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Abstract

Lyapunov-like characterizations for non-uniform in time and uniform robust global asymptotic
stability of uncertain systems described by retarded functional differential equations are provided.
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1. Introduction

In this paper we provide Lyapunov characterizations for non-uniform in time and uni-
form Robust Global Asymptotic Stability (RGAS) for systems described by time-varying
Retarded Functional Differential Equations (RFDEs). The notion of non-uniform in time
RGAS is introduced in [11] for continuous time finite-dimensional systems and in [10] for
a wide class of systems including discrete-time systems and systems described by RFDEs.
This notion has been proved to be fruitful for the solution of several problems in mathemat-
ical control theory (see [11,12]) and is a special case of the concept of stability with respect
to two measures introduced in [17]. The notion of uniform RGAS that we adopt in this
paper is an extension of the corresponding notion for finite-dimensional continuous-time
uncertain systems (see [4,19]).

The motivation for the extension of non-uniform in time and uniform RGAS to uncer-
tain systems described by RFDEs is strong, since such models are used frequently for
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the description of engineering systems (see [8,25]). It should be emphasized that in many
cases where hybrid open-loop/feedback stabilizing control laws are proposed for finite-
dimensional continuous-time systems, the closed-loop system may be considered as a sys-
tem described by time-varying RFDEs (infinite-dimensional). For example, in [24] analytic
driftless control systems of the following form are considered:

ẋ(t) = f (x(t), u(t)) :=
m∑

i=1

fi(x(t))ui(t),

x(t) ∈ Rn, u(t) := (u1(t), . . . , um(t))′ ∈ Rm.

The authors in [24] provide strategies for the construction of control laws of the form
u(t) = k(t, x(t), x(lr)) for t ∈ [lr, (l + 1)r), where l is a non-negative integer and r > 0
denotes the updating time-period of the control. Notice that the closed-loop system is
described by the equations

ẋ(t) = f

(
x(t), k

(
t, x(t), x

([
t

r

]
r

)))
,

x(t) ∈ Rn, t �0,

where [t/r] denotes the integer part of t/r . The above system may be considered as a
system described by RFDEs and is time-varying even if k is independent of time. The
same comments apply for the synchronous controller switching strategies proposed in [26].
The possibility of switching control laws using distributed delays was exploited in [22].
However, it should be emphasized that hybrid systems with asynchronous switching or state
space depending switching rules (see for example [3,26]) in general cannot be described by
RFDEs with Lipschtiz continuous right-hand sides.

Lyapunov functions and functionals play an important role to feedback synthesis and
design in control theory and several important results have been established concerning
Lyapunov-like descriptions of uniform global asymptotic stability (UGAS) (see [6–8,16]
and the references therein). Our goal is to establish Lyapunov characterizations for the
concepts of non-uniform in time and uniform RGAS analogous to the corresponding charac-
terizations given in [4,19] for continuous-time finite-dimensional uncertain systems, which
overcome the limitations imposed by previous works. Particularly, our Lyapunov charac-
terizations apply

• to systems with disturbances that take values in a (not necessarily compact) given set,
• to systems described by RFDEs with right-hand sides which are not necessarily bounded

with respect to time.

The difficulties in verifying stability properties for the time-varying case with right-hand
sides, which are not necessarily bounded with respect to time, are explained in [7,6]. Our
motivation to provide Lyapunov characterizations that cover the above case is strong and is
explained below:

• As in the finite-dimensional case, where the Lyapunov characterization for systems with
disturbances given in [19] led to Lyapunov characterizations of the input-to-state stability
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(ISS, see [27]) property, we believe that our results will similarly lead to Lyapunov
characterizations of the ISS property for systems described by RFDEs.

• As in the finite-dimensional case, where the Lyapunov characterization given in [19]
led to Lyapunov-like conditions for the robust stabilization of finite-dimensional con-
trol systems by means of continuous static feedback, we believe that our results can
be used for the expression of Lyapunov-like conditions for the robust stabilization of
systems described by RFDEs by means of continuous distributed delay static
feedback.

• We believe that our results can be used for the study of the robustness properties with
respect to modeling, actuator and measurement errors of the closed-loop system for finite-
dimensional control systems under hybrid feedback control strategies or continuous
distributed delay static feedback (as explained previously).

• As in the finite-dimensional case, where it was shown that certain control systems cannot
be uniformly stabilized by means of time-invariant feedback laws but can be stabilized
non-uniformly in time by means of time-varying static feedback (see [11,12]), we believe
that our results can be used for exploitation of the stabilizing capabilities of time-varying
distributed delay feedback and this clearly motivates the study of non-uniform in time
RGAS and its Lyapunov characterizations.

It should be emphasized that the studies described above cannot be performed using the
existing Lyapunov characterizations of stability for systems described by RFDEs.

Viability issues for systems described by functional differential inclusions (and thus
uncertain systems described by RFDEs) were considered in [2]. Lyapunov-like condi-
tions that guarantee stability with respect to part of the variables for systems described
by RFDEs are provided in [30, Chapter 6]. We note that Lyapunov functionals for lin-
ear time-delay systems were constructed in [5,14,23]. Stability conditions are given in
[6,7,15,16] for time-varying time-delay systems and in [18,31] for time-varying integrodif-
ferential systems. Recently in many works the problem of feedback stabilization of systems
described by RFDEs was studied (see for instance [9,20,21,25]). It should be emphasized
that the literature concerning issues of stability and stabilization of linear time-delay sys-
tems is vast and the previous references are only given as pointers. Note also that in the
present paper we are not concerned with stability conditions given by Razumikhin functions,
since such conditions resemble “small-gain” conditions with Lyapunov-like characteristics
(see [29]).

In the present work we provide Lyapunov-like conditions which demand the infinitesimal
decrease property to hold only on subsets of the state space which contain the solutions of
the system (i.e., the infinitesimal decrease property holds only after some time) along with
an additional property that guarantees forward completeness on the critical time interval
when the infinitesimal decrease property does not hold, namely the property V̇ �V , where
V denotes the Lyapunov functional and V̇ the time derivative of the Lyapunov functional
evaluated along the solutions of the system (Theorems 2.9 and 2.10). This property was
shown to be necessary and sufficient for forward completeness of continuous-time finite-
dimensional systems in [1]. Moreover, the “weaker” property that we demand in the present
paper is utilized for the construction of Lyapunov functionals for time-delay systems (see
Examples 2.12 and 2.13).
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Notations: Throughout this paper we adopt the following notations:

• For a vector x ∈ Rn we denote by |x| its usual Euclidean norm and by x′ its transpose.
For x ∈ C0([−r, 0];Rn) we define ‖x‖r := max�∈[−r,0]|x(�)|.

• We denote by [R] the integer part of the real number R, i.e., the greatest integer, which
is less than or equal to R.

• By C0(A; �), we denote the class of continuous functions on A, which take values in �.
• E denotes the class of non-negative C0 functions � : R+ → R+, for which it holds:∫ +∞

0 �(t) dt < + ∞ and limt→+∞ �(t) = 0.
• Z+ denotes the set of positive integers.
• We denote by K+ the class of positive C0 functions defined on R+. We say that a

function � : R+ → R+ is positive definite if �(0) = 0 and �(s) > 0 for all s > 0.
By K we denote the set of positive definite, increasing and continuous functions. We
say that a positive definite, increasing and continuous function � : R+ → R+ is of
class K∞ if lims→+∞ �(s) = +∞. By KL we denote the set of all continuous functions
� = �(s, t) : R+ × R+ → R+ with the properties: (i) for each t �0 the mapping
�(·, t) is of class K; (ii) for each s�0, the mapping �(s, ·) is non-increasing with
limt→+∞ �(s, t) = 0.

2. Robust global asymptotic stability (RGAS) for systems described by RFDEs

This section of the paper is structured as follows. In the first subsection (Section 2.1) we
provide all the background material that the reader needs to know in order to understand
the results of the present paper. In the next subsection (Section 2.2) the reader is introduced
to the stability notions used in the present paper as well as to some preliminary results
already presented in [10]. Section 2.3 is devoted to the presentation of some tools of non-
smooth analysis that are used for the expression of the infinitesimal decrease property of
the Lyapunov functionals, while Section 2.4 is devoted to the statement of our main results
and the presentation of examples.

2.1. Background material on systems described by RFDEs

Let x : [a − r, b) → Rn with b > a�0 and r �0. We define for t ∈ [a, b)

Tr(t)x := x(t + �); � ∈ [−r, 0]. (2.1)

Let D ⊆ Rl be a non-empty set and MD the class of all right-continuous mappings d :
R+ → D, with the following property:

“there exists a countable set Ad ⊂ R+ which is either finite or Ad ={tdk ; k=1, . . . ,∞}
with tdk+1 > tdk > 0 for all k = 1, 2, . . . and lim tdk = +∞, such that the mapping t ∈
R+\Ad → d(t) ∈ D is continuous”.



594 I. Karafyllis / Nonlinear Analysis 64 (2006) 590–617

We denote by x(t) with t � t0 the unique solution of the initial-value problem:

ẋ(t) = f (t, Tr(t)x, d(t)), t � t0,

x(t) ∈ Rn, d(·) ∈ MD , (2.2)

with initial condition Tr(t0)x = x0 ∈ C0([−r, 0];Rn), where r �0 is a constant and the
mapping f : R+ ×C0([−r, 0];Rn)×D → Rn with f (t, 0, d)=0 for all (t, d) ∈ R+ ×D

satisfies the following hypotheses:
(H1) The mapping (x, d) → f (t, x, d) is continuous for each fixed t �0 and such that

for every bounded I ⊆ R+ and for every bounded S ⊂ C0([−r, 0];Rn), there exists a
constant L�0 such that

(x(0) − y(0))′(f (t, x, d) − f (t, y, d))�L max
�∈[−r,0] |x(�) − y(�)|2 = L‖x − y‖2

r ,

∀t ∈ I, ∀(x, y) ∈ S × S, ∀d ∈ D.

