 1, . . . , l + i) are linear, then it follows that k and its
derivatives Djk (j = 1, . . . , l) are linear.

The proof of statement (i) of Lemma 2.6 is an immediate consequence of the following
equalities:

k(t, TR+μ(t− μ)x) =

∫ t−μ

t−2μ

μ−1h

(
w − t

μ

)
ϕ(w, TR(w)x)dw

di

dti
k(t, TR+μ(t− μ)x) = Dik(t, TR+μ(t− μ)x)

=
(−1)i

μi+1

∫ t−μ

t−2μ

dih

dti

(
w − t

μ

)
ϕ(w, TR(w)x)dw.

The proof of statement (ii) of Lemma 2.6 is an immediate consequence of statement
(i) of Lemma 2.6 and is omitted.

2.2. Finite-time stabilizability. Having clarified the notions of differentiabil-
ity of functionals along the solutions of a control system, we next proceed to the
notion of finite-time stabilizability of a control system.

Definition 2.7. Let b := supt≥0 τ(t). We say that system (2.1) is finite-
time stabilizable if there exists constant T ≥ 0 and a functional k : [−b,+∞) ×
C0([−R, 0];�n) → U , k(t, x) being completely locally Lipschitz with respect to x ∈
C0([−R, 0];�n) with k(t, 0) = 0 for all t ≥ −b such that

(P1) for every (t0, x0) ∈ �+ × C0([−r̃, 0];�n), where r̃ := max(r,R + b), the so-
lution x(t) = x(t, t0, x0) ∈ �n of the closed-loop system (2.1) with u(t) =
k(t, TR(t)x) initiated from t0 ≥ 0 with initial condition T

r̃
(t0)x = x0 ∈

C0([−r̃, 0];�n) exists for all t ≥ t0 and satisfies x(t) = 0 for all t ≥ t0 + T
(P2) sup{|x(t0 + h, t0, x0)|; h ∈ [−r̃, s], ‖x0‖r̃ ≤ s, t0 ∈ [0, s]} < +∞ ∀s ≥ 0.

Particularly, if system (2.1) is finite-time stabilizable, then we say that the closed-loop
system (2.1) with u(t) = k(t, TR(t)x) satisfies the dead-beat property of order T .

Remark 2.8. Using Lemma 3.3 in [12] it can be shown that if the closed-loop
system (2.1) with u(t) = k(t, TR(t)x) satisfies the dead-beat property of order T , then
the equilibrium point 0 ∈ C0([−r̃, 0];�n) is nonuniformly in time globally asymptot-
ically stable for the closed-loop system (2.1) with u(t) = k(t, TR(t)x). The notion of
nonuniform in time robust global asymptotic stability was introduced in [11] for finite-
dimensional continuous-time systems and was extended to a wide class of systems in
[12], including systems described by RFDEs.

As already remarked in the introduction, it is generally known that for finite-
dimensional continuous-time control systems with locally Lipschitz dynamics, finite-
time global stabilization cannot be achieved by means of locally Lipschitz feedback.
The following lemma studies the scalar case and shows that this is no longer true if
time-varying distributed delay feedback is used.

Lemma 2.9. Consider the one-dimensional control system:

ẋ(t) = u(t− τ) + v(t); x(t) ∈ �, u(t) ∈ �, v(t) ∈ �, t ≥ 0,(2.6)

where τ ≥ 0 is a constant. Then for every μ > τ , the solutions of the closed-loop
system (2.6) with

u(t) = −pμ(t + τ, Tμ(t + τ − μ)x),(2.7)
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where pμ : �× C0([−μ, 0];�) → � is the linear 3μ-periodic functional defined by

pμ(t, x) := μ−1a

(
t

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
x(s + μ)ds(2.8)

for certain a ∈ C0(�;�+) being a periodic function with period 3 with a(t) = 0 for

t ∈ [0, 2] and
∫ 3

2
a(t)dt = 1 and h ∈ C0(�;�+) with

∫ −1

−2
h(s)ds =

∫ −μ

−2μ
μ−1h( s

μ )ds =

1, initiated from arbitrary t0 ≥ 0 with arbitrary initial condition T2μ(t0)x = x0 ∈
C0([−2μ, 0];�) and corresponding to arbitrary input v ∈ C0(�+;�) satisfy

|x(t)| ≤ exp(3L)σ

(
t− t0
μ

)
‖x0‖2μ + 10μ exp(3L) sup

max(t0,t−6μ)≤s≤t

|v(s)| ∀t ≥ t0,

(2.9)

where σ(t) :=
{ 1 if t < 6

0 if t ≥ 6 and L := maxt∈[0,3] a(t).

Proof. The closed-loop system (2.6) with (2.7) is described by the differential
equation

ẋ(t) = −μ−1a

(
t

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
x(t + s)ds + v(t).(2.10)

As in the proof of Theorem 1.1, Chapter 6, page 168 in [7] it can be shown that
for every initial condition x0 ∈ C0([−2μ, 0];�) the solution of the closed-loop system
(2.6) with (2.7) exists for all t ≥ t0 and satisfies

|x(t)| ≤ exp(Lμ−1(t− t0))

(
‖x0‖2μ + (t− t0) sup

t0≤τ≤t
|v(τ)|

)
∀t ≥ t0.(2.11)

Define the time sequence ti = 3μ([ t03μ ]+i), i ∈ Z+. We next prove the following claim.

Claim. For the solution of the closed-loop system (2.6) with (2.7), the following
inequalities hold for all i ∈ Z+:

|x(t)| ≤ |x(ti)| + 5μ sup
ti≤τ≤t

|v(τ)| ∀t ∈ [ti, ti+1] and(2.12)

|x(ti+1)| ≤ 5μ sup
ti≤τ≤ti+1

|v(τ)|.

Proof of Claim. Let arbitrary i ∈ Z+. Indeed, since a ∈ C0(�;�+) is a periodic
function with period 3, with a(t) = 0 for t ∈ [0, 2], we have a( t

μ ) = 0 for t ∈ [ti, ti+2μ].
Consequently, it follows that

x(t) = x(ti) +

∫ t

ti

v(τ)dτ ∀t ∈ [ti, ti + 2μ].(2.13)

For t ∈ [ti + 2μ, ti+1] we have

x(t) = x(ti + 2μ) +

∫ t

ti+2μ

v(τ)dτ − μ−1

∫ t

ti+2μ

a

(
τ

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
x(τ + s)ds dτ.
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The latter relation in conjunction with (2.13) implies that

x(t) = x(ti)

[
1 −

∫ −μ

−2μ

μ−1h

(
s

μ

)
ds

∫ t

ti+2μ

μ−1a

(
τ

μ

)
dτ

]
+

∫ t

ti

v(τ)dτ

− μ−1

∫ t

ti+2μ

a

(
τ

μ

)∫ −μ

−2μ

(
μ−1h

(
s

μ

)(∫ τ+s

ti

v(w)dw

))
ds dτ

∀t ∈ [ti + 2μ, ti+1].(2.14)

Since h ∈ C0(�;�+) with
∫ −1

−2
h(s)ds =

∫ −μ

−2μ
μ−1h( s

μ )ds = 1 and a ∈ C0(�;�+) is a

periodic function with period 3 with
∫ 3

2
a(t)dt = 1, it follows from (2.13), (2.14) that

inequalities (2.12) hold. Thus the claim made above holds.
An immediate consequence of the previous claim is the following estimate for the

solution of closed-loop system (2.6) with (2.7):

|x(t)| ≤ 10μ sup
ti≤τ≤t

|v(τ)| ∀t ∈ [ti+1, ti+2].(2.15)

Combining estimates (2.11) (for the interval [t0, t1]), (2.12) (for the interval [t1, t2])
and (2.15) (for the interval [t2,+∞)) we obtain the desired estimate (2.9). The proof
is complete.

