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Non-uniform in time robust global asymptotic output
stability for discrete-time systems

Tasson Karafyllis™"

Division of Mathematics, Department of Economics, University of Athens, 8 Pesmazoglou Str., 10559, Athens, Greece

SUMMARY

In this paper the notions of non-uniform in time robust global asymptotic output stability (RGAOS) and
input-to-output stability (I0OS) for discrete-time systems are studied. Characterizations as well as links
between these notions are provided. Particularly, it is shown that a discrete-time system with continuous
dynamics satisfies the non-uniform in time IOS property if and only if the corresponding unforced system is
non-uniformly in time RGAOS. Necessary and sufficient conditions for the solvability of the robust output
feedback stabilization (ROFS) problem are also given. Copyright © 2005 John Wiley & Sons, Ltd.

KEY WORDS: discrete-time systems; Lyapunov functions; feedback stabilization

1. INTRODUCTION

In this paper we study discrete-time time-varying systems with outputs:

x(t+ 1) = f(¢,d(1), x(2))
Y (1) = H(t, x(1)) (1)
x(heX, dtyeD, Y@)eY, teZ*

where X,Y is a pair of normed linear spaces, D is the set of disturbances (or time-varying
parameters) and f : ZT x D x X - X, H : Z* x X - Y with f(¢,d,0) = 0 and H(z,0) = 0 for all
(t,dye Z* x D.

The notion of non-uniform in time robust global asymptotic output stability (RGAOS) was
introduced and studied in Reference [1] for a wide class of systems, including discrete-time time-
varying systems (1). In this paper we present Lyapunov-like conditions for non-uniform in time
RGAOS for discrete-time systems of the form (1). Our results are based on the Lyapunov
characterization of robust global asymptotic stability (RGAS) given in Reference [2] for
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192 I. KARAFYLLIS

discrete-time systems and are parallel to the results provided in References [3—5] for uniform
global asymptotic stability with respect to closed sets in a finite-dimensional state space.

The notion of non-uniform in time RGAOS is closely related to the notion of non-uniform in
time input-to-output stability (IOS) introduced in Reference [1] for a wide class of systems,
including discrete-time time-varying systems of the form:

x(t+ 1) = f(t,d(1), x(1), u(t))

2r
x(H)eX, dt)yeD, u(lh)eU, teZ* (22)

Y() = Ht,x(1), Y(0)eY (2b)

where X,Y, U is a triplet of normed linear spaces, D is the set of disturbances (or time-varying
parameters) and f : ZT x D x X x U - X, H: Z" x X - Y are mappings with f(¢,d,0,0) = 0
and H(t,0) = 0 for all (,d) e Z* x D.

The notion of non-uniform in time IOS introduced in Reference [1] extends the notion of
uniform in time input-to-state stability (ISS) for discrete-time systems introduced in Reference
[6] and further studied in References [7-9]. It is also an extension of the notion of uniform in
time IOS introduced in References [10-12] for continuous time systems. In this paper, we derive
characterizations of non-uniform in time IOS. Moreover, it is shown that a discrete-time time-
varying system (2) with continuous dynamics satisfies the non-uniform in time IOS property if
and only if the ‘unforced’ system (2), i.e. system (2) with u(t) =0

x(t+ 1) = f(t,d(1), x(1),0)
Y(1) = H(1,x(1)) (3)
x()eX, d)yeD, Y@)eY, tezZ*

is non-uniformly in time robustly globally asymptotically output stable. This result is
important, since it shows that continuity of the dynamics guarantees useful robustness
properties.

Discrete-time control systems of the form (2) arise naturally in applications. For example in
Reference [13], the stability of infinite-dimensional discrete-time systems is studied. In the
present paper we focus on the robust output feedback stabilization (ROFS) problem for (2), i.e.
the problem of the stabilization of the output (2b) of the time-varying discrete-time system (2a)
by means of:

(1) A time-varying output feedback law u(f) = k(t, y(¢)) (static ROFS problem).
(i) A dynamic time-varying output feedback law w(r+ 1) = g(z,y(t),w(t)), u(t)=
k(t, y(1), w(t)), w(t) € W (dynamic ROFS problem) where

(1) = ht,x(1)), wDeY “

is the so-called measured output, and Y’, W are normed linear spaces.
In Section 4 of the present paper we present necessary and sufficient conditions for the
solvability of the static and dynamic ROFS problem. To this end, we extend the notion of

complete observability, introduced in Reference [14] for continuous time systems (see also
Reference [15]). We remark that similar observability notions were also used in Reference [16]
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NON-UNIFORM IN TIME ROBUST GLOBAL ASYMPTOTIC OUTPUT STABILITY 193

for the construction of neural state estimators. Lyapunov-like conditions for the local solvability
of the ROFS problem when the stabilized output is the whole state vector were given in
Reference [17] for autonomous finite-dimensional discrete-time systems without disturbances.
The same problem was further studied in References [9, 18-22], where local and semi-global
results were obtained. In the present paper it is shown that, if system (2) is stabilized by a
continuous state feedback law and the feedback function is robustly completely observable
from the measured output (4), then the dynamic ROFS problem for (2) is solvable. The
procedure for the construction of the dynamic output feedback used in the proof of this result
can be directly used for design purposes.

Notation

® By |||lx, we denote the norm of the normed linear space X. By || we denote the euclidean
norm of R".

® 7% denotes the set of non-negative integers.

® For definitions of classes K, K, KL see Reference [23]. By Kt we denote the set of all
continuous positive functions defined on R™ = [0, +00).

® By Mp we denote the set of all sequences d = (d(0),d(1),d(2),...) with values in D, i.e.
diiyeDforallie Z™.

® et H:Z"xX—>Y a continuous map. The set-valued map (1,y)eZ" xY —
H~'(t,y) c X is defined by H™'(1,y) = {x e X; H(t,x) = y}.

® Let X,Y a pair of normed linear spaces. We denote by CU(Z' x 4; W), where 4 c X, the
set of all continuous mappings H : Z* x 4 - W < Y, with the following property: ‘for
every pair of bounded sets I = Z*, S < A and for every ¢ > 0 the set H({ x S) is bounded
and there exists 0 >0 such that ||H(¢,x)— H(t,xo)|ly <e, for all tel, x,xo €S with
[lx — xollx <0’

2. NON-UNIFORM IN TIME ROBUST GLOBAL ASYMPTOTIC
OUTPUT STABILITY (RGAOS)

In this section, we first introduce the reader to the notion of non-uniform in time RGAOS for
discrete-time systems as a special case of the notion of non-uniform in time RGAOS given in
Reference [1] for a wide class of systems. We consider the time-varying case (1) under the
following hypotheses:

(H1): There exist functions a € K., f € KT such that ||f(z,d,x)|x <a(f(?)|x]|x), for all
(t,x,dye Z* x X x D

(H2): For every pair of bounded sets I = Z*, S = X and for every ¢ > 0 the set H(I x S) is
bounded and there exists > 0 such that ||H(¢, x) — H(t, xo)|ly <¢, forallte I, x,xo € S
with [|x — xo||x <d. Moreover, it holds that H(z,0) =0 for all re Z™.