This assumption is equivalent to the existence of a continuous function L : R+×R+ → R+
such that for each fixed t �0 the mappings L(t, ·) and L(·, t) are non-decreasing, with the
following property:

(x(0) − y(0))′(f (t, x, d) − f (t, y, d))�L(t, ‖x‖r + ‖y‖r )‖x − y‖2
r ,

∀(t, x, y, d) ∈ R+ × C0([−r, 0];Rn) × C0([−r, 0];Rn) × D. (2.3)

(H2) For every bounded � ⊂ R+ × C0([−r, 0];Rn) the image set f (� × D) ⊂ Rn is
bounded.

(H3) There exists a countable set A ⊂ R+, which is either finite or A={tk; k=1, . . . ,∞}
with tk+1 > tk > 0 for all k = 1, 2, . . . and lim tk = +∞, such that the mapping (t, x, d) ∈
(R+\A) × C0([−r, 0];Rn) × D → f (t, x, d) is continuous. Moreover, for each fixed
(t0, x, d) ∈ R+ × C0([−r, 0];Rn) × D, we have limt→t+0

f (t, x, d) = f (t0, x, d).

(H4) For every � > 0, t ∈ R+, there exists � := �(�, t) > 0 such that sup{|f (�, x, d)|; � ∈
R+, d ∈ D, |� − t | + ‖x‖r < �} < �.

It is clear that for everyd ∈ MD the composite mapf (t, x, d(t)) satisfies the Caratheodory
condition onR+ ×C0([−r, 0];Rn) and consequently, by virtue of Theorem 2.1 in [8] (and
its extension given in paragraph 2.6 of the same book), for every (t0, x0, d) ∈ R+ ×
C0([−r, 0];Rn) × MD there exists h > 0 and at least one continuous function x : [t0 −
r, t0 + h] → Rn, which is absolutely continuous on [t0, t0 + h] with Tr(t0)x = x0 and
ẋ(t) = f (t, Tr(t)x, d(t)) almost everywhere on [t0, t0 + h]. Let x : [t0 − r, t0 + h] → Rn

and y : [t0 − r, t0 + h] → Rn two solutions of (2.2) with initial conditions Tr(t0)x = x0
and Tr(t0)y = y0 and corresponding to the same d ∈ MD . Evaluating the derivative of
the absolutely continuous map z(t) = |x(t) − y(t)|2 on [t0, t0 + h] in conjunction with
hypothesis (H1), we obtain the integral inequality:

|x(t) − y(t)|2 � |x(t0) − y(t0)|2 + 2
∫ t

t0

L̃‖Tr(�)x − Tr(�)y‖2
r d�,

∀t ∈ [t0, t0 + h],
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where L̃ := L(t, a(x, y)), L(·) is the function involved in (2.3) and a(x, y)

:= supt∈[t0−r,t0+h]|x(t)| + supt∈[t0−r,t0+h]|y(t)|. Consequently, we obtain

‖Tr(t)(x − y)‖2
r �‖x0 − y0‖2

r + 2
∫ t

t0

L̃‖Tr(�)(x − y)‖2
r d�, ∀t ∈ [t0, t0 + h],

and immediate application of the Gronwall–Bellman inequality gives

‖Tr(t)(x − y)‖r �‖x0 − y0‖r exp(L̃(t − t0)), ∀t ∈ [t0, t0 + h]. (2.4)

Thus, we conclude that under hypotheses (H1)–(H4), for every (t0, x0, d) ∈ R+ × C0

([−r, 0];Rn) × MD there exist h > 0 and exactly one continuous function x : [t0 −
r, t0 + h] → Rn, which is absolutely continuous on [t0, t0 + h] with Tr(t0)x = x0 and
ẋ(t)=f (t, Tr(t)x, d(t)) almost everywhere on [t0, t0 +h]. We denote by 	(t, t0, x0; d) :=
Tr(t)x and 	(�, t, t0, x0; d) := x(t + �) for � ∈ [−r, 0]. Clearly, we have 	(t, t0, x0; d) =
	(�, t, t0, x0; d); � ∈ [−r, 0]. The unique solution of (2.2) satisfies for all (t0, x0, y0, d) ∈
R+ ×C0([−r, 0];Rn)×C0([−r, 0];Rn)×MD and for all t � t0 so that 	(t, t0, x0; d) and
	(t, t0, y0; d) are both defined:

‖	(t, t0, x0; d) − 	(t, t0, y0; d)‖r �‖x0 − y0‖r exp(L̃(t − t0)), (2.5)

where L̃ := L(t, supt∈[t0,t]‖	(t, t0, x0; d)‖r + supt∈[t0,t]‖	(t, t0, y0; d)‖r ) and L(·) is the
function involved in (2.3).

Using hypothesis (H2) and Theorem 3.2 in [8], we conclude that for every (t0, x0, d) ∈
R+ × C0([−r, 0];Rn) × MD there exists tmax ∈ (t0, +∞], such that the unique solu-
tion x(t) of (2.2) is defined on [t0 − r, tmax) and cannot be further continued. More-
over, if tmax < + ∞ then we must necessarily have lim supt→t−max

|x(t)| = +∞. In ad-
dition, it is clear that for every d ∈ MD the composite map f (t, x, d(t)) is continuous
on (R+\(A ∪ Ad)) × C0([−r, 0];Rn). Applying repeatedly Theorem 2.1 in [8] on each
one of the intervals contained in [t0, tmax)\(A ∪ Ad), we conclude that the solution sat-
isfies ẋ(t) = f (t, Tr(t)x, d(t)) for all t ∈ [t0, tmax)\(A ∪ Ad). Since, the composite map
t → f (t, x, d(t)) is right-continuous onR+, by virtue of the mean value theorem, it follows
that limh→0+ (x(t + h) − x(t))/h = f (t, Tr(t)x, d(t)) for all t ∈ [t0, tmax).

Remark 2.1. (a) When r = 0 we identify the space C0([−r, 0];Rn) with the finite-
dimensional spaceRn and we obtain the familiar finite -dimensional continuous-time case.
Consequently, all the following results hold also for finite-dimensional continuous-time
systems.

(b) A major difference between the case of uncertain finite-dimensional continuous-time
systems considered in [19] and the case of uncertain systems described by RFDEs is the
nature of the class of allowed inputs MD . This happens because there is a fundamental
difference between the two cases: in the finite-dimensional case the map describing the
evolution of the state is absolutely continuous with respect to time while in the infinite-
dimensional case the map describing the evolution of the state is (simply) continuous with
respect to time (see Lemma 2.1 in [8] and notice that the state for the infinite-dimensional
case is Tr(t)x ∈ C0([−r, 0];Rn)). This fact has an important consequence: Lyapunov
functionals evaluated on the solutions of system (2.2) will be (simply) continuous and not
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absolutely continuous maps with respect to time and in order to guarantee their monotonicity,
we must require that an appropriate decrease condition holds for all times (and not almost
everywhere, see the discussion in [4, Chapter 6]. Thus we cannot allow MD contain arbitrary
measurable mappings.

(c) In all the following results we assume that the inputs belong to the class MD . It is clear
that the same conclusions hold for inputs d : R+ → D, for which there exists d ′ ∈ MD

such that d(t) = d ′(t) almost everywhere.
(d) As already pointed out in the Introduction, it should be emphasized that model

(2.2) under hypotheses (H1)–(H4) can represent finite-dimensional control systems ẋ(t) =
f (t, x(t), u(t)), (t, x(t), u(t)) ∈ R+ ×Rn ×Rm under hybrid feedback control with syn-
chronous switching of the form u(t)= k(t, x(t), x(ti)), for ti � t < ti+1, where 
={ti , i =
0, 1, 2, . . .} is a partition of R+ of diameter r > 0 (i.e., 
 = {ti , i = 0, 1, 2, . . .} is an
increasing sequence with t0 = 0, lim ti = +∞ and ti+1 − ti �r for all i = 0, 1, 2, . . .),
when the vector fields f (t, x, u) and k(t, x, x′) are continuous and locally Lipschitz with
respect to (x, u) and (x, x′), respectively, with f (t, 0, k(t, 0, 0)) = 0 for all t �0. Par-
ticularly, if we define the function p(t) = max{�; � ∈ 
, �� t} and the mapping (t, x) ∈
R+×C0([−r, 0];Rn) → f̃ (t, x) ∈ Rn, where f̃ (t, x)=f (t, x(0), k(t, x(0), x(p(t)−t))),
thenf̃ satisfies hypotheses (H1)–(H4) and moreover the closed-loop system is described
by the RFDEs ẋ(t) = f̃ (t, Tr (t)x). Notice that if f and k are independent of t �0 (time-
invariant vector fields), the mapping f̃ (t, x)=f (x(0), k(x(0), x(p(t)−t))) is time-varying.
Moreover, for the special case ti = ir , i = 0, 1, 2, . . ., then p(t) = [t/r]r and the mapping
f̃ (t, x)=f (x(0), k(x(0), x([t/r]r − t))) is periodic with respect to t �0 with period r > 0.

2.2. Background material on non-uniform in time and uniform RGAS for systems
described by RFDEs

Since f (t, 0, d) = 0 for all (t, d) ∈ R+ × D, it follows that 	(t, t0, 0; d) = 0 ∈
C0([−r, 0];Rn) for all (t0, d) ∈ R+×MD and t � t0. Furthermore, for every � > 0, T , h�0
there exists � := �(�, T , h) > 0 such that

‖x‖r < � ⇒ sup{‖	(�, t0, x; d)‖r ; d ∈ MD, � ∈ [t0, t0 + h], t0 ∈ [0, T ]} < �.

