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Abstract

The problem of adding an integrator is considered for time-varying control systems. Sufficient conditions for the solution
of this problem are given, which are weaker than the corresponding conditions given in the literature. To this end, the notion
of non-uniform in time robust global asymptotic output stability (RGAOS) is used. Applications to problems of partial state
feedback global stabilization are considered.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The problems of adding an integrator are consid-
ered in many papers (see for instance the “classical”
papers[1,7,22] as well as[17,21] and the references
therein) and the literature about this subject is vast. In
this paper we give sufficient conditions for the solu-
tion of these problems that are weaker than the corre-
sponding conditions given in the literature (Theorems
2.2 and 2.6). To this end, we use the notion of non-
uniform in time robust global asymptotic output sta-
bility (RGAOS) and its Lyapunov characterizations,
given in [10]. Particularly, we consider the problems
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of “adding an integrator” for the system

ẋ = F(t, �, x, y), (1.1a)

ẏ = f (t, �, x, y) + g(t, �, x, y)u,
x ∈ Rn, y ∈ R, t �0, u ∈ R, � ∈ �

(1.1b)

and we assume that� ⊂ Rm is a compact set and that
the dynamicsF, f, g areC0 onR+×�×Rn×R and
locally Lipschitz with respect to(x, y), uniformly in
� ∈ �, with F(t, �,0,0) = 0, f (t, �,0,0) = 0 for all
(t, �) ∈ R+×�. There exist two different problems of
“adding an integrator”, exactly as in the time-invariant
case, which roughly speaking can be stated as follows:
1st Problem (output feedback problem): Suppose

that there exists a stabilizing feedback lawy = k(t, x)

for system (1.1a). Is there a stabilizing feedback law
of the formu = k̃(t, k(t, x), y) for system (1.1a,b)?
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2nd Problem (state feedback problem): Suppose that
there exists a stabilizing feedback lawy = k(t, x) for
system (1.1a). Is there a stabilizing feedback lawu =
k̃(t, x, y) for system (1.1a,b)?
In this paper we develop two different results that

provide solutions for the above problems (Theorems
2.2 and 2.6, respectively). The proofs of the presented
results are constructive. However, since we consider
time-varying uncertain systems, the proofs are more
technical than in the autonomous case without uncer-
tainties.
Results that provide solutions to the above prob-

lems have been used as tools for the application of
backstepping procedures in triangular systems (see for
instance[3]). However, there is a clear difference be-
tween the two problems, since the 1st problem re-
quires a feedback law that depends only on the val-
ues of the “virtual” feedback stabilizer of subsystem
(1.1a) and the statey of the one-dimensional subsys-
tem (1.1b), while the 2nd problem requires a feedback
law that depends on the whole state of the composite
system (1.1a,b). This is exactly the reason that theo-
rems provide solutions to the 1st problem are useful
for the construction of “partial state” feedback stabi-
lizers, while theorems that provide solutions to the 2nd
problem lead to state feedback laws (see for instance
[1,3,7,21,22]and the references therein). Moreover, it
is clear that solvability of the 1st problem implies the
solvability of the 2nd problem, but the converse is not
true in general.
The solution of the problem of “adding an

integrator” by means of output feedback that is pre-
sented in this paper is combined with recent results
given in the literature concerning non-uniform in time
global asymptotic stability (see[8–14]) in order to
find sufficient conditions for the partial state feedback
global stabilization of the system

ż = f (z, x),

ẋi = xi+1, i = 1, . . . , n − 1,

ẋn = a(z, x) + b(z, x)u,

x = (x1, . . . , xn) ∈ Rn, z ∈ Rl , u ∈ R, (1.2)

where the mappingsf , a, b are locally Lipschitz with
respect to(z, x), with f (0,0)=0 anda(0,0)=0. Sys-
tem (1.2) is important, because under mild conditions
a general affine control system, can take the form (1.2)
after an appropriate change of coordinates (see[4]).

The problem of the partial state feedback stabilization
of system (1.2) has attracted the interest of current re-
search (see[4–6,15,19]and the references therein).

Notations. Throughout this paper we adopt the fol-
lowing notations:

• By MD we denote the set of all measurable func-
tions fromR+ to D, whereD ⊂ Rm is a given
compact set.

