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Non-uniform in time robust global asymptotic output
stability for discrete-time systems
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SUMMARY

In this paper the notions of non-uniform in time robust global asymptotic output stability (RGAOS) and
input-to-output stability (IOS) for discrete-time systems are studied. Characterizations as well as links
between these notions are provided. Particularly, it is shown that a discrete-time system with continuous
dynamics satisfies the non-uniform in time IOS property if and only if the corresponding unforced system is
non-uniformly in time RGAOS. Necessary and sufficient conditions for the solvability of the robust output
feedback stabilization (ROFS) problem are also given. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we study discrete-time time-varying systems with outputs:

xðtþ 1Þ ¼ f ðt; dðtÞ;xðtÞÞ

YðtÞ ¼ Hðt;xðtÞÞ

xðtÞ 2 X; dðtÞ 2 D; YðtÞ 2 Y; t 2 Zþ
ð1Þ

where X;Y is a pair of normed linear spaces, D is the set of disturbances (or time-varying
parameters) and f : Zþ �D� X! X;H : Zþ � X! Y with f ðt; d; 0Þ ¼ 0 andHðt; 0Þ ¼ 0 for all
ðt; dÞ 2 Zþ �D:

The notion of non-uniform in time robust global asymptotic output stability (RGAOS) was
introduced and studied in Reference [1] for a wide class of systems, including discrete-time time-
varying systems (1). In this paper we present Lyapunov-like conditions for non-uniform in time
RGAOS for discrete-time systems of the form (1). Our results are based on the Lyapunov
characterization of robust global asymptotic stability (RGAS) given in Reference [2] for
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discrete-time systems and are parallel to the results provided in References [3–5] for uniform
global asymptotic stability with respect to closed sets in a finite-dimensional state space.

The notion of non-uniform in time RGAOS is closely related to the notion of non-uniform in
time input-to-output stability (IOS) introduced in Reference [1] for a wide class of systems,
including discrete-time time-varying systems of the form:

xðtþ 1Þ ¼ f ðt; dðtÞ;xðtÞ; uðtÞÞ

xðtÞ 2 X; dðtÞ 2 D; uðtÞ 2 U; t 2 Zþ
ð2aÞ

YðtÞ ¼ Hðt; xðtÞÞ; YðtÞ 2 Y ð2bÞ

where X;Y;U is a triplet of normed linear spaces, D is the set of disturbances (or time-varying
parameters) and f : Zþ �D� X�U ! X; H : Zþ � X! Y are mappings with f ðt; d; 0; 0Þ ¼ 0
and Hðt; 0Þ ¼ 0 for all ðt; dÞ 2 Zþ �D:

The notion of non-uniform in time IOS introduced in Reference [1] extends the notion of
uniform in time input-to-state stability (ISS) for discrete-time systems introduced in Reference
[6] and further studied in References [7–9]. It is also an extension of the notion of uniform in
time IOS introduced in References [10–12] for continuous time systems. In this paper, we derive
characterizations of non-uniform in time IOS. Moreover, it is shown that a discrete-time time-
varying system (2) with continuous dynamics satisfies the non-uniform in time IOS property if
and only if the ‘unforced’ system (2), i.e. system (2) with uðtÞ � 0

xðtþ 1Þ ¼ f ðt; dðtÞ;xðtÞ; 0Þ

YðtÞ ¼ Hðt;xðtÞÞ

xðtÞ 2 X; dðtÞ 2 D; YðtÞ 2 Y; t 2 Zþ
ð3Þ

is non-uniformly in time robustly globally asymptotically output stable. This result is
important, since it shows that continuity of the dynamics guarantees useful robustness
properties.

Discrete-time control systems of the form (2) arise naturally in applications. For example in
Reference [13], the stability of infinite-dimensional discrete-time systems is studied. In the
present paper we focus on the robust output feedback stabilization (ROFS) problem for (2), i.e.
the problem of the stabilization of the output (2b) of the time-varying discrete-time system (2a)
by means of:

(i) A time-varying output feedback law uðtÞ ¼ kðt; yðtÞÞ (static ROFS problem).
(ii) A dynamic time-varying output feedback law wðtþ 1Þ ¼ gðt; yðtÞ;wðtÞÞ; uðtÞ ¼

kðt; yðtÞ;wðtÞÞ; wðtÞ 2W (dynamic ROFS problem) where

yðtÞ ¼ hðt;xðtÞÞ; yðtÞ 2 Y0 ð4Þ

is the so-called measured output, and Y0;W are normed linear spaces.

In Section 4 of the present paper we present necessary and sufficient conditions for the
solvability of the static and dynamic ROFS problem. To this end, we extend the notion of
complete observability, introduced in Reference [14] for continuous time systems (see also
Reference [15]). We remark that similar observability notions were also used in Reference [16]
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for the construction of neural state estimators. Lyapunov-like conditions for the local solvability
of the ROFS problem when the stabilized output is the whole state vector were given in
Reference [17] for autonomous finite-dimensional discrete-time systems without disturbances.
The same problem was further studied in References [9, 18–22], where local and semi-global
results were obtained. In the present paper it is shown that, if system (2) is stabilized by a
continuous state feedback law and the feedback function is robustly completely observable
from the measured output (4), then the dynamic ROFS problem for (2) is solvable. The
procedure for the construction of the dynamic output feedback used in the proof of this result
can be directly used for design purposes.

Notation

* By jj jjX; we denote the norm of the normed linear space X: By j j we denote the euclidean
norm of Rn:

* Zþ denotes the set of non-negative integers.
* For definitions of classes K ;K1; KL see Reference [23]. By Kþ we denote the set of all

continuous positive functions defined on Rþ :¼ ½0;þ1Þ:
* By MD we denote the set of all sequences d ¼ ðdð0Þ; dð1Þ; dð2Þ; . . .Þ with values in D; i.e.

dðiÞ 2 D for all i 2 Zþ:
* Let H : Zþ � X! Y a continuous map. The set-valued map ðt; yÞ 2 Zþ � Y!

H�1ðt; yÞ � X is defined by H�1ðt; yÞ ¼ fx 2 X;Hðt; xÞ ¼ yg:
* Let X;Y a pair of normed linear spaces. We denote by CUðZþ � A;WÞ; where A � X; the

set of all continuous mappings H : Zþ � A!W � Y; with the following property: ‘for
every pair of bounded sets I � Zþ; S � A and for every e > 0 the set HðI � SÞ is bounded
and there exists d > 0 such that jjHðt; xÞ �Hðt;x0ÞjjY5e; for all t 2 I ; x; x0 2 S with
jjx� x0jjX5d’.

2. NON-UNIFORM IN TIME ROBUST GLOBAL ASYMPTOTIC
OUTPUT STABILITY (RGAOS)

In this section, we first introduce the reader to the notion of non-uniform in time RGAOS for
discrete-time systems as a special case of the notion of non-uniform in time RGAOS given in
Reference [1] for a wide class of systems. We consider the time-varying case (1) under the
following hypotheses:

(H1): There exist functions a 2 K1;b 2 Kþ such that jjf ðt; d;xÞjjX4aðbðtÞjjxjjXÞ; for all
ðt;x; dÞ 2 Zþ � X�D

(H2): For every pair of bounded sets I � Zþ; S � X and for every e > 0 the set HðI � SÞ is
bounded and there exists d > 0 such that jjHðt;xÞ �Hðt; x0ÞjjY5e; for all t 2 I ; x;x0 2 S
with jjx� x0jjX5d: Moreover, it holds that Hðt; 0Þ ¼ 0 for all t 2 Zþ:

We note the following important fact for the time-varying case (1):

Fact I
System (1) under hypothesis (H1) is robustly forward complete (RFC) and there exist
functions m 2 Kþ; a 2 K1; such that for every d 2MD; ðt0;x0Þ 2 Zþ � X; the unique solution xðtÞ
of (1) initiated from x0 2 X at time t050 and corresponding to d 2MD; satisfies the following
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estimate:

jjxðtÞjjX4mðtÞaðjjx0jjXÞ 8t5t0 ð5Þ

Concerning the proof of Fact I, we notice that by virtue of Lemma 3.5 in Reference [1] it
suffices to show that system (1) under hypothesis (H1) is RFC and 0 2 X is a robust equilibrium
point in the sense defined in Reference [1]. Particularly, this follows by considering arbitrary
r50; T 2 Zþ; then defining recursively the sequence of sets in X by AðkÞ :¼ f ð½0; 2T � �D�
Aðk� 1ÞÞ for k ¼ 1; . . . ;T with Að0Þ :¼ fx 2 X; jjxjjX4rg; which are bounded by virtue of
hypothesis (H1) and finally noticing that

fxðt0 þ k; t0;x0; dÞ; jjx0jjX4r; t04T ; k4T ; d 2MDg � AðkÞ for all k ¼ 0; . . . ;T

where xðt; t0;x0; dÞ denotes the unique solution of (1) initiated from x0 2 X at time t050 and
corresponding to d 2MD: The fact that 0 2 X is a robust equilibrium point in the sense defined
in Reference [1] is an immediate consequence of hypothesis (H1) (details are left to the reader).

We are now in a position to present the definition of non-uniform in time RGAOS for
discrete-time systems.