We note the following important fact for the time-varying case (1):
Fact 1
System (1) under hypothesis (H1) is robustly forward complete (RFC) and there exist

functions u € K*, a € K., such that for every d € Mp, (9, xo) € Z* x X, the unique solution x(¢)
of (1) initiated from xy € X at time 7y >0 and corresponding to d € Mp, satisfies the following
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194 I. KARAFYLLIS

estimate:

Ix(Dllx < p()allxollx)  Ve=19 5

Concerning the proof of Fact I, we notice that by virtue of Lemma 3.5 in Reference [1] it
suffices to show that system (1) under hypothesis (H1) is RFC and 0 € X is a robust equilibrium
point in the sense defined in Reference [1]. Particularly, this follows by considering arbitrary
r=0, T € Z*, then defining recursively the sequence of sets in X by A(k) = f([0,2T] x Dx
Atk —1)) for k=1,...,T with A4(0) = {x e X;||x||x<r}, which are bounded by virtue of
hypothesis (H1) and finally noticing that

{X(IO +ka tOnXO;d);||x0||X<rn t0<T3k<T7d€ MD} < A(k) for all k = 09" i) T

where x(t, ty, xo; d) denotes the unique solution of (1) initiated from xy € X at time 7, >0 and
corresponding to d € Mp. The fact that 0 € X is a robust equilibrium point in the sense defined
in Reference [1] is an immediate consequence of hypothesis (H1) (details are left to the reader).

We are now in a position to present the definition of non-uniform in time RGAOS for
discrete-time systems.

Definition 2.1

Let x(¢) denote the unique solution of (1) initiated from xy € X at time ¢y >0 and corresponding
to d e Mp. We say that system (1) under hypotheses (H1-2) is non-uniformly in time robustly
globally asymptotically output stable (RGAOS) if it satisfies the following properties:

P1(Robust output stability): For every ¢ >0, T € Z*, it holds that
sup{IlH (2, x(D)lly; 1= 1o, [Ixollx <&, 10 € [0, T],d € Mp} < 400
and there exists a ¢ := d(g, T') > 0 such that:
[Ixollx <0, 1 €l0,T]= [|H(t,x())|ly<e, Vi=ty Yde Mp

P2(Robust output attractivity): For every ¢ >0, T € Z* and R>0, there exists a 7 := (¢, T, R) €
Z7*, such that;

Ixollx <R, 2 €[0,T]= |H(x())lly<e, Vizto+t VdeMp

We say that system (1) is non-uniformly in time strongly robustly globally asymptotically output
stable (strongly RGAOS) if it is non-uniformly in time RGAOS and the set H~!(z,0) =
{xe X;H(t,x) =0} is positively invariant, i.e. if xe H '(s,0) then H(t+ 1,f(t,d,x)) =0
for all d € D.

Moreover, if there exists a function a € K, such that a(]|x||x)<||H(¢, x)|ly for all (z,x) €
Zt x X, then we say that the equilibrium point 0 € X is non-uniformly in time robustly globally
asymptotically stable (RGAS) for system (1).

The following facts are given in Reference [1] as Lemmas 3.3 and 3.4, respectively.

Fact 11
Suppose that (1) under hypotheses (H1-2) satisfies the robust output attractivity property
(property P2 of Definition 2.1). Then (1) is non-uniformly in time RGAOS.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2006; 16:191-214



NON-UNIFORM IN TIME ROBUST GLOBAL ASYMPTOTIC OUTPUT STABILITY 195

Fact 111

System (1) under hypotheses (H1-2) is non-uniformly in time RGAOS if and only if there exist
functions ¢ € KL, f € K* such that for every d € Mp, (9, xo) € Z* x X, the unique solution x(¢)
of (1) initiated from x( € X at time 7y >0 and corresponding to d € Mp, satisfies:

1H (1, x()lly < a(B(to)llxollx, £ — 10)  Vi=10 (6)

The following proposition provides Lyapunov-like characterizations for a time-varying system,
which is non-uniformly in time RGAOS. It deals with the time-varying case (1) under the pair of
hypotheses (H1-2) or under the pair of hypothesis (H2) and the following hypothesis:

(H3): For every bounded sets S = X, I = Z* and for every ¢ >0 the set f(I x D x S) is
bounded and there exists ¢ > 0 such that sup{||f(¢,d,x) — f(t,d, x0)||x;d € D} <e, for all t €1,
x €S, xg € S with ||x — xp||x <. Moreover, it holds that f(¢,d,0) = 0 for all (r,d) e Z* x D.

Remark about hypothesis (H3): Hypothesis (H3) is ‘stronger’ hypothesis than (H1), in the
sense that the implication (H3) = (H1) holds. The proof of the implication (H3) = (H1) is
made by defining the following function:

a(T,s) = sup{llf (t.d, ¥)lIx; t € Z*, < T,|Ixllx<s,d € D}

which is well-defined for all T, s> 0. Moreover, for every T, s >0 the functions a(:, s) and a(7, -) are
non-decreasing and since f(z,0,d) = 0 € X for all (z,d) € Z* x D, we also obtain a(T,0) = 0 for
all 7 =0. Finally, let ¢ > 0 and 7' > 0. It can be shown that hypothesis (H3) guarantees the existence
of § := (g, T) > 0 such that a(T, (e, T')) <& and consequently we have lim;_,¢+ a(7,s) = 0 for all
T =0. It turns out from Lemma 2.3 in Reference [24] that there exist functions { € K, § € KT such
that a(T,s)<{(B(T)s), for all T,s>=0 and consequently, hypothesis (H1) is satisfied.

Proposition 2.2
Consider system (1) under hypotheses (H1-2). Then the following statements are equivalent:

(i) System (1) is non-uniformly in time RGAOS.
(i) There exist functions ¥V : Z+ x X - R, a1, a2 € K, B, u € K+ and a constant 1 € (0, 1)
such that:

a(IH(#, Olly + p@lIxlx) < V(5 x) <ax(B@)lIxllx) - V(t,x) e ZT x X (7a)

V(t+ 1,f(t,d,x)<AV(t,x) Y(t,x,d)e ZT x X x D (7b)

Moreover, if hypothesis (H3) holds then V € CU(ZT x X; R™).
(iii) There exist functions V : Z* x X - R", a1, as, a3 € Ky, with as(s)<sforall >0, fe KT
and g € CO(RT; M) with lim,_, .« ¢(r) = 0 such that:

al(|H(, )N < V(LX) <a(f)lxllx) Y x) e ZF x X (8a)
V(+1Lf(d, )< V(,x) = as(V(6,x) + q(t) V(t,x,d)e Z" xXx D  (8b)

Proof
(i) = (ii) We show the existence of a function V : Z+ x X —» R", satisfying (7a,b), under the

assumption of non-uniform in time RGAOS for (1). Since (1) under hypotheses (H1-2) is
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RGAOS, by virtue of Facts I and III, there exist functions pe K, ae Ky, ce KL, f € K"
such that for every de Mp, (fy,x0) € Z x X, the unique solution x(¢) of (1) initiated
from x( € X at time 7y >0 and corresponding to d € Mp, satisfies (5) and (6). Next we consider
the system:

exp(—t—1)

D ==

S, d(0), exp(D)u(n)z(1))
w(t + 1) =exp(—Dw(t) — exp(—1)H(t, exp(t)u(t)z(1))
+ H(t + 1,/(t,d(1), exp(0)u(1)=(1))) €))

z2(HeX, weY, teZ, df)eD

where the state space is the normed space C := X x Y with norm [|(z, w)||c = 1/ ||z||§( + ||w||$. We
claim that zero for the above system is non-uniformly in time RGAS. Notice that the solution
(z(1), w(?)) of (9) initiated from (zq, wy) € X x Y at time fy € Z" and corresponding to d(-) € Mp
satisfies:

w(t) = H(t, exp(0)u(1)z(1)) + exp(—(1 — 19))(wo — H(1o, exp(to)u(to)z0))  Vi=1o (10)