Remark 2.10. (a) Although the input of system (2.6) is delayed, when the state of
the closed-loop system (2.6) with (2.7) and v(t) ≡ 0 hits zero, then the control action
is indeed zero. Notice that the control action is given by the following formulae:

u(t) = −μ−1a

(
t + τ

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
x(t + τ + s)ds;

u(t− τ) = −μ−1a

(
t

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
x(t + s)ds.

The reader can verify that under the hypotheses of Lemma 2.9, if v(t) ≡ 0 and t0 is
a multiple of 3μ, then we have

a

(
t

μ

)
= 0, u(t− τ) = 0, x(t) = x(t0) ∀t ∈ [t0, t0 + 2μ] and

x(t) = x(t0)

(
1 − μ−1

∫ t

t0+2μ

a

(
τ

μ

)
dτ

)
,

u(t− τ) = −μ−1a

(
t

μ

)
x(t0) ∀t ∈ [t0 + 2μ, t0 + 3μ].

For t = t0 + 3μ both state and input become zero (and thus the control cannot
push the system away from zero). The same analysis repeated for the next interval
t ∈ [t0 + 3μ, t0 + 6μ] (with x(t0 + 3μ) = 0) shows that x(t) = 0, u(t− τ) = 0, for all
t ∈ [t0 + 3μ, t0 + 6μ]. Thus we have x(t) = 0, u(t− τ) = 0 for all t ≥ t0 + 3μ.

(b) The functions a ∈ C0(�;�+) and h ∈ C0(�;�+) are, in a generalized sense,

time-varying gains of the linear feedback law u(t) = −μ−1a( t+τ
μ )

∫ −μ

−2μ
μ−1h( s

μ )x(t +

τ + s)ds. Clearly, we have |u(t)| ≤ L
μ ‖T2μ(t)x‖2μ for all t≥ 0, where L := maxt∈[0,3]

a(t).
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3. Main results. In the present paper we consider triangular time-varying sys-
tems described by RFDEs:

ẋi(t) = fi(t, Tr(t)x1, . . . , Tr(t)xi) + xi+1(t− τi), i = 1, . . . , n− 1,

ẋn(t) = fn(t, Tr(t)x) + u(t− τn),

x(t) := (x1(t), . . . , xn(t)) ∈ �n, u(t) ∈ �, t ≥ 0,

(3.1)

where r ≥ τi ≥ 0, i = 1, . . . , n, the mappings fi : �+×C0([−r, 0];�i) → � i = 1, . . . , n
are completely locally Lipschitz with respect to x ∈ C0([−r, 0];�n) with fi(t, 0) = 0
for all t ≥ 0 and satisfy one of the following assumptions:

(A1) There exist mappings ϕi : �×C0([−r+τi, 0];�i) → �, i = 1, . . . , n, which are
differentiable along the solutions of (3.1)and satisfy the following identities for
all t ≥ 0 and x ∈ C0([−r, 0];�n):

ϕ1(t− τ1, Tr−τ1(−τ1)x1) := f1(t, x1)(3.2a)

ϕi+1(t− τi+1, Tr−τi+1(−τi+1)x1, . . . , Tr−τi+1(−τi+1)xi, Tr−τi+1(−τi+1)xi+1)

:= Dϕi(t, x1, . . . , xi, xi+1(−τi)) + fi+1(t, x1, . . . , xi, xi+1) i = 1, . . . , n− 1.

(3.2b)

(A2) There exist mappings ϕi : �×C0([−r+τi, 0];�i) → �, i = 1, . . . , n, which are
ultimately differentiable along the solutions of (3.1) with time constant T > 0
and satisfy identities (3.2). Moreover, there exists a constant R ∈ (0, r] and
a continuous function L : �+ ×�+ → �+ such that

n−1∑
i=1

xi(0)fi(t, x1, . . . , xi) − xn(0)Dϕn−1(t, x)(3.3)

≤ L

(
t, sup

−r≤θ≤−R
|x(θ)|

)
(|x(0)|2 + 1),

∀(t, x) ∈ �+ × C0([−r, 0];Rn).

Our first main result states that system (3.1) is finite-time stabilizable under assump-
tion (A1). Particularly, we have the following theorem.

Theorem 3.1. Consider system (3.1) and suppose that assumption (A1) holds.
Let bi,m :=

∑m
k=i τk. Then for every μ > b1,n and l ∈ Z+, there exist functions

γ ∈ K+, ρ ∈ K∞, functionals pi : � × C0([−rn + μ, 0];�i) → �, i = 1, . . . , n, where
rn := r + 2nμ, which are l-differentiable along the solutions of (3.1) with delay μ > 0
and a constant T > 0, such that

(i) the closed-loop system (3.1) with u(t) = k(t, Trn−μ(t)x) satisfies the dead-beat
property of order T, where k : � × C0([−rn + μ, 0];�n) → � is completely
locally Lipschitz with respect to x ∈ C0([−rn + μ, 0];�n) with k(·, 0) = 0 and
is defined by

k(t, x) := −ϕn(t, x) −
n∑

i=1

pi(t + bi,n, Trn−μ(bi,n − μ)x1, . . . , Trn−μ(bi,n − μ)xi),

(3.4)
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(ii) for every (t0, x0, v) ∈ �+ × C0([−rn, 0];�n) × C0(�;�) the solution of the
closed-loop system (3.1) with u(t) = k(t, Trn−μ(t)x) + v(t) satisfies the esti-
mate

|x(t)| ≤ γ(t)ρ

(
‖x0‖rn + sup

t0−τn≤s≤t
|v(s)|

)
∀t ≥ t0.(3.5)

Moreover, if the mappings ϕi : �×C0([−r+τi, 0];�i) → �, i = 1, . . . , n, are
independent of t, then the functionals pi i = 1, . . . , n and k as defined by (3.4)
can be chosen to be 3μ-periodic. Finally, if the mappings ϕi : � × C0([−r +
τi, 0];�i) → �, i = 1, . . . , n, are linear, then the functionals pi i = 1, . . . , n
and k as defined by (3.4) can be chosen to be linear.