Definition 2.1
Let xðtÞ denote the unique solution of (1) initiated from x0 2 X at time t050 and corresponding
to d 2MD: We say that system (1) under hypotheses (H1-2) is non-uniformly in time robustly
globally asymptotically output stable (RGAOS) if it satisfies the following properties:

P1(Robust output stability): For every e > 0; T 2 Zþ; it holds that

supfjjHðt;xðtÞÞjjY; t5t0; jjx0jjX4e; t0 2 ½0;T �; d 2MDg5þ1

and there exists a d :¼ dðe;TÞ > 0 such that:

jjx0jjX4d; t0 2 ½0;T � ) jjHðt;xðtÞÞjjY4e; 8t5t0 8d 2MD

P2(Robust output attractivity): For every e > 0; T 2 Zþ and R50; there exists a t :¼ tðe;T ;RÞ 2
Zþ; such that:

jjx0jjX4R; t0 2 ½0;T � ) jjHðt;xðtÞÞjjY4e; 8t5t0 þ t 8d 2MD

We say that system (1) is non-uniformly in time strongly robustly globally asymptotically output
stable (strongly RGAOS) if it is non-uniformly in time RGAOS and the set H�1ðt; 0Þ :¼
fx 2 X ;Hðt;xÞ ¼ 0g is positively invariant, i.e. if x 2 H�1ðt; 0Þ then Hðtþ 1; f ðt; d;xÞÞ ¼ 0
for all d 2 D:

Moreover, if there exists a function a 2 K1 such that aðjjxjjXÞ4jjHðt;xÞjjY for all ðt;xÞ 2
Zþ � X; then we say that the equilibrium point 0 2 X is non-uniformly in time robustly globally
asymptotically stable (RGAS) for system (1).

The following facts are given in Reference [1] as Lemmas 3.3 and 3.4, respectively.

Fact II
Suppose that (1) under hypotheses (H1-2) satisfies the robust output attractivity property
(property P2 of Definition 2.1). Then (1) is non-uniformly in time RGAOS.
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Fact III
System (1) under hypotheses (H1-2) is non-uniformly in time RGAOS if and only if there exist
functions s 2 KL; b 2 Kþ such that for every d 2MD; ðt0;x0Þ 2 Zþ � X; the unique solution xðtÞ
of (1) initiated from x0 2 X at time t050 and corresponding to d 2MD; satisfies:

jjHðt;xðtÞÞjjY4sðbðt0Þjjx0jjX; t� t0Þ 8t5t0 ð6Þ

The following proposition provides Lyapunov-like characterizations for a time-varying system,
which is non-uniformly in time RGAOS. It deals with the time-varying case (1) under the pair of
hypotheses (H1-2) or under the pair of hypothesis (H2) and the following hypothesis:

(H3): For every bounded sets S � X ; I � Zþ and for every e > 0 the set f ðI �D� SÞ is
bounded and there exists d > 0 such that supfjjf ðt; d;xÞ � f ðt; d;x0ÞjjX; d 2 Dg5e; for all t 2 I ;
x 2 S; x0 2 S with jjx� x0jjX5d: Moreover, it holds that f ðt; d; 0Þ ¼ 0 for all ðt; dÞ 2 Zþ �D:

Remark about hypothesis (H3): Hypothesis (H3) is ‘stronger’ hypothesis than (H1), in the
sense that the implication ðH3Þ ) ðH1Þ holds. The proof of the implication ðH3Þ ) ðH1Þ is
made by defining the following function:

aðT ; sÞ :¼ supfjjf ðt; d;xÞjjX; t 2 Z
þ; t4T ; jjxjjX4s; d 2 Dg

which is well-defined for all T ; s50:Moreover, for every T ; s50 the functions að�; sÞ and aðT ; �Þ are
non-decreasing and since f ðt; 0; dÞ ¼ 0 2 X for all ðt; dÞ 2 Zþ �D; we also obtain aðT ; 0Þ ¼ 0 for
all T50: Finally, let e > 0 and T50: It can be shown that hypothesis (H3) guarantees the existence
of d :¼ dðe;TÞ > 0 such that aðT ; dðe;TÞÞ5e and consequently we have lims!0þ aðT ; sÞ ¼ 0 for all
T50: It turns out from Lemma 2.3 in Reference [24] that there exist functions z 2 K1;b 2 Kþ such
that aðT ; sÞ4zðbðTÞsÞ; for all T ; s50 and consequently, hypothesis (H1) is satisfied.

Proposition 2.2
Consider system (1) under hypotheses (H1-2). Then the following statements are equivalent:

(i) System (1) is non-uniformly in time RGAOS.
(ii) There exist functions V : Zþ � X! Rþ; a1; a2 2 K1; b;m 2 Kþ and a constant l 2 ð0; 1Þ

such that:

a1ðjjHðt;xÞjjY þ mðtÞjjxjjXÞ4Vðt;xÞ4a2ðbðtÞjjxjjXÞ 8ðt;xÞ 2 Z
þ � X ð7aÞ

Vðtþ 1; f ðt; d;xÞÞ4lVðt; xÞ 8ðt;x; dÞ 2 Zþ � X�D ð7bÞ

Moreover, if hypothesis (H3) holds then V 2 CUðZþ � X;RþÞ:
(iii) There exist functions V : Zþ � X! Rþ; a1; a2; a3 2 K1 with a3ðsÞ4s for all s50; b 2 Kþ

and q 2 C0ðRþ;RþÞ with limt!þ1 qðtÞ ¼ 0 such that:

a1ðjjHðt; xÞjjYÞ4Vðt;xÞ4a2ðbðtÞjjxjjXÞ 8ðt; xÞ 2 Z
þ � X ð8aÞ

Vðtþ 1; f ðt; d;xÞÞ4Vðt;xÞ � a3ðVðt;xÞÞ þ qðtÞ 8ðt;x; dÞ 2 Zþ � X�D ð8bÞ

Proof
ðiÞ ) ðiiÞ We show the existence of a function V : Zþ � X! Rþ; satisfying (7a,b), under the
assumption of non-uniform in time RGAOS for (1). Since (1) under hypotheses (H1-2) is
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RGAOS, by virtue of Facts I and III, there exist functions m 2 Kþ; a 2 K1; s 2 KL; b 2 Kþ

such that for every d 2MD; ðt0;x0Þ 2 Zþ � X; the unique solution xðtÞ of (1) initiated
from x0 2 X at time t050 and corresponding to d 2MD; satisfies (5) and (6). Next we consider
the system:

zðtþ 1Þ ¼
expð�t� 1Þ
mðtþ 1Þ

f ðt; dðtÞ; expðtÞmðtÞzðtÞÞ

wðtþ 1Þ ¼ expð�1ÞwðtÞ � expð�1ÞHðt; expðtÞmðtÞzðtÞÞ

þHðtþ 1; f ðt; dðtÞ; expðtÞmðtÞzðtÞÞÞ ð9Þ

zðtÞ 2 X; wðtÞ 2 Y; t 2 Zþ; dðtÞ 2 D

where the state space is the normed space C :¼ X� Y with norm jjðz;wÞjjC :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjzjj2X þ jjwjj

2
Y

q
:We

claim that zero for the above system is non-uniformly in time RGAS. Notice that the solution
ðzðtÞ;wðtÞÞ of (9) initiated from ðz0;w0Þ 2 X� Y at time t0 2 Zþ and corresponding to dð�Þ 2MD

satisfies:

wðtÞ ¼Hðt; expðtÞmðtÞzðtÞÞ þ expð�ðt� t0ÞÞðw0 �Hðt0; expðt0Þmðt0Þz0ÞÞ 8t5t0 ð10Þ

Moreover the component zðtÞ of the solution ðzðtÞ;wðtÞÞ of (9) initiated from ðz0;w0Þ 2 X� Y

at time t050 and corresponding to dð�Þ 2MD is related to the solution xðtÞ of (1) initiated
from x0 ¼ expðt0Þmðt0Þz0 at time t0 2 Zþ and corresponding to the same dð�Þ 2MD with the
following way:

xðtÞ ¼ expðtÞmðtÞzðtÞ 8t5t0 ð11Þ

Using (11) in conjunction with (5) and (6) we obtain:

jjzðtÞjjX4expð�tÞaðexpðt0Þmðt0Þjjz0jjXÞ 8t5t0 ð12Þ

jjHðt; expðtÞmðtÞzðtÞÞjjY4sðbðt0Þexpðt0Þmðt0Þjjz0jjX; t� t0Þ 8t5t0 ð13Þ

Since Hð�Þ is continuous with Hðt; 0Þ ¼ 0 for all t50 and since the set HðI � SÞ is bounded for
every pair of bounded sets I � Zþ and S � X; it follows from Lemma 3.2 in Reference [1] that
there exist functions z 2 K1 and g 2 Kþ such that

jjHðt;xÞjjY4zðgðtÞjjxjjXÞ 8ðt;xÞ 2 Z
þ � X ð14Þ

Combining estimate (13) with (10) and inequality (14), we obtain for all t5t0:

jjwðtÞjjY4sðbðt0Þexpðt0Þmðt0Þjjz0jjX; t� t0Þ þ expð�ðt� t0ÞÞbjjw0jjY þ zðgðt0Þexpðt0Þmðt0Þjjz0jjXÞc

