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Abstract

Necessary and sufficient conditions for the solution of robust output feedback stabilization (ROFS) problem are given. The
obtained results are applied to the problem of Global Identity Observer Design for forward complete systems without inputs.
It is shown that a necessary and sufficient condition for the existence of a Global Identity Observer is the existence of an

observer Lyapunov function (OLF).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the problem of robust
global stabilization of the output

Y=H(t, x) (1.1a)
of a time-varying affine system:

x=f(t,d x)+g@ d x)u,
xeR",t>20,deD,ueclU (1.1b)
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by means of a time-varying output feedback law-
k(t,y), where

y=h(t, x). (llC)

For obvious reasons the output= (¢, x) is called
the “measured output” and the outpat= H(z, x) is
called the “stabilized output”. This problem is called
the Robust Output Feedback Stabilization (ROFS)
problem and sufficient as well as necessary condi-
tions for the solvability of this problem are given in
this paper. The ROFS problem includes as a special
case the problem of static output feedback stabiliza-
tion, where the “stabilized output” is the whole state,
i.e., Y = x. Sufficient conditions for uniform (static
or dynamic) output feedback stabilization were given
in many papers (see for instanf®-5,19,22,23Jand
the references therein). However, in this paper we are

0167-6911/$ - see front matter © 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.sysconle.2005.02.002


http://www.elsevier.com/locate/sysconle
mailto:ikarafil@econ.uoa.gr
mailto:kravaris@chemeng.upatras.gr

926

concerned with non-uniform in time output feedback
stabilization of the output given by (1.1a). The notions
of non-uniform in time Robust Global Asymptotic Sta-
bility (RGAS) and Robust Global Asymptotic Output
Stability (RGAOS) have been developedér-11]and
have been proved useful for the solution of many prob-
lems of Mathematical Control Theory.

The ROFS problem arises naturally when one con-
siders the problem of Global Identity Observer Design
for a forward complete time-varying nonlinear system:

x = f(t,x),
y=h(t, x),
x e R, 1>0. (1.2)

For this problem, the aim is to design a vector field

k() such that system (1.2) with=k(z, z, y) has the
property of Global Asymptotic Output Stability for the
“stabilized output”Y = H(¢, x, z) := z — x. Thus the
problem of Global Identity Observer Design is actu-
ally a special case of the ROFS problem. The prob-
lem of Global Identity Observer Design has a long
history in Mathematical Control Theory (s§5] and
the references ifil8]) and its solvability for nonlin-
ear systems is addressed in many papers (see for in-
stance[12-15,20,21). Recently, the notions of State
Independent Error Lyapunov Function and Observer
Lyapunov Function (OLF) were introduced [&7].
In this paper we prove that the existence of a time-
varying OLF is a necessary and sufficient condition
for the existence of a global identity observer for (1.2)
(Theorem 3.5).

Notations. Throughout this paper we adopt the fol-
lowing notations:

By Mp we denote the set of all measurable func-
tions fromR* to D, whereD ¢ R™ is a given
compact set.

By C/(A)(C/(A; Q)), where j>0 is a non-
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e K1 denotes the class of positive® functions
¢ : Rt — (0, +00). By K we denote the class
of strictly increasingC® functionsa : R* —
R with a(0)=0. By K, we denote the class of
strictly increasingC? functionsa : R — R+
with a(0) =0 and lim_, 1o a(s) = +oc0. By KL
we denote the set of all continuous functions
c=o0(s,1) : K" x RT™ — RT with the proper-
ties: (i) for eachr >0 the mappings (-, r) is of
classkK; (ii) for eachs >0, the mappings (s, -)
is non-increasing with liny, . o a(s, ) = 0. By
KconWe denote the class of functions R —
R with the properties: (i € CLRT) N K;
(i) the function %% (s) is non-decreasing
(see[6]).

e We denote byE the class of functiong: €
COM™; M) that satisfy ;> u(r) dr < + oo
and lim_, 1o u(t) = 0.

e We say that the functioi/ : R+ x R" — R,

is locally Lipschitz with respect to € R” if for

every bounded interval ¢ R™ and for every

compact subses of R", there exists a constant

L>0 such thatH(t, x) — H(t, y)|<L|x — y|

forall (r,x,y) e I x § x S.

We say that the functiorf : Rt x D x R" —

R* whereD c R™ is a compact set, is locally

Lipschitz with respect tac € R", uniformly in

d € D, if for every bounded interval c R

and for every compact subsé&tof ‘R”, there

exists a constant >0 such that| f(z,d, x) —

f,d,y)|<Llx —y|forall (t,x,y,d) € I x

S x § x D. Notice that for the dynamical sys-

temx = f(t,d, x),x € R",d € D, the assump-

tion that the dynamicg'(-) are continuous ev-
erywhere and locally Lipschitz with respect to

x € N*, uniformly ind € D, with f(-,0) =0,

guarantees that the system has a unique local

Caratheodory solution (sd2]) for all d(-) €

Mp.

negative integer, we denote the class of func- Moreover, throughout this paper we assume the fol-

tions (taking values in2) that have continuous
derivatives of ordej on A.

Forx € R", x’ denotes its transpose and its
usual Euclidean norm.

By B[x, r] wherex € R" andr >0, we denote
the closed sphere iR" of radiusr, centered at
x e R

lowing:

H1. Concerning system (1.1), we assume that-
%! is a compact set and < R" is a non-empty
convex set with G= U. Moreover, the dynamics
of system (1.1),£(-), g(-) are C° vector fields,
which are locally Lipschitz with respect to €



I. Karafyllis, C. Kravaris / Systems & Control Letters 54 (2005) 925-938

R", uniformly ind € D, with f(z,d, 0) =0 for
all (tr,d) e R x D.

The output maph : RT x K" — R¥ involved
in (1.1c), is ac? function, locally Lipschitz with
respect tox € R", with i(¢z,0) =0 for all >0
that satisfies:

H2.

(1) There exists a regiofi € R* such thats =
h(t, R") for all t >0.

(2) There exists a continuous function R* x
S — RT, such that for everyr, y) € Rt x
S there existsc € R" with y = h(¢, x) and
lx|<a(z, y).

The output mapH : R x R* — R, involved

in (1.1a), is ac? function with H (¢, 0) = 0 for

all t >0.

H3.