Moreover the component z(¢) of the solution (z(z), w(¢)) of (9) initiated from (zg, wp) e X x Y
at time #y>0 and corresponding to d(-) € Mp is related to the solution x(#) of (1) initiated
from xq = exp(zo)u(fo)zo at time fy € Z* and corresponding to the same d(-) € Mp with the
following way:

x(t) = exp(Hu(t)z(t) V=t (11)
Using (11) in conjunction with (5) and (6) we obtain:

ll2(DlIx < exp(=1)a(exp(zo)u(to)llzollx) V=10 (12)

1H (2, exp()u(D)z(1))lly < a(B(to)exp(to)u(to)llzollx, £ — 10) - V=10 (13)

Since H(-) is continuous with H(¢,0) = 0 for all =0 and since the set H(I x S) is bounded for
every pair of bounded sets I = Z* and S < X, it follows from Lemma 3.2 in Reference [1] that
there exist functions { € K, and y € K+ such that

IH ()l <LGOlxlx) V(5x) € ZT x X (14)
Combining estimate (13) with (10) and inequality (14), we obtain for all > 7:

[Iw(®)lly < a(B(to)exp(to)u(to)l|zollx» ¢ — to) + exp(—(t — to))||wolly + L((to)exp(to)u(to)l|zollx)]
(15)
We conclude from (12) and (15) that the solution (z(¢), w(¢)) of (9) initiated from (zy, wp) e X x Y
at time ¢ty € Z* and corresponding to d(-) € Mp satisfies:
1z(0), w(D)lle <EB)NI(Z0, wolles t — o) V=10 (16)
where 6(s, 1) = a(s)exp(—1) + a(s, 1) + exp(—1)(s + ((s)), B() =1+ (1 + B() + p(0)exp(t)u(?).

Inequality (16) implies that zero is non-uniformly in time RGAS for (9). Moreover, since the
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dynamics of system (9)
exp(=7— 1)
f(t,d, z,w) = (i + 1)
exp(— Dw — exp(—= D H(t, exp(Hu(t)z) + H(t + 1,1(¢t, d, exp(t)(£)z))

satisfy hypothesis (H1), it follows from Theorem 2.9 in Reference [2] that there exist functions
U:Z"xXxY - R, a(),a() € Ky, fr(-) € K* such that:

S(t,d, exp(nu(r)z)

a1z, wlle) S U, z,w) <@ (Br(DlIz, wll ) V(t,x,w)e Z" x C (17a)
U(t + l,w(}‘(z, d,exp(t)u(t)z), exp(—1)(w — H(t, exp(t)w(t)z))
w(+1)

+H(t+ 1,f(t,d, exp(t),u(t)z))> <AU(t,z,w) Y(t,z,w,d)e Z" x Cx D (17b)
Finally, we define:

exp(—1)
()

V(t,x) = U(t, x, H(t, x)) (18)

Inequality (7b) is an immediate consequence of (17b) and definition (18). Moreover, by virtue of
Lemma 2.3 in Reference [24], there exist functions a; € K, and f € K* such that

& (—ﬁz(’);fg(") s+ ﬁz(t)C(V(t)S)> <a(f@s) V(9 e R x R (19)
Inequalities (17a), (14), (19) and the trivial inequality max(||wlly, ||zllx) <I||(z, W)llc <l|zllx + [IWlly
imply inequality (7a) with u(f) == exp(—1)/u(¢) and a,(s) == d(s/2). Finally, if hypothesis (H3) is
satisfied for (1), it follows that the dynamics of system (9)

exp(—7—1)
———/f(t.d
fN(ty d) z, W’) = ,U(l + 1) f(t’ ,eXp(l‘)u(t)z)

exp(—1)w — exp(—=1)H(¢t,exp(H)u(t)z) + H(t + 1,1(t, d, exp(t)u(t)z))

also satisfy hypothesis (H3). Consequently, by virtue of Theorem 2.9 in Reference [2], we
conclude that U e CU(ZT x X x Y; R") and since H € CU(Z* x X;Y) we obtain that V e
CU(Z* x X; RT).

(i) = (i) This implication is trivial (notice that statement (iii) holds with ¢(f) =0 and
az(s) = (1 — A)s).

(iii) = (1) Assuming that statement (iii) holds, we will show that system (1) satisfies the
robust output attractivity property (property P2 of Definition 2.1). Then, by virtue of
Fact 11, statement (i) holds. Without loss of generality we may assume that ¢(¢) >0 for
all teZ*. Let arbitrary ¢>0, TeZ", R=0, ||xllx<R,%€[0,7] and d e Mp. Let also
V(t) = V(t,x(f)) and Gmax = Sup,q q(¢), where x(¢) is the unique solution of (1) corresponding
to d € Mp, initiated from x, at time fy. It follows from inequality (8b) and Lemma 3.1 in
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Reference [2] that:

V()< V() + a5 (qmax) + gmax Y= 1o (20)

V()<a;'[2 sup q(t) | + sup q(r) VieZzZ'
t=1+7 t1=10+7
V(to+ %)

Viztg+T+—mmm—
SUP; > 47 q(?)

€2y

Since lim, 1~ q(f) = 0, there exists 7:=f(s)e Z" such that a;'(2sup,;q(?) + sup,s;
q(t)<ay(e). Combining the latter inequality with (8a), (20), (21), we conclude that the robust
output attractivity property holds for system (1) with

aZ(R maxo<n<T ﬁ(ZO)) + agl(Qmax) + dmax

+1
Sup; > T+1(e) q([)

(e, T,R) =T+ t(e) +

where [x] denotes the integer part of the real number x. The proof is complete. O

Example 2.3
Consider the nonlinear finite-dimensional discrete-time time-varying system:
x1(t + 1) = d(6)x1(7)
0t +1) = 27 d(Ol ()2
Y(1) = H(t,x(1)) = x2(1)
x(1) = (x1(1), x2(0) e R2, 1e€ZF, d(1)e[-2,2]

(22)

Consider the continuous function V(¢ x) = exp(—1)|xi| + |x2|, which clearly satisfies the
following inequality:

Y] = x| <V(Lx)<2x|] VY(,x)e Zt x R? (23)
Moreover, notice that for all (7, x,d) € Z+ x R* x [—2,2] we obtain:
V(4 1,dx1, 27 d|x1 V%)
= exp(— — Dldllxi] + 27 |dlxi|"? <2e”Texp(— x| + 27 |y

2+e 2e re\!
< — — (=) <
< exp(—l + == (5) <AV +q0) (24)
where 2= (2 +e¢)/2ee(0,1) and q(¢) == 2¢/(e — 2)(e/4) with lim,., g(f) = 0. By virtue
of (23) and (24) it follows that statement (iii) of Proposition 2.2 is satisfied with p(r) = 2,
a1(s) = ay(s) = s and asz(s) = (1 — A)s. We conclude that system (22) is non-uniformly in
time RGAOS.
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3. NON-UNIFORM IN TIME INPUT-TO-OUTPUT STABILITY (I0S)

In this section we first introduce the reader to the notion of non-uniform in time IOS for
discrete-time systems as a special case of the notion of non-uniform in time IOS given in
Reference [1] for a wide class of systems. We consider the time-varying case (2) under hypothesis
(H2) and the following hypothesis:

(A1): There exist functions a € Ky, § € K™ such that ||[f (¢, d, x, u)||x < a(B(O)||x|lx) + a(BO|ully),
for all (t,x,d,u)e ZT x X x D x U.

