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Abstract

Necessary and sufficient conditions for the solution of robust output feedback stabilization (ROFS) problem are given. The
obtained results are applied to the problem of Global Identity Observer Design for forward complete systems without inputs.
It is shown that a necessary and sufficient condition for the existence of a Global Identity Observer is the existence of an
observer Lyapunov function (OLF).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the problem of robust
global stabilization of the output

Y = H(t, x) (1.1a)

of a time-varying affine system:

ẋ = f (t, d, x) + g(t, d, x)u,

x ∈ Rn, t�0, d ∈ D,u ∈ U (1.1b)
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by means of a time-varying output feedback lawu =
k(t, y), where

y = h(t, x). (1.1c)

For obvious reasons the outputy =h(t, x) is called
the “measured output” and the outputY = H(t, x) is
called the “stabilized output”. This problem is called
the Robust Output Feedback Stabilization (ROFS)
problem and sufficient as well as necessary condi-
tions for the solvability of this problem are given in
this paper. The ROFS problem includes as a special
case the problem of static output feedback stabiliza-
tion, where the “stabilized output” is the whole state,
i.e., Y = x. Sufficient conditions for uniform (static
or dynamic) output feedback stabilization were given
in many papers (see for instance[3–5,19,22,23]and
the references therein). However, in this paper we are

http://www.elsevier.com/locate/sysconle
mailto:ikarafil@econ.uoa.gr
mailto:kravaris@chemeng.upatras.gr


926 I. Karafyllis, C. Kravaris / Systems & Control Letters 54 (2005) 925–938

concerned with non-uniform in time output feedback
stabilization of the output given by (1.1a). The notions
of non-uniform in time Robust GlobalAsymptotic Sta-
bility (RGAS) and Robust Global Asymptotic Output
Stability (RGAOS) have been developed in[6–11]and
have been proved useful for the solution of many prob-
lems of Mathematical Control Theory.
The ROFS problem arises naturally when one con-

siders the problem of Global Identity Observer Design
for a forward complete time-varying nonlinear system:

ẋ = f (t, x),

y = h(t, x),

x ∈ Rn, t�0. (1.2)

For this problem, the aim is to design a vector field
k(·) such that system (1.2) witḣz = k(t, z, y) has the
property of Global Asymptotic Output Stability for the
“stabilized output”Y =H(t, x, z) := z− x. Thus the
problem of Global Identity Observer Design is actu-
ally a special case of the ROFS problem. The prob-
lem of Global Identity Observer Design has a long
history in Mathematical Control Theory (see[16] and
the references in[18]) and its solvability for nonlin-
ear systems is addressed in many papers (see for in-
stance[12–15,20,21]). Recently, the notions of State
Independent Error Lyapunov Function and Observer
Lyapunov Function (OLF) were introduced in[17].
In this paper we prove that the existence of a time-
varying OLF is a necessary and sufficient condition
for the existence of a global identity observer for (1.2)
(Theorem 3.5).

Notations. Throughout this paper we adopt the fol-
lowing notations:

• ByMD we denote the set of all measurable func-
tions fromR+ to D, whereD ⊂ Rm is a given
compact set.

• By Cj (A)(Cj (A;�)), where j�0 is a non-
negative integer, we denote the class of func-
tions (taking values in�) that have continuous
derivatives of orderj onA.

• For x ∈ Rn, x′ denotes its transpose and|x| its
usual Euclidean norm.

• By B[x, r] wherex ∈ Rn andr�0, we denote
the closed sphere inRn of radiusr, centered at
x ∈ Rn.

• K+ denotes the class of positiveC0 functions
� : R+ → (0,+∞). By K we denote the class
of strictly increasingC0 functionsa : R+ →
R+ with a(0)=0. ByK∞ we denote the class of
strictly increasingC0 functionsa : R+ → R+
with a(0)=0 and lims→+∞ a(s)=+∞. By KL
we denote the set of all continuous functions
� = �(s, t) : R+ ×R+ → R+ with the proper-
ties: (i) for eacht�0 the mapping�(·, t) is of
classK; (ii) for eachs�0, the mapping�(s, ·)
is non-increasing with limt→+∞ �(s, t)= 0. By
Kconwe denote the class of functionsa : R+ →
R+ with the properties: (i)a ∈ C1(R+) ∩ K;
(ii) the function da

ds (s) is non-decreasing
(see[6]).

• We denote byE the class of functions� ∈
C0(R+;R+) that satisfy

∫ +∞
0 �(t)dt < + ∞

and limt→+∞ �(t) = 0.
• We say that the functionH : R+ ×Rn → Rk,
is locally Lipschitz with respect tox ∈ Rn if for
every bounded intervalI ⊂ R+ and for every
compact subsetSof Rn, there exists a constant
L�0 such that|H(t, x) − H(t, y)|�L|x − y|
for all (t, x, y) ∈ I × S × S.

• We say that the functionf : R+ × D ×Rn →
Rk whereD ⊂ Rm is a compact set, is locally
Lipschitz with respect tox ∈ Rn, uniformly in
d ∈ D, if for every bounded intervalI ⊂ R+
and for every compact subsetS of Rn, there
exists a constantL�0 such that|f (t, d, x) −
f (t, d, y)|�L|x − y| for all (t, x, y, d) ∈ I ×
S × S × D. Notice that for the dynamical sys-
tem ẋ=f (t, d, x), x ∈ Rn, d ∈ D, the assump-
tion that the dynamicsf (·) are continuous ev-
erywhere and locally Lipschitz with respect to
x ∈ Rn, uniformly in d ∈ D, with f (·,0) = 0,
guarantees that the system has a unique local
Caratheodory solution (see[2]) for all d(·) ∈
MD.

Moreover, throughout this paper we assume the fol-
lowing:

H1. Concerning system (1.1), we assume thatD ⊂
Rl is a compact set andU ⊆ Rm is a non-empty
convex set with 0∈ U . Moreover, the dynamics
of system (1.1),f (·), g(·) areC0 vector fields,
which are locally Lipschitz with respect tox ∈
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Rn, uniformly in d ∈ D, with f (t, d,0)= 0 for
all (t, d) ∈ R+ × D.

H2. The output maph : R+ ×Rn → Rk involved
in (1.1c), is aC0 function, locally Lipschitz with
respect tox ∈ Rn, with h(t,0) = 0 for all t�0
that satisfies:

(1) There exists a regionS ⊆ Rk such thatS =
h(t,Rn) for all t�0.

(2) There exists a continuous functiona : R+×
S → R+, such that for every(t, y) ∈ R+ ×
S there existsx ∈ Rn with y = h(t, x) and
|x|�a(t, y).

H3. The output mapH : R+ ×Rn → Rl , involved
in (1.1a), is aC0 function withH(t,0) = 0 for
all t�0.