ð15Þ

We conclude from (12) and (15) that the solution ðzðtÞ;wðtÞÞ of (9) initiated from ðz0;w0Þ 2 X� Y

at time t0 2 Zþ and corresponding to dð�Þ 2MD satisfies:

jjðzðtÞ;wðtÞÞjjC4 *sð *bðt0Þjjðz0;w0ÞjjC; t� t0Þ 8t5t0 ð16Þ

where *sðs; tÞ :¼ aðsÞexpð�tÞ þ sðs; tÞ þ expð�tÞðsþ zðsÞÞ; *bðtÞ :¼ 1þ ð1þ bðtÞ þ gðtÞÞexpðtÞmðtÞ:
Inequality (16) implies that zero is non-uniformly in time RGAS for (9). Moreover, since the
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dynamics of system (9)

*f ðt; d; z;wÞ :¼

expð�t� 1Þ
mðtþ 1Þ

f ðt; d; expðtÞmðtÞzÞ

expð�1Þw� expð�1ÞHðt; expðtÞmðtÞzÞ þHðtþ 1; f ðt; d; expðtÞmðtÞzÞÞ

0
B@

1
CA

satisfy hypothesis (H1), it follows from Theorem 2.9 in Reference [2] that there exist functions
U : Zþ � X� Y! Rþ; *a1ð�Þ; *a2ð�Þ 2 K1; b2ð�Þ 2 K

þ such that:

*a1ðjjðz;wÞjjCÞ4Uðt; z;wÞ4*a2ðb2ðtÞjjðz;wÞjjCÞ 8ðt;x;wÞ 2 Z
þ � C ð17aÞ

U tþ 1;
expð�t� 1Þ
mðtþ 1Þ

f ðt; d; expðtÞmðtÞzÞ; expð�1Þðw�Hðt; expðtÞmðtÞzÞÞ
�

þHðtþ 1; f ðt; d; expðtÞmðtÞzÞÞ
�
4lUðt; z;wÞ 8ðt; z;w; dÞ 2 Zþ � C �D ð17bÞ

Finally, we define:

Vðt; xÞ :¼ U t;
expð�tÞ
mðtÞ

x;Hðt;xÞ
� �

ð18Þ

Inequality (7b) is an immediate consequence of (17b) and definition (18). Moreover, by virtue of
Lemma 2.3 in Reference [24], there exist functions a2 2 K1 and b 2 Kþ such that

*a2
b2ðtÞexpð�tÞ

mðtÞ
sþ b2ðtÞzðgðtÞsÞ

� �
4a2ðbðtÞsÞ 8ðt; sÞ 2 Rþ �Rþ ð19Þ

Inequalities (17a), (14), (19) and the trivial inequality maxðjjwjjY; jjzjjXÞ4jjðz;wÞjjC4jjzjjX þ jjwjjY
imply inequality (7a) with mðtÞ :¼ expð�tÞ=mðtÞ and a1ðsÞ :¼ *a1ðs=2Þ: Finally, if hypothesis (H3) is
satisfied for (1), it follows that the dynamics of system (9)

*f ðt; d; z;wÞ :¼

expð�t� 1Þ
mðtþ 1Þ

f ðt; d; expðtÞmðtÞzÞ

expð�1Þw� expð�1ÞHðt; expðtÞmðtÞzÞ þHðtþ 1; f ðt; d; expðtÞmðtÞzÞÞ

0
B@

1
CA

also satisfy hypothesis (H3). Consequently, by virtue of Theorem 2.9 in Reference [2], we
conclude that U 2 CUðZþ � X� Y;RþÞ and since H 2 CUðZþ � X;YÞ we obtain that V 2
CUðZþ � X;RþÞ:

(ii) ) (iii) This implication is trivial (notice that statement (iii) holds with qðtÞ � 0 and
a3ðsÞ :¼ ð1� lÞsÞ:

(iii) ) (i) Assuming that statement (iii) holds, we will show that system (1) satisfies the
robust output attractivity property (property P2 of Definition 2.1). Then, by virtue of
Fact II, statement (i) holds. Without loss of generality we may assume that qðtÞ > 0 for
all t 2 Zþ: Let arbitrary e > 0; T 2 Zþ; R50; jjx0jjX4R; t0 2 ½0;T � and d 2MD: Let also
VðtÞ :¼ Vðt;xðtÞÞ and qmax :¼ supt50 qðtÞ; where xðtÞ is the unique solution of (1) corresponding
to d 2MD; initiated from x0 at time t0: It follows from inequality (8b) and Lemma 3.1 in
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Reference [2] that:

VðtÞ4Vðt0Þ þ a�13 ðqmaxÞ þ qmax 8t5t0 ð20Þ

VðtÞ5a�13 2 sup
t5t0þ*t

qðtÞ

 !
þ sup

t5t0þ*t
qðtÞ 8*t 2 Zþ

8t5t0 þ *tþ
Vðt0 þ *tÞ

supt5t0þ*t qðtÞ
ð21Þ

Since limt!þ1 qðtÞ ¼ 0; there exists *t :¼ *tðeÞ 2 Zþ such that a�13 ð2supt�*t qðtÞÞ þ supt5*t
qðtÞ4a1ðeÞ: Combining the latter inequality with (8a), (20), (21), we conclude that the robust
output attractivity property holds for system (1) with

tðe;T ;RÞ :¼ T þ *tðeÞ þ
a2ðRmax04t04T bðt0ÞÞ þ a�13 ðqmaxÞ þ qmax

supt5Tþ*tðeÞ qðtÞ

" #
þ 1

where ½x� denotes the integer part of the real number x: The proof is complete. &

Example 2.3
Consider the nonlinear finite-dimensional discrete-time time-varying system:

x1ðtþ 1Þ ¼ dðtÞx1ðtÞ

x2ðtþ 1Þ ¼ 2�tdðtÞjx1ðtÞj1=2

YðtÞ ¼ Hðt;xðtÞÞ :¼ x2ðtÞ

xðtÞ :¼ ðx1ðtÞ;x2ðtÞÞ 2 R2; t 2 Zþ; dðtÞ 2 ½�2; 2�

ð22Þ

Consider the continuous function Vðt;xÞ :¼ expð�tÞjx1j þ jx2j; which clearly satisfies the
following inequality:

jY j ¼ jx2j4Vðt;xÞ42jxj 8ðt; xÞ 2 Zþ �R2 ð23Þ

Moreover, notice that for all ðt;x; dÞ 2 Zþ �R2 � ½�2; 2� we obtain:

Vðtþ 1; dx1; 2
�td jx1j1=2Þ

¼ expð�t� 1Þjd jjx1j þ 2�tjd jjx1j1=242e�1expð�tÞjx1j þ 2�tþ1jx1j1=2

4
2þ e

2e
expð�tÞjx1j þ

2e

e� 2

e

4

� �t
4lVðt; xÞ þ qðtÞ ð24Þ

where l :¼ ð2þ eÞ=2e 2 ð0; 1Þ and qðtÞ :¼ 2e=ðe� 2Þðe=4Þt with limt!þ1 qðtÞ ¼ 0: By virtue
of (23) and (24) it follows that statement (iii) of Proposition 2.2 is satisfied with bðtÞ � 2;
a1ðsÞ ¼ a2ðsÞ :¼ s and a3ðsÞ :¼ ð1� lÞs: We conclude that system (22) is non-uniformly in
time RGAOS.

Copyright # 2005 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2006; 16:191–214

I. KARAFYLLIS198



3. NON-UNIFORM IN TIME INPUT-TO-OUTPUT STABILITY (IOS)

In this section we first introduce the reader to the notion of non-uniform in time IOS for
discrete-time systems as a special case of the notion of non-uniform in time IOS given in
Reference [1] for a wide class of systems. We consider the time-varying case (2) under hypothesis
(H2) and the following hypothesis:

(A1): There exist functions a 2 K1;b 2 Kþ such that jjf ðt; d;x; uÞjjX4aðbðtÞjjxjjXÞ þ aðbðtÞjjujjUÞ;
for all ðt; x; d; uÞ 2 Zþ � X�D�U:

First we note the following important fact for the time-varying case (2):

Fact IV
System (2) under hypothesis (A1) is RFC from the input u 2MU and there exist functions
m 2 Kþ; a 2 K1 and a constant R50 such that for every ðt0;x0; d; uÞ 2 Zþ � X�MD �MU ; the
corresponding solution xðtÞ of (2) with xðt0Þ ¼ x0 satisfies the following estimate:

jjxðtÞjjX4mðtÞa Rþ jjx0jjX þ sup
t2½t0;t�

jjuðtÞjjU

 !
8t5t0 ð25Þ

Concerning the proof of Fact IV, we notice that by virtue of Lemma 3.5 in Reference [1] it
suffices to show that system (2) under hypothesis (A1) is RFC from the input u 2MU :
Particularly, this follows by considering arbitrary r50; T 2 Zþ; then defining recursively
the sequence of sets in X by AðkÞ :¼ f ð½0; 2T � �D� Aðk� 1Þ � B½0; r�Þ for k ¼ 1; . . . ;T ; where
B½0; r� :¼ fu 2 U; jjujjU4rg and Að0Þ :¼ fx 2 X; jjxjjX4rg; which are bounded by virtue of
hypothesis (A1) and finally noticing that

fxðt0 þ k; t0;x0; u; dÞ; jjx0jjX4r; t04T ; k4T ; d 2MD; u 2MB½0;r�g � AðkÞ for all k ¼ 0; . . . ;T

where xðt; t0;x0; u; dÞ denotes the unique solution of (1) initiated from x0 2 X at time t050 and
corresponding to input ðu; dÞ 2MB½0;r� �MD:

We are now in a position to present the definition of non-uniform in time IOS property for
discrete-time systems.