First we note the following important fact for the time-varying case (2):

Fact IV

System (2) under hypothesis (Al) is RFC from the input u € My and there exist functions
uwe K, ae Ky and a constant R>0 such that for every (¢, x9,d,u) € Z+ x X x Mp x My, the
corresponding solution x(z) of (2) with x(zy) = xq satisfies the following estimate:

Ix(Dllx < u()a <R+ lIxollx + sup ||“(T)||U> Vizt (25)

Telto,1]

Concerning the proof of Fact IV, we notice that by virtue of Lemma 3.5 in Reference [1] it
suffices to show that system (2) under hypothesis (Al) is RFC from the input ue My.
Particularly, this follows by considering arbitrary r>0, T € Z*, then defining recursively
the sequence of sets in X by A(k) = f([0,27] x D x A(k — 1) x B[0,r]) for k =1,..., T, where
B[0,r] = {ue Us|lully<r} and A(0) = {x € X;||x|lx<r}, which are bounded by virtue of
hypothesis (A1) and finally noticing that

{x(to + k, to, xo5 1, d); [|xollx <7, to < T,k <T,d € Mp,ue Mgy} < A(k) forall k=0,...,T

where x(¢, ty, xo; u, d) denotes the unique solution of (1) initiated from xy € X at time #, >0 and
corresponding to input (u,d) € Mpjo,) X Mp.

We are now in a position to present the definition of non-uniform in time IOS property for
discrete-time systems.

Definition 3.1

Let x(7) denote the unique solution of (2) initiated from x;e X at time fye Z' and
corresponding to (d,u) e Mp x My. We say that system (2) under the pair of hypotheses
(A1), (H2) satisfies the non-uniform in time (10S) property from the input u € My if there exist
functions 6 € KL, ,y € K* and p € K, such that the following estimate holds for all u e My,
(to,x0,d) € Z x X x Mp and ¢ € [ty, +00):

1H (2, x(D))lly <max{0(ﬂ(lo)||x0||x,f— fo), sup G(ﬁ(f)p(“/(f)llu(f)llu),t—T)} (26)

elto,1]

Moreover, if there exists a function a € K, such that a(||x||x) <||H(t, x)|ly for all (z,x) e ZT x X,
then we say that (2) satisfies the non-uniform in time (ISS) property from the input u e My.
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The following proposition provides various characterizations of the non-uniform in time 10S
property for the time-varying case (2). Moreover, it shows how the notion of non-uniform in
time IOS is related to the notion of non-uniform in time RGAOS. It deals with the time-varying
case (2) under the pair of hypotheses (A1) and (H2) or under the pair of hypothesis (H2) and the
following hypothesis:

(A2): For every bounded sets S = X x U, I = Z" and for every ¢ > 0, the set f(I x D x S) is
bounded and there exists ¢ > 0 such that sup{||[f(¢,d, x, u) — f(t, d, xo, up)||lx; d € D} <e, for
all tel, (x,u) €S, (xo,up) € S with ||x — xo|lx + || — upl|y <. Moreover, it holds that
f(t,d,0,0) =0 for all (t,d) e Z* x D.

Remark about Hypothesis (A2): Hypothesis (A2) is ‘stronger’ hypothesis than (A1), in the sense
that the implication (A2) = (A1) holds. The proof of the implication (A2) = (Al) is made by
defining the following function:

a(T,s) = sup{llf (t.d, x, u)llx; t € Z", t < T, |Ixllx <5, d € D, llull y <}

which is well-defined for all T, s>0. Moreover, for every T,s>0 the functions a(:,s) and a(T,-)
are non-decreasing and since f(z,0,d,0)=0e X for all (1,d)e Z" x D, we also obtain
a(T,0) =0 for all T>0. Finally, let ¢>0 and 7>0. It can be shown that hypothesis (A2)
guarantees the existence of 6 = d(e, T') > 0 such that a(T, d(¢, T)) <& and consequently we have
limg_ o+ a(T,s) = 0 for all T>0. It turns out from Lemma 2.3 in Reference [24] that there exist
functions { € Ky, f € K* such that a(T,s)<{(B(T)s), for all T,s>0. Consequently, we obtain
IIf (2, x, d, w)||x < L(B(Hymax{||x|lx, [lull}), for all (z,x,d,u) e Z" x X x D x U, which directly
implies hypothesis (Al).

Proposition 3.2
Consider system (2) under the pair of hypotheses (A1), (H2). Then the following statements are
equivalent:

(1) System (2) satisfies the non-uniform in time IOS property.
(ii) There exist functions (€ K, B,0 € K™ and ¢ € KL such that for every (to,xo,d,u)
€ ZT x X x Mp x My, the corresponding solution x(¢) of (2) with x(fy) = xq satisfies:

1H (2, x())lly <maX{0(ﬁ(lo)IIXOllx, 1= 1), Sup 5(5(T)|Iu(r)llu)} Vizr  (27)

(ST

(iii) There exist functions 0 € K., and p € K such that the following system is non-uniformly
in time RGAOS:

x(t+ 1) = f(1,d(1), x(1), pO)O(|x(1)|[x)d' (1))
Y(1) = H(1, x(1)) 28)
x(eX, YW eY, (di),d)eDxB0,1], teZ*

where B[0, 1] = {u e U;||ul|ly <1}.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2006; 16:191-214



NON-UNIFORM IN TIME ROBUST GLOBAL ASYMPTOTIC OUTPUT STABILITY 201

iv) There exist functions V : Z* x X - RT, a1,a»,a3 € Ko, B, ¢, 1€ K and a constant A e
u
(0, 1) such that:

a(lH(#, )l + p@lIxlx) < V(@ x) <ax(B@)lIxllx)  V(t,x) € ZT x X (29a)

V(t+ 1,/(t,d, x,u)) < AV (t,x) + as(p(Dljully) Y(t,x,d,u)e ZT x Xx Dx U  (29b)
Moreover, if hypothesis (A2) holds then V' e CU(ZT x X; R™).

Proof

(1) = (i) Suppose that (2) satisfies the non-uniform in time IOS property. Then there exist
functions 6 € KL, B,y € K™, ae Ky, and p € K, such that (26) holds for all u € My, (19, X,
dye Zt x X x Mp and t € [fy,+00). By invoking Lemma 2.3 in Reference [24], there exist
functions a € K, and 6 € K* such that B(¢)p(¢(1)s) < a(5(2)s) for all (1,5) € R x RT and if we
set {(s) = a(a(s),0) + s (which obviously is of class K,), the desired (27) is a consequence of (26)
and the previous inequality.

(if) = (iii) Suppose that there exist functions { € K., 5,0 € K™ and ¢ € KL such that for every
(to, x0,d,u) € ZT x X x Mp x My, the corresponding solution x(z) of (2) with x(f) = x
satisfies (27). Moreover, by virtue of Fact IV, there exist functions yue K*, ae Ky, and a
constant R>0 such that for every (fo,x0,d,u) e Z" x X x Mp x My, the corresponding
solution x(f) of (2) with x(fy) = xo satisfies (25). Consequently, for every (fg,x0,d,u)€
Zt x X x Mp x My, the corresponding solution x(f) of (2) with x(zy) = x¢ satisfies the
following estimate:

x(¢
O < a2 + 2vollx) + sup aClu@l) Vi=1o (30)
() welto 1]
Without loss of generality we may assume that the functions { € K, and 6 € K involved in (27)
satisfy ((s)=s (or equivalently {'(s)<s) and 8(¢)>1 for all 7,5>0 and that the function u € K*
involved in (25) is non-decreasing. Define:

2(1,5) == 2u(Da(2(1 + u(D)exp(HL(B(1)s)) (31)

By virtue of Lemma 2.3 in Reference [24] there exist functions ¢ € K*, ' € K, such that
(1, 8) < d'(g(t)s) for all ¢,5=0. Define:
1

07 (s) = d(s) and p(1) =0 (32)

It follows from definitions (31) and (32) that:

Ly exp(=0) _ [ s
P(t)H(S)<5(Z)C (2(1 1) a (2H(1))> for all 7,5>0 (33)
Notice that since (2) satisfies the pair of hypotheses (A1) and (H2), it follows that system (28)
satisfies hypotheses (H1-2). Clearly, the solution of system (28) with x(zy) = x( corresponding to
(d,d') e Mp x Mgy, coincides with the solution of (2) with same initial condition correspond-
ing to inputs d € Mp and u € My with u(z) = p(£)0(||x(?)||x)d’(¢) for all £> ty. Consequently, since
Y (s)<sand 8(r)=1 for all 7,5 >0, we obtain from (33) that (Ol <% a '(|Ix(0)|lx/2u(2)) for all
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t=ty and it follows from (30) that:

sup (”x(f)”x> <2a(2R + 2lxoll) Vi to (34)
w€t,f] u(r)

Combining inequalities (27) and (33) we obtain:

I Ol < max{ atBoali - 052 s o (B w069

Estimate (35) in conjunction with estimate (34) gives:

IH @ >0l < max{o(ﬁ(zo)nxonx, £~ 1), exp(—to) (R + w) } Vizi,  (36)
1+ u(to)

Notice that by virtue of (34) and (36) we obtain for all 1; € Z* and =1y + £:

1H (2, x(1)lly < max{a(B(to + t1)u(to + 11)2a(2R + 2lxollx), t — to — 11),
exp(—2o — 11)(R + 2a(2R + 2||xollx)) (37)

Next we establish robust global asymptotic output stability. Without loss of generality we may
assume that the function e K* involved in (37) is non-decreasing. Consider the function
b(t, T,r) = sup{||H(ty + 1, x(to + D)lly; (d,d') € Mp x Mgy, [Ixollx <r, 7 € [0, T]}, where x(-)
denotes the solution of (28) with x(#p) = xo corresponding to some (d,d") € Mp x Mpp . It
suffices to show that lim,_,,~ b(z, T,r) = 0, for all (T,r) e (R)>. Let ¢ > 0 arbitrary. Clearly,
there exists 1] = f1(e,r) € Z" and 1, = t(e, T,r) € Z" such that (R + 2a(2R + 2r))exp(—1) <&
and o(f(T + t))u(T + t1)2a(2R + 2r), t,) <e. By virtue of (37) and definition of b, we obtain for
all t>1:
b(t, T,r)<max{c(B(T + t)(T + t;)2a2R + 2r),t — t1), &}

which directly implies that b(z, T,r)<e, for all 1=t + . Thus the robust output attractivity
property is satisfied for z(e, T,r) := t1(e,r) + t2(e, T, ). By virtue of Fact II, we conclude that
system (28) is non-uniformly in time RGAOS.

(iii) = (iv) Notice that since (2) satisfies the pair of hypotheses (A1) and (H2) (or (A2) and
(H2)), it follows that system (28) satisfies hypotheses (HI1-2) (or (H2-3)). Since (28) is
non-uniformly in time RGAOS and satisfies hypotheses (H1-2) (or (H2-3)), it follows
from Proposition 2.2, that there exist functions V :Z* x X - RY (Ve CU(Z' x X;R")),
ay,ay of class Ky, B, n of class K+ and constant A € (0, 1) such that:

a\(1H (& x)lly + p@)lIxlh) < V(e x) <ax(BOlixllx)  V(tx) e ZT x X (38a)

Vite+ 1,/ d, x,u) < AV(t,x) Y(t,x,duyeZ" xXxDxU
with [lully <p(n0(|x]lx) (38b)
Define for all (¢,x,u) e ZT x X x U:
Y(t,x,u) =sup{V(t+ 1,f(t,d,x,u));d € D} (39)
Clearly, hypothesis (A1) (which holds in any case; see remark about hypothesis (A2) above),

inequality (38a) in conjunction with Lemma 2.3 in Reference [24] imply the existence of
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functions @ e Ko, and ge K™ such that (7, x,u) <w(q(?)||x]lx) + o(g(®)|lull,). Moreover,
Lemma 2.3 in Reference [24] guarantees the existence of functions a3 € K, and ¢ € K™ such
that w(q(t)@‘l(s/ p(0)) + w(q(?)s) < az(p(t)s) for all ¢,5=0. Combining the previous inequalities
and definition (39) we obtain:

SUP{V(I + 1,/ (t,d, x,u);d € D, ||ully <s, ||x]lx <0~ (pé)> } <as(Pp(t)s) for all 1,5=0 (40)

We next establish inequality (29b), with a3 as previously, by considering the following two
cases:

% |lully <p(0)0(||x]|x). In this case inequality (29b) is a direct consequence of (38b).
% |lully =p(0)0(||x]|x)- In this case inequality (29b) is a direct consequence of (40).

(iv) = (i) Consider the trajectory x(¢) of (2) that corresponds to input (d,u) € Mp x My with
initial condition x(z9) = xo € X and let ¢ = —log(4) >0, V(¢) = V(¢t,x(¢)), b(¢) = exp(2ct)
az(P)||u(®)|lyy) for all t=1y. Inequality (29b) implies that V(r + 1)<exp(—c)V(¢) + exp(—2c?)
b(¢) for all t>=1t,, which gives (using induction arguments):

V(0 expl—clt — )V (1) + -0 exp(—c(t ~ o)
x sup (exp(2et)az(@(0)l|u(v)lly)) for all t=1y (41)

n<t<t
By Lemma 2.3 in Reference [21] there exist functions p € K, and y € K* such that

1 _,[ exp(2c)

— —_— 2ct t <p(y(t

e (exp(c) L exp(2e)as(9(1)s) ) <p(r(0))

where fe Kt, a, € Ky, are the functions involved in (29a). The previous inequality, in
conjunction with inequality (29a), (41) and definition o(s, 7) == 2a; '(2exp(—ct)ax(s)) € KL
implies (26). The proof is complete. O

The following proposition provides a sharper characterization of the IOS property for the
time-varying case (2), which holds only for discrete-time systems with continuous dynamics. For
continuous-time systems the situation is more involved since the finite escape time phenomenon
can occur (see References [10, 11]). Further research is required for the case of discrete-time
systems with discontinuous dynamics.

Proposition 3.3
System (2) under the pair of hypotheses (A2), (H2), satisfies the non-uniform in time IOS
property if and only if the ‘unforced’ system (3) is non-uniformly in time RGAOS.

Proof

It is clear that if system (2) satisfies the non-uniform in time 1OS property then the ‘unforced’
system (3) is non-uniformly in time RGAOS. Therefore, it suffices to prove the converse
statement. Specifically, we show that if the ‘unforced’ system (3) is non-uniformly in time
RGAOS, then statement (ii) of Proposition 3.2 holds for system (2). Consequently, by
equivalence of statements (i) and (ii) of Proposition 3.2 it follows that system (2) satisfies the
non-uniform in time IOS property.
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Notice that by virtue of hypothesis (A2), the “‘unforced’ system (3) satisfies hypothesis (H3).
Since the ‘unforced’ system (3) is non-uniformly in time RGAOS, it follows by Proposition 2.2,
that there exist functions V € CU(Z* x X; R"), a1, a» of class K., ﬁ of class K* and constant
¢ > 0 such that:

a(lH(# )l < V(L) <a(BOlixlx)  V(1,x) e ZT x X (42a)

sup V(1 + 1,£(t,d,x,0)) <exp(—c)V(1,x) V(t,x,d) e Z* x X x D (42b)
deD

Define the following function:

y(r,8) =sup [V (e + Lf(td, x,u) = V(i + 1Lf(1,d,x,0);0<t<r,d € D, |Ix[lx <r, [Jully <5}
(43)