It should be emphasized at this point that as-
sumption H2 is not restrictive. Since the ROFS
problem allows output transformations of the form
h(t,x) = p(t, h(t,x)) for all 1>0, x € R", where
p R x RE - R s a locally Lipschitz function
with p(z, 0) =0 for all t >0, we may redefine a given
output map so that part 1 of hypothesis H2 is satisfied.
For example, the output maygz, x) = exp(—r) sin(x)
does not satisfy (1) of hypothesis H2. However, we
may consider the ROFS problem for the output map
h(t, x) = sin(x), which satisfies part 1 of hypothesis
H2 and is related to the given output map by the
transformationi (z, x) = exp(t)h(t, x). We also note
that part 1 of hypothesis H2 is automatically satisfied
for the important case of time-invariant output maps,
i.e., for the casé(z, x) = h(x). Concerning part 2 of
hypothesis H2, we notice that this assumption is sat-
isfied for output maps that are commonly used in the
literature. For example, when= (x1, ..., x,) € R"
andy = h(z, x) := x1 € ‘R, we may select(s, y) :=
ly| for all (£, y) € R x R.

2. Robost Output Feedback Stabilazation

In this section we define the Robust Output Feed-

927

of Lemmas 2.3 and 3.3 if8], the reader can immedi-
ately verify that the simplified definitions given here
are equivalent to the — 6 definitions given in[8].
Consider the system:

X = f(,d, x),
Y=H(t, x),

xe N, +t>0,d € D, (2.1)

where H € CO(RT x R"; ®Y), £ € CORTD x
R"; R") is alocally Lipschitz vector field with respect
to x € R", uniformly with respect tal € D, with
f(t,d,0)=0, H(t,0)=0 for all (t,d) € R x D.

Definition 2.1. We say that (2.1) is Robustly Forward
Complete (RFC) if there exist functiomse K and

a € Ko such that for everyrg, xo, d) € R x R" x
Mp the solutionx(r) of (2.1) with initial condition
x(t9) = xo and corresponding to inpute Mp exists
for all 1 >ty and satisfies

lx(DI<q(a(lxol), Vi=1o. (2.2)

We say that (2.1) is Robustly Globally Asymptotically
Output Stable (RGAOS) if system (2.1) is RFC and
there exist function € K™ andes € KL such that
for every (10, x0, d) € Rt x R" x Mp the solution
x(¢) of (2.1) with initial conditionx (fg) = xg and cor-
responding to inpu € Mp exists for allz >y and
satisfies

|H(t, x(0)|<o(Blto)|xol. t —t0), Vt=to.  (2.3)
We are now ready to provide the definition of the

ROFS problem for systems with outputs.

Definition 2.2. Consider system (1.1b) with output
maps given by (1.1a) and (1.1c). The outgut=
H(t, x) is called the “stabilized output” while the
output y = h(z, x) is called the “measured output”.
The ROFS problem for (1.1) with measured output
y = h(t, x) and stabilized outpu¥ = H (¢, x) is said

to be

back Stabilization problem and we give necessary and (1) Semi-globally solvablé for every R > 0, there

sufficient conditions for its solvability. We first give
the definitions of the notions of Robust Forward Com-
pleteness (RFC) and Robust Global Asymptotic Out-
put Stability (RGAOS), introduced ifB]. By virtue

exists a functionk € CO(R' x §; U), which
is locally Lipschitz with respect tg € S, such
that if we denote byx(z) the solution of the
closed-loop system (1.1) with = k(z, h(t, x))
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corresponding te/(-) € Mp and initiated from
xo € R" at timezp >0, the following properties
hold:

P1 For every T>0 we have: sufix(ro +
s)|; [xol <R,10 € [0, T],s € [0, T],d() €
Mp} < + oo.

P2 For every ¢>0, T>0 and 0O<r<R,
there existst := t(e, T, r) >0, such that:
lxol<r,t0 € [0, T] = |Y(1)|<e, ViZ1o +
7,Vd(-) € Mp.

Globally solvableif there exists a function

k € CORT x S; U), which is locally Lipschitz

with respect toy € S, such that the closed-loop

system (1.1a,b) withe = k(z, h(¢, x)) is non-
uniformly in time RGAOS. Particularly, we say

that the feedback functioh € CO(R" x §; U)

globally solvesthe ROFS problem for (1.1)

with measured output = 4(¢, x) and stabilized

outputY = H (¢, x).

Globally strongly solvablé there exists a feed-

back functionk € CO(R™ x S; U), which glob-

ally solves the ROFS problem for (1.1) with
measured output=h(z, x) and stabilized output

Y = H(t, x) and the sefd ~1(z, 0) is positively

)

®3)

invariant. Particularly, we say that the feedback

functionk € CO(R™ x S; U) globally strongly
solvesthe ROFS problem for (1.1) with mea-
sured outputy = A(z, x) and stabilized output
Y=H(, x).

For convenience, we will next call the ROFS prob-
lem for (1.1) with measured outpuyt= A (z, x) and
stabilized output = H(z, x) as Problem (1).

Remark 2.3. If properties P1 and P2 hold then it can
be shown (as in proof of Lemma 3.3 j8]) that the
following property is also satisfied:

P3. For everye> 0, T >0, it holds that suY (¢)[;
t>1o, |xo| <R, 10€[0,T],d(-) € Mp} <+ o0
and there exist$) := (¢, T) >0 such that:
|xo|<d,20 € [0, T] = [Y(@®)|<e, Vi1,
Vd(-) € Mp (robust Lyapunov output stability).