Definition 3.1
Let xðtÞ denote the unique solution of (2) initiated from x0 2 X at time t0 2 Zþ and
corresponding to ðd; uÞ 2MD �MU : We say that system (2) under the pair of hypotheses
(A1), (H2) satisfies the non-uniform in time (IOS) property from the input u 2MU if there exist
functions s 2 KL; b; g 2 Kþ and r 2 K1 such that the following estimate holds for all u 2MU ;
ðt0;x0; dÞ 2 Zþ � X�MD and t 2 ½t0;þ1Þ:

jjHðt; xðtÞÞjjY 4max sðbðt0Þjjx0jjX; t� t0Þ; sup
t2½t0;t�

sðbðtÞrðgðtÞjjuðtÞjjUÞ; t� tÞ

( )
ð26Þ

Moreover, if there exists a function a 2 K1 such that aðjjxjjXÞ4jjHðt;xÞjjY for all ðt;xÞ 2 Zþ � X;
then we say that (2) satisfies the non-uniform in time (ISS) property from the input u 2MU :
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The following proposition provides various characterizations of the non-uniform in time IOS
property for the time-varying case (2). Moreover, it shows how the notion of non-uniform in
time IOS is related to the notion of non-uniform in time RGAOS. It deals with the time-varying
case (2) under the pair of hypotheses (A1) and (H2) or under the pair of hypothesis (H2) and the
following hypothesis:

(A2): For every bounded sets S � X�U; I � Zþ and for every e > 0; the set f ðI �D� SÞ is
bounded and there exists d > 0 such that supfjjf ðt; d;x; uÞ � f ðt; d; x0; u0ÞjjX; d 2 Dg5e; for
all t 2 I ; ðx; uÞ 2 S; ðx0; u0Þ 2 S with jjx� x0jjX þ jju� u0jjU5d: Moreover, it holds that
f ðt; d; 0; 0Þ ¼ 0 for all ðt; dÞ 2 Zþ �D:

Remark about Hypothesis (A2): Hypothesis (A2) is ‘stronger’ hypothesis than (A1), in the sense
that the implication ðA2Þ ) ðA1Þ holds. The proof of the implication ðA2Þ ) ðA1Þ is made by
defining the following function:

aðT ; sÞ :¼ supfjjf ðt; d;x; uÞjjX; t 2 Z
þ; t4T ; jjxjjX4s; d 2 D; jjujjU4sg

which is well-defined for all T ; s50:Moreover, for every T ; s50 the functions að�; sÞ and aðT ; �Þ
are non-decreasing and since f ðt; 0; d; 0Þ ¼ 0 2 X for all ðt; dÞ 2 Zþ �D; we also obtain
aðT ; 0Þ ¼ 0 for all T50: Finally, let e > 0 and T50: It can be shown that hypothesis (A2)
guarantees the existence of d :¼ dðe;TÞ > 0 such that aðT ; dðe;TÞÞ5e and consequently we have
lims!0þ aðT ; sÞ ¼ 0 for all T50: It turns out from Lemma 2.3 in Reference [24] that there exist
functions z 2 K1;b 2 Kþ such that aðT ; sÞ4zðbðTÞsÞ; for all T ; s50: Consequently, we obtain
jjf ðt; x; d; uÞjjX4zðbðtÞmaxfjjxjjX; jjujjUgÞ; for all ðt; x; d; uÞ 2 Zþ � X�D�U; which directly
implies hypothesis (A1).

Proposition 3.2
Consider system (2) under the pair of hypotheses (A1), (H2). Then the following statements are
equivalent:

(i) System (2) satisfies the non-uniform in time IOS property.
(ii) There exist functions z 2 K1; b; d 2 Kþ and s 2 KL such that for every ðt0; x0; d; uÞ
2 Zþ � X�MD �MU ; the corresponding solution xðtÞ of (2) with xðt0Þ ¼ x0 satisfies:

jjHðt;xðtÞÞjjY4max sðbðt0Þjjx0jjX; t� t0Þ; sup
t04t4t

zðdðtÞjjuðtÞjjUÞ
� �

8t5t0 ð27Þ

(iii) There exist functions y 2 K1 and p 2 Kþ such that the following system is non-uniformly
in time RGAOS:

xðtþ 1Þ ¼ f ðt; dðtÞ; xðtÞ; pðtÞyðjjxðtÞjjXÞd
0ðtÞÞ

YðtÞ ¼ Hðt;xðtÞÞ

xðtÞ 2 X; YðtÞ 2 Y; ðdðtÞ; d 0ðtÞÞ 2 D� B½0; 1�; t 2 Zþ
ð28Þ

where B½0; 1� :¼ fu 2 U; jjujjU41g:
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(iv) There exist functions V : Zþ � X! Rþ; a1; a2; a3 2 K1; b;f; m 2 Kþ and a constant l 2
ð0; 1Þ such that:

a1ðjjHðt;xÞjjY þ mðtÞjjxjjXÞ4Vðt;xÞ4a2ðbðtÞjjxjjXÞ 8ðt;xÞ 2 Z
þ � X ð29aÞ

Vðtþ 1; f ðt; d;x; uÞÞ4lVðt;xÞ þ a3ðfðtÞjjujjUÞ 8ðt; x; d; uÞ 2 Z
þ � X�D�U ð29bÞ

Moreover, if hypothesis (A2) holds then V 2 CUðZþ � X;RþÞ:

Proof
ðiÞ ) ðiiÞ Suppose that (2) satisfies the non-uniform in time IOS property. Then there exist
functions s 2 KL; b;m; g 2 Kþ; a 2 K1 and r 2 K1 such that (26) holds for all u 2MU ; ðt0;x0;
dÞ 2 Zþ � X�MD and t 2 ½t0;þ1Þ: By invoking Lemma 2.3 in Reference [24], there exist
functions a 2 K1 and d 2 Kþ such that bðtÞrðfðtÞsÞ4aðdðtÞsÞ for all ðt; sÞ 2 Rþ �Rþ and if we
set zðsÞ :¼ sðaðsÞ; 0Þ þ s (which obviously is of class K1), the desired (27) is a consequence of (26)
and the previous inequality.
ðiiÞ ) ðiiiÞ Suppose that there exist functions z 2 K1; b;d 2 Kþ and s 2 KL such that for every

ðt0;x0; d; uÞ 2 Zþ � X�MD �MU ; the corresponding solution xðtÞ of (2) with xðt0Þ ¼ x0
satisfies (27). Moreover, by virtue of Fact IV, there exist functions m 2 Kþ; a 2 K1 and a
constant R50 such that for every ðt0;x0; d; uÞ 2 Zþ � X�MD �MU ; the corresponding
solution xðtÞ of (2) with xðt0Þ ¼ x0 satisfies (25). Consequently, for every ðt0;x0; d; uÞ 2
Zþ � X�MD �MU ; the corresponding solution xðtÞ of (2) with xðt0Þ ¼ x0 satisfies the
following estimate:

jjxðtÞjjX
mðtÞ

4að2Rþ 2jjx0jjXÞ þ sup
t2½t0;t�

að2jjuðtÞjjUÞ 8t5t0 ð30Þ

Without loss of generality we may assume that the functions z 2 K1 and d 2 Kþ involved in (27)
satisfy zðsÞ5s (or equivalently z�1ðsÞ4s) and dðtÞ51 for all t; s50 and that the function m 2 Kþ

involved in (25) is non-decreasing. Define:

gðt; sÞ :¼ 2mðtÞað2ð1þ mðtÞÞexpðtÞzðdðtÞsÞÞ ð31Þ

By virtue of Lemma 2.3 in Reference [24] there exist functions q 2 Kþ; a0 2 K1 such that
gðt; sÞ4a0ðqðtÞsÞ for all t; s50: Define:

y�1ðsÞ :¼ a0ðsÞ and pðtÞ :¼
1

qðtÞ
ð32Þ

It follows from definitions (31) and (32) that:

pðtÞyðsÞ4
1

dðtÞ
z�1

expð�tÞ
2ð1þ mðtÞÞ

a�1
s

2mðtÞ

� �� �
for all t; s50 ð33Þ

Notice that since (2) satisfies the pair of hypotheses (A1) and (H2), it follows that system (28)
satisfies hypotheses (H1-2). Clearly, the solution of system (28) with xðt0Þ ¼ x0 corresponding to
ðd; d 0Þ 2MD �MB½0;1� coincides with the solution of (2) with same initial condition correspond-
ing to inputs d 2MD and u 2MU with uðtÞ ¼ pðtÞyðjjxðtÞjjXÞd

0ðtÞ for all t5t0: Consequently, since
z�1ðsÞ4s and dðtÞ51 for all t; s50; we obtain from (33) that jjuðtÞjjU4