Thus 0 ∈ C0([−r, 0];Rn) is a robust equilibrium point for (2.2) in the sense described in
[10]. The following definition of non-uniform in time Robust Global Asymptotic Stability
(RGAS) coincides with the definition of non-uniform in time RGAS given in [10], for a
wide class of systems that include systems of RFDEs studied in this paper.

Definition 2.2. We say that 0 ∈ C0([−r, 0];Rn) is non-uniformly in time Robustly Glob-
ally Asymptotically Stable (RGAS) for system (2.2) if the following properties hold:

P1 0 ∈ C0([−r, 0];Rn) is robustly Lagrange stable, i.e., for every s�0, T �0, it holds
that

sup{‖	(t, t0, x0; d)‖r ; t ∈ [t0, +∞), ‖x0‖r �s, t0 ∈ [0, T ], d ∈ MD} < + ∞.

(robust Lagrange stability)
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P2 0 ∈ C0([−r, 0];Rn) is robustly Lyapunov stable, i.e., for every � > 0 and T �0 there
exists a � := �(�, T ) > 0 such that

‖x0‖r ��, t0 ∈ [0, T ] ⇒ ‖	(t, t0, x0; d)‖r ��, ∀t ∈ [t0, +∞), ∀d ∈ MD.

(robust Lyapunov stability)

P3 0 ∈ C0([−r, 0];Rn) satisfies the robust attractivity property, i.e. for every � > 0,
T �0 and R�0, there exists a � := �(�, T , R)�0, such that

‖x0‖r �R, t0 ∈ [0, T ] ⇒ ‖	(t, t0, x0; d)‖r ��, ∀t ∈ [t0 + �, +∞), ∀d ∈ MD .

The two following lemmas are given in [10] (as Lemma 3.3 and Lemma 3.4, respectively)
for a wide class of systems that include systems of RFDEs under hypotheses (H1)–(H4).
They provide essential characterizations of the notion of non-uniform in time RGAS.

Lemma 2.3. Suppose that (2.2) is robustly forward complete, i.e., for every s�0, T �0, it
holds that

sup{‖	(t0 + h, t0, x0; d)‖r ; h ∈ [0, T ], ‖x0‖r �s, t0 ∈ [0, T ], d ∈ MD} < + ∞
and that 0 ∈ C0([−r, 0];Rn) satisfies the robust attractivity property (property P3 of
Definition 2.2) for system (2.2). Then 0 ∈ C0([−r, 0];Rn) is non-uniformly in time RGAS
for system (2.2).

Lemma 2.4. 0 ∈ C0([−r, 0];Rn) is non-uniformly in time RGAS for system (2.2) if and
only if there exist functions � ∈ KL, � ∈ K+ such that the following estimate holds for all
(t0, x0, d) ∈ R+ × C0([−r, 0];Rn) × MD and t ∈ [t0, +∞):

‖	(t, t0, x0; d)‖r ��(�(t0)‖x0‖r , t − t0). (2.6)

Finally, we also provide the definition of uniform RGAS, in terms of KL functions,
which is completely analogous to the finite-dimensional case (see [4,19]). It is clear that
such a definition is equivalent to a � − � definition (analogous to Definition 2.2).

Definition 2.5. We say that 0 ∈ C0([−r, 0];Rn) is Uniformly Robustly Globally Asymp-
totically Stable (URGAS) for system (2.2) if and only if there exist a function � ∈ KL such
that the following estimate holds for all (t0, x0, d) ∈ R+ × C0([−r, 0];Rn) × MD and
t ∈ [t0, +∞):

‖	(t, t0, x0; d)‖r ��(‖x0‖r , t − t0). (2.7)

The following corollary must be compared to Lemma 1.1, in [8, p. 131]. It shows that for
periodic systems of RFDEs non-uniform in time RGAS is equivalent to URGAS. We say
that (2.2) is T-periodic if there exists T > 0 such that f (t + T , x, d) = f (t, x, d) for all
(t, x, d) ∈ R+ × C0([−r, 0];Rn) × D.

Corollary 2.6. Suppose that 0 ∈ C0([−r, 0];Rn) is non-uniformly in time RGAS for sys-
tem (2.2) and that (2.2) is T-periodic. Then 0 ∈ C0([−r, 0];Rn) is URGAS for system.
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Proof. The proof is based on the following observation: if (2.2) is T-periodic then for all
(t0, x0, d) ∈ R+ ×C0([−r, 0];Rn)×MD it holds that 	(t, t0, x0; d)=	(t −[t0/T ]T , t0 −
[t0/T ]T , x0; P(t0)d), where [t0/T ] denotes the integer part of t0/T and P(t0)d ∈ MD is
defined by

(P (t0)d)(t) := d

(
t +

[
t0

T

]
T

)
, ∀t �0.

Since 0 ∈ C0([−r, 0];Rn) is non-uniformly in time RGAS for system (2.2), there exist func-
tions � ∈ KL, � ∈ K+ such that (2.6) holds for all (t0, x0, d) ∈ R+×C0([−r, 0];Rn)×MD

and t ∈ [t0, +∞). Consequently, it follows that the following estimate holds for all
(t0, x0, d) ∈ R+ × C0([−r, 0];Rn) × MD and t ∈ [t0, +∞):

‖	(t, t0, x0; d)‖r ��

(
�

(
t0 −

[
t0

T

]
T

)
‖x0‖r , t − t0

)
.

Since 0� t0 − [t0/T ]T < T , for all t0 �0, it follows that the following estimate holds for
all (t0, x0, d) ∈ R+ × C0([−r, 0];Rn) × MD and t ∈ [t0, +∞):

‖	(t, t0, x0; d)‖r � �̃(‖x0‖r , t − t0),

where �̃(s, t) := �(Rs, t) and R := max{�(t); 0� t �T }. The previous estimate in con-
junction with Definition 2.5 implies that 0 ∈ C0([−r, 0];Rn) is URGAS for system (2.2).
The proof is complete. �

2.3. Differential inequalities and Dini derivatives for functionals

Let x ∈ C0([−r, 0];Rn). By Eh(x; v), where 0�h < r and v ∈ Rn, we denote the
following operator:

Eh(x; v) :=
{

x(0) + (� + h)v for − h < ��0,

x(� + h) for − r ��� − h.
(2.8)

Notice that we have ‖Eh(x; v) − Eh(x, w)‖r �h|v − w|, for all x ∈ C0([−r, 0];Rn),
0�h < r and v, w ∈ Rn. Let V : R+ × C0([−r, 0];Rn) → R. We define

V 0(t, x; v) := lim sup
h→0+

y→0,y∈C0([−r,0];Rn)

V (t + h, Eh(x; v) + hy) − V (t, x)

h
. (2.9)

If there exist constants L, � > 0 in such a way that |V (�, y) − V (�, x)|�L‖x − y‖r for all
|� − t | + ‖y − x‖r ��, then |V 0(t, x; v) − V 0(t, x; w)|�L|v − w| for all v, w ∈ Rn.

The following lemma presents some elementary properties of this generalized derivative.
Notice that the function (t, x, v) → V 0(t, x; v) may take values in the extended real number
system R∗ = [−∞, +∞].

Lemma 2.7. Let V : R+ × C0([−r, 0];Rn) → R and let x ∈ C0([t0 − r, tmax);Rn) a
solution of (2.2) under hypotheses (H1)–(H4) corresponding to certain d ∈ MD . Then it
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holds that

lim sup
h→0+

V (t + h, Tr(t + h)x) − V (t, Tr(t)x)

h
�V 0(t, Tr (t)x; f (t, Tr(t)x, d(t))),

∀t ∈ [t0, tmax). (2.10)

Proof. Inequality (2.10) follows directly from (2.9) and the following identity:

Tr(t + h)x − Eh(Tr(t)x; f (t, Tr(t)x, d(t)))

=
{

x(t + h + �) − x(t) − (� + h)ẋ(t) for − h < ��0
0 for − r ��� − h

= hyh,

where t ∈ [t0, tmax) and

yh :=
{ � + h

h

(
x(t + � + h) − x(t)

� + h
− f (t, Tr(t)x, d(t))

)
for − h < ��0,

0 for − r ��� − h,

with

‖yh‖r � sup

{∣∣∣∣x(t + s) − x(t)

s
− f (t, Tr(t)x, d(t))

∣∣∣∣ ; 0 < s�h

}
.

Notice that since

lim
h→0+

x(t + h) − x(t)

h
= f (t, Tr(t)x, d(t))

we obtain that yh → 0 as h → 0+. The proof is complete. �

The following comparison principle is an extension of the comparison principle in [13]
and will be used frequently in this paper in conjunction with Lemma 2.7 for the derivation
of estimates of values of Lyapunov functionals. Its proof is provided in the Appendix.

Lemma 2.8. (Comparison principle). Consider the scalar differential equation

ẇ = f (t, w),

w(t0) = w0, (2.11)

where f (t, w) is continuous in t �0 and locally Lipschitz in w ∈ J , where J ⊆ R is an
open interval. Let T > t0 such that the solution w(t) of the initial value problem (2.11) exists
and satisfies w(t) ∈ J for all t ∈ [t0, T ). Let v(t) be a lower semi-continuous function that
satisfies the differential inequality

D+v(t) := lim sup
h→0+

v(t + h) − v(t)

h
�f (t, v(t)), ∀t ∈ [t0, T ). (2.12)

Suppose furthermore

v(t0)�w0, (2.13a)

v(t) ∈ J, ∀t ∈ [t0, T ). (2.13b)
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If one of the following holds:
(i) the mapping f (t, ·) is non-decreasing on J ⊆ R, for each fixed t ∈ [t0, T ),
(ii) there exists 	 ∈ C0(R+) such that f (t, w)�	(t), for all (t, w) ∈ [t0, T ) × J ,

then v(t)�w(t), for all t ∈ [t0, T ).