Clearly, by virtue of the right-hand side inequality (42a) and hypothesis (A1) (which holds since
hypothesis (A2) holds; see Remark about Hypothesis (A2) above), it follows that y(r,s) < + oo
for all r, s>0. Moreover, definition (43) guarantees that for every r, s >0 the mappings y(r, -) and
(-, ) are non-decreasing with y(r,0) = 0. Finally, hypothesis (A2) in conjunction with the fact
that 1 e CU(Z* x X; R") guarantees that lim,_+ y(r,s) = 0 for all r>0. Consequently, Lemma
2.3 in Reference [24] guarantees the existence of functions a3 € Ky, and ¢ € K* such that
(r,s)<az(¢p(r)s) for all r,s=0. It follows by definition (43) that we have for all
(tx,u)e Zt x X x U:

sup Vie+ Lf(t,d,x,u) — sup Ve+1,/(t,d,x,0)|  <as(d@)ully) + as(P(Ixlx)lully)
S E

(44)
By virtue of Fact IV, there exist functions g€ K", a € K, and a constant R>0 such that for

every (fo, xo,d,u) € Z+ x X x Mp x My, the corresponding solution x(¢) of (2) with x(z9) = xo
satisfies:

Hx,f(?)nx SR +adolho + sup aQul) Vo (45)

Using (42b), (44), Lemma 2.3 in Reference [24] and Corollary 10 and Remark 11 in Reference
[25], we obtain functions as, as € K, g € K such that for all (¢,x,d,u) e ZT x X x D x U it
holds that:

sup V(1 + 1,/(1,d, x,u)) < exp(—=c)V (1, x) + exp(—2cn)as(q(D)l|ully)
deD

1 exp(—2ct)ag (”%) as(a(Dllully) (46)
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Let (fo, x0,d,u) € ZT x X x Mpx My and consider the corresponding solution x(z) of (2) with
x(t9) = xo. Let V(¢) .= V(t, x(¢)) for t=1ty. By virtue of (45) and (46) we obtain:

V(t+ D)< exp(=a)V (1) + exp(—2ct) sup as(q(o)llu(7)lly)

€lto,1]

+ exp(—2ct)ag(4a(4R)) sup as(g(0)lu()lly)

elto,1]

+exp(—2¢t) sup (as(q(@)||u(@)lly))’

€lto,1]

+%eXp(—2ct) sup (a6(2a(2[u(0)]|,)?

T€(to, 1]
1
+ 5 exp(—2er)(ag(4a(]xolx))’

or

V(t+ D)< exp(=)V (1) + exp(=2cr) sup p,(r(l[u(D)lly) + exp(=2cnpy(llxollx)  (47)

elto,1]

where  p;(s) = as(s) + as(4a(4R))as(s) + (as(s))’ + Aas(2a(29)))*,  py(s) = Yag(4a(4s)))’ and
r(t) = ¢(t) + 1. Inequality (47) in conjunction with (42a) directly implies for all 7> #:

ar(|H (t, x(0))Ily) < exp(—c(t — to))ar(B(to)l|xolIx)

exp(2c
+ exp(—c(t — ty)) sup ﬁ
t€lto,1] exp(c) — 1

exp(2¢)
exp(c) — 1

p1(r()u(0)lly)

+ exp(—c(t — 1)) pa(llxollx) (48)

Finally, inequality (48) implies inequality (27) with

o(s, t) = Zal’l <2 exp(—ct)ax(s) + 2exp(—ct)% pz(s)>

B(1) = P(&) + 1, (7) = r() and {(s) = 2[exp(2¢)/(exp(c) — 1)]p,(s). The proof is complete. []

Example 3.4
Consider the nonlinear finite-dimensional discrete-time time-varying system:

xi(t+ 1) = d(1)x, (1)
Xt + 1) = 27d(0)|x1 ()] + u(0)

Y(t) = H(t, x(1)) = x2(t)

x(t) = (x1(0), x2()) e 2, teZt, df)e[-2,2], u(r)eR

(49)

Since the corresponding ‘unforced’ system (49) with u(r) = 0 coincides with system (22), which
was studied in Example 2.3 and was proved to be non-uniformly in time RGAOS, we conclude

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2006; 16:191-214



206 I. KARAFYLLIS

by virtue of Proposition 3.3 that system (49) satisfies the non-uniform in time 1OS property. In
order to determine the functions ¢ € KL, 8, y € K* and p € K, for which (26) is satisfied, we
have to consider the continuous function V(z, x) = exp(—1)|xi| + |x»| (defined in Example 2.3),
which clearly satisfies the following inequality for all (¢,x,d,u) € Z+ x R* x [-2,2] x R:

Vie+1,dx, 2l + ) < exp(— = Didlfxi| + 27l + Ju

< 2etexp(— x| + 27 ey |2 + Jul (50)

Let x(7) denote the unique solution of (49) initiated from xo e N> at time 7o e Z* and
corresponding to (d,u) € M_»5 x Mg. It can be easily shown (using induction) that the
component x;(f) of the solution satisfies the estimate |x;(7)]<20~©)|xo| for all r>¢,. Let
V(t) .= V(t,x(t)) and notice that inequality (50) in conjunction with the previous estimate for
x1(¢) gives:

V(t+ 1)<2e ' V(@e) + 22 xo V2 + |u(r)| Viz1 (51)

Using induction arguments and inequality (51), we obtain the following estimate for V' (¢):

V()< exp(—elt — 1) <V(lo) + %w)

2

+———7 sup (exp(—c(r —1))u(7)])
1 — 2€ to<t<t

where ¢ :=log(2/(1 +2¢")). The latter inequality combined with (23) implies (26) with

a(s, 1) = 6Kexp(—ct)s, (t) = 1, p(s) = 15 and (1) = 1, where K == 1/(1 —2¢7").

4. THE ROBUST OUTPUT FEEDBACK STABILIZATION (ROFS) PROBLEM

In this section we first introduce the reader to the notion of the ROFS problem for discrete-time
systems (see [26] for the ROFS problem for continuous-time systems). Throughout this section
we make the following technical assumption for the ‘measured output’ map #:Z" x X - Y’
involved in (4):

(A3) The output map 2 e CU(Z*t x X;Y') involved in (4), with i(7,0) = 0 for all t € Z™, satisfies:

(1) There exists a set S < Y’ such that S = h(¢,X) for all € Z+.
(2) There exists a function a € CU(Y’; S), such that for every y € S, it holds that a(y) = y.

Definition 4.1

Consider system (2a) with output maps given by (2b) and (4) under hypotheses (A2-3) and (H2).
The output Y = H(t, x) is called the ‘stabilized output’ while the output y = A(¢, x) is called the
‘measured output’.

(1) The problem of continuous static ROFS for (2) with measured output y = A(¢, x) and
stabilized output Y = H(t,x) is said to be globally solvable if there exists a continuous
function ke CU(Z" x S;U) (where S is the set involved in hypothesis (A3)) with
f(t,d,0,k(,0)) = 0 for all (1,d) € Z* x D, such that the closed-loop system (2a,b) with
u(t) = k(t, h(t, x(¢))) is non-uniformly in time RGAOS. Particularly, we say that the
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feedback function ke CU(Z' x S;U) globally solves the continuous static ROFS
problem for (2) with measured output y = A(¢,x) and stabilized output Y = H(t, x).
Moreover, if the set H~!(z,0) is positively invariant for the closed-loop system (2a,b) with
u(t) = k(t, h(t, x(1))), then we say that the continuous static ROFS problem for (2) with
measured output y = h(z,x) and stabilized output Y = H(t,x) is globally strongly
solvable.