1
2
a�1ðjjxðtÞjjX=2mðtÞÞ for all
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t5t0 and it follows from (30) that:

sup
t2½t0;t�

jjxðtÞjjX
mðtÞ

� �
42að2Rþ 2jjx0jjXÞ 8t5t0 ð34Þ

Combining inequalities (27) and (33) we obtain:

jjHðt;xðtÞÞjjY4max sðbðt0Þjjx0jjX; t� t0Þ;
expð�t0Þ

2ð1þ mðt0ÞÞ
sup

t04t4t
a�1

jjxðtÞjjX
2mðtÞ

� �� �
8t5t0 ð35Þ

Estimate (35) in conjunction with estimate (34) gives:

jjHðt;xðtÞÞjjY4max sðbðt0Þjjx0jjX; t� t0Þ; expð�t0Þ Rþ
jjx0jjX

1þ mðt0Þ

� �� �
8t5t0 ð36Þ

Notice that by virtue of (34) and (36) we obtain for all t1 2 Zþ and t5t0 þ t1:

jjHðt; xðtÞÞjjY4maxfsðbðt0 þ t1Þmðt0 þ t1Þ2að2Rþ 2jjx0jjXÞ; t� t0 � t1Þ;

expð�t0 � t1ÞðRþ 2að2Rþ 2jjx0jjXÞÞg ð37Þ

Next we establish robust global asymptotic output stability. Without loss of generality we may
assume that the function b 2 Kþ involved in (37) is non-decreasing. Consider the function
bðt;T ; rÞ :¼ supfjjHðt0 þ t;xðt0 þ tÞÞjjY; ðd; d

0Þ 2MD �MB½0;1�; jjx0jjX4r; t0 2 ½0;T �g; where xð�Þ
denotes the solution of (28) with xðt0Þ ¼ x0 corresponding to some ðd; d 0Þ 2MD �MB½0;1�: It
suffices to show that limt!þ1 bðt;T ; rÞ ¼ 0; for all ðT ; rÞ 2 ðRþÞ2: Let e > 0 arbitrary. Clearly,
there exists t1 ¼ t1ðe; rÞ 2 Zþ and t2 ¼ t2ðe;T ; rÞ 2 Zþ such that ðRþ 2að2Rþ 2rÞÞexpð�t1Þ4e
and sðbðT þ t1ÞmðT þ t1Þ2að2Rþ 2rÞ; t2Þ4e: By virtue of (37) and definition of b; we obtain for
all t5t1:

bðt;T ; rÞ4maxfsðbðT þ t1ÞmðT þ t1Þ2að2Rþ 2rÞ; t� t1Þ; eg

which directly implies that bðt;T ; rÞ4e; for all t5t1 þ t2: Thus the robust output attractivity
property is satisfied for tðe;T ; rÞ :¼ t1ðe; rÞ þ t2ðe;T ; rÞ: By virtue of Fact II, we conclude that
system (28) is non-uniformly in time RGAOS.
ðiiiÞ ) ðivÞ Notice that since (2) satisfies the pair of hypotheses (A1) and (H2) (or (A2) and

(H2)), it follows that system (28) satisfies hypotheses (H1-2) (or (H2-3)). Since (28) is
non-uniformly in time RGAOS and satisfies hypotheses (H1-2) (or (H2-3)), it follows
from Proposition 2.2, that there exist functions V : Zþ � X! Rþ (V 2 CUðZþ � X;RþÞ),
a1; a2 of class K1; b;m of class Kþ and constant l 2 ð0; 1Þ such that:

a1ðjjHðt;xÞjjY þ mðtÞjjxjjXÞ4Vðt; xÞ4a2ðbðtÞjjxjjXÞ 8ðt; xÞ 2 Z
þ � X ð38aÞ

Vðtþ 1; f ðt; d;x; uÞÞ4lVðt;xÞ 8ðt;x; d; uÞ 2 Zþ � X�D�U

with jjujjU4pðtÞyðjjxjjXÞ ð38bÞ

Define for all ðt;x; uÞ 2 Zþ � X�U:

cðt;x; uÞ :¼ supfVðtþ 1; f ðt; d; x; uÞÞ; d 2 Dg ð39Þ

Clearly, hypothesis (A1) (which holds in any case; see remark about hypothesis (A2) above),
inequality (38a) in conjunction with Lemma 2.3 in Reference [24] imply the existence of
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functions o 2 K1 and q 2 Kþ such that cðt;x; uÞ4oðqðtÞjjxjjXÞ þ oðqðtÞjjujjUÞ: Moreover,
Lemma 2.3 in Reference [24] guarantees the existence of functions a3 2 K1 and f 2 Kþ such
that oðqðtÞy�1ðs=pðtÞÞÞ þ oðqðtÞsÞ4a3ðfðtÞsÞ for all t; s50: Combining the previous inequalities
and definition (39) we obtain:

sup Vðtþ 1; f ðt; d;x; uÞÞ; d 2 D; jjujjU4s; jjxjjX4y�1
s

pðtÞ

� �� �
4a3ðfðtÞsÞ for all t; s50 ð40Þ

We next establish inequality (29b), with a3 as previously, by considering the following two
cases:

n jjujjU4pðtÞyðjjxjjXÞ: In this case inequality (29b) is a direct consequence of (38b).
n jjujjU5pðtÞyðjjxjjXÞ: In this case inequality (29b) is a direct consequence of (40).

ðivÞ ) ðiÞ Consider the trajectory xðtÞ of (2) that corresponds to input ðd; uÞ 2MD �MU with
initial condition xðt0Þ ¼ x0 2 X and let c :¼ �logðlÞ > 0; VðtÞ ¼ Vðt; xðtÞÞ; bðtÞ :¼ expð2ctÞ
a3ðfðtÞjjuðtÞjjUÞ for all t5t0: Inequality (29b) implies that Vðtþ 1Þ4expð�cÞVðtÞ þ expð�2ctÞ
bðtÞ for all t5t0; which gives (using induction arguments):

VðtÞ4 expð�cðt� t0ÞÞVðt0Þ þ
expð2cÞ

expðcÞ � 1
expð�cðt� t0ÞÞ

� sup
t04t4t

ðexpð2ctÞa3ðfðtÞjjuðtÞjjUÞÞ for all t5t0 ð41Þ

By Lemma 2.3 in Reference [21] there exist functions r 2 K1 and g 2 Kþ such that

1

bðtÞ
a�12

expð2cÞ
expðcÞ � 1

expð2ctÞa3ðfðtÞsÞ
� �

4rðgðtÞsÞ

where b 2 Kþ; a2 2 K1 are the functions involved in (29a). The previous inequality, in
conjunction with inequality (29a), (41) and definition sðs; tÞ :¼ 2a�11 ð2expð�ctÞa2ðsÞÞ 2 KL
implies (26). The proof is complete. &

The following proposition provides a sharper characterization of the IOS property for the
time-varying case (2), which holds only for discrete-time systems with continuous dynamics. For
continuous-time systems the situation is more involved since the finite escape time phenomenon
can occur (see References [10, 11]). Further research is required for the case of discrete-time
systems with discontinuous dynamics.

Proposition 3.3
System (2) under the pair of hypotheses (A2), (H2), satisfies the non-uniform in time IOS
property if and only if the ‘unforced’ system (3) is non-uniformly in time RGAOS.

Proof
It is clear that if system (2) satisfies the non-uniform in time IOS property then the ‘unforced’
system (3) is non-uniformly in time RGAOS. Therefore, it suffices to prove the converse
statement. Specifically, we show that if the ‘unforced’ system (3) is non-uniformly in time
RGAOS, then statement (ii) of Proposition 3.2 holds for system (2). Consequently, by
equivalence of statements (i) and (ii) of Proposition 3.2 it follows that system (2) satisfies the
non-uniform in time IOS property.
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Notice that by virtue of hypothesis (A2), the ‘unforced’ system (3) satisfies hypothesis (H3).
Since the ‘unforced’ system (3) is non-uniformly in time RGAOS, it follows by Proposition 2.2,
that there exist functions V 2 CUðZþ � X;RþÞ; a1; a2 of class K1; *b of class Kþ and constant
c > 0 such that:

a1ðjjHðt;xÞjjYÞ4Vðt;xÞ4a2ðbðtÞjjxjjXÞ 8ðt;xÞ 2 Z
þ � X ð42aÞ

sup
d2D

Vðtþ 1; f ðt; d;x; 0ÞÞ4expð�cÞVðt;xÞ 8ðt;x; dÞ 2 Zþ � X�D ð42bÞ

Define the following function:

gðr; sÞ :¼ supfjVðtþ 1; f ðt; d;x; uÞÞ � Vðtþ 1; f ðt; d;x; 0ÞÞj; 04t4r; d 2 D; jjxjjX4r; jjujjU4sg

ð43Þ

Clearly, by virtue of the right-hand side inequality (42a) and hypothesis (A1) (which holds since
hypothesis (A2) holds; see Remark about Hypothesis (A2) above), it follows that gðr; sÞ5þ1
for all r; s50:Moreover, definition (43) guarantees that for every r; s50 the mappings gðr; �Þ and
gð�; sÞ are non-decreasing with gðr; 0Þ ¼ 0: Finally, hypothesis (A2) in conjunction with the fact
that V 2 CUðZþ � X;RþÞ guarantees that lims!0þ gðr; sÞ ¼ 0 for all r50: Consequently, Lemma
2.3 in Reference [24] guarantees the existence of functions a3 2 K1 and f 2 Kþ such that
gðr; sÞ4a3ðfðrÞsÞ for all r; s50: It follows by definition (43) that we have for all
ðt; x; uÞ 2 Zþ � X�U:

sup
d2D

Vðtþ 1; f ðt; d;x; uÞÞ � sup
d2D

Vðtþ 1; f ðt; d;x; 0ÞÞ

����
���� 4a3ðfðtÞjjujjUÞ þ a3ðfðjjxjjXÞjjujjUÞ

ð44Þ

By virtue of Fact IV, there exist functions m 2 Kþ; a 2 K1 and a constant R50 such that for
every ðt0;x0; d; uÞ 2 Zþ � X�MD �MU ; the corresponding solution xðtÞ of (2) with xðt0Þ ¼ x0
satisfies:

jjxðtÞjjX
mðtÞ

4að4RÞ þ að4jjx0jjXÞ þ sup
t2½t0;t�

að2jjuðtÞjjUÞ 8t5t0 ð45Þ

Using (42b), (44), Lemma 2.3 in Reference [24] and Corollary 10 and Remark 11 in Reference
[25], we obtain functions a5; a6 2 K1; q 2 Kþ such that for all ðt; x; d; uÞ 2 Zþ � X�D�U it
holds that:

sup
d2D

Vðtþ 1; f ðt; d; x; uÞÞ4 expð�cÞVðt; xÞ þ expð�2ctÞa5ðqðtÞjjujjUÞ

þ expð�2ctÞa6
jjxjjX
mðtÞ

� �
a5ðqðtÞjjujjUÞ ð46Þ
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Let ðt0; x0; d; uÞ 2 Zþ � X�MD�MU and consider the corresponding solution xðtÞ of (2) with
xðt0Þ ¼ x0: Let VðtÞ :¼ Vðt; xðtÞÞ for t5t0: By virtue of (45) and (46) we obtain:

Vðtþ 1Þ4 expð�cÞVðtÞ þ expð�2ctÞ sup
t2½t0;t�

a5ðqðtÞjjuðtÞjjUÞ

þ expð�2ctÞa6ð4að4RÞÞ sup
t2½t0;t�

a5ðqðtÞjjuðtÞjjUÞ

þ expð�2ctÞ sup
t2½t0;t�

ða5ðqðtÞjjuðtÞjjUÞÞ
2

þ
1

2
expð�2ctÞ sup

t2½t0;t�
ða6ð2að2jjuðtÞjjUÞÞÞ

2

þ
1

2
expð�2ctÞða6ð4að4jjx0jjXÞÞÞ

2

or

Vðtþ 1Þ4 expð�cÞVðtÞ þ expð�2ctÞ sup
t2½t0;t�

r1ðrðtÞjjuðtÞjjUÞ þ expð�2ctÞr2ðjjx0jjXÞ ð47Þ

where r1ðsÞ :¼ a5ðsÞ þ a6ð4að4RÞÞa5ðsÞ þ ða5ðsÞÞ
2 þ 1

2
ða6ð2að2sÞÞÞ

2; r2ðsÞ :¼
1
2
ða6ð4að4sÞÞÞ

2 and
rðtÞ :¼ qðtÞ þ 1: Inequality (47) in conjunction with (42a) directly implies for all t5t0:

a1ðjjHðt; xðtÞÞjjYÞ4 expð�cðt� t0ÞÞa2ð *bðt0Þjjx0jjXÞ

þ expð�cðt� t0ÞÞ sup
t2½t0;t�

expð2cÞ
expðcÞ � 1

r1ðrðtÞjjuðtÞjjUÞ

þ expð�cðt� t0ÞÞ
expð2cÞ

expðcÞ � 1
r2ðjjx0jjXÞ ð48Þ

Finally, inequality (48) implies inequality (27) with

sðs; tÞ :¼ 2a�11 2 expð�ctÞa2ðsÞ þ 2expð�ctÞ
expð2cÞ

expðcÞ � 1
r2ðsÞ

� �

bðtÞ :¼ *bðtÞ þ 1; dðtÞ :¼ rðtÞ and zðsÞ :¼ 2½expð2cÞ=ðexpðcÞ � 1Þ�r1ðsÞ: The proof is complete. &

Example 3.4
Consider the nonlinear finite-dimensional discrete-time time-varying system:

x1ðtþ 1Þ ¼ dðtÞx1ðtÞ

x2ðtþ 1Þ ¼ 2�tdðtÞjx1ðtÞj
1=2 þ uðtÞ

YðtÞ ¼ Hðt;xðtÞÞ :¼ x2ðtÞ

xðtÞ :¼ ðx1ðtÞ;x2ðtÞÞ 2 R2; t 2 Zþ; dðtÞ 2 ½�2; 2�; uðtÞ 2 R

ð49Þ

Since the corresponding ‘unforced’ system (49) with uðtÞ � 0 coincides with system (22), which
was studied in Example 2.3 and was proved to be non-uniformly in time RGAOS, we conclude
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by virtue of Proposition 3.3 that system (49) satisfies the non-uniform in time IOS property. In
order to determine the functions s 2 KL; b; g 2 Kþ and r 2 K1 for which (26) is satisfied, we
have to consider the continuous function Vðt; xÞ :¼ expð�tÞjx1j þ jx2j (defined in Example 2.3),
which clearly satisfies the following inequality for all ðt;x; d; uÞ 2 Zþ �R2 � ½�2; 2� �R:

Vðtþ 1; dx1; 2
�td jx1j

1=2 þ uÞ4 expð�t� 1Þjd jjx1j þ 2�tjd jjx1j
1=2 þ juj

4 2e�1expð�tÞjx1j þ 2�tþ1jx1j
1=2 þ juj ð50Þ

Let xðtÞ denote the unique solution of (49) initiated from x0 2 R2 at time t0 2 Zþ and
corresponding to ðd; uÞ 2M½�2;2� �MR: It can be easily shown (using induction) that the
component x1ðtÞ of the solution satisfies the estimate jx1ðtÞj42ðt�t0Þjx0j for all t5t0: Let
VðtÞ :¼ Vðt;xðtÞÞ and notice that inequality (50) in conjunction with the previous estimate for
x1ðtÞ gives:

Vðtþ 1Þ42e�1VðtÞ þ 2ðt=2Þþ1jx0j1=2 þ juðtÞj 8t5t0 ð51Þ

Using induction arguments and inequality (51), we obtain the following estimate for VðtÞ:

VðtÞ4 expð�cðt� t0ÞÞ Vðt0Þ þ
4

1� 2e�1
jx0j

� �

þ
2

1� 2e�1
sup

t04t4t
ðexpð�cðt� tÞÞjuðtÞjÞ

where c :¼ logð2=ð1þ 2e�1ÞÞ: The latter inequality combined with (23) implies (26) with
sðs; tÞ :¼ 6Kexpð�ctÞs; bðtÞ � 1; rðsÞ :¼ 1

3 s and gðtÞ � 1; where K :¼ 1=ð1� 2e�1Þ:

4. THE ROBUST OUTPUT FEEDBACK STABILIZATION (ROFS) PROBLEM

In this section we first introduce the reader to the notion of the ROFS problem for discrete-time
systems (see [26] for the ROFS problem for continuous-time systems). Throughout this section
we make the following technical assumption for the ‘measured output’ map h : Zþ � X! Y0

involved in (4):
(A3) The output map h 2 CUðZþ � X;Y0Þ involved in (4), with hðt; 0Þ ¼ 0 for all t 2 Zþ; satisfies:

(1) There exists a set S � Y0 such that S ¼ hðt;XÞ for all t 2 Zþ:
(2) There exists a function a 2 CUðY0;SÞ; such that for every y 2 S; it holds that aðyÞ ¼ y:

Definition 4.1
Consider system (2a) with output maps given by (2b) and (4) under hypotheses (A2-3) and (H2).
The output Y ¼ Hðt; xÞ is called the ‘stabilized output’ while the output y ¼ hðt;xÞ is called the
‘measured output’.

(1) The problem of continuous static ROFS for (2) with measured output y ¼ hðt; xÞ and
stabilized output Y ¼ Hðt;xÞ is said to be globally solvable if there exists a continuous
function k 2 CUðZþ � S;UÞ (where S is the set involved in hypothesis (A3)) with
f ðt; d; 0; kðt; 0ÞÞ ¼ 0 for all ðt; dÞ 2 Zþ �D; such that the closed-loop system (2a,b) with
uðtÞ ¼ kðt; hðt;xðtÞÞÞ is non-uniformly in time RGAOS. Particularly, we say that the
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feedback function k 2 CUðZþ � S;UÞ globally solves the continuous static ROFS
problem for (2) with measured output y ¼ hðt;xÞ and stabilized output Y ¼ Hðt;xÞ:
Moreover, if the set H�1ðt; 0Þ is positively invariant for the closed-loop system (2a,b) with
uðtÞ ¼ kðt; hðt;xðtÞÞÞ; then we say that the continuous static ROFS problem for (2) with
measured output y ¼ hðt; xÞ and stabilized output Y ¼ Hðt; xÞ is globally strongly
solvable.

(2) The problem of continuous dynamic ROFS for (2) with measured output y ¼ hðt; xÞ and
stabilized output Y ¼ Hðt; xÞ is said to be globally solvable if there exist a normed linear
space W ; continuous functions k 2 CUðZþ � S �W ;UÞ; g 2 CUðZþ � S �W ;WÞ with
f ðt; d; 0; kðt; 0; 0ÞÞ ¼ 0; gðt; 0; 0Þ ¼ 0 for all ðt; dÞ 2 Zþ �D; such that the following system
with state space X�W is non-uniformly in time RGAOS:

xðtþ 1Þ ¼ f ðt; dðtÞ;xðtÞ; kðt; hðt; xðtÞÞ;wðtÞÞÞ

wðtþ 1Þ ¼ gðt; hðt;xðtÞÞ;wðtÞÞ

YðtÞ ¼ Hðt; xðtÞÞ

ð52Þ

Moreover, if the set H�1ðt; 0Þ �W is positively invariant for system (52) then we say the
continuous dynamic ROFS problem for (2) with measured output y ¼ hðt; xÞ and
stabilized output Y ¼ Hðt;xÞ is globally strongly solvable.