The following examples show that recent research
results in[9,6] can be regarded as solutions of the

ROFS problem for appropriate systems.
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Example 2.4. Consider the following system:

i=Az, zeRJ (2.4a)
G=fi@ & 8+ G 1SIS

W= e M E=(Ep,..., &) e (2.4b)
with statex := (z, &) € R" and output maps
Y=y=H(t,x)=h(tx):=¢, (2.5)

where A is a matrix of appropriate dimensions and

fi) i=1,..., ) are continuous mappings, locally
Lipschitz with respect t@z, &) that satisfy
i@ Eas s EISK @A (201 E s €D

Vze R (&, G e W (2.6)

for some constants, K > 1. Clearly, we have for the
solution of (2.4a) initiated fronzg € MW"~/ at time
t0=0:

lz(0) < exp(|Alr)]zol, (2.7)

where |[A| := sup{Az; |z| = 1}. Inequality (2.6) in
conjunction with (2.7), implies

|fi(z(t)v élv LR él)|
<K+ [20l") xR Ea. ... &),
Vo€ WU (.. &) e W, 2.8)

wherer := a|Al|. Moreover, by virtue of inequality
(2.8) and Corollary 3.2 iff9], there exist aC°° map-
ping k : R — RPJ, a P non-decreasing func-
tion p : R — R, a constanf > 0 and ac?, non-
negative functionD : Rt x MT — RT, with the
property that for each>0 the mapping (-, 7) is non-
decreasing and

lim explet}D(s,t) =0, Vex=0,5>0 (2.9)
t—+400
such that the solutiod(s) of the closed-loop system
(2.4b) withu=k(¢)¢, initiated from&y € R’ at timerg
and corresponding to(r) =exp(A(t — tg))zo, Satisfies

1S())I< D(lzol. 1) exp{p(Izol) eXp(rio)} <ol

vt > 1o. (2.10)

It follows that the linear time-varying feedback law
u=k(t)¢, globally strongly solvethe ROFS problem
for (2.4) with measured output = h(¢, x) = ¢ and
stabilized output = H (¢, x) = ¢.
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Example 2.5. Consider the following system:

i=fold,2), zeR"/ ,deD, (2.11a)
Ei=fild, 2,6, &) Feild, 2,8, EDE
1<i<j,
u = 6]+1€£R,5:: (flv7éj) 69{]1
deD, (2.11b)

with statex := (z, &) € R" and output maps

Y=y=H(@t x)=h(tx):=¢ (2.12)
where D c %' is a compact set,fo(-) and
fi(),gi() ( =1,..., ) are continuous mappings,
locally Lipschitz with respect tdz, &), uniformly in

d € D, with fp(-,0) =0, that satisfy foi =1, ..., j:

¢,
(2.13)

|fild, z, &1, ~‘--7fi)léa(P(lzl)l(Cflv--~’
Vze R"/, (&q,....¢6)eR ,deD

for certaina € K¢on (See notations for the definition
of Kcon) and certainC® non-decreasing functiop :

If the output mapH : R x R — R, involved in
(1.1a),is a C? function and Problen{l) is globally
strongly solvablethen the following conditions are
additionally satisfied

ov
inf sup {—(t X) +
ueU*(1,y) vep—1q,y) ot

deD

(t x)f(t,d,x)

oV
+6_ (t,x)g(t, d, x)u+ Vi, X)} <0,
X

vVt >0 and for all y € S for which

H Yt 0nh Y@, y) #0, (2.14c)

where
0H 0H
U'(t,y)=juecU; — (t,x) + — (1, x)
ot Ox

OH
X f(t7d7-x)+ a_(tv-x)g(tvda-x)uz()
X
forall d € D and

xe H Y, 00nh 1@, y)} . (2.14d)

Finally, if the feedback functioh € CO(R™ x S; U)

RT - R, Suppose that (2.11a) is RFC. Then using that globally solves Problerfil) satisfiesk(z, 0) =

Lemma 2.2 in[6] and Proposition 4.1 if6] it can

be shown, as in the previous example, that the ROFS

problem for (2.11) with measured outputh(zr, x)=¢&
and stabilized output = H (¢, x) = ¢ is semi-globally
solvable

The following result is an immediate consequence

of Proposition 3.6 ir{8].

Theorem 2.6. Suppose that Probler(l) is globally
solvable Then there exist functiong € C®° (R x

R RY), a1,a2 € Koo and 1, B, € KT such that
the following inequalities hotd

ar(|(Br()x, H(t, x)) SV (t, x) <aa(fa(t)]x]),
Y(t,x) € RT x R", (2.14a)

inf  sup
uel xeh™ 1(t y)
deD

{6 (tx)+ (t x)f(t,d, x)
ot

+g— (t,x)g(t,d, x)u+ Vi, x)} <0,
x

Y(t,y) € RT x S. (2.14b)

for all t >0, then the following condition is satisfied:

sup {a—(t x)+ ov (t x)f(t,d,x)+ V(t, x)}

xeh*l(t,O) al
deD

<0, Vvi>0. (2.14e)

For the statement of our main result we need to
define the notions of the “capturing region” and the
“bounding map”.

Definition 2.7. Consider system (2.1) with output
mapy = h(t, x), whereh satisfies hypothesis H2. Let
0 € P(t,y) € RN" be a set-valued map with closed
images. We say thaP(r, y) € R" is a “capturing
region’ for (2.1) if the following property is satisfied:

(P). For every R>0, T>0 there existt :=
T(R,T)>0 ande := ¢(R, T) >0 such that for
everyd(-) € Mp, xo € B[O, R] andzg € [0, T],
the solutionx(-) of system (2.1) corresponding
to d(-) € Mp and initiated fromxp € R" at
time 70 >0, satisfies syp, <, [x(t)| <& and
x(t) € P(t, h(t,x())) forall t > + 7.
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Roughly speaking, the capturing region is a closed

set in the state space with the property that every so- uecu

lution of the system enters this set in finite time.

Definition 2.8. Leth : BT x K" — KK amap, which
satisfies hypothesis H2 and let1(r,y) := {x €
R"; y=h(t, x)}. Every set-valued map (¢, y) € R"
defined onR™ x § with 0 € P(z, y) for all (1, y) €

Rt x S, such that the map~1(z, y)N P(z, y) is upper
semi-continuous, with non-empty, compact images for
all (r, y) € R x Sis called a bounding mapfor h.

Notice that under assumption H2 for the function
h, we can explicitly construct bounding maps far
For example, the set-valued map(t, y) = {x €
R |x|<a(t,y) + B(t)}, where p(¢) is any non-
negative continuous function amd: R™ x § — R
is the continuous function involved in hypothesis H2,
is a bounding map fon. Specifically, we then have

e )N P y)
={x e W' y=h(r,x), |x|<a(t,y) + @)}

Moreover, notice that in general a bounding map for
the functionh actually depends om € S. This hap-
pens because the set-valued mag(z, y) N P(z, y)
is required to be non-empty for aft, y) € Rt x
S. For example, when: = (x1,...,x,) € R" and
y = h(t,x) := x1 € R, in order to guarantee that
the set-valued map~1(r, y) N P(z, y) is non-empty
for all (r, y) € R x R, we must selecP(t, y) :=
{x € M"; |x|<alt, y)}, where the functior satisfies
a(t, y)=|y| forall (r, y) € BT x R.