The proof of Theorem 3.1 relies on the following technical lemma.
Lemma 3.2 (adding a delayed integrator). Consider the system

ẋ(t) = f(t, Tr(t)x, y(t− τ)),(3.6a)

ẏ(t) = g(t, Tr(t)x, Tr(t)y) + u(t− τ ′),

x(t) ∈ �n, y(t) ∈ �, u(t) ∈ �, t ≥ 0,
(3.6b)

where r ≥ τ ≥ 0, τ ′ ≥ 0 are constants and the mappings f : �+ ×C0([−r, 0];�n) ×
� → �n, g : �+×C0([−r, 0];�n)×C0([−r, 0];�) → � are completely locally Lipschitz
with respect to (x, y) ∈ C0([−r, 0];�n)×C0([−r, 0];�) with f(t, 0, 0) = 0, g(t, 0, 0) = 0
for all t ≥ 0. Suppose there exists a functional k : � × C0([−r + τ, 0];�n) → �, with
k(·, 0) = 0, which is differentiable along the solutions of (3.6a) such that

(H1) The closed-loop system (3.6a) with y(t) = k(t, Tr−τ (t)x) satisfies the dead-beat
property of order T > 0.

(H2) There exist functions γ ∈ K+ and ρ ∈ K∞ such that for every (t0, x0, z) ∈
�+ ×C0([−r, 0];�n)×C0(�;�) the solution of the closed-loop system (3.6a)
with y(t) = k(t, Tr−τ (t)x) + z(t), initiated from t0 ≥ 0 with initial condition
Tr(t0)x = x0 ∈ C0([−r, 0];�n) and corresponding to z ∈ C0(�;�) satisfies
the estimate

|x(t)| ≤ γ(t)ρ

(
‖x0‖r + sup

t0−τ≤s≤t
|z(s)|

)
∀t ≥ t0.(3.7)

(H3) There exists a functional ϕ : �×C0([−r + τ ′, 0];�n+1) → �, ϕ(t, x, y) being
completely locally Lipschitz with respect to (x, y) ∈ C0([−r + τ ′, 0];�n) ×
C0([−r− τ ′, 0];�) with ϕ(t, 0, 0) = 0 for all t ∈ � and such that the following
identity holds for all t ≥ 0 and (x, y) ∈ C0([−r, 0];�n) × C0([−r, 0];�):

ϕ(t− τ ′, Tr−τ ′(−τ ′)x, Tr−τ ′(−τ ′)y) := −g(t, x, y) + Dk(t, x, y(−τ)),(3.8)

where Dk : �×C0([−r, 0];�n)×� → � denotes the derivative of k along the
solutions of (3.6a).

Then for every μ > τ ′, there exist functions γ̃ ∈ K+, ρ̃ ∈ K∞ and a functional
k̃ : � × C0([−r − 2μ + τ ′, 0];�n+1) → �, which is completely locally Lipschitz with

respect to (x, y) ∈ C0([−r − 2μ + τ ′, 0];�n+1) with k̃(t, 0, 0) = 0 for all t ∈ � and is
defined by

k̃(t, x, y) := ϕ(t, x, y) − μ−1a

(
t + τ ′

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
(y(τ ′ + s)

− k(t + τ ′ + s, Tr−τ (τ
′ + s)x))ds,(3.9)
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where a ∈ C0(�;�+) is a periodic function with period 3, with a(t) = 0 for t ∈
[0, 2] and

∫ 3

2
a(t)dt = 1, h ∈ C0(�;�+) with

∫ −1

−2
h(s)ds =

∫ −μ

−2μ
μ−1h( s

μ )ds = 1,

such that the closed-loop system (3.6) with u(t) = k̃(t, Tr+2μ−τ ′(t)x, Tr+2μ−τ ′(t)y)
satisfies the dead-beat property of order T + r + 6μ and for every (t0, x0, y0, v) ∈
�+ × C0([−r − 2μ, 0];�n+1) × C0(�;�) the solution of the closed-loop system (3.6)

with u(t) = k̃(t, Tr+2μ−τ ′(t)x, Tr+2μ−τ ′(t)y) + v(t) satisfies the estimate

|(x(t), y(t))| ≤ γ̃(t)ρ̃

(
‖(x0, y0)‖r+2μ + sup

t0−τ ′≤s≤t
|v(s)|

)
∀t ≥ t0.(3.10)

Remark 3.3. Notice that the stabilizing feedback is given by

u(t) = ϕ(t, Tr(t)x, Tr(t)y) − μ−1a

(
t + τ ′

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
z(t + τ ′ + s)ds,

where z(t) := y(t) − k(t, Tr−τ (t)x).
Proof of Lemma 3.2. Let arbitrary (t0, x0, y0, v) ∈ �+ ×C0([−r− 2μ, 0];�n+1)×

C0(�;�) and define

z(t) := y(t) − k(t, Tr−τ (t)x).(3.11)

By virtue of definitions (3.9), (3.11), and identity (3.8), we guarantee that as long as

the solution of the closed-loop system (3.6) with u(t) = k̃(t, Tr+2μ−τ ′(t)x, Tr+2μ−τ ′(t)y)
+ v(t) and Tr+2μ(t0)x = x0, Tr+2μ(t0)y = y0 exists, it coincides with the solution of
the following system:

ẋ(t) = f(t, Tr(t)x, k(t− τ, Tr−τ (t− τ)x) + z(t− τ))

ż(t) = −μ−1a

(
t

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
z(t + s)ds + v(t− τ ′)(3.12)

x(t) ∈ �n, z(t) ∈ �, v(t) ∈ �, t ≥ 0

corresponding to the same input v ∈ C0(�;�) with y(t) = z(t) + k(t, Tr−τ (t)x) and
Tr+2μ(t0)x = x0, z(t0 + θ) = y0(θ) − k(t0 + θ, Tr−τ (t0 + θ)x); θ ∈ [−τ̃ , 0], where
τ̃ := max(τ, 2μ). The solution of (3.12) exists for all t ≥ t0, since by virtue of Lemma
2.9, we obtain

|z(t)| ≤ exp(3L)σ

(
t− t0
μ

)
‖T

τ̃
(t0)z‖τ̃(3.13)

+ 10μ exp(3L) sup
max(t0,t−6μ)≤s≤t

|v(s− τ ′)|

∀t ≥ t0 − τ̃ ,

where σ(t) :=
{ 1 if t < 6

0 if t ≥ 6 and L := maxt∈[0,3] a(t) and inequality (3.13) in conjunc-

tion with estimate (3.7) implies the following estimate:

|x(t)| ≤ γ(t)ā

(
‖Tr(t0)x‖r + ‖T

τ̃
(t0)z‖τ̃ + sup

t0−τ ′≤s≤t
|v(s)|

)
∀t ≥ t0,(3.14)

where ā(s) := ρ(exp(3L)(1 + 10μ)s) ∈ K∞. We next prove the following claim.
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Claim. There exist functions γ̃ ∈ K+, ρ̃ ∈ K∞ such that for every (t0, x0, y0, v) ∈
�+ × C0([−r − 2μ, 0];�n+1) × C0(�;�) the solution of (3.12) corresponding to v ∈
C0(�;�) with y(t) = z(t)+k(t, Tr−τ (t)x), Tr+2μ(t0)x = x0, z(t0 +θ) = y0(θ)−k(t0 +
θ, Tr−τ (t0 + θ)x); θ ∈ [−τ̃ , 0] satisfies estimate (3.10).