The following result is an immediate consequence of Proposition 2.2 and provides necessary
Lyapunov-like conditions for the solvability of the static ROFS problem.

Theorem 4.2
Consider the ROFS problem for (2) with measured output given by (4) under hypotheses (A2-3)
and (H2). Suppose that the continuous static ROFS problem for (2) with measured output
y ¼ hðt;xÞ and stabilized output Y ¼ Hðt;xÞ is globally solvable. Then there exist functions
V 2 CUðZþ � X;RþÞ; a1; a2 2 K1; b1; b2 2 K

þ and constant l 2 ð0; 1Þ such that the following
inequalities hold:

a1ðjjHðt; xÞjjYÞ4Vðt;xÞ4a2ðb2ðtÞjjxjjXÞ 8ðt;xÞ 2 Z
þ � X ð53aÞ

inf
u2U

supfVðtþ 1; f ðt; d; x; uÞÞ � lVðt;xÞ; x 2 h�1ðt; yÞ; d 2 Dg 40 8ðt; yÞ 2 Zþ � S ð53bÞ

If the static ROFS problem for (2) with measured output y ¼ hðt;xÞ and stabilized output
Y ¼ Hðt;xÞ is globally strongly solvable, then the following condition is additionally
satisfied:

inf
u2U nðt;yÞ

supfVðtþ 1; f ðt; d;x; uÞÞ � lVðt; xÞ; x 2 h�1ðt; yÞ; d 2 Dg40

8t50 and for all y 2 S for which H�1ðt; 0Þ \ h�1ðt; yÞ=| ð53cÞ

where

U nðt; yÞ :¼fu 2 U;Hðtþ 1; f ðt; d; x; uÞÞ ¼ 0 for all d 2 D and x 2 H�1ðt; 0Þ \ h�1ðt; yÞg

ð53dÞ
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Finally, if the feedback function k 2 CUðZþ � S;UÞ that globally solves the static ROFS
problem for (2) with measured output y ¼ hðt;xÞ and stabilized output Y ¼ Hðt;xÞ satisfies
kðt; 0Þ ¼ 0 for all t 2 Zþ; then the following condition is satisfied:

supfVðtþ 1; f ðt; d;x; 0Þ � lVðt;xÞ; x 2 h�1ðt; 0Þ; d 2 Dg40 8t 2 Zþ ð53eÞ

We also notice the following fact, which combined with Theorem 4.2 provides necessary
conditions for the solvability of the continuous dynamic ROFS problem:

Fact V
The continuous dynamic ROFS problem for (2) with measured output y ¼ hðt;xÞ and stabilized
output Y ¼ Hðt;xÞ is globally (strongly) solvable if and only if the continuous static ROFS
problem for the following system:

xðtþ 1Þ ¼ f ðt; dðtÞ; xðtÞ; uðtÞÞ

wðtþ 1Þ ¼ vðtÞ

ðxðtÞ;wðtÞÞ 2 X�W ; t 2 Zþ; dðtÞ 2 D; ðuðtÞ; vðtÞÞ 2 U �W

ð54Þ

with stabilized output Y ¼ Hðt;xÞ and measured output *y ¼ ðhðt;xÞ;wÞ is globally (strongly)
solvable.

We next give the notion of robust complete observability for discrete-time systems. The
definition given here directly extends the corresponding notions given in References [14, 15],
concerning autonomous continuous-time systems.

Definition 4.3
Consider the system (2a) and let ðdi; uiÞ 2 D�U; i ¼ 0; 1; . . . and define recursively the following
family of continuous mappings:

F0ðt;xÞ ¼ x; F1ðt;x; dð1Þ; uð1ÞÞ ¼ f ðt; d0;x; u0Þ

Fiðt; x; d ðiÞ; uðiÞÞ :¼ f ðtþ i � 1; di�1;Fi�1ðt;x; dði�1Þ; uði�1ÞÞ; ui�1Þ; i52

y0ðt;xÞ ¼ hðt;xÞ; yiðt;x; dðiÞ; uðiÞÞ :¼ hðtþ i;Fiðt; x; d ðiÞ; uðiÞÞÞ; i51

where d ðiÞ :¼ ðd0; . . . ; di�1Þ; uðiÞ :¼ ðu0; . . . ; ui�1Þ for i51: Let an integer p51 and define the
continuous mapping for all ðt;x; d ðpÞ; uðpÞÞ 2 Rþ � X�Dp �Up:

yðpÞðt;x; dðpÞ; uðpÞÞ :¼ ðy0ðt; xÞ; . . . ; yp�1ðt;x; dðp�1Þ; uðp�1ÞÞÞ

We say that a continuous function k 2 CUðZþ � X;WÞ; where W is a normed linear space, is
robustly completely observable from the output y ¼ hðt; xÞ with respect to (2a) if there exists an
integer p51 and a continuous function (called the reconstruction map) C 2 CUðZþ � S �
Sp �Up;WÞ such that for all ðt;x; dðpÞ; uðpÞÞ 2 Zþ � X�Dp �Up it holds that

kðtþ p;Fpðt;x; dðpÞ; uðpÞÞÞ ¼ Cðtþ p; ypðt; x; d ðpÞ; uðpÞÞ; yðpÞðt; x; d ðpÞ; uðpÞÞ; uðpÞÞ ð55Þ

We say that system (2a) is robustly completely observable from the output y ¼ hðt;xÞ if the
identity function kðt; xÞ ¼ x is completely observable.
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Remark 4.4
(a) Notice that for every input ðd; uÞ 2MD �MU and for every ðt0; x0Þ 2 Zþ � X; the unique
solution xðtÞ of (2a) corresponding to ðd; uÞ and initiated from x0 at time t0; satisfies the
following relation:

kðt;xðtÞÞ ¼Cðt; yðtÞ; yðt� pÞ; yðt� pþ 1Þ; . . . ; yðt� 1Þ; uðt� pÞ; . . . ; uðt� 1ÞÞ 8t5t0 þ p

Following the terminology in Reference [27], if system (2a) is robustly completely observable
from the output y ¼ hðt;xÞ then every control ðd; uÞ 2MD �MU final-state distinguishes
between any two events in time p 2 Zþ:

(b) Notice that every continuous function of the measured output kðt;xÞ ¼ yðt; hðt;xÞÞ; where
y : Zþ � S !W is a continuous function with the following property:

‘for every pair of bounded sets I � Zþ; A � S and for every e > 0 the set yðI � AÞ is bounded
and there exists d > 0 such that jjyðt; yÞ � yðt; y0ÞjjW5e; for all t 2 I ; y; y0 2 A with
jjy� y0jjY05d’ is robustly completely observable from the measured output.

(c) Notice that since 0 2 X is an equilibrium point for (2) and hðt; 0Þ ¼ 0 for all t50; by setting
x ¼ 0; uðpÞ ¼ 0 in (55), we obtain:

kðt; 0Þ ¼ Cðt; 0; 0Þ 8t5p

Without loss of generality we may assume that the reconstruction map C is continuously
extended to Zþ � S � Sp �Up so that the above equality holds for all t 2 Zþ:

The following proposition provides sufficient conditions for the solvability of the ROFS
problem for (2).

Proposition 4.5
Consider the ROFS problem for (2) with measured output given by (4) under hypotheses (A2-3)
and (H2). Suppose that:

(i) There exists a continuous function k 2 CUðZþ � X;UÞ with f ðt; d; 0; kðt; 0ÞÞ ¼ 0 for all
ðt; dÞ 2 Zþ �D; such that the closed-loop system (2a,b) with uðtÞ ¼ kðt;xðtÞÞ is
non-uniformly in time RGAOS.

(ii) The feedback function k 2 CUðZþ � X;UÞ is robustly completely observable from the
output y ¼ hðt;xÞ with respect to (2a).

Then the continuous dynamic ROFS problem for (2) with measured output y ¼ hðt;xÞ and
stabilized output Y ¼ Hðt; xÞ is globally solvable.

Proof
Since k 2 CUðZþ � X;UÞ is robustly completely observable from the output y ¼ hðt; xÞ with
respect to (2a) there exists an integer p51 and a reconstruction map C 2 CUðRþ � S � Sp �
Up;UÞ such that for all ðt; x; dðpÞ; uðpÞÞ 2 Zþ � X�Dp �Up (55) holds. Consider the following
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system:
w1ðtþ 1Þ ¼ yðtÞ

w2ðtþ 1Þ ¼ w1ðtÞ

..

.

wpðtþ 1Þ ¼ wp�1ðtÞ

wpþ1ðtþ 1Þ ¼ uðtÞ

wpþ2ðtþ 1Þ ¼ wpþ1ðtÞ

..