It should be emphasized at this point that as-
sumption H2 is not restrictive. Since the ROFS
problem allows output transformations of the form
h̃(t, x) = p(t, h(t, x)) for all t�0, x ∈ Rn, where
p : R+ × Rk → Rk is a locally Lipschitz function
with p(t,0)=0 for all t�0, we may redefine a given
output map so that part 1 of hypothesis H2 is satisfied.
For example, the output maph(t, x)=exp(−t) sin(x)
does not satisfy (1) of hypothesis H2. However, we
may consider the ROFS problem for the output map
h̃(t, x) = sin(x), which satisfies part 1 of hypothesis
H2 and is related to the given output map by the
transformationh̃(t, x) = exp(t)h(t, x). We also note
that part 1 of hypothesis H2 is automatically satisfied
for the important case of time-invariant output maps,
i.e., for the caseh(t, x) ≡ h(x). Concerning part 2 of
hypothesis H2, we notice that this assumption is sat-
isfied for output maps that are commonly used in the
literature. For example, whenx = (x1, . . . , xn) ∈ Rn

andy = h(t, x) := x1 ∈ R, we may selecta(t, y) :=
|y| for all (t, y) ∈ R+ ×R.

2. Robost Output Feedback Stabilazation

In this section we define the Robust Output Feed-
back Stabilization problem and we give necessary and
sufficient conditions for its solvability. We first give
the definitions of the notions of Robust Forward Com-
pleteness (RFC) and Robust Global Asymptotic Out-
put Stability (RGAOS), introduced in[8]. By virtue

of Lemmas 2.3 and 3.3 in[8], the reader can immedi-
ately verify that the simplified definitions given here
are equivalent to the� − � definitions given in[8].
Consider the system:

ẋ = f (t, d, x),

Y = H(t, x),

x ∈ Rn, t�0, d ∈ D, (2.1)

whereH ∈ C0(R+ × Rn;Rk), f ∈ C0(R+D ×
Rn;Rn) is a locally Lipschitz vector field with respect
to x ∈ Rn, uniformly with respect tod ∈ D, with
f (t, d,0) = 0,H(t,0) = 0 for all (t, d) ∈ R+ × D.

Definition 2.1. We say that (2.1) is Robustly Forward
Complete (RFC) if there exist functionsq ∈ K+ and
a ∈ K∞ such that for every(t0, x0, d) ∈ R+ ×Rn ×
MD the solutionx(t) of (2.1) with initial condition
x(t0) = x0 and corresponding to inputd ∈ MD exists
for all t� t0 and satisfies

|x(t)|�q(t)a(|x0|), ∀t� t0. (2.2)

We say that (2.1) is Robustly Globally Asymptotically
Output Stable (RGAOS) if system (2.1) is RFC and
there exist functions� ∈ K+ and� ∈ KL such that
for every (t0, x0, d) ∈ R+ × Rn × MD the solution
x(t) of (2.1) with initial conditionx(t0)= x0 and cor-
responding to inputd ∈ MD exists for allt� t0 and
satisfies

|H(t, x(t))|��(�(t0)|x0|, t − t0), ∀t� t0. (2.3)

We are now ready to provide the definition of the
ROFS problem for systems with outputs.

Definition 2.2. Consider system (1.1b) with output
maps given by (1.1a) and (1.1c). The outputY =
H(t, x) is called the “stabilized output” while the
output y = h(t, x) is called the “measured output”.
The ROFS problem for (1.1) with measured output
y = h(t, x) and stabilized outputY = H(t, x) is said
to be

(1) Semi-globally solvableif for everyR>0, there
exists a functionk ∈ C0(R+ × S;U), which
is locally Lipschitz with respect toy ∈ S, such
that if we denote byx(t) the solution of the
closed-loop system (1.1) withu = k(t, h(t, x))
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corresponding tod(·) ∈ MD and initiated from
x0 ∈ Rn at timet0�0, the following properties
hold:

P1. For every T �0 we have: sup{|x(t0 +
s)|; |x0|�R, t0 ∈ [0, T ], s ∈ [0, T ], d(·) ∈
MD}< + ∞.

P2. For every �>0, T �0 and 0�r�R,
there exists� := �(�, T , r)�0, such that:
|x0|�r, t0 ∈ [0, T ] ⇒ |Y (t)|��,∀t� t0 +
�,∀d(·) ∈ MD.

(2) Globally solvable if there exists a function
k ∈ C0(R+ × S;U), which is locally Lipschitz
with respect toy ∈ S, such that the closed-loop
system (1.1a,b) withu = k(t, h(t, x)) is non-
uniformly in time RGAOS. Particularly, we say
that the feedback functionk ∈ C0(R+ × S;U)

globally solvesthe ROFS problem for (1.1)
with measured outputy = h(t, x) and stabilized
outputY = H(t, x).

(3) Globally strongly solvableif there exists a feed-
back functionk ∈ C0(R+ × S;U), which glob-
ally solves the ROFS problem for (1.1) with
measured outputy=h(t, x) and stabilized output
Y = H(t, x) and the setH−1(t,0) is positively
invariant. Particularly, we say that the feedback
function k ∈ C0(R+ × S;U) globally strongly
solvesthe ROFS problem for (1.1) with mea-
sured outputy = h(t, x) and stabilized output
Y = H(t, x).

For convenience, we will next call the ROFS prob-
lem for (1.1) with measured outputy = h(t, x) and
stabilized outputY = H(t, x) as Problem (1).

Remark 2.3. If properties P1 and P2 hold then it can
be shown (as in proof of Lemma 3.3 in[8]) that the
following property is also satisfied:

P3. For every�>0, T �0, it holds that sup{|Y (t)|;
t� t0, |x0|�R, t0 ∈ [0, T ], d(·) ∈ MD}< + ∞
and there exists� := �(�, T )>0 such that:
|x0|��, t0 ∈ [0, T ] ⇒ |Y (t)|��, ∀t� t0,

∀d(·) ∈ MD (robust Lyapunov output stability).

The following examples show that recent research
results in [9,6] can be regarded as solutions of the
ROFS problem for appropriate systems.

Example 2.4. Consider the following system:

ż = Az, z ∈ Rn−j (2.4a)

	̇i = fi(z, 	1, . . . , 	i ) + 	i+1, 1� i�j

u := 	j+1 ∈ R, 	 := (	1, . . . , 	j ) ∈ Rj (2.4b)

with statex := (z, 	) ∈ Rn and output maps

Y = y = H(t, x) = h(t, x) := 	, (2.5)

whereA is a matrix of appropriate dimensions and
fi(·) (i = 1, . . . , j ) are continuous mappings, locally
Lipschitz with respect to(z, 	) that satisfy

|fi(z, 	1, . . . , 	i )|�K(1+ |z|a)|(	1, . . . , 	i )|,
∀z ∈ Rn−j , (	1, . . . , 	i ) ∈ Ri (2.6)

for some constantsa,K�1. Clearly, we have for the
solution of (2.4a) initiated fromz0 ∈ Rn−j at time
t0�0:

|z(t)|� exp(|A|t)|z0|, (2.7)

where |A| := sup{Az; |z| = 1}. Inequality (2.6) in
conjunction with (2.7), implies

|fi(z(t), 	1, . . . , 	i )|
�K(1+ |z0|a)exp(rt)|(	1, . . . , 	i )|,

∀z0 ∈ Rn−j , (	1, . . . , 	i ) ∈ Ri , (2.8)

wherer := a|A|. Moreover, by virtue of inequality
(2.8) and Corollary 3.2 in[9], there exist aC∞ map-
ping k : R+ → R1×j , a C0 non-decreasing func-
tion 
 : R+ → R+, a constant̄r >0 and aC0, non-
negative functionD : R+ × R+ → R+, with the
property that for eacht�0 the mappingD(·, t) is non-
decreasing and

lim
t→+∞exp{�t}D(s, t) = 0, ∀��0, s�0 (2.9)

such that the solution	(t) of the closed-loop system
(2.4b) withu=k(t)	, initiated from	0 ∈ Rj at timet0
and corresponding toz(t)=exp(A(t− t0))z0, satisfies

|	(t)|�D(|z0|, t)exp{
(|z0|)exp(r̄t0)}|	0|,
∀t� t0. (2.10)