Proof of Claim. Since k : [−2μ,+∞) × C0([−r + τ, 0];�n) → � is completely
locally Lipschitz with respect to x ∈ C0([−r + τ, 0];�n) with k(t, 0) = 0 for all
t ≥ −2μ, it follows from Lemma 3.2 in [12] that there exist functions δ ∈ K+, being
nondecreasing and q ∈ K∞ such that

|k(t, x)| ≤ q(δ(t)‖x‖r−τ ) ∀(t, x) ∈ [−2μ,+∞) × C0([−r + τ, 0];�n).(3.15)

Notice that definition (3.11) in conjunction with (3.15) implies

‖T
τ̃
(t0)z‖τ̃ ≤ ‖y0‖τ̃ + q(δ(t)‖x0‖r+2μ) ∀t ≥ t0.(3.16)

Using Corollary 10 and Remark 11 in [23] we may find a function κ ∈ K∞ such that

q(rs) + a(rs) + exp(3L)(1 + 10μ)rs ≤ κ(r)κ(s) ∀r, s ≥ 0.(3.17)

Without loss of generality we may assume that the function γ ∈ K+ involved in (3.14)
is nondecreasing. Thus, using estimate (3.14), we obtain the following estimate for
the solution of (3.12):

‖Tr(t)x‖r ≤ γ(t)a

(
‖x0‖r + ‖T

τ̃
(t0)z‖τ̃ + sup

t0−τ ′≤s≤t
|v(s)|

)
∀t ≥ t0.(3.18)

Combining (3.15), (3.16), (3.17), and (3.18) we obtain for the solution of (3.12),

|k(t, Tr−τ (t)x)| ≤ p(t)ζ

(
‖(x0, y0)‖r+2μ + sup

t0−τ ′≤s≤t
|v(s)|

)
∀t ≥ t0,(3.19)

where p(t) := κ(δ(t)γ(t)κ(1+κ(δ(t)))) and ζ(s) := κ(κ(2s+κ(s))). Estimates (3.13),
(3.14), (3.19) in conjunction with inequalities (3.16), (3.17) and the trivial inequality
|y(t)| ≤ |z(t)| + |k(t, Tr−τ (t)x)|, show that the solutions of (3.12) satisfy estimate
(3.10) for γ̃(t) := (1+ γ(t))κ(1+κ(δ(t)))+ p(t) and ã(s) := κ(2s+κ(s))+ ζ(s). Thus
the claim is proved.

Since for every (t0, x0, y0, v) ∈ �+ × C0([−r − 2μ, 0];�n+1) × C0(�;�) the so-

lution of the closed-loop system (3.6) with u(t) = k̃(t, Tr+2μ−τ ′(t)x, Tr+2μ−τ ′(t)y) +
v(t) and Tr+2μ(t0)x = x0, Tr+2μ(t0)y = y0 coincides with the solution of (3.12)
corresponding to the same input v ∈ C0(�;�) with y(t) = z(t) + k(t, Tr−τ (t)x)
and Tr+2μ(t0)x = x0, z(t0 + θ) = y0(θ) − k(t0 + θ, Tr−τ (t0 + θ)x); θ ∈ [−τ̃ , 0],
where τ̃ := max(τ, 2μ), we conclude that for every (t0, x0, y0, v) ∈ �+ × C0([−r −
2μ, 0];�n+1) × C0(�;�) the solution of the closed-loop system (3.6) with u(t) =

k̃(t, Tr+2μ−τ ′(t)x, Tr+2μ−τ ′(t)y) + v(t) and Tr+2μ(t0)x = x0, Tr+2μ(t0)y = y0 exists
for all t ≥ t0 and satisfies estimate (3.10). Finally, the fact that the closed-loop system

(3.6) with u(t) = k̃(t, Tr+2μ−τ ′(t)x, Tr+2μ−τ ′(t)y) satisfies the dead-beat property of
order T + r + 6μ follows from the observation that z(t) = 0 for all t ≥ t0 + 6μ (recall
(3.13) with v(t) ≡ 0), which implies y(t) = k(t, Tr−τ (t)x) for all t ≥ t0 + 6μ (recall
definition (3.11)). Thus for all t ≥ t0 + 6μ the solution of the closed-loop system

(3.6) with u(t) = k̃(t, Tr+2μ−τ ′(t)x, Tr+2μ−τ ′(t)y) coincides with the solution of (3.6a)
with y(t) = k(t, Tr−τ (t)x) initiated from Tr(t0 + 6μ)x. It follows that x(t) = 0 for all
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t ≥ t0 + T + 6μ, which implies y(t) = k(t, Tr−τ (t)x) = 0 for all t ≥ t0 + T + r + 6μ.
The proof is complete.

We are now in position to prove Theorem 3.1.
Proof of Theorem 3.1. The proof is made by induction.
Step 1: We show that the statement of Theorem 3.1 holds for n = 1. Let l ∈ Z+

and μ > b1,n = τ1. The statement of Theorem 3.1 for n = 1 is an immediate
consequence of Lemma 2.9, identity (3.2a), (3.4), and the definition

p1(t, x1) := −μ−1a

(
t

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
x1(s + μ)ds,(3.20)

where a ∈ Cl(R; R+) is a periodic function with period 3 with a(t) = 0 for t ∈
[0, 2] and

∫ 3

2
a(t)dt = 1 and h ∈ Cl(R; R+) with h(s) = 0 for all s /∈ (−2,−1),∫ −1

−2
h(s)ds =

∫ −μ

−2μ
μ−1h( s

μ )ds = 1. Notice that the fact that p1(t, x1), as defined by

(3.11), is l-differentiable with delay μ follows directly from Lemma 2.6. Moreover, if
ϕ1 : R × C0([−r + τ1, 0];R) → R is independent of t, then the functionals p1 and
k (defined by (3.4)) are 3μ-periodic. Finally, if ϕ1 : R × C0([−r + τ1, 0];R) → R is
linear, then the functionals p1 and k (defined by (3.4)) are linear.