The following theorem provides a set of sufficient
Lyapunov-like conditions for the solvability of Prob-
lem (1).

Theorem 2.9. Suppose that there exist functiovise
CYRT xR RN, a1,a2 € Koo, fr. o e Kt P €
E N KT (see Notations for the definition of claE$
and a positive definite functiop € CO(R™; RH),
such that the following inequalities hold

ar(|(Br(t)x, H(t, x)) <V (t, x) <az(B(1)]x]),
Y(r, x) € RT x R, (2.15a)
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sup

xehil(r,y)
deD

ov ov
{_ (tax) + ,\_(ta-x)f(t»dax)
ox

A

+% (t,x)g(t,d, x)u+ p(V(t, x))} <o),

Y(r,y) e RT x S, (2.15b)
sup {6—V(t,x)+a—v(t,x)f(t,d,x)
XEh_l(t,O) 6t 6x
deD
+p(V (2, x))} <¢@), Vi=0. (2.15c)

Then Problem(1) is semi-globally solvableParticu-
larly, for every bounding magP(z, y) < R" for h,
there exists a functior € C®(R' x §;U) with
k(t,0) =0 for all t>0, such that

ov
ot

(t,x) + 6_V (t,x)f(t,d, x)
Ox

ov
+—(t,x)gt, d, x)k(t,y)
Ox

< —p(V(t, x)) + 6¢(t),
Y(t,y) € Rt x S,

xehXt,y)NPt y.deD.  (2.16)

The proof of Theorem 2.9 is based on the following
lemma, which provides the procedure for the construc-
tion of the feedback law. The result of the following
lemma will be also used in the next section.

Lemma 2.10. Letw; € CORT x D x R"; N), wp €
CO(RT x D x R"; R™) whereD c R is a compact
set ¢ e ENK™T, U € R™ be a non-empty convex set
with0 e U, u € CORT x §; R) with u(z, 0) = 0 for

all t >0, and h be a map that satisfies hypothd4%s
Suppose that

in{] supwi(t, d, x) + wa(t,d, x)u; d € D,
ue

x e h Y, )I<Pr), Y, y) e R x S,

(2.17a)

supwi(r,d,x);d € D,x € h=(t, y)} < (1),
vVt >0 and for all y € § with u(¢, y) =0. (2.17b)

Thenfor every bounding magxz, y) € R”" for h, there
exists a functiot € C*®° (R x S; U) with k(¢, y)=0
for all r>0 and for all y € § with u(z,y) = 0,
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such that

w(t,d, x) +wa(t,d, x)k(t, y) <6¢(1),
Yt y) e R x S, x e h 2, y) N P(1, y),

deD. (2.18)

Proof. Let P(¢,y) € R" be an arbitrary bounding
map forh. Since the set-valued map (s, y)NP(t, y)

is upper semi-continuous, with non-empty, compact
images for all(r,y) € ®" x S and the function
wi(t, d, x) + wa(t, d, x)u is continuous with respect
to (s, x,d,u) € Rt x R" x D x U, by virtue of Theo-
rem 1.4.16 ir[1] it follows that for allu € U, the map

(t,y,u) — wo(, y; u)
= supwi(z,d, x) + wa(t, d, x)u,

deD,x eh Yt y)N P, y) (2.19)

is upper semi-continuous. Moreover, the map—>
wO(t, y; u) is convex. We proceed by noticing the fol-
lowing fact.

Fact. For all (g, yo) € R" x S, there existsig € U
and a neighborhood (7o, yo) C R* x S, such that
(t,y) € N(to, yo) = w(t, y; u0) <6¢(t).  (2.20)

Moreover if u(tg, yo) = 0 then we may seleaty = 0.

Proof. By virtue of (2.17a) and the fact théi(zg) > O,
it follows that for all (rg, yo) € R x S there exists
ugp € U such that
wO(to, yo; uo) <2¢ (o). (2.21)

Moreover, by virtue of (2.17b) we may selegi = 0
if u(to, yo) = 0. Since the mayr, y) — wO(, y; u)
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all j € J, such that
(t,y) € Q) = w'(t, y; u ) <6H(). (2.23)
Let also
A= |J No.yo), (2.24)
(to,y0) Q2
where Q@ = {((t,y) € R' xS : ut,y) #

0}, N(r0, yo) € R' x S is the neighborhood of
(t0, yo) that satisfies (2.20) forng = 0. Clearly, by
virtue of (2.24) the sett ¢ R x S is open. By us-
ing standard partition of unity arguments, there exists
a family of functionsfp : R* x § — [0,1], 0; :

Rt xS — [0, 1], with 0;(t, y)=01if (¢, y) ¢ Q; C Q
andto(z, y) =0 if (t, y) ¢ A, Oo(t, y) +3_;0;(t, y)
being locally finite andlg(z, y) + Zj 0;(t, y)=1for

all (¢, y) € R* x S. We set:

k(t,y) = Z 0;(t, yu;.

J

Notice that if (z, y) ¢ Q then(r, y) ¢ Q; forall j € J
and consequently by (2.25) we haue, y) =0 for all
t>0 and for ally € S with u(z, y) = 0. Since each
uj is a member of the convex setand Oe U, it
follows from (2.25) that(z, y) € U for all (z,y) €
R x S. It also follows from the fact thav®(z, y; u) is
convex with respect ta and definition (2.25) that for
all (1, y) e R x SandJ'(t, y)={j € J; 0;(t, y) #
0}:

wo(t, y ke, yN< Y 0it, wOe, yiwp).
ieJ/'(t,y)

(2.25)

(2.26)
Combining (2.23) with (2.26) and (2.19), we obtain

is upper semi-continuous, there exists a neighborhood the desired (2.18). The proof is complete.]

N(10, yo) € Rt x S around(zo, yo) such that for all
(¢, y) € N(t0, y0):

w?(t, y; uo) <wP(to, yo: uo) + ¢(to);
P(t0) <2¢(1). (2.22)

Therefore, inequalities (2.21) and (2.22) imply (2.20)
for all (¢, y) € N(to, yo).

Let Q := {(t,y) € W" x S : u(r, y) # 0}. There
exists a family of open set$2;) ;. ; with Q; C Q for
all j € J, which consists a locally finite open covering
of Q and a family of pointu;);c; with u; € U for

We are now in a position to prove Theorem 2.9.