It follows that the linear time-varying feedback law
u= k(t)	, globally strongly solvesthe ROFS problem
for (2.4) with measured outputy = h(t, x) = 	 and
stabilized outputY = H(t, x) = 	.
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Example 2.5. Consider the following system:

ż = f0(d, z), z ∈ Rn−j , d ∈ D, (2.11a)

	̇i = fi(d, z, 	1, . . . , 	i ) + gi(d, z, 	1, . . . , 	i )	i+1

1� i�j ,

u := 	j+1 ∈ R, 	 := (	1, . . . , 	j ) ∈ Rj ,

d ∈ D, (2.11b)

with statex := (z, 	) ∈ Rn and output maps

Y = y = H(t, x) = h(t, x) := 	, (2.12)

where D ⊂ Rl is a compact set,f0(·) and
fi(·), gi(·) (i = 1, . . . , j) are continuous mappings,
locally Lipschitz with respect to(z, 	), uniformly in
d ∈ D, with f0(·,0)= 0, that satisfy fori = 1, . . . , j :

|fi(d, z, 	1, . . . , 	i )|�a(
(|z|)|(	1, . . . , 	i )|),
∀z ∈ Rn−j , (	1, . . . , 	i ) ∈ Ri , d ∈ D (2.13)

for certaina ∈ Kcon (see notations for the definition
of Kcon) and certainC0 non-decreasing function
 :
R+ → R+. Suppose that (2.11a) is RFC. Then using
Lemma 2.2 in[6] and Proposition 4.1 in[6] it can
be shown, as in the previous example, that the ROFS
problem for (2.11) withmeasured outputy=h(t, x)=	
and stabilized outputY =H(t, x)=	 is semi-globally
solvable.

The following result is an immediate consequence
of Proposition 3.6 in[8].

Theorem 2.6. Suppose that Problem(1) is globally
solvable. Then there exist functionsV ∈ C∞(R+ ×
Rn;R+), a1, a2 ∈ K∞ and �1,�2 ∈ K+ such that
the following inequalities hold:

a1(|(�1(t)x,H(t, x))|)�V (t, x)�a2(�2(t)|x|),
∀(t, x) ∈ R+ ×Rn, (2.14a)

inf
u∈U sup

x∈h−1(t,y)
d∈D

{
�V
�t

(t, x) + �V
�x

(t, x)f (t, d, x)

+�V
�x

(t, x)g(t, d, x)u + V (t, x)

}
�0,

∀(t, y) ∈ R+ × S. (2.14b)

If the output mapH : R+ × Rn → Rl , involved in
(1.1a), is a C1 function and Problem(1) is globally
strongly solvable, then the following conditions are
additionally satisfied:

inf
u∈U∗(t,y)

sup
x∈h−1(t,y)

d∈D

{
�V
�t

(t, x) + �V
�x

(t, x)f (t, d, x)

+�V
�x

(t, x)g(t, d, x)u + V (t, x)

}
�0,

∀t�0 and for all y ∈ S for which

H−1(t,0) ∩ h−1(t, y) �= ∅, (2.14c)

where

U∗(t, y) =
{
u ∈ U ; �H

�t
(t, x) + �H

�x
(t, x)

× f (t, d, x) + �H
�x

(t, x)g(t, d, x)u = 0

for all d ∈ D and

x ∈ H−1(t,0) ∩ h−1(t, y)

}
. (2.14d)

Finally, if the feedback functionk ∈ C0(R+ × S;U)

that globally solves Problem(1) satisfiesk(t,0) = 0
for all t�0, then the following condition is satisfied:

sup
x∈h−1(t,0)

d∈D

{
�V
�t

(t, x) + �V
�x

(t, x)f (t, d, x) + V (t, x)

}

�0, ∀t�0. (2.14e)

For the statement of our main result we need to
define the notions of the “capturing region” and the
“bounding map”.

Definition 2.7. Consider system (2.1) with output
mapy = h(t, x), whereh satisfies hypothesis H2. Let
0 ∈ P(t, y) ⊆ Rn be a set-valued map with closed
images. We say thatP(t, y) ⊆ Rn is a “capturing
region” for (2.1) if the following property is satisfied:

(P). For every R>0, T �0 there exist � :=
�(R, T )�0 and� := �(R, T )�0 such that for
everyd(·) ∈ MD, x0 ∈ B[0, R] andt0 ∈ [0, T ],
the solutionx(·) of system (2.1) corresponding
to d(·) ∈ MD and initiated fromx0 ∈ Rn at
time t0�0, satisfies supt0� t� t0+� |x(t)|�� and
x(t) ∈ P(t, h(t, x(t))) for all t� t0 + �.
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Roughly speaking, the capturing region is a closed
set in the state space with the property that every so-
lution of the system enters this set in finite time.

Definition 2.8. Leth : R+×Rn → Rk a map, which
satisfies hypothesis H2 and leth−1(t, y) := {x ∈
Rn; y=h(t, x)}. Every set-valued mapP(t, y) ⊆ Rn

defined onR+ × S with 0 ∈ P(t, y) for all (t, y) ∈
R+×S, such that the maph−1(t, y)∩P(t, y) is upper
semi-continuous, with non-empty, compact images for
all (t, y) ∈ R+ × S is called a “bounding map” for h.

Notice that under assumption H2 for the function
h, we can explicitly construct bounding maps forh.
For example, the set-valued mapP(t, y) := {x ∈
Rn; |x|�a(t, y) + �(t)}, where �(t) is any non-
negative continuous function anda : R+ × S → R+
is the continuous function involved in hypothesis H2,
is a bounding map forh. Specifically, we then have

h−1(t, y) ∩ P(t, y)

= {x ∈ Rn; y = h(t, x), |x|�a(t, y) + �(t)}.

Moreover, notice that in general a bounding map for
the functionh actually depends ony ∈ S. This hap-
pens because the set-valued maph−1(t, y) ∩ P(t, y)

is required to be non-empty for all(t, y) ∈ R+ ×
S. For example, whenx = (x1, . . . , xn) ∈ Rn and
y = h(t, x) := x1 ∈ R, in order to guarantee that
the set-valued maph−1(t, y) ∩ P(t, y) is non-empty
for all (t, y) ∈ R+ × R, we must selectP(t, y) :=
{x ∈ Rn; |x|�a(t, y)}, where the functiona satisfies
a(t, y)� |y| for all (t, y) ∈ R+ ×R.
The following theorem provides a set of sufficient

Lyapunov-like conditions for the solvability of Prob-
lem (1).