Induction step: Suppose that the statement of Theorem 3.1 holds for n − 1.
We show that the statement of Theorem 3.1 holds for n. By assumption for every
μ > b1,n−1, l ∈ Z+, there exist functions γ ∈ K+, ρ ∈ K∞, functionals pi : R ×
C0([−rn−1 +μ, 0];Ri) → R, i = 1, . . . , n− 1, where rn−1 := r+ 2(n− 1)μ, which are
(l + 1)-differentiable along the solutions of the following system:

ẋi(t) = fi(t, Tr(t)x1, . . . , Tr(t)xi) + xi+1(t− τi), i = 1, . . . , n− 1,

ξ(t) := (x1(t), . . . , xn−1(t)) ∈ R
n−1, xn(t) ∈ R, t ≥ 0

(3.21)

with delay μ > 0 and a constant T > 0, such that
(a) the closed-loop system (3.21) with xn(t) = k(t, Trn−1−μ(t)ξ) satisfies the dead-

beat property of order T , where

k(t, ξ) := − ϕn−1(t, ξ)

−
n−1∑
i=1

pi(t + bi,n−1, Trn−1−μ(bi,n−1 − μ)x1, . . . , Trn−1−μ(bi,n−1 − μ)xi),(3.22)

(ii) for every (t0, ξ0, z) ∈ R+ × C0([−rn−1, 0];Rn) × C0(R; R) the solution of the
closed-loop system (3.21) with xn(t) = k(t, Trn−1−μ(t)ξ) + z(t) satisfies the estimate

|ξ(t)| ≤ γ(t)ρ

(
‖ξ0‖rn−1 + sup

t0−τn−1≤s≤t
|z(s)|

)
∀t ≥ t0.(3.23)

Remark 2.4(ii) and hypothesis (A1) show that k as defined by (3.22) is differentiable
along the solutions of (3.21) with derivative

Dk(t, ξ, xn(−τn−1)) := −Dϕn−1(t, ξ, xn(−τn−1))

−
n−1∑
i=1

Dpi(t + bi,n−1, Trn−1−μ(bi,n−1 − μ)x1, . . . ,

Trn−1−μ(bi,n−1 − μ)xi).
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Clearly, hypotheses (H1) and (H2) of Lemma 3.2 hold for system (3.1). Next we show
that hypothesis (H3) of Lemma 3.2 also holds for system (3.1). Notice that

−fn(t, x) + Dk(t, ξ, xn(−τn−1)),

= −fn(t, x) −Dϕn−1(t, ξ, xn(−τn−1))

−
n−1∑
i=1

Dpi(t + bi,n−1, Trn−1−μ(bi,n−1 − μ)x1, . . . , Trn−1−μ(bi,n−1 − μ)xi).

Hypothesis (A1) implies that there exists a mapping ϕn : R × C0([−r + τn, 0];
Rn) → R, which is differentiable along the solutions of (3.1) and satisfies ϕn(t− τn,
Tr−τn(−τn)x) := Dϕn−1(t, ξ, xn(−τn−1)) + fn(t, x) for all t ≥ 0 and x ∈ C0([−r, 0];
Rn). Thus we obtain

−fn(t, x) + Dk(t, ξ, xn(−τn−1)) = ϕ(t− τn, Trn−1−τn(−τn)x),(3.24)

where ϕ(t, x) := −ϕn(t, x)−
∑n−1

i=1 Dpi(t+τn+bi,n−1, Trn−1−μ(bi,n−1+τn−μ)x1, . . . ,
Trn−1−μ(bi,n−1 + τn − μ)xi). Since bi,n−1 + τn = bi,n we have

ϕ(t, x) := −ϕn(t, x) −
n−1∑
i=1

Dpi(t + bi,n, Trn−1−μ(bi,n − μ)x1, . . . , Trn−1−μ(bi,n − μ)xi).

(3.25)

Notice that the mapping ϕ : R×C0([−rn−1+τn, 0];Rn) → R defined by (3.25) is well
defined for all μ > b1,n, with ϕ(t, x) being completely locally Lipschitz with respect
to x ∈ C0([−r + τn, 0];Rn) and ϕ(t, 0) = 0 for all t ∈ R.

Lemma 3.2 shows that there exist functions γ̃ ∈ K+, ρ̃ ∈ K∞ and a functional
k̃ : �×C0([−rn−1−2μ, 0];�n) → �, which is completely locally Lipschitz with respect

to x ∈ C0([−rn−1 − 2μ, 0];�n) with k̃(t, 0) = 0 for all t ∈ � and is defined by

k̃(t, x) := ϕ(t, x) − pn(t + τn, Trn−μ(τn − μ)x),

pn(t, x) := μ−1a

(
t

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
(xn(s + μ) − k(t + s, Trn−1(s + μ)ξ))ds,

(3.26)

where a ∈ Cl(�;�+) is a periodic function with period 3, with a(t) = 0 for t ∈ [0, 2]

and
∫ 3

2
a(t)dt = 1, h ∈ Cl(�;�+) with h(s) = 0 for all s /∈ (−2,−1),

∫ −1

−2
h(s)ds =∫ −μ

−2μ
μ−1h( s

μ )ds = 1, such that the closed-loop system (3.1) with u(t) = k̃(t, Trn−μ(t)x)

satisfies the dead-beat property of order T + rn−1 + 6μ and for every (t0, x0, v) ∈
�+ × C0([−rn, 0];�n) × C0(�;�) the solution of the closed-loop system (3.1) with

u(t) = k̃(t, Trn−μ(t)x) + v(t) satisfies estimate (3.5) with γ̃ ∈ K+ and ρ̃ ∈ K∞ in
place of γ ∈ K+ and ρ ∈ K∞, respectively. Lemma 2.6 implies that the functional
pn is l-differentiable along the solutions of (3.1) with delay μ > 0. Moreover, if

ϕn is independent of t and k is 3μ-periodic then the functionals pn and k̃ are 3μ-
periodic. Finally, if ϕn and k are linear functionals, then the functionals pn and k̃ are
linear.

Our second main result states that system (3.1) is finite-time stabilizable under
assumption (A2).
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Theorem 3.4. Consider system (3.1) and suppose that assumption (A2) holds.
Then for every μ ≥ R+

∑n
i=1 τi, where R > 0 is the constant involved in assumption

(A2), there exists a functional k : � × C0([−r̃, 0];�n) → �, where r̃ := 2r + 2nμ,
which is completely locally Lipschitz with respect to x ∈ C0([−r̃, 0];�n) and a constant
T ′ > T (where T ≥ 0 is the time constant involved in assumption (A2), such that the
closed-loop system (3.1) with u(t) = k(t, T

r̃
(t)x) satisfies the dead-beat property of

order T ′. Moreover, if the mappings ϕi : � × C0([−r + τi, 0];�i) → �, i = 1, . . . , n
are independent of t, then the functional k can be chosen to be 3μ-periodic. Finally,
if the mappings ϕi : � × C0([−r + τi, 0];�i) → �, i = 1, . . . , n are linear, then the
functional k can be chosen to be linear.

Proof. Consider the system

żi(t) = zi+1(t− τi), i = 1, . . . , n− 1; żn(t) = v(t− τn)

z(t) = (z1(t), . . . , zn(t)) ∈ �n, v(t) = �,
(3.27)

where τi ≥ 0 are exactly the delays appearing in (3.1). Since assumption (A1) holds for
system (3.27) with ϕi ≡ 0 for i = 1, . . . , n, by virtue of Theorem 3.1 we conclude that
for every μ ≥

∑n
i=1 τi + R there exists a linear 3μ-periodic time-varying distributed

delay feedback v(t) = k̃(t, T
r̃−r−R

(t − R)z) and a constant T ′ > 0 such that the

closed-loop system (3.27) with v(t) = k̃(t, T
r̃−r−R

(t − R)z) satisfies the dead-beat

property of order T ′.
Consider the mapping (t, x) ∈ � × C0([−r̃, 0];�n) → P (t, x) = y ∈ C0([−(r̃ −

r), 0];�n) defined by

y1(θ) := x1(θ), θ ∈ [−(r̃ − r), 0],

yi(θ) := xi(θ) + ϕi−1(t + θ, Tr(θ)x1, . . . , Tr(θ)xi−1), i = 2, . . . , n, θ ∈ [−(r̃ − r), 0].