(2) The problem of continuous dynamic ROFS for (2) with measured output y = h(t, x) and
stabilized output Y = H(¢, x) is said to be globally solvable if there exist a normed linear
space W, continuous functions k e CU(ZT x S x W;U), ge CU(Z'T x S x W; W) with
f(t,d,0,k(2,0,0)) = 0, g(£,0,0) = 0 for all (r,d) € Z* x D, such that the following system
with state space X x W is non-uniformly in time RGAOS:

x(t+ 1) =f(t,d(1), x(2), k(t, h(t, x(1)), w(1)))
w(t + 1) = g(t, h(z, x(1)), w(?)) (52)
Y(¢) = H(t, x(1))

Moreover, if the set H~'(z,0) x W is positively invariant for system (52) then we say the

continuous dynamic ROFS problem for (2) with measured output y = h(z,x) and
stabilized output Y = H(t, x) is globally strongly solvable.

The following result is an immediate consequence of Proposition 2.2 and provides necessary
Lyapunov-like conditions for the solvability of the static ROFS problem.

Theorem 4.2

Consider the ROFS problem for (2) with measured output given by (4) under hypotheses (A2-3)
and (H2). Suppose that the continuous static ROFS problem for (2) with measured output
y = h(t,x) and stabilized output Y = H(z, x) is globally solvable. Then there exist functions
VeCUZY x X;RT), a1, a» € K, By, B, € KT and constant 4 € (0, 1) such that the following
inequalities hold:

a(lH (2N < V() <aBOlIxllx)  ¥(1,x) e ZT x X (53a)

inf sup{V(i+ 1./ (td, x,u) = 2V(t,x);x e b (Ly)d e D} <O V() eZ' xS  (53b)

If the static ROFS problem for (2) with measured output y = A(z, x) and stabilized output
Y = H(t,x) is globally strongly solvable, then the following condition is additionally
satisfied:

lijnt(" ) sup{V'(t + 1,/ (t,d, x,u)) = AV(1,x);x e h"'(1,y),d € D} <0
ueU*(t,y
V=0 and for all ye S for which H~'(¢,0) n h™'(¢,y) #0 (53¢)
where
U*(t,y) ={ue U;H(t+ 1,f(t,d,x,u)) =0 for all d e D and x € H'(t,0) n h~'(z, y)}
(53d)
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Finally, if the feedback function ke CU(Z" x S;U) that globally solves the static ROFS
problem for (2) with measured output y = h(z,x) and stabilized output Y = H(t,x) satisfies
k(z,0) = 0 for all 1 € Z*, then the following condition is satisfied:

sup{V(t+ 1,f(t,d,x,0) — AV(t,x);x € h"(1,0),d e D}y <0 VieZ* (53e)

We also notice the following fact, which combined with Theorem 4.2 provides necessary
conditions for the solvability of the continuous dynamic ROFS problem:

Fact V

The continuous dynamic ROFS problem for (2) with measured output y = A(¢, x) and stabilized
output Y = H(t, x) is globally (strongly) solvable if and only if the continuous static ROFS
problem for the following system:

x(1+ 1) = f(1,d(1), x(1), u(1))
w(t+ 1) = v(¢) (54)
x(),w)eXx W, teZ", dit)eD, w(@®),()eUx W

with stabilized output Y = H(t,x) and measured output j = (h(¢, x), w) is globally (strongly)

solvable.

We next give the notion of robust complete observability for discrete-time systems. The
definition given here directly extends the corresponding notions given in References [14, 15],
concerning autonomous continuous-time systems.

Definition 4.3
Consider the system (2a) and let (d;,u;) € D x U,i =0, 1,... and define recursively the following
family of continuous mappings:

Fo(t,x) = x,  Fi(t,x,dD,uD) = f(1, do, x, u0)
E(Z’ X, d(i)a M(I)) = f(t +i— 1! di*ls F’i*l(ls X, d(i71)9 u(iil))s ui*l)y l> 2
ot;X) = h(t, %), yi(t,x,d 0, u?) = h(t + i, Fi(t, x,dD,u)), i>1

where d¥ = (dy,...,di_), u) == (ug,...,u;_) for i>1. Let an integer p>1 and define the
continuous mapping for all (¢, x,d?,u?”) e Rt x X x DP x UP:
y(p)(t’ x’ d(p)7 u(p)) :: (yo([’ x)’ .. ’ypil(t’ x’ d(pil)’ u(pil)))

We say that a continuous function k € CU(Z" x X; W), where W is a normed linear space, is
robustly completely observable from the output y = h(t, x) with respect to (2a) if there exists an
integer p>1 and a continuous function (called the reconstruction map) ¥ e CU(ZT x S x
SP x UP; W) such that for all (¢, x,d?,u?) e Z+ x X x D’ x UP it holds that

k(t + p, Fy(t, %, d7, u?)) = (1 + p, yp(t, %, dP,u?), y0 (1, x,d7, u?), u?) (55)

We say that system (2a) is robustly completely observable from the output y = h(t, x) if the
identity function k(z, x) = x is completely observable.
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Remark 4.4

(a) Notice that for every input (d,u) € Mp x My and for every (fy, xo) € ZT x X, the unique
solution x(7) of (2a) corresponding to (d,u) and initiated from xy at time ¢y, satisfies the
following relation:

k(t, x(1)) =Y, y(t),y(t — p),y(t —p+1),..., 9t — D,u(t —p),...,u(t — 1)) Vizto+p

Following the terminology in Reference [27], if system (2a) is robustly completely observable
from the output y = /A(t,x) then every control (d,u) e Mp x My final-state distinguishes
between any two events in time p € Z*.

(b) Notice that every continuous function of the measured output k(z, x) = 0(z, h(t, x)), where
0:Z%" xS — W is a continuous function with the following property:

‘for every pair of bounded sets I = Z*, A < S and for every ¢ > 0 the set 6( x A) is bounded
and there exists 0 >0 such that ||0(z,y) — 0(t,yo)llw <e, for all tel, y, ype A with
[ly = »olly» <0’ is robustly completely observable from the measured output.

(c) Notice that since 0 € X is an equilibrium point for (2) and /(z,0) = 0 for all >0, by setting
x =0, u” = 0 in (55), we obtain:

k(1,0) = P(£,0,0) Vi=p

Without loss of generality we may assume that the reconstruction map ¥ is continuously
extended to Zt x S x S” x U? so that the above equality holds for all re Z™.

The following proposition provides sufficient conditions for the solvability of the ROFS
problem for (2).

Proposition 4.5
Consider the ROFS problem for (2) with measured output given by (4) under hypotheses (A2-3)
and (H2). Suppose that:

(i) There exists a continuous function k € CU(Z* x X; U) with f(z,d,0, k(z,0)) = 0 for all
(t,dye Zt x D, such that the closed-loop system (2a,b) with wu(r) = k(z,x(¢)) is
non-uniformly in time RGAOS.

(ii) The feedback function k € CU(Z" x X; U) is robustly completely observable from the
output y = A(¢, x) with respect to (2a).

Then the continuous dynamic ROFS problem for (2) with measured output y = A(z, x) and
stabilized output Y = H(t, x) is globally solvable.