Theorem 2.9. Suppose that there exist functionsV ∈
C1(R+ ×Rn;R+), a1, a2 ∈ K∞, �1,�2 ∈ K+, � ∈
E ∩ K+ (see Notations for the definition of classE)
and a positive definite function
 ∈ C0(R+;R+),
such that the following inequalities hold:

a1(|(�1(t)x,H(t, x))|)�V (t, x)�a2(�2(t)|x|),
∀(t, x) ∈ R+ ×Rn, (2.15a)

inf
u∈U sup

x∈h−1(t,y)
d∈D

{
�V
�t

(t, x) + �V
�x

(t, x)f (t, d, x)

+�V
�x

(t, x)g(t, d, x)u + 
(V (t, x))
}

��(t),

∀(t, y) ∈ R+ × S, (2.15b)

sup
x∈h−1(t,0)

d∈D

{
�V
�t

(t, x) + �V
�x

(t, x)f (t, d, x)

+
(V (t, x))
}

��(t), ∀t�0. (2.15c)

Then Problem(1) is semi-globally solvable. Particu-
larly, for every bounding mapP(t, y) ⊆ Rn for h,
there exists a functionk ∈ C∞(R+ × S;U) with
k(t,0) = 0 for all t�0, such that

�V
�t

(t, x) + �V
�x

(t, x)f (t, d, x)

+ �V
�x

(t, x)g(t, d, x)k(t, y)

� − 
(V (t, x)) + 6�(t),
∀(t, y) ∈ R+ × S,

x ∈ h−1(t, y) ∩ P(t, y), d ∈ D. (2.16)

The proof of Theorem 2.9 is based on the following
lemma, which provides the procedure for the construc-
tion of the feedback law. The result of the following
lemma will be also used in the next section.

Lemma 2.10. Letw1 ∈ C0(R+ ×D×Rn;R), w2 ∈
C0(R+ ×D ×Rn;Rm) whereD ⊂ Rl is a compact
set, � ∈ E∩K+, U ⊆ Rm be a non-empty convex set
with 0 ∈ U , � ∈ C0(R+ × S;R) with �(t,0)= 0 for
all t�0, and h be a map that satisfies hypothesisH2.
Suppose that

inf
u∈U sup{w1(t, d, x) + w2(t, d, x)u; d ∈ D,

x ∈ h−1(t, y)}��(t), ∀(t, y) ∈ R+ × S,

(2.17a)

sup{w1(t, d, x); d ∈ D, x ∈ h−1(t, y)}��(t),
∀t�0 and for all y ∈ S with �(t, y) = 0. (2.17b)

Then for every boundingmapP(t, y) ⊆ Rn for h, there
exists a functionk ∈ C∞(R+ ×S;U) with k(t, y)=0
for all t�0 and for all y ∈ S with �(t, y) = 0,
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such that

w1(t, d, x) + w2(t, d, x)k(t, y)�6�(t),
∀(t, y) ∈ R+ × S, x ∈ h−1(t, y) ∩ P(t, y),

d ∈ D. (2.18)

Proof. Let P(t, y) ⊆ Rn be an arbitrary bounding
map forh. Since the set-valuedmaph−1(t, y)∩P(t, y)
is upper semi-continuous, with non-empty, compact
images for all(t, y) ∈ R+ × S and the function
w1(t, d, x) + w2(t, d, x)u is continuous with respect
to (t, x, d, u) ∈ R+ ×Rn×D×U , by virtue of Theo-
rem 1.4.16 in[1] it follows that for allu ∈ U , the map

(t, y, u) → w0(t, y; u)
:= sup{w1(t, d, x) + w2(t, d, x)u;

d ∈ D, x ∈ h−1(t, y) ∩ P(t, y)} (2.19)

is upper semi-continuous. Moreover, the mapu →
w0(t, y; u) is convex. We proceed by noticing the fol-
lowing fact.

Fact. For all (t0, y0) ∈ R+ × S, there existsu0 ∈ U

and a neighborhoodN(t0, y0) ⊂ R+ × S, such that

(t, y) ∈ N(t0, y0) ⇒ w0(t, y; u0)�6�(t). (2.20)

Moreover, if �(t0, y0)= 0 then we may selectu0 = 0.

Proof. By virtue of (2.17a) and the fact that�(t0)>0,
it follows that for all (t0, y0) ∈ R+ × S there exists
u0 ∈ U such that

w0(t0, y0; u0)�2�(t0). (2.21)

Moreover, by virtue of (2.17b) we may selectu0 = 0
if �(t0, y0) = 0. Since the map(t, y) → w0(t, y; u)
is upper semi-continuous, there exists a neighborhood
N(t0, y0) ⊂ R+ × S around(t0, y0) such that for all
(t, y) ∈ N(t0, y0):

w0(t, y; u0)�w0(t0, y0; u0) + �(t0);
�(t0)�2�(t). (2.22)

Therefore, inequalities (2.21) and (2.22) imply (2.20)
for all (t, y) ∈ N(t0, y0).
Let � := {(t, y) ∈ R+ × S : �(t, y) �= 0}. There

exists a family of open sets(�j )j∈J with �j ⊂ � for
all j ∈ J , which consists a locally finite open covering
of � and a family of points(uj )j∈J with uj ∈ U for

all j ∈ J , such that

(t, y) ∈ �j ⇒ w0(t, y; uj )�6�(t). (2.23)

Let also

A :=
⋃

(t0,y0)/∈�

N(t0, y0), (2.24)

where � := {(t, y) ∈ R+ × S : �(t, y) �=
0},N(t0, y0) ⊂ R+ × S is the neighborhood of
(t0, y0) that satisfies (2.20) foru0 = 0. Clearly, by
virtue of (2.24) the setA ⊂ R+ × S is open. By us-
ing standard partition of unity arguments, there exists
a family of functions�0 : R+ × S → [0,1], �j :
R+ ×S → [0,1], with �j (t, y)=0 if (t, y) /∈�j ⊂ �
and�0(t, y) = 0 if (t, y) /∈A, �0(t, y) + ∑

j �j (t, y)
being locally finite and�0(t, y)+ ∑

j �j (t, y)=1 for

all (t, y) ∈ R+ × S. We set:

k(t, y) :=
∑
j

�j (t, y)uj . (2.25)

Notice that if(t, y) /∈� then(t, y) /∈�j for all j ∈ J

and consequently by (2.25) we havek(t, y)=0 for all
t�0 and for ally ∈ S with �(t, y) = 0. Since each
uj is a member of the convex setU and 0∈ U , it
follows from (2.25) thatk(t, y) ∈ U for all (t, y) ∈
R+×S. It also follows from the fact thatw0(t, y; u) is
convex with respect tou and definition (2.25) that for
all (t, y) ∈ R+ × S andJ ′(t, y)= {j ∈ J ; �j (t, y) �=
0}:
w0(t, y; k(t, y))�

∑
i∈J ′(t,y)

�i (t, y)w0(t, y; ui).

(2.26)

Combining (2.23) with (2.26) and (2.19), we obtain
the desired (2.18). The proof is complete.�

We are now in a position to prove Theorem 2.9.