Proof of Theorem 2.9. Applying Lemma 2.10 for
wit,d,x) = L@, + L0.0f0dx) +

p(V(t,x)), wat,d,x) = X (t,x)g(t,d,x) and
w(t,y) = |y|, we conclude that for every bound-
ing map P(¢t,y) € R" there exists a functiok €
C®MR' x S; U) with k(s,0) = 0 for all + >0, such
that (2.16) holds. We next prove that Problem (1)
is semi-globally solvable. Notice that by virtue of
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Lemma 3.2 in[10], there exist a functiow € KL
and a constan¥ > 0, such that for every absolutely
continuous functiorw : R — RT, that satisfies
w(t) < — p(w(t)) + 6¢(¢) a.e. fort >1g, we have:

w)<o(w(tg) + M,t —1g9), Vit=1o. (2.27)

Let R, T > 0 be arbitrary and lea be the continuous
non-negative function involved in hypothesis H2 for
h. Define the following bounding map fdr.

P(t,y)

= {xeiﬁ” Cxl<La )—}-R—i—L
= Dlx|<La(t, y /A0

art <o— (M +az <R max [32(1)> : o)) } :
(2.28)

whereas, az € Koo, fi1, f2 € KT are the functions
involved in (2.15a). Lekk € C®(RT x §; U) with
k(t,0) =0 for all r >0, be the function that satisfies
(2.16) for P(z, y) c R" as defined by (2.28). Con-
sider the trajectory (¢) of the solution of the closed-
loop system (1.1) witlk =k(z, y) and initial condition
x(tp) = xo € B[O, R], tp € [0, T'], corresponding to
inputd(-) € Mp, namely

x=f@d x)+ gt d x)k(,y). (2.29)

By continuity of the solutionx(¢), there exists
time 71 > 1o such thatjx(¢)| — a(t, h(t, x(t))) < R +
Tl(t)al_l(a(M + a2(Rmaxy< <, fo(1)), 0)) for all

t € [to, 1), i.e., x(t) € P(t,h(t,x())) for all r €
[t0, 11). It follows from (2.15a), (2.16) and (2.27) that

the following inequality holds:

|(Br(1)x, H(t, x(1)))]
<ap oM + ax(Bo(10)|x0l), t — 10)),

Vi € [1o, 11). (2.30)

Clearly, using continuity of the solution, inequal-
ity (2.30) and the fact thaktg € B[O, R], it fol-
lows that inequality|x(¢)| — a(t, h(t, x(¢))) < R +
ﬁal_l(a(M + az(Rmaxy< <, fo(1)), 0)) holds
also fort = 11. Thus (2.30) holds for alt > 1. This
shows that Problem (1) is semi-globally solvable. The
proof is complete. [J

The following corollary provides useful criteria for
the semi-global solution of Problem (1) obtained by
Theorem 2.9 to be a global solution.
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Corollary 2.11. Suppose that there exist functions
Ve CIRT x R, R, ar, a2 € Koo, B, Br € KT
that satisfy(2.15a)and there existh ¢ EN K™, a
positive definite functiop € CO(R*; R), a func-
tionk € CO(RT x S; U), with k(¢, 0)=0for all 7 >0,
which is locally Lipschitz with respect tp € S, and

a set-valued mag (¢, y) € R", such that inequality
(2.16) holds Moreover suppose that the set-valued
map P(t,y) € R”" is a capturing region for the
closed-loop systerflL.1) with u = k(¢, h(z, x)). Then
the feedback functioh € CO(R™ x S; U) globally
solves Problengl).

Proof. Notice that by virtue of Lemma 3.2 ifiL0],
there exist a functiom € KL and a constan > 0,
such that every absolutely continuous function:
R — R, which satisfiesi (1) < — p(w(r)) +6¢p(1)
a.e. for r>1r, satisfies also estimate (2.27). Let
R, T > 0 be arbitrary and consider the trajectarfy)

of the solution of the closed-loop system (1.1) with
u=k(t, y) and initial conditionx(g) = xg € B[O, R],

to € [0, T], corresponding to inpuf(-) € Mp. If the
set-valued mapP (s, y) € R”" is a capturing region
for the closed-loop system (1.1) with=k(z, y), then
inequalities (2.15a) and (2.16) guarantee that

[(B1(D)x, H(t, x(1)))]
<ap N oM + ax(By(t0 + 1)e), t — 10 — 1)),
Vt>to+ T,

where ai, a2 € K, f1,f2 € KT are the func-
tions involved in (2.15a) and := ©(R, T) >0, ¢ :=
¢(R, T)>0, are the quantities involved in property
(P) of Definition 2.7. The latter inequality, in con-
junction with the fact that syp, <, [x(t)[<¢ (as
guaranteed by property (P) of Definition 2.7), shows
that system (2.29) is RFC. Using Lemma 3.5&j,

it can also be shown that the closed-loop system
(1.1) withu = k(z, y), with output given by (1.1a) is
non-uniformly in time RGAOS. Thus, Problem (1) is
globally solvable. [

3. The problem of observer design for forward
complete systems with no inputs

Throughout this section we consider system (1.2)
and we suppose that the mappirfge CO(RT x
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R"; ") is locally Lipschitz with respect ta € R",
with f(z,0) = 0, while the outputh € CO(R' x
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from xg € R" at time 1o >0, satisfies the estimate
lx(t)| <o (B(to)|xol, t — to), for all t >1o. This implies

R"; R*) satisfies assumption H2. We also assume that that for every(xo, zo) € R" x R", 1o>0, the solution

system (1.2) is RFC.

Definition 3.1. Consider system (1.2) and suppose
that system (1.2) is RFC. The system

t>0,z € R,
X e N,

z=k(, z,y),

=Y, 2, 5), (3.1)

where? : R x R" x R¥ — K" is a continuous map
with ¥(z,0,0) =0,k € CORT x ™ x RE; R™) is
locally Lipschitz with respect taz, y) € R" x R-,
with k(z, 0, 0)=0, is called a Global Observer for (1.2)
if system (1.2) with (3.1) is RFC and the following
properties are satisfied:

(1) Asymptotic propertyThere exist functions e
KL andp € KT, such that for everyxg, zg) € R" x
R", t0=0, the solution(x(-), z(-)) of system (1.2)
with (3.1) initiated from(xg, zg) € N" x R at time
to >0, satisfies the following estimate:

|%(r) — x(®)| <a(B(t0)|(x0, z0)|, t —t0), Vt=r1g

(3.2)

(2) Consistent initialization propertyFor every
(f0, x0) € KT x R" there existgg € R™ such that
the solution (x(-), z(-)) of system (1.2) with (3.1)
initiated from (xg, zg) € R" x R at time 1p=>0,
satisfiesx (1) = x(¢) for all 1 > 1.