.

w2pðtþ 1Þ ¼ w2p�1ðtÞ

uðtÞ ¼ Cðt; yðtÞ;PSðwðtÞÞÞ

wiðtÞ 2 S � Y0; i ¼ 1; . . . ; p

wiðtÞ 2 U; i ¼ pþ 1; . . . ; 2p

wðtÞ :¼ ðw1ðtÞ; . . . ;w2pðtÞÞ 2W :¼ ðY0Þp �Up; t 2 Zþ

ð56Þ

where

PSðwÞ :¼ ðaðwpÞ; aðwp�1Þ; . . . ; aðw1Þ;w2p;w2p�2; . . . ;wpþ1Þ ð57Þ

and a : Y0 ! S is the continuous function involved in hypothesis (A3). Clearly, for every
ðt0;x0;w0; dÞ 2 Zþ � X�W �MD the solution of (2) with (56) and initial condition ðxðt0Þ;
wðt0ÞÞ ¼ ðx0;w0Þ corresponding to input d 2MD satisfies for all t5t0 þ p:

wiðtÞ ¼ yðt� iÞ; i ¼ 1; . . . ; p

wpþiðtÞ ¼ uðt� iÞ; i ¼ 1; . . . ; p
ð58Þ

and consequently by virtue of hypothesis (A3) and definition (57) we obtain that:

PSðwðtÞÞ ¼ ðwpðtÞ;wp�1ðtÞ; . . . ;w1ðtÞ;w2pðtÞ;w2p�1ðtÞ; . . . ;wpþ1ðtÞÞ

for all t5t0 þ p ð59Þ

It follows from (58) and (59) and Remark 4.4 that:

uðtÞ ¼ kðt;xðtÞÞ ¼ Cðt; yðtÞ;PSðwðtÞÞÞ 8t5t0 þ p ð60Þ

Equality (60) shows that the implemented control action given by uðtÞ ¼ Cðt; yðtÞ;PSðwðtÞÞÞ
coincides with the control action given by the state feedback law uðtÞ ¼ kðt;xðtÞÞ after p time
units. Since the closed-loop system (2a,b) with uðtÞ ¼ kðt;xðtÞÞ is non-uniformly in time
RGAOS, there exist functions s 2 KL; b 2 Kþ such that for every d 2MD; ðt0;x0Þ 2 Zþ � X; the
unique solution xðtÞ of (2a,b) with uðtÞ ¼ kðt;xðtÞÞ initiated from x0 2 X at time t0 2 Zþ and
corresponding to d 2MD; satisfies (6). It follows from (60) that for every d 2MD; ðt0; x0;w0Þ 2
Zþ � X�W ; the unique solution ðxðtÞ;wðtÞÞ of (2) with (56) and initial condition ðxðt0Þ;
wðt0ÞÞ ¼ ðx0;w0Þ corresponding to input d 2MD satisfies

jjHðt;xðtÞÞjjY4sðbðt0 þ pÞjjxðt0 þ pÞjjX; t� t0 � pÞ 8t5t0 þ p ð61Þ
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Notice that by virtue of Remark 4.4(c) and since f ðt; d; 0; kðt; 0ÞÞ ¼ 0 for all ðt; dÞ 2 Zþ �D; we
may conclude that 0 2 X�W is an equilibrium point for system (2) with (56). Moreover, by
virtue of hypotheses (A2-3) and (H2), it follows that system (2) with (56) satisfies hypotheses
(H2-3) and consequently by virtue of Fact I, there exist functions m 2 Kþ; a 2 K1; such that for
every d 2MD; ðt0;x0;w0Þ 2 Zþ � X�W ; the unique solution xðtÞ of (2) with (56) initiated from
ðxðt0Þ;wðt0ÞÞ ¼ ðx0;w0Þ at time t050 and corresponding to d 2MD; satisfies:

jjxðtÞjjX þ jjwðtÞjjW4mðtÞaðjjx0jjX þ jjw0jjW Þ 8t5t0 ð62Þ

Combining estimates (61) and (62) we conclude that the closed-loop system (2) with (56) satisfies
the robust output attractivity property (property P2 of Definition 2.1). By virtue of Fact II, the
closed-loop system (2) with (56) is non-uniformly in time RGAOS. The proof is complete. &

An immediate consequence of Proposition 4.5 is the following proposition, which provides a
necessary and sufficient condition for the solvability of the dynamic ROFS problem for (2).

Proposition 4.6 (Separation principle)
Consider the ROFS problem for (2) with measured output given by (4) under hypotheses (A2-3)
and (H2). The following statements are equivalent:

(a) There exist a normed linear space W 0; continuous functions k 2 CUðZþ � X�W 0;UÞ;
g 2 CUðZþ � X�W 0;W 0Þ with f ðt; d; 0; kðt; 0; 0ÞÞ ¼ 0; gðt; 0; 0Þ ¼ 0 for all ðt; dÞ 2
Zþ �D; such that the following system with state space X�W 0 is non-uniformly in
time RGAOS:

xðtþ 1Þ ¼ f ðt; dðtÞ;xðtÞ; kðt; xðtÞ;w0ðtÞÞÞ

w0ðtþ 1Þ ¼ gðt;xðtÞ;w0ðtÞÞ

YðtÞ ¼ Hðt;xðtÞÞ

ð63Þ

Moreover, the functions k 2 CUðZþ � X�W 0;UÞ and g 2 CUðZþ � X�W 0;W 0Þ are
robustly completely observable from the output y0 ¼ ðhðt;xÞ;w0Þ with respect to the
system:

xðtþ 1Þ ¼ f ðt; dðtÞ;xðtÞ; u1ðtÞÞ

w0ðtþ 1Þ ¼ u2ðtÞ

ðxðtÞ;w0ðtÞÞ 2 X�W 0; uðtÞ ¼ ðu1ðtÞ; u2ðtÞÞ 2 U �W 0; dðtÞ 2 D; t 2 Zþ
ð64Þ

(b) The continuous dynamic ROFS problem for (2) with measured output y ¼ hðt; xÞ and
stabilized output Y ¼ Hðt;xÞ is globally solvable.

Implication (a) ) (b) of Proposition 4.6 is an immediate application of Proposition 4.5 to the
control system (64) with input ðu1; u2Þ: Implication (b))(a) of Proposition 4.6 is an immediate
consequence of Remark 4.4(b) and Definitions 4.1, 4.3. We remark that since the component
xðtÞ of the solution of (64) does not depend on the input u2; the requirement that the functions
k 2 CUðZþ � X�W 0;UÞ and g 2 CUðZþ � X�W 0;W 0Þ are robustly completely observable
from the output y0 ¼ ðhðt; xÞ;w0Þ with respect to the system (64) implies the requirement that
for every fixed w0 2W 0 the functions ðt;xÞ 2 Zþ � X! kðt;x;w0Þ 2 U and ðt;xÞ 2 Zþ � X!
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gðt; x;w0Þ 2W 0 are robustly completely observable from the output y ¼ hðt;xÞ with respect to
system (2).

Example 4.7
Consider the ROFS problem for the system

x1ðtþ 1Þ ¼ x2ðtÞ

x2ðtþ 1Þ ¼ x22ðtÞ þ uðtÞ

x3ðtþ 1Þ ¼ dðtÞx3ðtÞ þ expðtÞx2ðtÞ

YðtÞ ¼ xðtÞ

x :¼ ðx1;x2;x3Þ 2 R3; uðtÞ 2 R; t 2 Zþ; dðtÞ 2 ½�r; r�

ð65Þ

where r 2 ½0; 1Þ; with measured output y ¼ x1: First notice that the feedback function
kðt;xÞ :¼ �x22 stabilizes system (65), non-uniformly in time. We prove this claim by considering
the Lyapunov function Vðt;xÞ :¼ jx1j þ 3expðtÞjx2j þ jx3j; which clearly satisfies the following
inequalities:

jY j ¼ jxj4Vðt; xÞ45expðtÞjxj 8ðt; xÞ 2 Zþ �R3 ð66aÞ

Vðtþ 1;x2;x
2
2 þ kðt; xÞ; dx3 þ expðtÞx2Þ

4ð1þ expðtÞÞjx2j þ rjx3j

4max 2
3
; r

	 

Vðt; xÞ 8ðt;x; dÞ 2 Zþ �R3 � ½�r; r� ð66bÞ

and since max 2
3
; r

	 

51; by virtue of Proposition 2.2, we conclude that the closed-loop system

(65) with uðtÞ ¼ kðt;xðtÞÞ is non-uniformly in time RGAOS. Moreover, the feedback function
kðt;xÞ :¼ �x22 is robustly completely observable from the output y ¼ x1: Particularly, we define
the continuous mappings (following the notation of Definition 4.3):

F0ðt; xÞ ¼ x; F1ðt;x; d ð1Þ; uð1ÞÞ ¼

x2

x22 þ u0

d0x3 þ expðtÞx2

0
BB@

1
CCA y0ðt; xÞ ¼ x1; y1ðt;x; d ð1Þ; uð1ÞÞ :¼ x2

Clearly, we have:

kðtþ 1;F1ðt;x; d ð1Þ; uð1ÞÞÞ ¼ Cðtþ 1; y1; y0; u0Þ :¼ �ðy21 þ u0Þ
2

Consequently, the closed-loop system (65) with:

wðtþ 1Þ ¼ uðtÞ

uðtÞ ¼ �ðy2ðtÞ þ wðtÞÞ2

wðtÞ 2 R; t 2 Zþ

is non-uniformly in time RGAOS.
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5. CONCLUSIONS

The notions of non-uniform in time RGAOS and non-uniform in time IOS are studied in the
present paper for time-varying discrete-time systems. Characterizations and links between these
notions are provided. Particularly, it is shown that a discrete-time system with continuous
dynamics satisfies the non-uniform in time IOS property if and only if the corresponding
unforced system is non-uniformly in time RGAOS. The ROFS problem is studied next.
Necessary and sufficient conditions for the solvability of this problem are provided.
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