• By Cj (A) (Cj (A;�)), where j �0 is a non-
negative integer, we denote the class of functions
(taking values in�) that have continuous deriva-
tives of orderj onA.

• For x ∈ Rn, x′ denotes its transpose and|x| its
usual Euclidean norm.

• L∞
loc(A) denotes the set of all measurable functions

u : A → Rm that are essentially bounded on any
non-empty compact subset ofA.

• By B[x, r], wherex ∈ Rn and r�0, we denote
the closed sphere inRn of radius r, centered at
x ∈ Rn.

• K+ denotes the class of positiveC0 functions� :
R+ → (0,+∞). K∗ denotes the class of non-
decreasingC∞ functions� : R+ → [1,+∞) with
lim t→+∞ [�̇(t)/�r (t)]=0 for some constantr�1
(see[8]). For the definitions of classesK,K∞ see
[16]. By KL we denote the set of all continuous
functions� = �(s, t) : R+ ×R+ → R+with the
properties: (i) for eacht �0 the mapping�(·, t) is
of classK; (ii) for eachs�0, the mapping�(s, ·)
is non-increasing with limt→+∞ �(s, t) = 0.

• We say that the functionH : R+ ×Rn → Rk, is
locally Lipschitz with respect tox ∈ Rn if for every
bounded intervalI ⊂ R+ and for every compact
subsetS of Rn, there exists a constantL�0 such
that

|H(t, x) − H(t, y)|�L|x − y|
∀t ∈ I ∀(x, y) ∈ S × S.

• We say that the mappingf : R+ × � × Rn →
Rk where� ⊂ Rm is a compact set, is locally
Lipschitz with respect tox ∈ Rn, uniformly in
� ∈ �, if for every bounded intervalI ⊂ R+ and
for every compact subsetS of Rn, there exists a
constantL�0 such that

|f (t, �, x) − f (t, �, y)|�L|x − y|
∀t ∈ I ∀(x, y) ∈ S × S ∀� ∈ �.
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Notice that for the dynamical systeṁx =
f (t, �, x), x ∈ Rn, � ∈ �, the assumption that
the dynamics off (·) are continuous everywhere
and locally Lipschitz with respect tox ∈ Rn,
uniformly in � ∈ �, with f (·,0) = 0, guarantees
that the system has a unique local Caratheodory
solution (see[2]) for every�(·) ∈ M�.

2. Adding an integrator

In this section we present the solutions of the two
different problems of adding an integrator for the time-
varying case (1.1). We first give the definitions of the
notions of robust forward completeness (RFC) and
RGAOS, introduced in[10]. By virtue of Lemmas 2.3
and 3.3 in[10], the reader can immediately verify that
the simplified definitions given here are equivalent to
� − � definitions given in[10]. Consider the system

ẋ = f (t, d, x),

Y = H(t, x),

x ∈ Rn, t �0, d ∈ D, (2.1)

whereH ∈ C0(R+ ×Rn;Rk), f ∈ C0(R+ × D ×
Rn;Rn) is a locally Lipschitz vector field with respect
to x ∈ Rn, uniformly with respect tod ∈ D, with
f (t, d,0) = 0,H(t,0) = 0 for all (t, d) ∈ R+ × D.

Definition 2.1. We say that (2.1) is Robustly Forward
Complete (RFC) if there exist functionsq ∈ K+ and
a ∈ K∞ such that for every(t0, x0, d) ∈ R+ ×Rn ×
MD the solutionx(t) of (2.1) with initial condition
x(t0) = x0 and corresponding to inputd ∈ MD exists
for all t � t0 and satisfies

|x(t)|�q(t)a(|x0|) ∀t � t0. (2.2)

We say that (2.1) is non-uniformly in time Robustly
Globally Asymptotically Output Stable (RGAOS) if
system (2.1) is RFC and there exist functions� ∈
K+ and � ∈ KL such that for every(t0, x0, d) ∈
R+ ×Rn ×MD the solutionx(t) of (2.1) with initial
conditionx(t0) = x0 and corresponding to inputd ∈
MD exists for allt � t0 and satisfies

|H(t, x(t))|��(�(t0)|x0|, t − t0) ∀t � t0. (2.3)

We remind the readers that the notion of non-
uniform in time Robust Global Asymptotic Stability

(RGAS) is given in[13] and is actually equivalent to
the notion of RGAOS given above whenH(t, x) := x

(i.e. when the output is the whole state vector). Our
first result is the following theorem, which guaran-
tees the existence of a smooth time-varying output
feedback stabilizer, under appropriate hypotheses.