Proof

Since k € CU(Z™" x X; U) is robustly completely observable from the output y = h(z, x) with
respect to (2a) there exists an integer p>1 and a reconstruction map ¥ € CU(RT x § x S” x
U?; U) such that for all (¢, x, d?,u?) e Z* x X x D? x UP (55) holds. Consider the following
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system:
wi(t+1) = y(1)

wa(t+ 1) = wi ()

wyt+1) =wy_1(9)
Wp+l(t + 1) = M(l)

W2t + 1) = Wy (1) 6

Wwop(t 4 1) = wap_1(2)
u(t) = ¥(t, y(1), Ps(w(1)))
wit)eScY, i=1,...,p
wi()eU, i=p+1,....,2p
w(t) = wi(0),...,wp()e W = Y x U, teZ"
where
Ps(w) = (a(wp), a(wp—1), ..., a(w1), Wap, Wap_2, ..., Wpi1) (57)

and a:Y' — S is the continuous function involved in hypothesis (A3). Clearly, for every
(0, X0, wo,d) € Zt x X x W x Mp the solution of (2) with (56) and initial condition (x(fo),
w(ty)) = (x9, wo) corresponding to input d € Mp satisfies for all 1>1y + p:

wi(t) =y(t—1, i=1....p

(58)
wpri(t) =u(t—1), i=1,...,p
and consequently by virtue of hypothesis (A3) and definition (57) we obtain that:
Ps(w(t)) = (wp(), wp—1(2), ..., wi(8), wap(£), wop—1(2), . . ., Wps1(2))
forall 1=zt +p (59)
It follows from (58) and (59) and Remark 4.4 that:
u(t) = k(t, x(2)) = Y(t, p(1), Ps(w(2))) Vi=to+p (60)

Equality (60) shows that the implemented control action given by u(t) = P(¢, y(¢), Ps(w(1)))
coincides with the control action given by the state feedback law u(¢) = k(z, x(¢)) after p time
units. Since the closed-loop system (2a,b) with u(¢) = k(¢, x(¢)) is non-uniformly in time
RGAOS, there exist functions ¢ € KL, f € K™ such that for every d € Mp, (19, x9) € Z* x X, the
unique solution x(z) of (2a,b) with u(¢) = k(z, x(¢)) initiated from x; € X at time 7y € Z* and
corresponding to d € Mp, satisfies (6). It follows from (60) that for every d € Mp, (ty, x9, wo) €
Zt x X x W, the unique solution (x(7), w(z)) of (2) with (56) and initial condition (x(z),
w(ty)) = (x0, wo) corresponding to input d € Mp satisfies

1H (1, x(D)lly <a(B(to + plllx(to + Plix. 1 — 10 —p) Vi=10+p (61)
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Notice that by virtue of Remark 4.4(c) and since f(1,d,0,k(z,0)) = 0 for all (t,d) € Z* x D, we
may conclude that 0 € X x W is an equilibrium point for system (2) with (56). Moreover, by
virtue of hypotheses (A2-3) and (H2), it follows that system (2) with (56) satisfies hypotheses
(H2-3) and consequently by virtue of Fact I, there exist functions u € K+, a € K, such that for
every d € Mp, (9, x0, wo) € ZT x X x W, the unique solution x(¢) of (2) with (56) initiated from
(x(29), w(t9)) = (x9, wp) at time fy >0 and corresponding to d € Mp, satisfies:

XDl + [wOllw < u@adllxollx + lwollw) V=10 (62)

Combining estimates (61) and (62) we conclude that the closed-loop system (2) with (56) satisfies
the robust output attractivity property (property P2 of Definition 2.1). By virtue of Fact II, the
closed-loop system (2) with (56) is non-uniformly in time RGAOS. The proof is complete. []

An immediate consequence of Proposition 4.5 is the following proposition, which provides a
necessary and sufficient condition for the solvability of the dynamic ROFS problem for (2).

Proposition 4.6 (Separation principle)
Consider the ROFS problem for (2) with measured output given by (4) under hypotheses (A2-3)
and (H2). The following statements are equivalent:

(a) There exist a normed linear space W’, continuous functions k e CU(Z" x X x W'; U),
ge CUZT x Xx W, W) with f(t,d,0,k(¢,0,0)) =0, g(¢,0,00=0 for all (1,d)e
Z*t x D, such that the following system with state space X x W’ is non-uniformly in
time RGAOS:
x(1+ 1) = f(1,d(0), x(2), k(1, x(1), w'(1)))
w'(t + 1) = g(t, x(1), W(1)) (63)
Y(1) = H(1, x(1))

Moreover, the functions ke CU(Z" x X x W';U) and ge CU(ZT x X x W'; W') are

robustly completely observable from the output ' = (h(¢, x), w') with respect to the
system:

X([ + 1) :f(ta d(l)a X(l), Lll(t))
wW(t+ 1) = uy(t) (64)
GO W (D) e X X W, u(t) = (w (1), (1)) e U x W', d(t)eD, teZ"

(b) The continuous dynamic ROFS problem for (2) with measured output y = h(t, x) and
stabilized output Y = H(t, x) is globally solvable.

Implication (a) = (b) of Proposition 4.6 is an immediate application of Proposition 4.5 to the
control system (64) with input (u, ). Implication (b)=-(a) of Proposition 4.6 is an immediate
consequence of Remark 4.4(b) and Definitions 4.1, 4.3. We remark that since the component
x(¢) of the solution of (64) does not depend on the input u,, the requirement that the functions
ke CUZT x Xx W U) and ge CU(Z" x X x W'; W') are robustly completely observable
from the output y' = (/(t, x), w') with respect to the system (64) implies the requirement that
for every fixed w e W’ the functions (1,x)e Z" x X = k(t,x,w) e U and (1,x)e Z" x X —
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g(t,x,w") e W' are robustly completely observable from the output y = A(¢, x) with respect to
system (2).

Example 4.7
Consider the ROFS problem for the system
x4+ 1) = xa(1)
x2(t + 1) = x3(¢) + u(?)
x3(t+ 1) = d()x3(2) + exp(?)xa(?) (65)
Y(8) = x(1)
xi=(xLx0,x3) e R, ut)eR, tezt, d)e[-rr]

where re[0,1), with measured output y = x;. First notice that the feedback function
k(t, x) = —x3 stabilizes system (65), non-uniformly in time. We prove this claim by considering
the Lyapunov function V(¢,x) = |x|| + 3exp(?)|xz| + |x3], which clearly satisfies the following
inequalities:

Y| = x| < V(t, x)<Sexp(t)lx] Y(t,x)eZT x R (66a)

V(t+ 1,x2,x5 + k(1, x), dx3 + exp(1)x2)
< (1 + exp(D)lxa| + rlxs]
<max{Zr}V(,x) V(t,x,d)eZ" x R x[-r7] (66b)

and since max{%,r} <1, by virtue of Proposition 2.2, we conclude that the closed-loop system
(65) with u(¢) = k(t, x(¢)) is non-uniformly in time RGAOS. Moreover, the feedback function
k(t,x) = —x3 is robustly completely observable from the output y = x;. Particularly, we define
the continuous mappings (following the notation of Definition 4.3):

X2
Fo(t,x)=x, Fi(t,x,dV,uV) = X3 + up yo(t,x) = x1, (6, x,dV,uV) = x,
dox3 + exp(t)x;
Clearly, we have:
k(t+ 1, Fy(t, x,dV, uM)) = W(t + 1, y1, 0, u0) = —(y} + uo)*
Consequently, the closed-loop system (65) with:
w(t+ 1) = u(t)

u(t) = — (1) + w(z))*
w(t)eR, teZ"

is non-uniformly in time RGAOS.
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5. CONCLUSIONS

The notions of non-uniform in time RGAOS and non-uniform in time IOS are studied in the
present paper for time-varying discrete-time systems. Characterizations and links between these
notions are provided. Particularly, it is shown that a discrete-time system with continuous
dynamics satisfies the non-uniform in time 10S property if and only if the corresponding
unforced system is non-uniformly in time RGAOS. The ROFS problem is studied next.
Necessary and sufficient conditions for the solvability of this problem are provided.
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