(3.28)

Notice that since the mappings ϕi : � × C0([−r + τi, 0];�i) → �, i = 1, . . . , n,
are all completely locally Lipschitz with respect to x ∈ C0([−r, 0];�n), it follows
that for every bounded set S ⊂ � × C0([−r̃, 0];�n) there exists L ≥ 0 such that
‖P (t, x) − P (t, y)‖

r̃−r
≤ L‖x − y‖

r̃
for all (t, x) ∈ S, (t, y) ∈ S. Moreover, notice

that P (t, 0) = 0 for all t ∈ �. We next prove that the time-varying distributed
delay feedback that induces the dead-beat property for the corresponding closed-loop
system is defined by

k(t, x) := −ϕn(t, Tr(0)x) + k̃(t, P (t−R, T
r̃
(−R)x)).(3.29)

Notice that if the mappings ϕi : � × C0([−r + τi, 0];�i) → �, i = 1, . . . , n are inde-
pendent of t (linear), then the functional k as defined by (3.29) is 3μ-periodic (linear).
Let the solution x(t) of the closed-loop system (3.1) with u(t) = k(t, T

r̃+R
(t)x) with

arbitrary initial condition T
r̃+R+τn

(t0)x = x0.
We make the following claim.
Claim. The solution x(t) of the closed-loop system (3.1) with u(t) = k(t, T

r̃+R
(t)x)

exists for all t ≥ t0 and satisfies Property (P2) of Definition 2.7.
Proof of Claim. Since
• P (t, 0) = 0 for all t ∈ � and for every bounded set S ⊂ � × C0([−r̃, 0];�n)

there exists L ≥ 0 such that ‖P (t, x) − P (t, y)‖
r̃−r

≤ L‖x − y‖
r̃

for all

(t, x) ∈ S, (t, y) ∈ S.

• k̃(t, z) is a linear 3μ-periodic time-varying functional
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it follows from Lemma 3.2 in [12] that there exist functions δ ∈ K+, being nonde-
creasing and q ∈ K∞ such that

|k̃(t− τn, P (t− τn −R, T
r̃
(−τn −R)x))| ≤ q(δ(t)‖T

r̃
(−τn −R)x‖

r̃
)(3.30)

∀(t, x) ∈ �+ × C0([−R̃, 0];�n)

with R̃ := r̃ + τn + R. In order to prove the claim it suffices to show that if there
exists an integer N such that

sup
{
|x(t0 + h, t0, x0)|; h ∈ [−R̃,NR], ‖x0‖R̃ ≤ s, t0 ∈ [0, s]

}
< +∞ ∀s ≥ 0,

(3.31)

then we have

sup
{
|x(t0 + h, t0, x0)|; h ∈ [−R̃, (N + 1)R], ‖x0‖R̃ ≤ s, t0 ∈ [0, s]

}
< +∞(3.32)

∀s ≥ 0,

where x(t, t0, x0) denotes the solution of the closed-loop system (3.1) with u(t) =
k(t, T

r̃
(t)x) with initial condition T

R̃
(t0)x = x0. Indeed, since (3.31) holds for N = 0,

it will follow by induction that (3.31) holds for all nonnegative integers N .
Suppose that (3.31) holds for some nonnegative integer N . Let arbitrary s ≥ 0

and define V (t) := 1
2 |x(t)|2, where x(t) denotes the solution of the closed-loop system

(3.1) with u(t) = k(t, T
r̃
(t)x) with arbitrary initial condition T

R̃
(t0)x = x0 such

that ‖x0‖R̃ ≤ s, t0 ∈ [0, s]. Using identity (3.2b) for i = n − 1, inequality (3.3) in
conjunction with (3.30) imply that as long as the solution of the closed-loop system
(3.1) with u(t) = k(t, T

r̃
(t)x) exists, it holds that

V̇ (t) ≤ L

(
t, sup

−r≤θ≤−R
|x(t + θ)|

)
(2V (t) + 1) + V (t)(3.33)

+ q2

(
δ(t) sup

−r≤θ≤−R
|x(t + θ)|

)
.

Let a := sup
{
|x(t0 + h, t0, x0)|; h ∈ [−R̃,NR], ‖x0‖R̃ ≤ s, t0 ∈ [0, s]

}
< +∞. Clearly,

for all t ∈ [NR, (N + 1)R] for which the solution of the closed-loop system (3.1) with
u(t) = k(t, T

r̃
(t)x) exists, we have

V̇ (t) ≤
(

1 + q2(δ((N + 1)R)a) + max
0≤t≤(N+1)R

0≤s≤a

2L(t, s)

)
(V (t) + 1).

The previous differential inequality implies that the solution of the closed-loop system
(3.1) with u(t) = k(t, T

r̃
(t)x) exists for all t ∈ [NR, (N + 1)R] and satisfies

|x(t)|2 ≤ 2V (t) ≤ exp(M(N,R, a))(a2 + 2) ∀t ∈ [NR, (N + 1)R],

where M(N,R, a) := R(1+q2(δ((N +1)R)a)+max 0≤t≤(N+1)R
0≤s≤a

2L(t, a)). The previous

property shows that inequality (3.32) holds. Thus the claim is proved.
We continue the proof of Theorem 3.4 by considering the following variables

defined by

z1(t) := x1(t); zi(t) := xi(t) + ϕi−1(t, Tr(t)x1, . . . , Tr(t)xi−1), i = 2, . . . , n.
(3.34)
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Clearly, by virtue of definitions (3.28) and (3.34) we obtain T
r̃−r

(t−R)z = P (t−R,

T
r̃
(t − R)x) for all t ≥ t0. Moreover, by virtue of (3.34), identities (3.2), and the

definition of the notion of ultimate differentiability along the solutions of (3.1) with
time constant T ≥ 0 (Definition 2.1), z(t) as defined by (3.34) for the solution of the
closed-loop system (3.1) with u(t) = k(t, T

r̃+R
(t)x), coincides for all t ≥ t0 + T with

the solution of the closed-loop system (3.27) with v(t) = k̃(t, T
r̃−r−R

(t − R)z) with

initial condition T
r̃−r

(t0 + T )z = P (t0 + T, T
r̃
(t0 + T )x). Thus we obtain z(t) = 0

for all t ≥ t0 + T + T ′. It follows from definition (3.34) that x(t) = 0 for all t ≥
t0+T+T ′+(n−1)r. Thus the closed-loop system (3.1) with u(t) = k(t, T

r̃
(t)x) satisfies

the dead-beat property of order T̃ := T +T ′ +(n− 1)r. The proof is complete.