Proof of Theorem 2.9.Applying Lemma 2.10 for
w1(t, d, x) = �V

�t (t, x) + �V
�x (t, x)f (t, d, x) +


(V (t, x)), w2(t, d, x) = �V
�x (t, x)g(t, d, x) and

�(t, y) = |y|, we conclude that for every bound-
ing mapP(t, y) ⊆ Rn there exists a functionk ∈
C∞(R+ × S;U) with k(t,0) = 0 for all t�0, such
that (2.16) holds. We next prove that Problem (1)
is semi-globally solvable. Notice that by virtue of
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Lemma 3.2 in[10], there exist a function� ∈ KL

and a constantM>0, such that for every absolutely
continuous functionw : R+ → R+, that satisfies
ẇ(t)� − 
(w(t)) + 6�(t) a.e. fort� t0, we have:

w(t)��(w(t0) + M, t − t0), ∀t� t0. (2.27)

Let R, T >0 be arbitrary and leta be the continuous
non-negative function involved in hypothesis H2 for
h. Define the following bounding map forh:

P(t, y)

:=
{
x ∈ Rn : |x|�a(t, y) + R + 1

�1(t)

a−1
1

(
�

(
M + a2

(
R max

0��� t
�2(�)

)
,0

))}
,

(2.28)

wherea1, a2 ∈ K∞, �1,�2 ∈ K+ are the functions
involved in (2.15a). Letk ∈ C∞(R+ × S;U) with
k(t,0) = 0 for all t�0, be the function that satisfies
(2.16) forP(t, y) ⊂ Rn as defined by (2.28). Con-
sider the trajectoryx(t) of the solution of the closed-
loop system (1.1) withu=k(t, y) and initial condition
x(t0) = x0 ∈ B[0, R], t0 ∈ [0, T ], corresponding to
input d(·) ∈ MD, namely

ẋ = f (t, d, x) + g(t, d, x)k(t, y). (2.29)

By continuity of the solutionx(t), there exists
time t1> t0 such that|x(t)| − a(t, h(t, x(t)))<R +
1

�1(t)
a−1
1 (�(M + a2(Rmax0��� t �2(�)),0)) for all

t ∈ [t0, t1), i.e., x(t) ∈ P(t, h(t, x(t))) for all t ∈
[t0, t1). It follows from (2.15a), (2.16) and (2.27) that
the following inequality holds:

|(�1(t)x,H(t, x(t)))|
�a−1

1 (�(M + a2(�2(t0)|x0|), t − t0)),

∀t ∈ [t0, t1). (2.30)

Clearly, using continuity of the solution, inequal-
ity (2.30) and the fact thatx0 ∈ B[0, R], it fol-
lows that inequality|x(t)| − a(t, h(t, x(t)))<R +
1

�1(t)
a−1
1 (�(M + a2(Rmax0��� t �2(�)),0)) holds

also for t = t1. Thus (2.30) holds for allt� t0. This
shows that Problem (1) is semi-globally solvable. The
proof is complete. �

The following corollary provides useful criteria for
the semi-global solution of Problem (1) obtained by
Theorem 2.9 to be a global solution.

Corollary 2.11. Suppose that there exist functions
V ∈ C1(R+ ×Rn;R+), a1, a2 ∈ K∞, �1,�2 ∈ K+
that satisfy(2.15a)and there exist� ∈ E ∩ K+, a
positive definite function
 ∈ C0(R+;R+), a func-
tion k ∈ C0(R+ ×S;U), with k(t,0)=0 for all t�0,
which is locally Lipschitz with respect toy ∈ S, and
a set-valued mapP(t, y) ⊆ Rn, such that inequality
(2.16) holds. Moreover, suppose that the set-valued
map P(t, y) ⊆ Rn is a capturing region for the
closed-loop system(1.1)with u = k(t, h(t, x)). Then
the feedback functionk ∈ C0(R+ × S;U) globally
solves Problem(1).

Proof. Notice that by virtue of Lemma 3.2 in[10],
there exist a function� ∈ KL and a constantM>0,
such that every absolutely continuous functionw :
R+ → R+, which satisfieṡw(t)� −
(w(t))+6�(t)
a.e. for t� t0, satisfies also estimate (2.27). Let
R, T >0 be arbitrary and consider the trajectoryx(t)
of the solution of the closed-loop system (1.1) with
u= k(t, y) and initial conditionx(t0)= x0 ∈ B[0, R],
t0 ∈ [0, T ], corresponding to inputd(·) ∈ MD. If the
set-valued mapP(t, y) ⊆ Rn is a capturing region
for the closed-loop system (1.1) withu= k(t, y), then
inequalities (2.15a) and (2.16) guarantee that

|(�1(t)x,H(t, x(t)))|
�a−1

1 (�(M + a2(�2(t0 + �)�), t − t0 − �)),
∀t� t0 + �,

where a1, a2 ∈ K∞, �1,�2 ∈ K+ are the func-
tions involved in (2.15a) and� := �(R, T )�0, � :=
�(R, T )�0, are the quantities involved in property
(P) of Definition 2.7. The latter inequality, in con-
junction with the fact that supt0� t� t0+� |x(t)|�� (as
guaranteed by property (P) of Definition 2.7), shows
that system (2.29) is RFC. Using Lemma 3.5 in[8],
it can also be shown that the closed-loop system
(1.1) with u = k(t, y), with output given by (1.1a) is
non-uniformly in time RGAOS. Thus, Problem (1) is
globally solvable. �

3. The problem of observer design for forward
complete systems with no inputs

Throughout this section we consider system (1.2)
and we suppose that the mappingf ∈ C0(R+ ×
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Rn;Rn) is locally Lipschitz with respect tox ∈ Rn,
with f (t,0) = 0, while the outputh ∈ C0(R+ ×
Rn;Rk) satisfies assumption H2.We also assume that
system (1.2) is RFC.

Definition 3.1. Consider system (1.2) and suppose
that system (1.2) is RFC. The system

ż = k(t, z, y), t�0, z ∈ Rm,

x̄ = �(t, z, y), x̄ ∈ Rn, (3.1)

where� : R+×Rm×Rk → Rn is a continuous map
with �(t,0,0) = 0, k ∈ C0(R+ ×Rm ×Rk;Rm) is
locally Lipschitz with respect to(z, y) ∈ Rn × Rk,
with k(t,0,0)=0, is called a Global Observer for (1.2)
if system (1.2) with (3.1) is RFC and the following
properties are satisfied:
(1) Asymptotic property: There exist functions� ∈

KL and� ∈ K+, such that for every(x0, z0) ∈ Rn ×
Rm, t0�0, the solution(x(·), z(·)) of system (1.2)
with (3.1) initiated from(x0, z0) ∈ Rn ×Rm at time
t0�0, satisfies the following estimate:

|x̄(t) − x(t)|��(�(t0)|(x0, z0)|, t − t0), ∀t� t0

(3.2)

(2) Consistent initialization property: For every
(t0, x0) ∈ R+ × Rn there existsz0 ∈ Rm such that
the solution (x(·), z(·)) of system (1.2) with (3.1)
initiated from (x0, z0) ∈ Rn × Rm at time t0�0,
satisfiesx(t) = x̄(t) for all t� t0.
If there exists a Global Observer for (1.2), we say

that system (1.2) admits a Global Observer or that the
observer design (OD) problem is globally solvable for
(1.2). The continuous map� : R+ × Rm × Rk →
Rn is called the reconstruction map of the observer.
Particularly, if�(t, z, y) ≡ z with z ∈ Rn, we say
that (3.1) is a Global Identity Observer.