If there exists a Global Observer for (1.2), we say

(x(+), z(+)) of system (1.2) withc = f(z, z), initiated
from (xo,z0) € R" x R" at time 1o >0, satisfies
the estimatez(r) — x(t)| < 20(B(to) | (xo0, z0), t — to),
for all t >19. For example, this fact can be used in
order to design a global observer for the system
X1 = —x1+ X3, 2 = —x1xp, for which zero is (uni-
formly in time) GAS. This system is given as an ex-
ample in[15], where a local observer for this systemis
constructed.

(ii) Definition 3.1 is different from Definition 7.1.3
in [18], even when we consider autonomous systems
without inputs and full order autonomous observers
because Definition 3.1 does not guarantee the “Lya-
punov stability” property for the errar=x — x: i.e.,
if the initial value for the erroeg = xg — xg is “suf-
ficiently small”, we cannot guarantee that all future
values of the error will be “small”. This stronger prop-
erty would be satisfied if instead of (3.2) the following
estimate were satisfied for the solution(-), z(-)) of
system (1.2) with (3.1):

|X(1) — x| <a(B(10)|X0 — xol,  — t0),

Vi > 1. (3.3)

Instead, our asymptotic property (3.2) guarantees that
if the initial condition (zg, xo) is “sufficiently small”,
then all future values of the error will be “small”.

that system (1.2) admits a Global Observer or that the It should be emphasized that if the definition of the

observer design (OD) problem is globally solvable for
(1.2). The continuous ma : R+ x K" x R —

R" is called the reconstruction map of the observer.
Particularly, if ¥(z, z, y) = z with z € R", we say
that (3.1) is a Global Identity Observer.

Remark 3.2. Concerning Definition 3.1 the following
points must be made:

(i) By virtue of Definition 3.1, if zero is non-
uniformly in time GAS for system (1.2) then the
systemz = f(t,z), x = z is a Global Identity Ob-
server for (1.2). To prove this fact, notice that if
zero is non-uniformly in time GAS, then by virtue
of Proposition 2.2 in[10], there exist functions
o € KL andB € K, such that for everyg € R”,
t0>0, the solutionx(-) of system (1.2) initiated

observer were based on (3.3) instead of (3.2) then the
systenmt = f (¢, z), =z would not be a Global Identity
Observer for system (1.2) for the case of non-uniform
in time global asymptotic stability of zero for (1.2),
unless system (1.2) had special structure (e.g., linear
systems).

An immediate consequence of Definitions 3.1 and
3.2 is the following fact.

Fact 3.3. System(1.2) admits a Global Identity Ob-
server if and only if the ROFS problem for the system:

x=f(@,x), t=0xeR",

z=u,z€ R ueR", (3.4)
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with measured outpu§ = h(t,x,2) = (z,y)
(z, h(z, x)) and stabilized output¥ = H(z, x,z) =
z — x, is globally strongly solvable

For convenience, we will next call the ROFS
problem for system (3.4) with measured output
¥ =h(t, x,2) := (z,y) = (z, h(t, x)) and stabilized
outputY = H(t, x, z) := z — x asProblem(2).

We next provide the definition of an Observer Lya-
punov Function (OLF). Notice that our definition is
significantly different from the corresponding defini-
tion given in[17].

Definition 3.4. We say that system (1.2) admits an
Observer Lyapunov Function (OLF) if there exist func-
tionsV € CL(RT x R" x R"; RT) (called the OLF),
a1,a; € Koo, p € KT, ¢ € E, a mappingw €
CO(RT x R RT) with w(-, 0) <O such that the set-
valued mapQ(t) := {x € R" : w(, x) <0} is a cap-
turing region for (1.2), and a positive definite function
p € CORT; M), such that the following inequalities
hold:

ar(lz = xSV, z, x) <azx(B®)|(z, ),

V(t,z,x) € R x R x R, (3.5a)

0

. ov \%
inf  sup {—(t,z,x) + W (t,z,x) f(t,x)
X

ue‘)?”xehfl(,’y) 5t

ov
+ a_ (t,z, x)u + p(V(l, 7, X))
Z

—w(t, X)L+ V(t,z,x)} <),
Y(t,z,y) € RT x R" x 8,

{av
ot

ov
+ a_z(t? Z"x)f(t’ Z) +p(v(t’ Zv-x))

(3.5b)

ov
sup (t,z,x) + a(t,z,x)f(t,X)

xelfl(t,y)

—w(t, x)(1+V(,z, X))} <o),
V(t,y) € R x S andz e i1, y). (3.5¢)

Particularly, if V e CLRT x K" x R"; RT) is an
OLF, which depends only one R ande := z — x,
then it is called a state-independent OLF.
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Theorem 3.5. Assume thafl.2)is RFC Then the fol-
lowing statements are equivalent:

(i) Systen(1.2)admits a Global Identity Observer
(i) Systen(1.2)admits an OLF

Proof. (i)=(ii) By virtue of Fact 3.3 and Theorem
2.6, there exist function¥ € C®(RT x N"; RT),
a1, az € Ko andfy, f, € K such that the following
inequalities hold:

ar(|(Bfr(D)(z, x), z — x)])
<V, z, x) <az(fo()|(z, X)),

Y(t,z,x) € RT x R x ", (3.6a)

. ov ov
inf  sup {— (. z,x)+ — (1,2, x) f(t,x)
ueR" th_l(f,y) ﬁt @x
ov
+— (2, 0)u+ V(t,x)} <0,
0z
Y(t,z,y) € RT x R" x 8, (3.6b)
. ov ov
inf sup §{— (t,z,x)+— (t, 2, x) f(t,x)
weU*(1.5) yep—1(.y) Ox
av
+—(t, 2, x)u + V(t,X)} <0,
oz
vt>0and for ally = (z,y) e " x S
for which H=2(7,0) n i1z, ) # ¥, (3.6¢)
where

U t,y) ={ueR ft,x) —u=0

for all (z,x) € H 1,00 nh~ @, 7). (3.6d)