4. Examples. The following examples present systems, which satisfy assump-
tion (A1) and consequently, by virtue of Theorem 3.1, can be finite-time stabilized
by means of time-varying distributed delay feedback. Our first example is concerned
with finite-dimensional control systems.

Example 4.1. Consider the two-dimensional control system

ẋ1(t) = f1(t, x1(t)) + x2(t); ẋ2(t) = f2(t, x1(t), x2(t)) + u(t),

(x1(t), x2(t)) ∈ �2, u(t) ∈ �, t ≥ 0,
(4.1)

where f1 ∈ C2(� × �;�) and f2 ∈ C1(� × �2;�) with f1(t, 0) = f2(t, 0, 0) = 0 for
all t ∈ �. For system (4.1) finite-time global stabilization cannot be achieved by
means of a locally Lipschitz feedback law u(t) = k(t, x1(t), x2(t)). On the other hand
Theorem 3.1 guarantees that there exists a time-varying distributed delay feedback
law that achieves finite-time stabilization for the closed-loop system. Indeed, system
(4.1) satisfies hypothesis (A1) and thus Theorem 3.1 can be applied. Following the
proof of Theorem 3.1, it can be shown that for every μ > 0, l ∈ Z+ ∪ {+∞}, there
exist functions γ ∈ K+ and ρ ∈ K∞ such that the feedback law

u(t) = v(t) − f2(t, x1(t), x2(t)) −
∂f1

∂t
(t, x1(t)) −

∂f1

∂x1
(t, x1(t))f1(t, x1(t))

− ∂f1

∂x1
(t, x1(t))x2(t) − μ−2ȧ

(
t

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
x1(t + s)ds

+ μ−1a

(
t

μ

)∫ −μ

−2μ

μ−2h′
(
s

μ

)
x1(t + s)ds

− μ−1a

(
t

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)[
x2(t + s) + f1(t + s, x1(t + s))

+ μ−1a

(
t + s

μ

)∫ −μ

−2μ

μ−1h

(
w

μ

)
x1(t + s + w)dw

]
ds,

(4.2)

where a ∈ Cl(R; R+) is a periodic function with period 3, with a(t) = 0 for t ∈ [0, 2]

and
∫ 3

2
a(t)dt = 1, h ∈ Cl(R; R+) with h(s) = 0 for all s /∈ (−2,−1),

∫ −1

−2
h(s)ds =∫ −μ

−2μ
μ−1h( s

μ )ds = 1

(i) achieves the dead-beat property of order T = 14μ for the corresponding
closed-loop system with v(t) ≡ 0 and

(ii) for every (t0, x0, v) ∈ R+ × C0([−4μ, 0];R2) × C0(R; R) the solution of the
closed-loop system (4.1) with (4.2) satisfies estimate (3.5).

In order to estimate the functions γ ∈ K+ and ρ ∈ K∞ we consider the coordinate
transformation
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z1(t) = x1(t); z2(t) = f1(t, x1(t))(4.3)

+ μ−1a

(
t

μ

)∫ t−μ

t−2μ

μ−1h

(
w − t

μ

)
x1(w)dw + x2(t).

The closed-loop system (4.1) with (4.2) is described in z-coordinates by the following
set of retarded functional differential equations:

ż1(t) = −μ−1a

(
t

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
z1(t + s)dw + z2(t);

ż2(t) = −μ−1a

(
t

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
z2(t + s)dw + v(t).

Repeated application of Lemma 2.9 for the above system provides the following esti-
mate:

|z(t)| ≤ 2(1 + 5μ) exp(9L)σ

(
t− t0
μ

− 12

)
‖T2μ(t0)z‖2μ

+ 100μ(1 + 2μ) exp(9L) sup
t0≤s≤t

|v(s)| ∀t ≥ t0,(4.4)

where z := (z1, z2)
′, σ(t) :=

{ 1 if t < 0
0 if t ≥ 0 and L := maxt∈[0,3]a(t). The functions

γ ∈ K+ and ρ ∈ K∞ can be determined directly from estimate (4.4). For example,
consider the case that there exists b ∈ K∞ such that |f1(t, x1)| ≤ b(|x1|) for all (t, x1) ∈
R × R (this requirement is automatically satisfied if f1 is independent of time). In
this case transformation (4.3) implies the inequalities |x(t)| ≤ β(‖T2μ(t)z‖2μ) and
|z(t)| ≤ β(‖T2μ(t)x‖2μ), where β(s) := (2 + μ−1L)s + b(s). Using estimate (4.4)
and previous inequalities ‖T2μ(t0)z‖2μ ≤ β(‖T4μ(t0)x‖4μ) (which directly imply the
inequality ‖T2μ(t0)z‖2μ ≤ β(‖T4μ(t0)x‖4μ)), we obtain

|x(t)| ≤ β

(
2(1 + 5μ) exp(9L)σ

(
t− t0
μ

− 14

)
β(‖T4μ(t0)x‖4μ)

+ 100μ(1 + 2μ) exp(9L) sup
t0≤s≤t

|v(s)|
)

∀t ≥ t0.

We conclude that estimate (3.5) holds for the closed-loop system (4.1), (4.2) with
γ(t) ≡ 1 and ρ(s) := β(M(s + β(s))), where M := 100(1 + 5μ)(1 + μ) exp(9L).

Similarly, we can address the finite-time stabilization problem for the general tri-
angular case (1.1) with no delays, where fi ∈ Cn−i+1(R×Ri; R) with fi(t, 0, . . . , 0) =
0 for all t ∈ R, i = 1, . . . , n. Proceeding exactly as in the 2-dimensional case, it can
be shown that if (1.1) is autonomous then the proposed distributed delay feedback
guarantees that estimate (3.5) holds for the corresponding closed-loop system with
γ(t) ≡ 1.

The following example is a triangular autonomous control system with discrete
delays.

Example 4.2. Consider the control system:

ẋ1(t) = x2
1(t− τ1) + x2(t− τ1);

ẋ2(t) = −2x1(t)x
2
1(t− τ1) − 2x1(t)x2(t− τ1) + x2(t− 2τ2) + u(t− τ2),

(x1(t), x2(t)) ∈ �2, u(t) ∈ �.
(4.5)
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It can be verified that assumption (A1) holds for (4.5) with ϕ1(t, x1) := x2
1(0) and

ϕ2(t, x1, x2) := x2(−τ2). Thus Theorem 3.1 guarantees that for every μ > τ1 + τ2,
there exists a 3μ-periodic time-varying distributed delay feedback such that the corre-
sponding closed-loop system satisfies the dead-beat property. The following feedback
law:

u(t) = −x2(t− τ2) − μ−2ȧ

(
t + τ1 + τ2

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
x1(t + τ1 + τ2 + s)ds

+ μ−1a

(
t + τ1 + τ2

μ

)∫ −μ

−2μ

μ−2ḣ

(
s

μ

)
x1(t + τ1 + τ2 + s)ds

− μ−1a

(
t + τ2
μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)[
x2(t + τ2 + s) + x2

1(t + τ2 + s)

+ μ−1a

(
t + τ1 + τ2 + s

μ

)∫ −μ

−2μ

μ−1h

(
w

μ

)
x1(t + τ1 + τ2 + s + w)dw

]
ds,

where a ∈ Cl(�;�+) is a periodic function with period 3, with a(t) = 0 for t ∈ [0, 2]

and
∫ 3

2
a(t)dt = 1, h ∈ Cl(�;�+) with h(s) = 0 for all s /∈ (−2,−1),

∫ −1

−2
h(s)ds =∫ −μ

−2μ
μ−1h( s

μ )ds = 1, achieves the dead-beat property of order T = 14μ for the corre-
sponding closed-loop system.