Remark 3.2. Concerning Definition 3.1 the following
points must be made:
(i) By virtue of Definition 3.1, if zero is non-

uniformly in time GAS for system (1.2) then the
systemż = f (t, z), x̄ = z is a Global Identity Ob-
server for (1.2). To prove this fact, notice that if
zero is non-uniformly in time GAS, then by virtue
of Proposition 2.2 in [10], there exist functions
� ∈ KL and� ∈ K+, such that for everyx0 ∈ Rn,
t0�0, the solutionx(·) of system (1.2) initiated

from x0 ∈ Rn at time t0�0, satisfies the estimate
|x(t)|��(�(t0)|x0|, t − t0), for all t� t0. This implies
that for every(x0, z0) ∈ Rn ×Rn, t0�0, the solution
(x(·), z(·)) of system (1.2) witḣz = f (t, z), initiated
from (x0, z0) ∈ Rn × Rn at time t0�0, satisfies
the estimate|z(t)− x(t)|�2�(�(t0)|(x0, z0)|, t − t0),
for all t� t0. For example, this fact can be used in
order to design a global observer for the system
ẋ1 = −x1 + x22, ẋ2 = −x1x2, for which zero is (uni-
formly in time) GAS. This system is given as an ex-
ample in[15], where a local observer for this system is
constructed.
(ii) Definition 3.1 is different from Definition 7.1.3

in [18], even when we consider autonomous systems
without inputs and full order autonomous observers
because Definition 3.1 does not guarantee the “Lya-
punov stability” property for the errore = x̄ − x: i.e.,
if the initial value for the errore0 = x̄0 − x0 is “suf-
ficiently small”, we cannot guarantee that all future
values of the error will be “small”. This stronger prop-
erty would be satisfied if instead of (3.2) the following
estimate were satisfied for the solution(x(·), z(·)) of
system (1.2) with (3.1):

|x̄(t) − x(t)|��(�(t0)|x̄0 − x0|, t − t0),

∀t� t0. (3.3)

Instead, our asymptotic property (3.2) guarantees that
if the initial condition(z0, x0) is “sufficiently small”,
then all future values of the error will be “small”.
It should be emphasized that if the definition of the
observer were based on (3.3) instead of (3.2) then the
systemż=f (t, z), x̄=zwould not be a Global Identity
Observer for system (1.2) for the case of non-uniform
in time global asymptotic stability of zero for (1.2),
unless system (1.2) had special structure (e.g., linear
systems).

An immediate consequence of Definitions 3.1 and
3.2 is the following fact.

Fact 3.3. System(1.2) admits a Global Identity Ob-
server if and only if the ROFS problem for the system:

ẋ = f (t, x), t�0, x ∈ Rn,

ż = u, z ∈ Rn, u ∈ Rn, (3.4)
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with measured output̃y = h̃(t, x, z) := (z, y) =
(z, h(t, x)) and stabilized outputY = H(t, x, z) :=
z − x, is globally strongly solvable.

For convenience, we will next call the ROFS
problem for system (3.4) with measured output
ỹ = h̃(t, x, z) := (z, y) = (z, h(t, x)) and stabilized
outputY = H(t, x, z) := z − x asProblem(2).
We next provide the definition of an Observer Lya-

punov Function (OLF). Notice that our definition is
significantly different from the corresponding defini-
tion given in[17].

Definition 3.4. We say that system (1.2) admits an
Observer Lyapunov Function (OLF) if there exist func-
tionsV ∈ C1(R+ ×Rn ×Rn;R+) (called the OLF),
a1, a2 ∈ K∞, � ∈ K+, � ∈ E, a mappingw ∈
C0(R+ ×Rn;R+) with w(·,0)�0 such that the set-
valued mapQ(t) := {x ∈ Rn : w(t, x)�0} is a cap-
turing region for (1.2), and a positive definite function

 ∈ C0(R+;R+), such that the following inequalities
hold:

a1(|z − x|)�V (t, z, x)�a2(�(t)|(z, x)|),
∀(t, z, x) ∈ R+ ×Rn ×Rn, (3.5a)

inf
u∈Rn

sup
x∈h−1(t,y)

{
�V
�t

(t, z, x) + �V
�x

(t, z, x)f (t, x)

+ �V
�z

(t, z, x)u + 
(V (t, z, x))

−w(t, x)(1+ V (t, z, x))} ��(t),
∀(t, z, y) ∈ R+ ×Rn × S, (3.5b)

sup
x∈h−1(t,y)

{
�V
�t

(t, z, x) + �V
�x

(t, z, x)f (t, x)

+ �V
�z

(t, z, x)f (t, z) + 
(V (t, z, x))

−w(t, x)(1+ V (t, z, x))

}
��(t),

∀(t, y) ∈ R+ × S andz ∈ h−1(t, y). (3.5c)

Particularly, if V ∈ C1(R+ × Rn × Rn;R+) is an
OLF, which depends only ont ∈ R+ ande := z− x,
then it is called a state-independent OLF.

We are now in a position to state and prove our main
result concerning the existence of a global identity
observer for (1.2).

Theorem 3.5. Assume that(1.2) is RFC.Then the fol-
lowing statements are equivalent:

(i) System(1.2)admits a Global Identity Observer.
(ii) System(1.2)admits an OLF.

Proof. (i)⇒(ii) By virtue of Fact 3.3 and Theorem
2.6, there exist functionsV ∈ C∞(R+ × Rn;R+),
a1, a2 ∈ K∞ and�1,�2 ∈ K+ such that the following
inequalities hold:

a1(|(�1(t)(z, x), z − x)|)
�V (t, z, x)�a2(�2(t)|(z, x)|),

∀(t, z, x) ∈ R+ ×Rn ×Rn, (3.6a)

inf
u∈Rn

sup
x∈h−1(t,y)

{
�V
�t

(t, z, x) + �V
�x

(t, z, x)f (t, x)

+�V
�z

(t, z, x)u + V (t, x)

}
�0,

∀(t, z, y) ∈ R+ ×Rn × S, (3.6b)

inf
u∈U∗(t,ỹ)

sup
x∈h−1(t,y)

{
�V
�t

(t, z, x)+�V
�x

(t, z, x)f (t, x)

+�V
�z

(t, z, x)u + V (t, x)

}
�0,

∀t�0 and for allỹ = (z, y) ∈ Rn × S

for which H−1(t,0) ∩ h̃−1(t, ỹ) �= ∅, (3.6c)

where

U∗(t, ỹ) := {u ∈ Rn; f (t, x) − u = 0

for all (z, x) ∈ H−1(t,0) ∩ h̃−1(t, ỹ)}. (3.6d)