Clearly, the conditiond 1(z,0) N A1z, 3) # @ is
equivalent to the condition € 2~ (¢, y) (notice that

if z e h1(r,y) then(z,2) € H 1,00 nh~ 1@, 3
and conversely if(z,x) € H™ 1, 0 N a1, §)
thenz =x e h=1(z, y)). Thus, we obtairU/*(¢, ) =
U*(t,z,y)={f(t,z) € W'} and consequently condi-
tions (3.6¢,d) can be combined to give the following
condition:

sup

ov ov
A (t7 2, )C) + — (t7 s )C)f(t, )C)
xeh=1(t,y) ox

A

oV
We are now in a position to state and prove our main +6—z t,z,x)ft, 2+ VvV, x)} <0,

result concerning the existence of a global identity
observer for (1.2).

vi>0andforallye S, zeh 1t y). (3.7)
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Inequalities (3.5a,b,c) are immediate consequenceswherea : R x § — R is the continuous positive

of inequalities (3.6a,b) and (3.7) with(r) = S,(1),
¢(t) = 0, p(s) =s andw(s, x) = 0. Moreover, the
set-valued ma@ (z) := {x € R" : w(t, x) <0} =R"
is (trivially) a capturing region for (1.2).

(il)=(i) Suppose that there exist functions e
CYRT x R x W R, a1,a0 € Koo, f € KT,
¢ € E, w e CORT x R"; R with w(r,0)<0
for all >0 and a positive definite functiop €
CO(RT; ®M), such that inequalities (3.5a—c) hold
and such that the set-valued m@yr) := {x € R" :
w(t, x) <0} is a capturing region for (1.2). We define:

u=f@t,z)+v, veR (3.8)

and notice that using instead ofu and the definition
y=h(t,x,2) == (z,y) = (z, h(z, x)), we have

inf sup

i {wa(t, z, x) + wa(t, z, )V} < P(1),
veR (; x)eh-1(,5)

Y(t,z,y) € RT x R" x 8, (3.93)
sup  {wa(t, z, X))} < P(1),
(z.x)eh=1(t.5)
V(t,y) € Rt x S andu(r, 7) =0, (3.9b)

where
ov ov

wit, z,x) = — (t,z,x) + — (¢, 2, x) f (£, x)
ot Ox

ov
+ ﬁ_z (t9 Z,X)f(l, Z) +p(V(ts 2, -x))

—w(t, )L+ V(t,z,x), (3.9¢)
ov
wo(t, z,x) = — (t, 2, X);
0z
e, y) ==y — h(t, 2)|. (3.9d)

Since (1.2) is RFC, by virtue of Lemma 2.2 j8],
there exist functiong;(-) € KT, a’(:) € K, Such
that for every(ro, xo) € R* x R", the unique solution
x(¢) of (1.2) initiated fromxg at timerg exists for all
t > 1o and satisfies

lx(0)|<q(t)a'(Ixol), Vi=10. (3.10)
We define the bounding map fér
P(t,z,y) == {z} x {x € R" : |x|<a(t, y)
+q®a'(t +1) +q@®ad'(jz])} S R x R,
(3.11)

function involved in hypothesis H2 fdn. By virtue

of Lemma 2.10 and (3.9a—d) there exists a function
ke C®(RT x R" x §; R") with k(z, z, y) =0 for all
t>0andz € h~1(t, y), such that

\% ov ov
T(ts Zv-x) + _(ts va)f(tv-x) + A (ta Zv-x)
ot 0x 0z

X (f(t,2) +k(t,z, )< — p(V(t, z, X))
+6¢p@) + w(t, x)A+ V(t, z, x)),
V(t,z,y) € RT x R" x S,
(z.x) e h Yt z, )N P(t,z,y). (3.12)

We next show that for evergrg, zoxg) € R x R" x
R", the unique solutioriz(r), x(r)) of the system

x = f,x),

2= f(t,2) +k(t,z, h(t,x)) (3.13)
initiated from (zg, xg) at time g exists for allr >1g
and that the set-valued mapxt, z, y) is a capturing
region for (3.13). Notice that sind€tz, z, y) =0 for all
t>0 andz € h~1(z, y), we can guarantee that the set
H71(t,0) = {(z, x) € R" x R" : 7 = x} is positively
invariant for (3.13). Clearly, there exists time> 1o
such that the solution of (3.13) exists f¥p, #1). No-
tice that (3.11) in conjunction with inequality (3.10)
implies that

(z(0), x (1)) ¢int P (¢, 2(t), h(t, x (1))

= to<t <to + |xol and |z(1)| < |xol, (3.14)
where int denotes the interior of a set. Moreover, by
virtue of (3.12), we have
(1), x(1)) € P(t,z(t), h(t, x(1)))

= Vi@aiy <w(t, x()V (1, 2(1), x(1))

+w(t, x(1)) + 6¢(1).

Consider the cases

(3.15)

(1) (z(r), x(@)) ¢int P(z, z(1), h(t, x(2))). In this
case, by virtue of (3.10) and (3.14), the estimate
[(z(t), x(1))| < q(t)a’(Ixol) + |xo| holds.

(2) (z(2),x()) €int P(¢, z(t), h(t, x(t))). Define
tr ;= inf{t € [10, 1) : (z(s), x(5))

eint P(s, z(s), h(s, x(s)))
for all T <s <1}

i.e., (t2, 1) C (to, ) is the maximal interval that
satisfies(z(s), x(s)) € int P(s, z(s), h(s, x(s)))
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forall s € (12, 1) C [10, 1). :I'hus we either have
t2=t0 Or (z(2), x(t2)) ¢ INt P (¢, z(2), h(t, x(12))).
Using (3.15), we obtain fab := 6 [,"*° ¢ (1) dr

t
Vit z(t), x(t)) < exp(f lw(t, x(1))] dr)
2
x (V(t2, z(t2), x(12))

t
+M —i—/ |lw(z, x(7))| dr) .
15

2

Using (3.5a) and estimate (3.10) in conjunction with
the latter inequality, we obtain the estimate

(z(1), x()| < 2q(1)a’ (|xol) + |x0]

t
+ap? (exp(/t lw(t, x (1)) d‘c)
2

x (a2(B(2)|(z(t2), x(12))])

t
—i—M—i—/ |w(7:,x(7:))|d7:>>.
2

Since|(z(t2), x(12))| <|z(t2)| + g (t2)a’ (|xol), the lat-
ter estimate implies fof(r) := max << f(r) and
g(t) == maxy<r<r q(1):