2.4. Statements of main results and examples

We are now in a position to state our main results for non-uniform in time RGAS and
URGAS.

Theorem 2.9. Consider system (2.2) under hypotheses (H1)–(H4). Then the following
statements are equivalent:

(a) 0 ∈ C0([−r, 0];Rn) is non-uniformly in time RGAS for (2.2).
(b) There exists a continuous mapping (t, x) ∈ R+ × C0([−r, 0];Rn) → V (t, x) ∈ R+,

with the following properties:

(i) There exist functions a1, a2 ∈ K∞, � ∈ K+ such that

a1(‖x‖r )�V (t, x)�a2(�(t)‖x‖r ), ∀(t, x) ∈ R+ × C0([−r, 0];Rn).

(2.14)

(ii) It holds that

V 0(t, x; f (t, x, d))� − V (t, x),

∀(t, x, d) ∈ R+ × C0([−r, 0];Rn) × D. (2.15)

(infinitesimal decrease property)
(iii) There exists a non-decreasing function M : R+ → R+ such that for every R�0,

it holds

|V (t, y) − V (t, x)|�M(R)‖y − x‖r , ∀t ∈ [0, R],
∀x, y ∈ {x ∈ C0([−r, 0];Rn); ‖x‖r �R}. (2.16)

(c) There exist ��0, a lower semi-continuous mapping V : R+ × C0([−r − �, 0];Rn) →
R+, constants R�0, c > 0, functions a1, a2 ∈ K∞, �i ∈ K+(i = 1, . . . , 4) with∫ +∞

0 �4(t)dt = +∞, � ∈ E (see Notations) and � ∈ C0(R+;R+) being positive
definite and locally Lipschitz, such that the following inequalities hold:

a1(|x(0)|)�V (t, x)�a2(�1(t)‖x‖r+�),

∀(t, x) ∈ R+ × C0([−r − �, 0];Rn), (2.17)

V 0(t, x; f (t, Tr(0)x, d))��2(t)V (t, x) + R�3(t),

∀(t, x, d) ∈ R+ × C0([−r − �, 0];Rn) × D, (2.18a)

V 0(t, x; f (t, Tr(0)x, d))� − �4(t)�(V (t, x)) + �4(t)�

(∫ t

0
�4(s) ds

)
,

∀(t, d) ∈ [�, +∞) × D, ∀x ∈ S(t), (2.18b)

(infinitesimal decrease property)
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where the set-valued map S(t) ⊆ C0([−r − �, 0];Rn) is defined for t �� by

S(t) :=
{

x ∈ S̄(t); x(�) = x(−�) +
∫ �

−�
f (t + s, Tr(s)x, d(� + s)) ds,

∀� ∈ [−�, 0], d ∈ MD

}
(2.19a)

and S̄(t) ⊆ C0([−r − �, 0];Rn) is any set-valued map satisfying{
x ∈ C0([−r − �, 0];Rn); a2(�1(t)‖x‖r+�)��

(∫ t

0
�4(s) ds, 0, c

)}
⊆ S̄(t),

∀t �0, (2.19b)

where �(t, t0, �0) denotes the unique solution of the initial value problem:

�̇ = −�(�) + �(t); �(t0) = �0 �0. (2.19c)

Theorem 2.10. Consider system (2.2) under hypotheses (H1)–(H4). Then the following
statements are equivalent:

(a) 0 ∈ C0([−r, 0];Rn) is URGAS for (2.2).
(b) There exists a continuous mapping (t, x) ∈ R+ × C0([−r, 0];Rn) → V (t, x) ∈ R+,

satisfying properties (i), (ii) and (iii) of statement (b) of Theorem 2.9 with �(t) ≡ 1.
Moreover, if system (2.2) is T-periodic, then V is T-periodic (i.e. V (t +T , x)=V (t, x)

for all (t, x) ∈ R+×C0([−r, 0];Rn)) and if (2.2) is autonomous then V is independent
of t .

(c) There exist a lower semi-continuous mapping V : R+ × C0([−r − �, 0];Rn) → R+,
functions a1, a2 ∈ K∞, � ∈ C0(R+;R+) being positive definite and locally Lipschitz
and constants �, ��0 such that the following inequalities hold:

a1(|x(0)|)�V (t, x)�a2(‖x‖r+�), ∀(t, x) ∈ R+ × C0([−r − �, 0];Rn),

(2.20)

V 0(t, x; f (t, Tr(0)x, d))��V (t, x),

∀(t, x, d) ∈ R+ × C0([−r − �, 0];Rn) × D, (2.21a)

V 0(t, x; f (t, Tr(0)x, d))� − �(V (t, x)),

∀(t, d) ∈ [�, +∞) × D, ∀x ∈ S(t), (2.21b)

(infinitesimal decrease property)
where the set S(t) ⊆ C0([−r − �, 0];Rn) is defined for t �� by (2.19a) with S̄(t) :=
C0([−r − �, 0];Rn).

Remark 2.11. (a) Although the conditions for non-uniform in time RGAS seem more
complicated than the corresponding conditions for URGAS, it should be emphasized that the
conditions for non-uniform in time RGAS are “weaker” than the corresponding conditions
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for URGAS. Particularly, the main difference lies in that the infinitesimal decrease condition
does not have to be satisfied for states sufficiently close to the equilibrium point in the non-
uniform in time case.

(b) Notice that we demand the infinitesimal decrease property to hold only on a subset
of the state space (S(t)) which contains the solutions of the system. However, an additional
property that guarantees forward completeness on the critical time interval [t0, t0 + �] has
to be satisfied, namely (2.18a) in the non-uniform in time case and (2.21a) in the uniform
case. Notice that for finite-dimensional continuous-time systems, it was shown in [1] that
this additional property is necessary and sufficient for forward completeness.

Example 2.12. Let b�a > 0, r �0 and consider the scalar system

ẋ(t) = −d(t)x(t − r),

x(t) ∈ R, d ∈ MD, D := [a, b]. (2.22)

We will prove (using Theorem 2.10) that 0 ∈ C0([−r, 0];R) is URGAS for (2.22), under
the assumption

2b3r2 < a. (2.23)

Clearly, inequality (2.23) is conservative, since it is shown in [8] for the case d(t) ≡ a, by us-
ing other methods (applicable only to linear systems) that if 2ar < 
 then 0 ∈ C0([−r, 0];R)

is URGAS for (2.22). Here, we consider a class of functionals proposed in [5,20] for systems
described by RFDEs and we must make explicit use of the set S(t) involved in statement
(c) of Theorem 2.10. Notice that under hypothesis (2.23) there exists c ∈ (0, a) with
(a − c)(1 − 2cr) − 2b3r2 > 0. Consider the functional defined on C0([−2r, 0];R):

V (x) := 1

2
x2(0) + 1

2
[(a − c)(1 − 2cr) − 2b3r2]

∫ 0

−r

x2(s) ds

+ 1

2
[b3r + c(a − c)]

∫ 0

−2r

(∫ 0

s

x2(l) dl

)
ds. (2.24)

Since c ∈ (0, a) with (a − c)(1 − 2cr) − 2b3r2 > 0, we conclude that (2.20) is satisfied for
this functional with � := r , a1(s) := 1

2 s2 and a2(s) := Ks2 with K := 1
2 (1 + 2r(a − c)).

Moreover, we have

V 0(x; −dx(−r)) = − dx(0)x(−r) + a − c

2
x2(0) − 1

2
[(a − c)(1 − 2cr)

− 2b3r2]x2(−r) − 1

2
[b3r + c(a − c)]

∫ 0

−2r

x2(l) dl,

∀(x, d) ∈ C0([−2r, 0];R) × D. (2.25)

Completing the squares and using the trivial inequalities x2(0)�2V (x) and |d|�b, it fol-
lows that (2.21a) is satisfied with � := a − c + b2/((a − c)(1 − 2cr) − 2b3r2). Also
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notice that (2.19a) with S̄(t) := C0([−2r, 0];R) implies

S(t) := S =
{

x ∈ C0([−2r, 0];R); x(�) = x(−r)

−
∫ �

−r

d̃(r + s)x(s − r) ds, ∀� ∈ [−r, 0], d̃ ∈ MD

}
. (2.26)

Combining (2.25) with (2.26) we obtain for all (x, d) ∈ S × D

V 0(x; −dx(−r))� − dx2(0) + dx(0)(x(0) − x(−r)) + a − c

2
x2(0)

− 1

2
[b3r + c(a − c)]

∫ 0

−2r

x2(l) dl

=
(

a − c

2
− d

)
x2(0) − dx(0)

∫ 0

−r

d̃(r + s)x(s − r) ds

− 1

2
[b3r + c(a − c)]

∫ 0

−2r

x2(l) dl.

Clearly, we have∣∣∣∣dx(0)

∫ 0

−r

d̃(r + s)x(s − r) ds

∣∣∣∣ � d

2
x2(0) + d

2

∣∣∣∣
∫ 0

−r

d̃(r + s)x(s − r) ds

∣∣∣∣
2

.

Moreover, it holds that∣∣∣∣
∫ 0

−r

d̃(r + s)x(s − r) ds

∣∣∣∣
2

�r

∫ 0

−r

d̃2(r + s)x2(s − r) ds�rb2
∫ 0

−2r

x2(s) ds

for all d̃ ∈ MD .