Clearly, the conditionH−1(t,0) ∩ h̃−1(t, ỹ) �= ∅ is
equivalent to the conditionz ∈ h−1(t, y) (notice that
if z ∈ h−1(t, y) then (z, z) ∈ H−1(t,0) ∩ h̃−1(t, ỹ)

and conversely if(z, x) ∈ H−1(t,0) ∩ h̃−1(t, ỹ)

thenz = x ∈ h−1(t, y)). Thus, we obtainU∗(t, ỹ) =
U∗(t, z, y)= {f (t, z) ∈ Rn} and consequently condi-
tions (3.6c,d) can be combined to give the following
condition:

sup
x∈h−1(t,y)

{
�V
�t

(t, z, x) + �V
�x

(t, z, x)f (t, x)

+�V
�z

(t, z, x)f (t, z) + V (t, x)

}
�0,

∀t�0 and for ally ∈ S, z ∈ h−1(t, y). (3.7)



I. Karafyllis, C. Kravaris / Systems & Control Letters 54 (2005) 925–938 935

Inequalities (3.5a,b,c) are immediate consequences
of inequalities (3.6a,b) and (3.7) with�(t) ≡ �2(t),
�(t) ≡ 0, 
(s) = s andw(t, x) ≡ 0. Moreover, the
set-valued mapQ(t) := {x ∈ Rn : w(t, x)�0} =Rn

is (trivially) a capturing region for (1.2).
(ii)⇒(i) Suppose that there exist functionsV ∈

C1(R+ × Rn × Rn;R+), a1, a2 ∈ K∞, � ∈ K+,
� ∈ E, w ∈ C0(R+ × Rn;R+) with w(t,0)�0
for all t�0 and a positive definite function
 ∈
C0(R+;R+), such that inequalities (3.5a–c) hold
and such that the set-valued mapQ(t) := {x ∈ Rn :
w(t, x)�0} is a capturing region for (1.2). We define:

u = f (t, z) + v, v ∈ Rn (3.8)

and notice that usingv instead ofu and the definition
ỹ = h̃(t, x, z) := (z, y) = (z, h(t, x)), we have

inf
v∈Rn

sup
(z,x)∈h̃−1(t,ỹ)

{w1(t, z, x) + w2(t, z, x)v}��(t),

∀(t, z, y) ∈ R+ ×Rn × S, (3.9a)

sup
(z,x)∈h̃−1(t,ỹ)

{w1(t, z, x)}��(t),

∀(t, y) ∈ R+ × S and�(t, ỹ) = 0, (3.9b)

where

w1(t, z, x) := �V
�t

(t, z, x) + �V
�x

(t, z, x)f (t, x)

+ �V
�z

(t, z, x)f (t, z) + 
(V (t, z, x))

− w(t, x)(1+ V (t, z, x)), (3.9c)

w2(t, z, x) := �V
�z

(t, z, x);

�(t, ỹ) := |y − h(t, z)|. (3.9d)

Since (1.2) is RFC, by virtue of Lemma 2.2 in[8],
there exist functionsq(·) ∈ K+, a′(·) ∈ K∞, such
that for every(t0, x0) ∈ R+ ×Rn, the unique solution
x(t) of (1.2) initiated fromx0 at time t0 exists for all
t� t0 and satisfies

|x(t)|�q(t)a′(|x0|), ∀t� t0. (3.10)

We define the bounding map forh̃:

P̃ (t, z, y) := {z} × {x ∈ Rn : |x|�a(t, y)

+ q(t)a′(t + 1) + q(t)a′(|z|)} ⊆ Rn ×Rn,

(3.11)

wherea : R+ × S → R+ is the continuous positive
function involved in hypothesis H2 forh. By virtue
of Lemma 2.10 and (3.9a–d) there exists a function
k ∈ C∞(R+ ×Rn ×S;Rn) with k(t, z, y)=0 for all
t�0 andz ∈ h−1(t, y), such that

�V
�t

(t, z, x) + �V
�x

(t, z, x)f (t, x) + �V
�z

(t, z, x)

× (f (t, z) + k(t, z, y))� − 
(V (t, z, x))
+ 6�(t) + w(t, x)(1+ V (t, z, x)),

∀(t, z, y) ∈ R+ ×Rn × S,

(z, x) ∈ h̃−1(t, z, y) ∩ P̃ (t, z, y). (3.12)

We next show that for every(t0, z0x0) ∈ R+ ×Rn ×
Rn, the unique solution(z(t), x(t)) of the system

ẋ = f (t, x),

ż = f (t, z) + k(t, z, h(t, x)) (3.13)

initiated from (z0, x0) at time t0 exists for all t� t0
and that the set-valued map̃P(t, z, y) is a capturing
region for (3.13). Notice that sincek(t, z, y)=0 for all
t�0 andz ∈ h−1(t, y), we can guarantee that the set
H−1(t,0) = {(z, x) ∈ Rn ×Rn : z = x} is positively
invariant for (3.13). Clearly, there exists timet1> t0
such that the solution of (3.13) exists on[t0, t1). No-
tice that (3.11) in conjunction with inequality (3.10)
implies that

(z(t), x(t)) /∈ int P̃ (t, z(t), h(t, x(t)))

⇒ t0� t� t0 + |x0| and |z(t)|� |x0|, (3.14)

where int denotes the interior of a set. Moreover, by
virtue of (3.12), we have

(z(t), x(t)) ∈ P̃ (t, z(t), h(t, x(t)))

⇒ V̇ |(3.13)�w(t, x(t))V (t, z(t), x(t))

+ w(t, x(t)) + 6�(t). (3.15)

Consider the cases

(1) (z(t), x(t)) /∈ int P̃ (t, z(t), h(t, x(t))). In this
case, by virtue of (3.10) and (3.14), the estimate
|(z(t), x(t))|�q(t)a′(|x0|) + |x0| holds.

(2) (z(t), x(t)) ∈ int P̃ (t, z(t), h(t, x(t))). Define

t2 := inf {� ∈ [t0, t) : (z(s), x(s))
∈ int P̃ (s, z(s), h(s, x(s)))

for all �<s� t}
i.e., (t2, t) ⊂ (t0, t) is the maximal interval that
satisfies(z(s), x(s)) ∈ int P̃ (s, z(s), h(s, x(s)))
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for all s ∈ (t2, t) ⊂ [t0, t). Thus we either have
t2=t0 or (z(t2), x(t2)) /∈ int P̃ (t, z(t2), h(t, x(t2))).
Using (3.15), we obtain forM := 6

∫ +∞
0 �(t)dt

V (t, z(t), x(t))� exp

(∫ t

t2

|w(�, x(�))|d�
)

× (V (t2, z(t2), x(t2))

+M +
∫ t

t2

|w(�, x(�))|d�
)
.

Using (3.5a) and estimate (3.10) in conjunction with
the latter inequality, we obtain the estimate

|(z(t), x(t))|�2q(t)a′(|x0|) + |x0|
+ a−1

1

(
exp

(∫ t

t2

|w(�, x(�))|d�
)

× (
a2(�(t2)|(z(t2), x(t2))|)

+M +
∫ t

t2

|w(�, x(�))|d�
))

.