Theorem 2.2. Suppose that:
(B1)There exists aC1 functionk : R+ ×Rn → R,

with k(t,0) = 0 for all t �0 a C0 function �(t, s) :
R+ ×R+ → R+, which is locally Lipschitz with re-
spect tos, with �(t, ·) ∈ K∞ for eacht �0, such that
the following system is non-uniformly in time RGAOS
and zero is non-uniformly in time RGAS for the fol-
lowing system with input(�, d) ∈ D := � × [−1,1]:
ẋ = F(t, �, x, k(t, x) + d�(t, |x|)),
Y = k(t, x). (2.4)

(B2) There exists a function	 of classK+, such
that

	(t)g(t, �, x, y)�1

∀(t, �, x, y) ∈ R+ × � ×Rn ×R. (2.5)

Then for everyC0 function �̄(t, s) : R+ × R+ →
R+, which is locally Lipschitz with respect tos, with
�̄(t, ·) ∈ K∞ for eacht �0, there exists aC∞ function
k̃ : R+ ×R → R, with k̃(t,0) = 0 for all t �0, such
that zero is non-uniformly in time RGAS for the fol-
lowing system with input(�, d) ∈ D := � × [−1,1]:
ẋ = F(t, �, x, y),
ẏ = f (t, �, x, y) + g(t, �, x, y) (k̃(t, y − k(t, x))

+ d �̄(t, |(x, y)|)). (2.6)

Remark 2.3. Notice that whenk is independent oft
(time-independent feedback), then RGAS for (2.1) im-
plies also RGAOS. However, this is no longer true for
the case of time-varying feedback. We also notice that
when hypothesis B1 holds withk ≡ 0 then Theorem
2.2 shows that the non-uniform in time ISS property
can be propagated through an integrator via smooth
output feedback that depends only ony, without any
assumption concerning the dynamics or the type of
convergence (compare with the corresponding results
in [7,22] for the autonomous case).

The proof of Theorem 2.2 relies on the follow-
ing lemma, which provides minimal Lyapunov-like
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requirements for robust global asymptotic stability of
zero for a time-varying uncertain system. Its proof is
provided in the Appendix.

Lemma 2.4. Consider system(2.1)and suppose that
there exist functionsW ∈ C1(R+ × Rn;R+), a ∈
K∞, p ∈ K+ ∩ C1(R+) with lim t→+∞ p(t) = 0,
ṗ(t)�0 for all t �0 and a constant0<c<1 such
that the following properties hold:

a(|x|)�W(t, x) ∀(t, x) ∈ R+ ×Rn (2.7)

if W(t, x)�cp(t) then
d

dt
W(t, x)

∣∣∣∣
(2.1)

:= �W
�t

(t, x) + �W
�x

(t, x)f (t, d, x)

� ṗ(t)

cp(t)
W(t, x) ∀d ∈ D. (2.8)

Then zero is non-uniformly in time RGAS for(2.1).

Proof of Theorem 2.2. Let a C0 function �̄(t, s) :
R+ × R+ → R+, which is locally Lipschitz with
respect tos, with �̄(t, ·) ∈ K∞ for eacht �0. The
proof is devoted to the construction of functionsW ∈
C1(R+ ×Rn ×R;R+), a ∈ K∞ andk̃ ∈ C∞(R+ ×
R;R) with k̃(t,0) = 0 for all t �0, such that the fol-
lowing properties hold:

a(|(x, y)|)�W(t, x, y)

∀(t, x, y) ∈ R+ ×Rn ×R. (2.9a)

If W(t, x, y)� 1

2
p(t) then

d

dt
W(t, x, y)

∣∣∣∣
(2.6)

� − 1

2
W(t, x, y) + exp(−t)

∀(�, d) ∈ D := � × [−1,1], (2.9b)

where

p(t) := exp

(
− t

4

)(
11− 8

3
exp

(
−3t

4

))
. (2.9c)

Clearly, it will then follow by Lemma 2.4, that zero is
non-uniformly in time RGAS for (2.6).
By virtue of Proposition 3.5 in[10], assumption