The previous inequalities in conjunction with the fact d ∈ [a, b] give

V 0(x; −dx(−r))� − c

2

(
x2(0) + (a − c)

∫ 0

−2r

x2(l) dl

)
for all (x, d) ∈ S × D.

On the other hand, since
∫ 0
−2r

(
∫ 0
s

x2(l) dl)ds�2r
∫ 0
−2r

x2(l) dl and
∫ 0
−r

x2(s) ds�∫ 0
−2r

x2(l) dl, by (2.24) we obtain

2V (x)�x2(0) + (a − c)

∫ 0

−2r

x2(s) ds ∀x ∈ C0([−2r, 0];R).

The two previous inequalities give

V 0(x; −dx(−r))� − cV (x) for all (x, d) ∈ S × D,

which implies that (2.21b) is also satisfied with �(s) := cs. We conclude that statement (c)
of Theorem 2.10 is satisfied and consequently, 0 ∈ C0([−r, 0];R) is URGAS for (2.22).
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The following example illustrates the use of statement (c) of Theorem 2.9 for a time-
varying nonlinear system described by RFDEs.

Example 2.13. Consider the nonlinear planar system

ẋ(t) = −a(t)x(t − 1),

ẏ(t) = −y(t) + d(t) exp(t)x2(t),

(x(t), y(t)) ∈ R2, d ∈ MD, D := [−1, 1], t �0, (2.27)

where

a(t) :=
{

2sin2(
t) t ∈ [2k, 2k + 1]
0 t ∈ (2k − 1, 2k)

for each integer k. It is shown in [8, p. 87–88] that the solution of (2.27) satisfies x(t) = 0
for all t � t0 +4 and for every initial condition x0 ∈ C0([−1, 0];R). Here we prove that the
equilibrium point 0 ∈ C0([−1, 0];R2) is non-uniformly in time RGAS for (2.27). Consider
the Lyapunov functional defined on C0([−6, 0];R2):

V (t, x, y) := 1

2
x2(0) + 1

2
exp(2t)x4(0) +

∫ 0

−1
(x2(s) + x4(s)) ds + 1

2
y2(0).

(2.28)

Notice that inequalities (2.17) hold for the above functional with r = 1, �= 5, a1(s)= 1
2 s2,

�1(t) := exp(t) and a2(s) = 2s2 + 4s4. Defining f (t, x, y, d) := (−a(t)x(−1), −y(0) +
d exp(t)x2(0))′ we obtain

V 0(t, x, y; f (t, x, y, d)) = − a(t)x(0)x(−1) + (1 + exp(2t))x4(0)

− 2a(t) exp(2t)x3(0)x(−1)

+ x2(0) − x2(−1) − x4(−1) − y2(0)

+ d exp(t)y(0)x2(0). (2.29)

Using the Young inequalities exp(2t)|x(0)|3|x(−1)|� 3
4 exp(8t/3)x4(0) + 1

4 x4(−1),
|x(0)‖x(−1)|� 1

2 x2(0) + 1
2 x2(−1) and exp(t)|y(0)‖x(0)|2 � 1

2 y2(0) + 1
2 exp(2t)x4(0),

in conjunction with the fact that |d|�1 and |a(t)|�2 for all t �0, we obtain

V 0(t, x, y; f (t, x, y, d))�2x2(0) +
(

1 + 3 exp

(
8t

3

)
+ 3

2
exp(2t)

)
x4(0)

− 1

2
y2(0), ∀(t, x, d) ∈ R+ × C0([−6, 0];R2) × [−1, 1],

which directly implies (2.18a) with �2(t) := 12 exp(t), R := 0 and any �3 ∈ K+. Let
S̄(t) := C0([−6, 0];R2) (and notice that (2.19b) is automatically satisfied for all c > 0) and
since the solution of (2.27) satisfies x(t)= 0 for all t � t0 + 4 and for every initial condition
x0 ∈ C0([−1, 0];R), the set-valued map S(t) ⊆ C0([−6, 0];R2) satisfies for all t �5:

S(t) ⊆ {(x, y) ∈ C0([−6, 0];R2); x(�) = 0, ∀� ∈ [−1, 0]}.
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Consequently, by virtue of (2.28) and equality (2.29) we get

V 0(t, x, y; f (t, x, y, d))� − 2V (t, x), ∀(t, d) ∈ [5, +∞) × [−1, 1], ∀x ∈ S(t)

and thus (2.18b) holds with �4(t) := 2, �(s) := s and �(t) := 0. We conclude that statement
(c) of Theorem 2.9 is satisfied and consequently, 0 ∈ C0([−1, 0];R2) is non-uniformly in
time RGAS for (2.27).

3. Proofs of main results

The implication (b) ⇒ (c) is obvious for both theorems.
Implication (c) ⇒ (a) for Theorem 2.9: Let arbitrary (t0, x0) ∈ R+ × C0([−r, 0];Rn)

and d ∈ MD . As remarked in Section 2.1 there exists tmax > t0 such that the initial-value
problem (2.2) with initial condition Tr(t0)x = x0 ∈ C0([−r, 0];Rn) has a unique solution
x(t) defined on [t0 − r, tmax). Setting x(t) := x(t0 − r) for t ∈ [t0 − r − �, t0 − r],
we may assume that for each time t ∈ [t0, tmax) the unique solution of (2.2) belongs to
C0([t0 − r − �, t];Rn). Moreover, we have ‖Tr+�(t0)x‖r+� = ‖Tr(t0)x‖r = ‖x0‖r .

Let V (t) := V (t, Tr+�(t)x), which is a lower semi-continuous function on [t0, tmax).
Notice that for all t ∈ [t0, tmax), by virtue of Lemma 2.7 we obtain

D+V (t)�V 0(t, Tr+�(t)x; f (t, Tr(0)Tr+�(t)x, d(t)) for all t ∈ [t0, tmax). (3.1)

Inequality (3.1) in conjunction with inequality (2.18a) gives

D+V (t)��2(t)V (t) + R�3(t) for all t ∈ [t0, tmax). (3.2)

By virtue of Lemma 2.8 (comparison principle, case (i)), we obtain

V (t)� exp

(∫ t

t0

�2(s) ds

) (
V (t0) + R

∫ t

t0

�3(s) ds

)
for all t ∈ [t0, tmax). (3.3)

The above inequality in conjunction with inequality (2.17) and the fact ‖Tr+�(t0)x‖r+� =
‖Tr(t0)x‖r = ‖x0‖r implies that

a1(|x(t)|)� exp

(∫ t

t0

�2(s) ds

) (
a2(�1(t0)‖x0‖r ) + R

∫ t

t0

�3(s) ds

)
for all t ∈ [t0, tmax). (3.4)

By virtue of the conclusions of Section 2.1, it follows that the solution of (2.2) is defined
on [t0, +∞) and satisfies (3.3), (3.4) for all t ∈ [t0, +∞). Clearly, inequality (3.4) implies
that 0 ∈ C0([−r, 0];Rn) is robustly forward complete (see Lemma 2.3). Moreover, by
definitions (2.19a,b) it follows that:

If a2(�1(t)‖Tr+�(t)x‖r+�)��

(∫ t

0
�4(s)ds, 0, c

)
and t � t0 + � then Tr+�(t)x ∈ S(t). (3.5)
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We proceed by observing the following facts:
Fact I: Suppose that Tr+�(t)x ∈ S(t) for all t ∈ [a, b), where a� t0 + �. Then it holds

that

D+V (t)� − �4(t)�(V (t, Tr+�(t)x)) + �4(t)�

(∫ t

0
�4(s) ds

)
, ∀t ∈ [a, b).

(3.6)

This fact can be shown easily using (2.18b), (3.1) and (3.5).
Fact II: Suppose that Tr+�(t)x ∈ S(t) for all t ∈ [a, b), where a� t0 + �. Then the

following estimate holds:

V (t, Tr+�(t)x)��

(∫ t

0
�4(s) ds,

∫ a

0
�4(s) ds, V (a, x(a))

)
, ∀t ∈ [a, b). (3.7)

This fact is an immediate consequence of Fact I and Lemma 2.8 (Comparison principle,
case (ii)).

We define the following disjoint sets:

A+ :=
{
t ∈ [t0 + �, +∞); a2(�1(t)‖Tr+�(t)x‖r+�) > �

(∫ t

0
�(s) ds, 0, c

)}
, (3.8)

A− :=
{
t ∈ [t0 + �, +∞); a2(�1(t)‖Tr+�(t)x‖r+�)��

(∫ t

0
�(s) ds, 0, c

)}
, (3.9)

where c > 0 and �(t, t0, �0) are defined in (2.19b,c). Obviously [t0 + �, +∞) = A+ ∪ A−.
Notice that by virtue of (2.19b) and (3.5) if t ∈ A+ then Tr+�(t)x ∈ S(t). Moreover, notice
that the set A+\{t0 + �} is open. Thus A+\{t0 + �} is either empty or it decomposes into
a finite number or a countable infinity of open and disjoint intervals (ak, bk) with ak < bk .
When t0 + � ∈ A+ we obviously have the latter case. We distinguish the cases:

Case A: t0 + � /∈ A+ and A+\{t0 + �} is not empty. In this case the set A+\{t0 + �}
decomposes into a finite number or a countable infinity of open and disjoint intervals
(ak, bk) with ak < bk for k = 1, . . . . Furthermore, by continuity of the solution Tr+�(t)x

it follows that Tr+�(ak)x ∈ S(ak) and thus Tr+�(t)x ∈ S(t) for all t ∈ [ak, bk). Clearly, by
Fact II, the following estimate will hold:

V (t, Tr+�(t)x)��

(∫ t

0
�4(s) ds,

∫ ak

0
�4(s) ds, V (ak, Tr+�(ak)x)

)
,

∀t ∈ [ak, bk). (3.10)

The fact that ak /∈ A+ implies that ak ∈ A− and consequently by virtue of (2.17) and (3.9)
we have

V (ak, Tr+�(ak)x)��

(∫ ak

0
�4(s) ds, 0, c

)
. (3.11)
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Estimates (3.10) and (3.11) provide the following estimate:

V (t, Tr+�(t)x)��

(∫ t

0
�4(s) ds,

∫ ak

0
�4(s) ds, �

(∫ ak

0
�4(s) ds, 0, c

))

= �

(∫ t

0
�4(s) ds, 0, c

)
, ∀t ∈ [ak, bk). (3.12)

When t /∈ [ak, bk), it follows that t ∈ A− and consequently by virtue of (3.9) we have

V (t, Tr+�(t)x)��

(∫ t

0
�4(s) ds, 0, c

)
, ∀t /∈ [ak, bk). (3.13)

Estimates (3.12) and (3.13) provide the following estimate:

V (t, Tr+�(t)x)��

(∫ t

0
�4(s) ds, 0, c

)
, ∀t ∈ [t0 + �, +∞). (3.14)

Case B: The set A+\{t0 + �} is empty. In this case we have t0 + � /∈ A+ and consequently
it follows that A− =[t0 + �, +∞). Therefore by virtue of (3.9) we have that estimate (3.14)
holds.

Case C: t0 + � ∈ A+ and A+\{t0 + �} is not empty. In this case there exists a time
b > t0 + � and an open set Ã such that A+ = [t0 + �, b) ∪ Ã. For t ∈ [t0 + �, b) it follows
that Tr+�(t)x ∈ S(t) and thus by Fact II we obtain the estimate

V (t, Tr+�(t)x)��

(∫ t

0
�4(s) ds,

∫ t0+�

0
�4(s) ds, V (t0 + �, Tr+�(t0 + �)x)

)
,

∀t ∈ [t0 + �, b). (3.15)

For the case b = +∞, the above estimate holds for all t ∈ [t0 + �, +∞). For the case
b <+∞, we have b /∈ A+ and thus we may repeat the analysis in cases A and B for the rest
interval.

The analysis above shows that in any case the following estimate holds

V (t, Tr+�(t)x)��

(∫ t

0
�4(s) ds,

∫ t0+�

0
�4(s) ds, V (t0 + �, Tr+�(t0 + �)x)

)

+ �

(∫ t

0
�4(s) ds, 0, c

)
, ∀t ∈ [t0 + �, +∞). (3.16)

Lemma 5.2 in [11] implies that there exist a function �(·) ∈ KL and a constant M > 0 such
that the following inequalities are satisfied for all t0 �0:

0��(t, t0, �0)��(�0 + M, t − t0), ∀t � t0, ∀�0 �0. (3.17)

Inequalities (3.16) and (3.17) imply that the following estimate holds:

V (t)��

(∫ t

0
�4(s) ds,

∫ t0+�

0
�4(s) ds, V (t0 + �)

)
+ �

(∫ t

0
�4(s) ds, 0, c

)

�2�

(
V (t0 + �) + c + M,

∫ t

t0+�
�4(s) ds

)
, ∀t ∈ [t0 + �, +∞) (3.18)
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It follows from (2.17), (3.3) and (3.18) that the following estimate holds:

a1(|x(t)|)�2�

(
exp

(∫ t0+�

t0

�2(s) ds

) (
a2(�1(t0)‖x0‖r ) + R

∫ t0+�

t0

�3(s) ds

)

+c + M,

∫ t

t0+�
�4(s) ds

)
, ∀t ∈ [t0 + �, +∞). (3.19)

Estimate (3.19) shows that the robust attractivity property is satisfied. Thus, by virtue of
Lemma 2.3, the equilibrium point 0 ∈ C0([−r, 0];Rn) is non-uniformly in time RGAS for
system (2.2).

Implication (c) ⇒ (a) for Theorem 2.10: Let arbitrary (t0, x0) ∈ R+ × C0([−r, 0];Rn)

and d ∈ MD . As remarked in Section 2.1 there exists tmax > t0 such that the initial-value
problem (2.2) with initial condition Tr(t0)x = x0 ∈ C0([−r, 0];Rn) has a unique solution
x(t) defined on [t0 − r, tmax). Setting x(t) := x(t0 − r) for t ∈ [t0 − r − �, t0 − r],
we may assume that for each time t ∈ [t0, tmax) the unique solution of (2.2) belongs to
C0([t0 − r − �, t];Rn). Moreover, we have ‖Tr+�(t0)x‖r+� = ‖Tr(t0)x‖r = ‖x0‖r .

Let V (t) := V (t, Tr+�(t)x), which is a lower semi-continuous function on [t0, tmax).
Notice that, by virtue of Lemma 2.7, it follows that (3.1) holds for all t ∈ [t0, tmax).
Inequality (3.1) in conjunction with (2.21a) gives

D+V (t)��V (t) for all t ∈ [t0, tmax). (3.20)

By virtue of Lemma 2.8 (comparison principle, case (i)), we obtain

V (t)� exp(�(t − t0))V (t0) for all t ∈ [t0, tmax). (3.21)

Moreover, by definition (2.19a) with S̄(t) := C0([−r − �, 0];Rn), it follows that:

If t � t0 + � then Tr+�(t)x ∈ S(t), (3.22)

and consequently, by (3.1) and (2.21b), the following differential inequality is satisfied:

D+V (t)� − �(V (t)), ∀t ∈ [t0 + �, +∞). (3.23)

Let �(t, t0, �0) denote the unique solution of the initial value problem (2.19c) with � ≡ 0.
Then, by virtue of Lemma 2.8 (comparison principle, case (ii)) the following estimate holds:

V (t, Tr+�(t)x)��(t, t0 + �, V (t0 + �)), ∀t ∈ [t0 + �, +∞). (3.24)

Lemma 4.4 in [19] implies that there exists �(·) ∈ KL such that the following inequalities
are satisfied for all t0 �0:

0��(t, t0, �0)��(�0, t − t0), ∀t � t0, ∀�0 �0. (3.25)

Combining (3.21), (3.24) and (3.25) we obtain

V (t, Tr+�(t)x)� �̃(V (t0), t − t0), ∀t ∈ [t0, +∞), (3.26)

where �̃(s, t) := �(exp(��)s, t − �) for t �� and �̃(s, t) := exp(� − t)�(exp(��)s, 0) for
0� t < �. Let the KL function �̄(s, t) := a−1

1 (�̃(a2(s), t)) and notice that inequalities (2.20)
and (3.16) imply the following estimate:

|x(t)|� �̄(‖x0‖r , t − t0), ∀t � t0. (3.27)
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It follows from (3.27) that (2.7) holds for the KL function �(s, t) := �̄(s, t − r) for t �r

and �(s, t) := exp(r − t)�̄(s, 0) for 0� t < r .
Implication (a) ⇒ (b) for Theorem 2.9: The analysis followed here is similar to the

corresponding analysis in [4] for finite-dimensional continuous-time systems.
Since 0 ∈ C0([−r, 0];Rn) is non-uniformly in time RGAS for (2.2), there exist functions

� ∈ KL, � ∈ K+ such that estimate (2.6) holds for all (t0, x0, d) ∈ R+×C0([−r, 0];Rn)×
MD and t ∈ [t0, +∞). Moreover, by recalling Proposition 7 in [28] there exist functions
ã1, ã2 of class K∞, such that the KL function �(s, t) is dominated by ã−1

1 (exp(−2t)ã2(s)).
Thus, by taking into account estimate (2.6), we have

ã1(‖	(t, t0, x0; d)‖r )� exp(−2(t − t0))ã2(�(t0)‖x0‖r ), ∀t � t0 �0,

x0 ∈ C0([−r, 0];Rn), d ∈ MD . (3.28)

Without loss of generality we may assume that ã1 ∈ K∞ is globally Lipschitz onR+ with
unit Lipschitz constant, namely, |ã1(s1) − ã1(s2)|� |s1 − s2| for all s1, s2 �0. To see this
notice that we can always replace ã1 ∈ K∞ by the function ā1(s) := inf{min{ 1

2 y, ã(y)} +
|y − s|; y�0}, which is of class K∞, globally Lipschitz onR+ with unit Lipschitz constant
and satisfies ā1(s)� ã1(s). Moreover, without loss of generality we may assume that � ∈ K+
is non-decreasing.

Making use of (2.5) and (3.28), we obtain the following elementary property for the
solution of (2.2):

‖	(t, t0, x; d) − 	(t, t0, y; d)‖r � exp(L̃(t, ‖x‖r + ‖y‖r )(t − t0))‖x − y‖r

for all t � t0 and (t0, x, y, d) ∈ R+ × C0([−r, 0];Rn) × C0([−r, 0];Rn) × MD ,

(3.29)

where

L̃(t, s) := L(t, 2ã−1
1 (ã2(�(t)s)))

andL(·) is the function involved in (2.3). Furthermore, under hypotheses (H1)–(H4), Lemma
3.2 in [10] implies the existence of functions  ∈ K∞ and � ∈ K+ such that

|f (t, x, d)|�(�(t)‖x‖r ), ∀(t, x, d) ∈ R+ × C0([−r, 0];Rn) × D.