Since|(z(t2), x(t2))|� |z(t2)| + q(t2)a
′(|x0|), the lat-

ter estimate implies for̃�(t) := max0��� t �(�) and
q̃(t) := max0��� t q(�):

|(z(t), x(t))|
�2q(t)a′(|x0|) + |x0| + a−1

1

×
(
exp

(∫ t

t0

|w(�, x(�))|d�
)

×
(
a2(�̃(t)|z(t2)| + �̃(t)q̃(t)a′(|x0|))

+M +
∫ t

t0

|w(�, x(�))|d�
))

.

For the case(z(t2), x(t2)) /∈ int P̃ (t, z(t2), h(t, x(t2)))
we have (using (3.14))|z(t2)|� |x0| and for the case
t2 = t0 we have|z(t2)| = |z0|. Thus we obtain

|(z(t), x(t))|
�2q(t)a′(|x0|) + |x0|

+ a−1
1

(
exp

(∫ t

t0

|w(�, x(�))|d�
)

×
(
a2(�̃(t)|z0| + �̃(t)|x0| + �̃(t)q̃(t)a′(|x0|))

+M +
∫ t

t0

|w(�, x(�))|d�
))

. (3.16)

Notice that estimate (3.16) holds also if(z(t), x(t)) /∈
intP̃ (t, z(t), h(t, x(t))). We conclude that estimate

(3.16) holds for all t ∈ [t0, t1) and consequently
it holds for all t� t0. Thus system (3.13) satisfies
sup{|(z(t0 + s), x(t0 + s))|; |x0|�r, t0 ∈ [0, T ], s ∈
[0, T ]}< + ∞, for every T �0, r�0 and conse-
quently by virtue of Lemma 2.3 in[8] system (3.13) is
RFC. Moreover by (3.14)we have that(z(t), x(t)) ∈
P̃ (t, z(t), h(t, x(t))) for all t� t0 + |x0| and thus the
set-valued mapP̃ (t, z, y) is a capturing region for
(3.13). Since the set-valued mapQ(t) := {x ∈ Rn :
w(t, x)�0} is also a capturing region for (1.2), this
implies that the set-valued map

P̄ (t, z, y) := {z} × {x ∈ Q(t) : |x|�a(t, y)

+ �(t)a′(t + 1) + �(t)
× a′(|z|)} ⊆ Rn ×Rn (3.17)

is a capturing region for (3.13) and that the following
inequality holds:

V̇ |(3.13)� − 
(V (t, z, x)) + 6�(t),

∀(t, z, y) ∈ R+ ×Rn × S,

(z, x) ∈ h̃−1(t, z, y) ∩ P̄ (t, z, y).

Exploiting the result of Corollary 2.11, we conclude
that Problem (2) is globally strongly solvable.�

Remark 3.6. It should be emphasized that the con-
struction of the observer in the proof of implication
(ii)⇒(i) relies heavily on estimate (3.10) for the so-
lutions of (1.2) and therefore on the assumption that
system (1.2) is RFC. Moreover, although the proof of
implication (ii)⇒(i) of Theorem 3.5 is constructive, it
cannot be used for observer design purposes since it
involves partition of unity arguments (it is the result
of Lemma 2.10 that is used for the observer construc-
tion).

The following example shows that an autonomous
system may not admit a time-invariant State Indepen-
dent Error Lyapunov Function in the sense of[17], but
it may admit a time-varying State Independent OLF in
the sense of Definition 3.4 and consequently a time-
varying global identity observer.

Example 3.7.We consider two-dimensional systems
of the form

ẋ1 = f (x1) + x2, ẋ2 = g(x1, x2),

y = x1, (x1, x2) ∈ R2, (3.18)



I. Karafyllis, C. Kravaris / Systems & Control Letters 54 (2005) 925–938 937

wheref, g are locally Lipschitz mappings withf (0)=
g(0,0)=0. In [17] it is shown that there exists a time-
invariant “State Independent” Error Lyapunov Func-
tion, if and only if there exists a constantM>0 such
that

(z − x)(g(y, z) − g(y, x))�M|z − x|2,
∀(y, z, x) ∈ R3. (3.19)

Here we suppose that system (3.18) is forward com-
plete and that there exists a functionL(·) ∈ C0(R;R),
such that the following inequality is satisfied:

(z − x)(g(y, z) − g(y, x))�L(y)|z − x|2,
∀(y, z, x) ∈ R3. (3.20)

Notice that, since (3.18) is RFC, there exist�(·) ∈
K+ and a ∈ K∞ such that the unique solution
(x1(t), x2(t)) of system (3.18) initiated fromx0 ∈ R2

at timet0�0 satisfies

|(x1(t), x2(t))|��(t)a(|x0|), ∀t� t0.

Moreover, we can find a functiona′ ∈ K∞ and a
constantR>0 such that

2L(x1)�R + a′(|x1|), ∀x1 ∈ R. (3.21)

The above inequalities imply that the set-valued map

Q(t) := {(x1, x2) ∈ R2 : 2L(x1) − M(t)�0},
(3.22a)

whereM(t) is anyC1 function that satisfies

M(t)�1+ R + a′(�(t)a(1+ t)), ∀t�0 (3.22b)

is a capturing region for (3.18). Particularly, by virtue
of (3.21) and (3.22a,b), we obtain that(x1(t), x2(t)) ∈
Q(t) for all t� t0 + |x0|. Next define

V (t, e1, e2) := �(t)e21 + (e2 − M(t)e1)
2, (3.23)

where�(t) := 4M2(t) + 1, e1 := z1 − x1, e2 :=
z2 − x2. Notice that this particular selection for�(t)
guarantees that

1
2 (e

2
1 + e22)�V (t, e1, e2)�2(8M2(t) + 1)(e21 + e22).

We introduce the observer:

ż1 = f (y) + z2 + u1;

ż2 = g(y, z2 − M(t)(z1 − y)) + u2 (3.24a)

u1 = −3

2
M(t)e1 − �̇(t)

2�(t)
e1;

u2 = M(t)u1 − �(t)e1 + M2(t)e1 + Ṁ(t)e1 (3.24b)

and evaluate the derivative

V̇ := �V
�t

(t, e1, e2) + �V
�e1

(t, e1, e2)(e2 + u1)

+ �V
�e2

(t, e1, e2)(g(x1, x2 + e2 − M(t)e1)

− g(x1, x2) + u2)

along the trajectories of system (3.18) with (3.24). We
obtain

V̇ � − M(t)V (t, e1, e2)

+max{2L(x1) − M(t),0}V (t, e1, e2). (3.25)

Since the set-valued mapQ(t) as defined by (3.22) is a
capturing region, we conclude from (3.25) that (3.24)
is a global identity observer for (3.18) and the function
V defined in (3.23) is a state independent OLF.

4. Conclusions

We have considered the Robust Output Feedback
Stabilization problem for time-varying systems we
have given necessary and sufficient conditions for the
solution of this problem (Theorems 2.6 and 2.9). The
results were applied to the problem of the Global Iden-
tity Observer Design for forward complete systems
without inputs. We have showed that the existence of
an Observer Lyapunov Function is a necessary and
sufficient condition for the solvability of this problem
(Theorem 3.5).
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