[(z(2), x(1))|
<2q(t)a'(|xol) + |xol + a7 *

X <exp(/l lw(t, x(1))| dr)
fo

x (az(Bo)lze)] + Bo)d a0

t
+M+/ |w(r,x(r))|dr)).
fo

For the caséz(12), x(2)) ¢ int P(t, 2(t2), h(t, x(12)))
we have (using (3.14)(z2)| <|xo| and for the case
t2 = to we have|z(2)| = |zo]. Thus we obtain

[(z(1), x(1))]
<2q(1)a’(|xol) + |xol

t
+art <exp(/t lw(t, x(1))] df)
0

x (a2(B@)lzol + (1) 1xol + B)G (1)’ (1xo)

1
~|—M+f |w(r,x(r))|dr)).
fo

Notice that estimate (3.16) holds alsa(if(1), x(1)) ¢
intP(t, z(t), h(t, x(t))). We conclude that estimate

(3.16)
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(3.16) holds for allt e [fo,71) and consequently
it holds for all r >1. Thus system (3.13) satisfies
Suptl(z(to + ), x(f0 + s))|; |xol<r,70 € [0, T], s €
[0,T]} < + oo, for every T>0, r>0 and conse-
quently by virtue of Lemma 2.3 i8] system (3.13) is
RFC. Moreover by (3.14)we have that(z), x(¢)) €
P(t, z(t), h(t, x(r))) for all 1 >1g + |xo| and thus the
set-valued mapP(r, z, y) is a capturing region for
(3.13). Since the set-valued map(s) := {x € R" :
w(t, x) <0} is also a capturing region for (1.2), this
implies that the set-valued map

P(t,z,y) = {z} x {x € Q1) : [x|<al(t,y)
+ () t + 1) + ()
xa(|z])} € R" x R" (3.17)

is a capturing region for (3.13) and that the following
inequality holds:

Vi@1y < — p(V(t, z, X)) + 6¢(1),
Y(t,z,y) € RT x K" x §,
(z,x) € h X1, 2, y) N P(1, 2, y).

Exploiting the result of Corollary 2.11, we conclude
that Problem (2) is globally strongly solvable.[]

Remark 3.6. It should be emphasized that the con-
struction of the observer in the proof of implication
(ii)=(i) relies heavily on estimate (3.10) for the so-
lutions of (1.2) and therefore on the assumption that
system (1.2) is RFC. Moreover, although the proof of
implication (ii)=(i) of Theorem 3.5 is constructive, it
cannot be used for observer design purposes since it
involves partition of unity arguments (it is the result
of Lemma 2.10 that is used for the observer construc-
tion).

The following example shows that an autonomous
system may not admit a time-invariant State Indepen-
dent Error Lyapunov Function in the sensgbf], but
it may admit a time-varying State Independent OLF in
the sense of Definition 3.4 and consequently a time-
varying global identity observer.

Example 3.7. We consider two-dimensional systems
of the form

X1=f(x)) +x2, X2=g(x1, x2),

y = x1, (x1, x2) € R?, (3.18)
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wheref, g are locally Lipschitz mappings witli(0)=
£(0,0)=0. In[17] itis shown that there exists a time-
invariant “State Independent” Error Lyapunov Func-
tion, if and only if there exists a constamt > 0 such
that

(z—x)(g(y,2) — gy, X)) < M|z — x|,

Y(y,z,x) € RS, (3.19)

Here we suppose that system (3.18) is forward com-
plete and that there exists a functiby) € CO(R; N),
such that the following inequality is satisfied:

(z— )8y, 2) — gy, X)) KLz — xI?,

Y(y,z,x) € RS, (3.20)

Notice that, since (3.18) is RFC, there exigt) €
KT anda € K4 such that the unique solution
(x1(2), x2(2)) of system (3.18) initiated fromg € R2
at timerg >0 satisfies

[(x1(2), x2(0)) | < p@)a(lxol),  VrZ=to.

Moreover, we can find a function’ € K and a
constantR > 0 such that

2L(x1)) <R +d'(x1]), Vx1eR. (3.21)

The above inequalities imply that the set-valued map

Q1) := {(x1, x2) € R? : 2L(x1) — M (1) <O},
(3.22a)

whereM (1) is any C? function that satisfies

M) 214 R +d (u()a(l+1), Vi=0 (3.22b)

is a capturing region for (3.18). Particularly, by virtue
of (3.21) and (3.22a,b), we obtain that (1), x2(¢)) €
Q) for all r =1y + |xo|. Next define
V(1. e1,e2) = (1)ef + (e2 — M(1)e1)?, (3.23)
where f(t) 1= 4M?(t) + 1, e1 1= z1 — X1, €3 =
z2 — x2. Notice that this particular selection f@i(z)
guarantees that

3 (€2 +e5) <V (1, e1,€2) <2(BM*(1) + 1) (e + €3).

937
We introduce the observer:
z21=f(y)+z2+u;
22=8(y, 22— M@)(z1—y)) +u2 (3.24a)
3 p)
=——M _ .
ui 5 (t)e1 26() e1;

up = M(t)uy — f(t)er + M?(t)er + M(1)er (3.24b)

and evaluate the derivative

. A% A%
Vi=—(t,e1,e2) + — (t, e1, €2)(e2 + u1)
ot 061

ov

+ — (1, e1,e2)(g(x1, x2 + e2 — M(t)eq)
Oeo

— g(x1, x2) +u2)

along the trajectories of system (3.18) with (3.24). We
obtain

V< — M@V, e, e2)

+ max2L(x1) — M(t),0}V(t,e1,e2). (3.25)

Since the set-valued map(r) as defined by (3.22) is a
capturing region, we conclude from (3.25) that (3.24)
is a global identity observer for (3.18) and the function
V defined in (3.23) is a state independent OLF.

4. Conclusions

We have considered the Robust Output Feedback
Stabilization problem for time-varying systems we
have given necessary and sufficient conditions for the
solution of this problem (Theorems 2.6 and 2.9). The
results were applied to the problem of the Global Iden-
tity Observer Design for forward complete systems
without inputs. We have showed that the existence of
an Observer Lyapunov Function is a necessary and
sufficient condition for the solvability of this problem
(Theorem 3.5).
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