Without loss of generality, we may assume that � ∈ K+ is non-decreasing. Since x(t) =
x(0) + ∫ t

t0
f (�, Tr (�)x, d(�))d�, using the previous inequality in conjunction with (3.28)

we obtain

|	(0, t, t0, x; d) − x(0)|�(t − t0)G1(t, ‖x‖r ),

G1(t, s) := (�(t)ã−1
1 (ã2(�(t)s))),

and consequently

‖	(t, t0, x; d) − x‖r �(t − t0)G1(t, ‖x‖r ) + G2(x, t − t0)

for all t � t0 and (t0, x, d) ∈ R+ × C0([−r, 0];Rn) × MD , (3.30)
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where the functional

G2(x, h) := sup{|x(0) − x(�)|; � ∈ [− min(h, r), 0]}
+

{
0 if h�r

sup{|x(� + h) − x(�)|; � ∈ [−r, −h]} if 0�h < r

is defined for all (x, h) ∈ C0([−r, 0];Rn) ×R+. Notice that limh→0+G2(x, h) = 0 for all
x ∈ C0([−r, 0];Rn) and consequently for every � > 0, R�0, x ∈ C0([−r, 0];Rn), there
exists T (�, R, x) > 0 such that

t0 � t � t0 + T (�, R, x) ⇒ ‖	(t, t0, x; d) − x‖r ��.

for all (t0, x, d) ∈ [0, R] × C0([−r, 0];Rn) × MD . (3.31)

We define for all q ∈ Z+

Uq(t, x) := sup{max{0, ã1(‖	(�, t, x; d)‖r ) − q−1} exp((� − t)):

�� t, d ∈ MD}. (3.32)

Clearly, estimate (2.6) and definition (3.32) imply that

max{0, ã1(‖x‖r ) − q−1}�Uq(t, x)� ã2(�(t)‖x‖r ),

∀(t, x, q) ∈ R+ × C0([−r, 0];Rn) × Z+. (3.33)

Moreover, by (3.32) we obtain for all (h, t, x, d, q) ∈ R+×R+×C0([−r, 0];Rn)×MD ×
Z+

Uq(t + h, 	(t + h, t, x; d))� exp(−h)Uq(t, x). (3.34)

By virtue of estimate (2.6) it follows that for every (q, R) ∈ Z+ × R+, �� t + T̃ (R, q),
(t, d) ∈ [0, R]×MD , and x ∈ C0([−r, 0];Rn) with ‖x‖r �R, it holds: ã1(‖	(�, t, x; d)‖r )

� exp(−2(� − t))ã2(�(t)‖x‖r )�q−1, where

T̃ (R, q) := max{0, 1
2 log(qã2(�(R)R))}. (3.35)

Thus, by virtue of (3.32), we conclude that

Uq(t, x) = sup{max{0, ã1(‖	(�, t, x; d)‖r ) − q−1} exp((� − t)):

t ��� t + �, d ∈ MD} for all �� T̃ (max{t, ‖x‖r}, q). (3.36)

It follows by taking into account (3.36) that for all t ∈ [0, R], and (x, y) ∈ C0([−r, 0];Rn)×
C0([−r, 0];Rn) with ‖x‖r �R, ‖y‖r �R, it holds

|Uq(t, y) − Uq(t, x)|
= | sup{max{0, ã1(‖	(�, t, y; d)‖r ) − q−1} exp((� − t)):

t ��� t + T̃ (R, q), |d ∈ MD} − sup{max{0, ã1(‖	(�, t, x; d)‖r )

− q−1} exp((� − t)) : t ��� t + T̃ (R, q), d ∈ MD}
� sup{exp((� − t))|ã1(‖	(�, t, y; d)‖r ) − ã1(‖	(�, t, y; d)‖r )|:

t ��� t + T̃ (R, q), d ∈ MD}
� sup{exp((� − t))‖	(�, t, y; d) − 	(�, t, x; d)‖r :

t ��� t + T̃ (R, q), d ∈ MD}. (3.37)
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Notice that in the above inequalities we have used the facts that the functions max{0, s−q−1}
and ã1(s) are globally Lipschitz on R+ with unit Lipschitz constant. From (3.29) and
(3.37) we deduce for all t ∈ [0, R], and (x, y) ∈ C0([−r, 0];Rn) × C0([−r, 0];Rn) with
‖x‖r �R, ‖y‖r �R:

|Uq(t, y) − Uq(t, x)|�G3(R, q)‖y − x‖r , (3.38)

where

G3(R, q) := exp(T̃ (R, q)(1 + L̃(R + T̃ (R, q), 2R))). (3.39)

Next, we establish continuity of Uq(t, x) with respect to t on R+ × C0([−r, 0];Rn). Let
R�0, q ∈ Z+ arbitrary, t1, t2 ∈ [0, R] with t1 � t2, and x ∈ C0([−r, 0];Rn) with ‖x‖r �R.
Clearly, we have for all d ∈ MD

|Uq(t1, x) − Uq(t2, x)|�(1 − exp(−(t2 − t1)))Uq(t1, x)

+ | exp(−(t2 − t1))Uq(t1, x) − Uq(t2, 	(t2, t1, x; d))|
+ |Uq(t2, 	(t2, t1, x; d)) − Uq(t2, x)|.

By virtue of (3.30), (3.31), (3.34), (3.38) and the previous inequality we obtain for all
t1, t2 ∈ [0, R] with t1 � t2 � t1 + T (1, R, x) (where T (�, R, x) > 0 is involved in (3.31))
and d ∈ MD

|Uq(t1, x) − Uq(t2, x)|�(t2 − t1)Uq(t1, x) + exp(−(t2 − t1))Uq(t1, x)

− Uq(t2, 	(t2, t1, x; d))

+ G3(R + 1, q)[G2(x, t2 − t1) + (t2 − t1)G1(R, R)].
(3.40)

Definition (3.32) implies that for every � > 0, there exists d� ∈ MD with the following
property:

Uq(t1, x) − �� sup{max{0, ã1(‖	(�, t1, x; d�)‖r ) − q−1} exp((� − t1)); �� t1}
�Uq(t1, x). (3.41)

Thus using (3.32) we obtain

exp(−(t2 − t1))Uq(t1, x) − Uq(t2, 	(t2, t1, x; d�))

� max{Aq(t1, t2, x), Bq(t1, t2, x)} − Bq(t1, t2, x) + � exp(−(t2 − t1)), (3.42a)

where

Aq(t1, t2, x) := sup{max{0, ã1(‖	(�, t1, x; d�)‖r ) − q−1} exp((� − t2)); t2 ��� t1},
Bq(t1, t2, x) := sup{max{0, ã1(‖	(�, t1, x; d�)‖r ) − q−1} exp((� − t2)); �� t2}.

(3.42b)
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Since the functions max{0, s − q−1} and ã1(s) are globally Lipschitz on R+ with unit
Lipschitz constant, we obtain from definitions (3.42b)

Aq(t1, t2, x) − Bq(t1, t2, x)

� sup{max{0, ã1(‖	(�, t1, x; d�)‖r ) − q−1} exp((� − t2)); t2 ��� t1}
− max{0, ã1(‖	(t2, t1, x; d�)‖r ) − q−1}

� sup{max{0, ã1(‖	(�, t1, x; d�)‖r ) − q−1}; t2 ��� t1}
− max{0, ã1(‖	(t2, t1, x; d�)‖r ) − q−1}

� sup{|ã1(‖	(�, t1, x; d�)‖r ) − ã1(‖	(t2, t1, x; d�)‖r )|; t2 ��� t1}
� sup{‖	(�, t1, x; d�) − 	(t2, t1, x; d�)‖r ; t2 ��� t1}. (3.43)

Notice that by virtue of (3.30), we obtain for all � ∈ [t1, t2]
‖	(�, t1, x; d�) − 	(t2, t1, x; d�)‖r

�‖	(�, t1, x; d�) − x‖r + ‖	(t2, t1, x; d�) − x‖r

�2(t2 − t1)G1(R, R) + 2 sup{G2(x, h); h ∈ [0, t2 − t1]}. (3.44)

Distinguishing the cases Aq(t1, t2, x)�Bq(t1, t2, x) and Aq(t1, t2, x)�Bq(t1, t2, x) it fol-
lows from (3.42a,b), (3.43) and (3.44) that

exp(−(t2 − t1))Uq(t1, x) − Uq(t2, 	(t2, t1, x; d�))�2(t2 − t1)G1(R, R)

+ 2 sup{G2(x, h); h ∈ [0, t2 − t1]} + �.

Combining the previous inequality with (3.40) we obtain

|Uq(t1, x) − Uq(t2, x)|
�(t2 − t1)Uq(t1, x) + (2 + G3(R + 1, q))[sup{G2(x, h); h ∈ [0, t2 − t1]}

+ (t2 − t1)G1(R, R)] + �. (3.45)

Since (3.45) holds for all � > 0, R�0, q ∈ Z+, x ∈ C0([−r, 0];Rn) with ‖x‖r �R and
t1, t2 ∈ [0, R] with t1 � t2 � t1 + T (1, R, x), it follows that

|Uq(t1, x) − Uq(t2, x)|� |t2 − t1|Uq(t1, x) + (2 + G3(R + 1, q))[sup{G2(x, h);

h ∈ [0, |t2 − t1|]} + |t2 − t1|G1(R, R)] for all R�0, q ∈ Z+,

x ∈ C0([−r, 0];Rn)with ‖x‖r �R and t1, t2 ∈ [0, R]with |t2 − t1|�T (1, R, x).