Example 4.3. The chain of delayed integrators (1.2), where τi ≥ 0, has been
considered in the literature for the particular case of τ1 = · · · = τn−1 = 0 in [15] with
the additional requirement that the stabilizing feedback must be bounded. Here we
consider the general case and demand finite-time stabilization of the corresponding
closed-loop system. Since assumption (A1) holds with ϕi ≡ 0 for i = 1, . . . , n, by
virtue of Theorem 3.1 we conclude that for every μ >

∑n
i=1 τi there exists a linear

3μ-periodic time-varying distributed delay feedback such that the closed-loop system
satisfies the dead-beat property. Notice that there is no limitation on the size of
the delays. Specifically, for the case n = 2 we obtain the following feedback, which
guarantees the dead-beat property of order T = 14μ:

u(t) = −μ−2ȧ

(
t + τ1 + τ2

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
x1(t + τ1 + τ2 + s)ds

+ μ−1a

(
t + τ1 + τ2

μ

)∫ −μ

−2μ

μ−2h′
(
s

μ

)
x1(t + τ1 + τ2 + s)ds

− μ−1a

(
t + τ2
μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)[
x2(t + τ2 + s)

+ μ−1a

(
t + τ1 + τ2 + s

μ

)∫ −μ

−2μ

μ−1h

(
w

μ

)
x1(t + τ1 + τ2 + s + w)dw

]
ds,

(4.6)

where a ∈ Cl(�;�+) is a periodic function with period 3, with a(t) = 0 for t ∈ [0, 2]

and
∫ 3

2
a(t)dt = 1, h ∈ Cl(�;�+) with h(s) = 0 for all s /∈ (−2,−1),

∫ −1

−2
h(s)ds =∫ −μ

−2μ
μ−1h( s

μ )ds = 1. Figures 1–3 show the evolution of the state and the input for

the C2 selection:
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Fig. 1. Evolution of x1(t) for the case (1.2) with n = 2 and τ1 = τ2 = 0 under the feedback law
(4.6), (4.7).

Fig. 2. Evolution of x2(t) for the case (1.2) with n = 2 and τ1 = τ2 = 0 under the feedback law
(4.6), (4.7).
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Fig. 3. Evolution of u(t) for the case (1.2) with n = 2 and τ1 = τ2 = 0 under the feedback law
(4.6), (4.7).

a(t) := p

(
t− 3

[
t

3

])
and h(s) := a(s + 4), where

p(x) :=

{
30(x− 2)2(3 − x)2 if x ≥ 2

0 if x < 2

(4.7)

for the case (1.2) with n = 2 and τ1 = τ2 = 0 with initial condition x1(0) = 0.5 and
x2(0) = 0.2.

The case of triangular control systems with delayed drift terms is considered in
the following example.

Example 4.4. Consider the planar system

ẋ1(t) = f1(t, x1(t− τ1,1)) + x2(t);(4.8)

ẋ2(t) = f2(t, x1(t− τ2,1), x2(t− τ2,2)) + u(t),

(x1(t), x2(t)) ∈ �2, u(t) ∈ �, t ≥ 0,

where τ1,1 > 0, τ2,1 ≥ 0, τ2,2 ≥ 0, and f1 ∈ C2(�+ × �;�) and f2 ∈ C1(�+ × �2;�)
with f1(t, 0) = f2(t, 0, 0) = 0 for all t ≥ 0. Clearly, assumption (A2) holds for this
system with R := τ1,1, since we have

x1(0)f1(t, x1(−τ1,1)) − x2(0)

(
∂f1

∂t
(t, x1(−τ1,1))

+
∂f1

∂x1
(t, x1(−τ1,1))f1(t− τ1,1, x1(−2τ1,1)) +

∂f1

∂x1
(t, x1(−τ1,1))x2(−τ1,1)

)
≤ 1

2
x2

1(0) +
1

2
x2

2(0) + L

(
t, sup

−2τ1,1≤θ≤−τ1,1

|x(θ)|
)
,
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where L(t, s) := 1
2 max|ξ|≤s[(f1(t, ξ1))

2 + (∂f1

∂t (t, ξ1) + ∂f1

∂x1
(t, ξ1)f1(t − τ1,1, ξ2) + ∂f1

∂x1

(t, ξ1)ξ3)
2]. Following the proof of Theorem 3.4, it can be shown that for every μ > τ1,1

the feedback law

u(t) = −∂f1

∂t
(t, x1(t− τ1,1)) −

∂f1

∂x1
(t, x1(t− τ1,1))f1(t− τ1,1, x1(t− 2τ1,1))

− ∂f1

∂x1
(t, x1(t− τ1,1))x2(t− τ1,1) − f2(t, x1(t− τ2,1), x2(t− τ2,2))

− μ−2ȧ

(
t

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)
x1(t + s)ds

+ μ−1a

(
t

μ

)∫ −μ

−2μ

μ−2h′
(
s

μ

)
x1(t + s)ds

− μ−1a

(
t

μ

)∫ −μ

−2μ

μ−1h

(
s

μ

)[
x2(t + s) + f1(t + s, x1(t− τ1,1 + s))

+ μ−1a

(
t + s

μ

)∫ −μ

−2μ

μ−1h

(
w

μ

)
x1(t + s + w)dw

]
ds

guarantees the dead-beat property of order 14μ + 2τ1,1. Similarly, we can address
the finite-time stabilization problem for the general triangular case with delayed drift
terms (1.3), where mini=1,... ,n−1 minj=1,... ,i τi,j > 0, fi ∈ Cn−i+1(�+ × �i;�) with
fi(t, 0, . . . , 0) = 0 for all t ≥ 0, i = 1, . . . , n.

5. Conclusions. In this paper it is shown that finite-time stabilization by means
of time-varying distributed delay feedback is possible for specific classes of systems
described by RFDEs. Based on our main results (Theorems 3.1 and 3.4) we have
been able to construct locally Lipschitz feedback laws that guarantee the dead-beat
property for the corresponding closed-loop systems for important cases such as the
general triangular case with no delays, the case of a chain of delayed integrators with
no limitation on the size of the delays and the general triangular case with delayed
drift terms.
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