(3.46)

Finally, we define

V (t, x) :=
∞∑

q=1

2−qUq(t, x)

1 + G3(q, q) + (2 + G3(q + 1, q))(1 + G1(q, q))
. (3.47)

Inequality (3.33) in conjunction with (3.47) implies (2.14) with a2 = ã2 and

a1(s) :=
∞∑

q=1

2−q max{0, a1(s) − q−1}
1 + G3(q, q) + (2 + G3(q + 1, q))(1 + G1(q, q))

,
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which is a function of class K∞. Moreover, by (3.47) and inequality (3.34) we obtain for
all (h, t, x, d) ∈ R+ ×R+ × C0([−r, 0];Rn) × MD

V (t + h, 	(t + h, t, x; d))� exp(−h)V (t, x). (3.48)

Next define

M(R) := 1 +
[R]∑
q=1

2−qG3(R, q)

1 + G3(q, q)
, (3.49)

which is a positive non-decreasing function. Using (3.38) and (3.47) as well as the fact
G3(R, q)�G3(q, q) for q > R, we may establish (2.16). Finally, by virtue of (3.45), (3.47)
and the facts G3(R, q)�G3(q, q), G1(R, R)�G1(q, q) for q > R, we obtain

|V (t1, x) − V (t2, x)|� |t2 − t1|P1(R) + P2(R) sup{G2(x, h); h ∈ [0, |t2 − t1|]}
for all R�0, x ∈ C0([−r, 0];Rn) with ‖x‖r �R and t1, t2 ∈ [0, R]
with |t2 − t1|�T (1, R, x), (3.50)

where

P1(R) := a2(�(R)R) + 1 +
[R]∑
q=1

2−q(2 + G3(R + 1, q))G1(R, R)

1 + G3(q, q) + (2 + G3(q + 1, q))(1 + G1(q, q))
,

P2(R) := 1 +
[R]∑
q=1

2−q(2 + G3(R + 1, q))

1 + G3(q, q) + (2 + G3(q + 1, q))(1 + G1(q, q))

are positive non-decreasing functions. Inequality (3.50) in conjunction with the fact that
limh→0+ G2(x, h)= 0 for all x ∈ C0([−r, 0];Rn) establishes continuity of V with respect
to t on R+ × C0([−r, 0];Rn). Let d ∈ D and define d̃(t) ≡ d. By (2.9) and inequality
(3.48), we have for all (t, x) ∈ R+ × C0([−r, 0];Rn)

V 0(t, x; f (t, x, d))

:= lim sup
h→0+

y→0,y∈C0([−r,0];Rn)

V (t + h, Eh(x; f (t, x, d)) + hy) − V (t, x)

h

� lim sup
h→0+

V (t + h, 	(t + h, t, x; d̃)) − V (t, x)

h

+ lim sup
h→0+

y→0,y∈C0([−r,0];Rn)

V (t+h, Eh(x; f (t, x, d))+hy)−V (t+h, 	(t+h, t, x; d̃))

h

�−V (t, x)

+ lim sup
h→0+

y→0,y∈C0([−r,0];Rn)

V (t+h, Eh(x; f (t, x, d))+hy) − V (t+h, 	(t+h, t, x; d̃))

h
.
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Let R� max{t, ‖x‖r}. By (2.8) and property (3.31) it follows that t + h�R + 1, ‖	(t +
h, t, x; d̃)‖r �R + 1, ‖Eh(x; f (t, x, d)) + hy‖r �R + 1 for h and ‖y‖r sufficiently small.
Using (2.16) we obtain

V 0(t, x; f (t, x, d))� − V (t, x) + M(R + 1)

× lim sup
h→0+

‖Eh(x; f (t, x, d)) − 	(t + h, t, x; d̃)‖r

h
.

As in the proof of Lemma 2.7 we may establish that

lim sup
h→0+

‖Eh(x; f (t, x, d)) − 	(t + h, t, x; d̃)‖r

h
= 0

and consequently the previous inequality shows that (2.15) also holds.
Implication (a) ⇒ (b) for Theorem 2.10: Since 0 ∈ C0([−r, 0];Rn) is URGAS for

(2.2), there exists a function � ∈ KL such that estimate (2.6) holds for all (t0, x0, d) ∈
R+ × C0([−r, 0];Rn) × MD and t ∈ [t0, +∞) with �(t) ≡ 1. Thus all the previous
arguments may be repeated for the special case of the constant function �(t) ≡ 1. We finish
the proof with some remarks for the following particular cases:

• If (2.2) is T-periodic then for all (t0, x0, d) ∈ R+ × C0([−r, 0];Rn) × MD it holds that
	(t, t0, x0; d) = 	(t − [t0/T ]T , t0 − [t0/T ]T , x0; P(t0)d), where [t0/T ] denotes the
integer part of t0/T and P(t0)d ∈ MD is defined by

(P (t0)d)(t) := d

(
t +

[
t0

T

]
T

)
, ∀t �0.

It follows from (3.32) for all q ∈ Z+

Uq(t, x) := sup

{
max

{
0, ã1

(∥∥∥∥	

(
� −

[
t

T

]
T , t −

[
t

T

]
T , x; P(t)d

)∥∥∥∥
r

)

−q−1
}

exp((� − t)) : �� t, d ∈ MD

}
.

Moreover, since P(t)MD=MD for all t �0, it follows that Uq(t, x)=Uq(t−[t/T ]T , x),
which directly implies that Uq is T-periodic for all q ∈ Z+. (3.47) implies that V is T-
periodic.

• If (2.2) is autonomous then (2.2) is T-periodic for all T > 0. Consequently, V is T-periodic
for all T > 0 and thus V (T , x) = V (0, x) for all T > 0. Thus V (t, x) = V (0, x) for all
t �0 and consequently V is independent of t .
The proof is complete. �

4. Conclusions

We establish Lyapunov characterizations for the concepts of non-uniform in time and
uniform robust global asymptotic stability (RGAS) for uncertain systems described by
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RFDEs, completely analogous to the corresponding characterizations for continuous-time
finite-dimensional uncertain systems, which overcome the limitations imposed by previous
works. Particularly, our Lyapunov characterizations apply

• to systems with disturbances that take values in a (not necessarily compact) given set,
• to systems described by RFDEs with right-hand sides which are not necessarily bounded

with respect to time.

The established Lyapunov-like conditions demand the infinitesimal decrease property to
hold only on subsets of the state space along with an additional property that guarantees
forward completeness. Illustrating examples are also provided.
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Appendix

Proof of Lemma 2.8 (Comparison principle). It suffices to show that v(t)�w(t) on any
compact interval [t0, t1] ⊂ [t0, T ). Consider the scalar differential equation

ż = f (t, z) + �,

z(t0) = w0, (A1)

where � is a positive constant. On any compact interval [t0, t1] ⊂ [t0, T ), we conclude from
Theorem 2.6 in [13] that for every � > 0 there exists � > 0 such that if 0 < � < � then (A1)
has a unique solution z(t, �) defined on [t0, t1] and satisfies

z(t, �) ∈ J, |z(t, �) − w(t)| < �, ∀t ∈ [t0, t1]. (A2)

Fact I: v(t)�z(t, �), for all t ∈ [t0, t1).
This fact is shown by contradiction. Suppose that there exists t ∈ (t0, t1) such that

v(t)−z(t, �) > 0. Let the lower semi-continuous function m(t) := v(t)−z(t, �) and define
the set

A+ := {� ∈ (t0, t1) : m(�) > 0}, (A3)

which by assumption is non-empty. Lower semi-continuity of m(t) := v(t)−z(t, �) implies
that A+ is open. Let

t̃ := inf{t ∈ A+}. (A4)

Since A+ is open we conclude that t̃ /∈ A+, or equivalently that v(t̃)�z(t̃, �). On the other
hand, by (A4) there exists a sequence {�i ∈ A+}∞i=1 with �i → t̃ . Consequently, we obtain

v(�i ) − v(t̃)�z(�i , �) − z(t̃, �). (A5)
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This implies

D+v(t̃)� ż(t̃ , �) = f (t̃, z(t̃ , �)) + �. (A6)

We distinguish the following cases:
(i) If the mapping f (t, ·) is non-decreasing on J ⊆ R, then inequality v(t̃)�z(t̃, �) im-

plies f (t̃, v(t̃))�f (t̃, z(t̃ , �)). The latter inequality combined with (A6) implies D+v(t̃) >

f (t̃, v(t̃)), which contradicts (2.12).
(ii) If there exists a continuous function 	 : [t0, T ) → R such that f (t, w)�	(t), for all

(t, w) ∈ [t0, T )× J , then we may define the lower semi-continuous function ṽ(t)= v(t)−∫ t

t0
	(s) ds. This function satisfies the following differential inequality:

D+ṽ(t)�D+v(t) − 	(t)�f (t, v(t)) − 	(t)�0.

Consequently, by virtue of Lemma 6.3 in [4], ṽ(t) is non-increasing. This implies that
ṽ(t +h)� ṽ(t), for all h�0. Moreover, lower semi-continuity of ṽ(t) implies that for every
� > 0 the inequality ṽ(t + h)� ṽ(t) − � for sufficiently small h�0. It follows that ṽ(t) is a
right-continuous function on [t0, t1]. By virtue of right-continuity and (A3), we must also
have v(t̃)�z(t̃, �). Thus we must have v(t̃) = z(t̃, �) and in this case by virtue of (8) we
obtain D+v(t̃) > f (t̃, v(t̃)), which contradicts (2.12).

Fact II: v(t)�w(t), for all t ∈ [t0, t1). Again, this claim may be shown by contradiction.
Suppose that there exists a ∈ (t0, t1) with v(a) > w(a). Let � = 1

2 (v(a) − w(a)) > 0.
Furthermore, let � > 0 be selected in such a way that (A2) is satisfied with this particular
selection of � > 0. Then we obtain

v(a) = v(a) − w(a) + w(a) = 2� + w(a) − z(a, �) + z(a, �) > � + z(a, �),

which contradicts Fact I. The proof is complete. �
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