B1 guarantees the existence of a functionU(·) ∈
C∞(R+ ×Rn;R+) and functionsa1(·), a2(·) ∈ K∞,
�(·) ∈ K+ such that

a1(|(x, k(t, x))|)�U(t, x)�a2(�(t)|x|)
∀(t, x) ∈ R+ ×Rn, (2.10a)

�U
�t

(t, x) + �U
�x

(t, x)F (t, �, x, k(t, x) + d�(t, |x|))
� − U(t, x) ∀(t, x, �, d) ∈ R+

×Rn × � × [−1,1]. (2.10b)

By virtue of Fact V in[14], Corollary 10 and Remark
11 in [18], there exists a function�(·) of classK∞
and a functionr(·) of classK+ ∩ C∞(R+) such that
the following inequality holds for all(t, x, z) ∈ R+ ×
Rn ×R:
sup
�∈�

{
|g(t, �, x, k(t, x) + z)�̄(t, |(x, k(t, x) + z)|)|

+
∣∣∣∣f (t, �, x, k(t, x) + z) − �k

�t
(t, x)

− �k
�x

(t, x)F (t, �, x, k(t, x) + z)

∣∣∣∣
}

�r(t)(�(|x|) + �(|z|)). (2.11)

Clearly, we can find a function�(·) of classK∞ ∩
C1(R+), with d�/ds(s) being non-decreasing, such
that:

�(a1(s))�2(s + 1)(�(s))2 ∀s�1, (2.12a)

�(s)� d�
ds

(s)s ∀s�0, (2.12b)

wherea1 is the function involved in (2.10a) (for ex-
ample, we may select�(s) := [2/a1(1)]

∫ 2s
0 (a−1

1 (
)+
1)(�(a−1

1 (
)))2 d
 and notice that since(d�/ds)(s) is
increasing, inequality (2.12b) is automatically satis-
fied). Letm : (0,+∞) → (0,+∞) be theC0 non-
increasing function, defined as

m(t) := max
t � s

(�(s))2

�(a1(s))
. (2.13)

We notice that since (2.12a) holds, the right-hand side
of (2.13) never exceeds 1 fort �1. Let�1 be a function
of classK+ ∩C∞(R+) that satisfies�1(t)�1, for all
t �0 as well as

�
(
a2

(
�(t)
�1(t)

))
+ 1

2�21(t)
� 1

4
p(t) ∀t �0, (2.14a)

wherea2,� are the functions involved in (2.10a) and
p is defined by (2.9c). Let�2 be a function of class
K+ ∩ C∞(R+) that satisfies:

m

(
1

�1(t)

)
��2(t) ∀t �0. (2.14b)
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By virtue of Fact V in[14], Corollary 10 and Remark
11 in [18], there exists a functiona3(·) of classK∞
and a functionq(·) of classK+ ∩C∞(R+) such that:

sup

{
�′(U(t, x))

∣∣∣∣�U�x (t, x)

∣∣∣∣ |F(t, �, x, k(t, x) + z)

−F(t, �, x, k(t, x))|, � ∈ �, |z|�s, �(t, |x|)�s

}
�q(t)a3(s), (2.15a)

where �′(·) denotes the continuous derivative of�.
Without loss of generality, we may also assume that

a3(s)�s�(s) ∀s�0, (2.15b)

q(t)�r(t) ∀t �0, (2.15c)

where�, r are the functions involved in (2.11). Then
inequalities (2.10b), (2.12b) and (2.15a) imply the fol-
lowing inequality for all(t, x, y, �) ∈ R+×Rn×R×
�:

d

dt
�(U(t, x))

∣∣∣∣
(1.1a)

� − �(U(t, x)) + q(t)a3(|y − k(t, x)|). (2.16)

Define

W(t, x, y) := �(U(t, x)) + 1
2 (y − k(t, x))2 (2.17)

and leta(s) := min{�(a1(12s)), 18s2} (obviously, is a
classK∞ function). Clearly, by virtue of the left-hand
side inequality (2.10a) and definition (2.17), we obtain
that

W(t, x, y)��(a1(|(x, k(t, x))|)) + 1
2 (y − k(t, x))2

�a(2|(x, k(t, x))|) + a(2|y − k(t, x)|)
�a(|(x, k(t, x))| + |y − k(t, x)|)

which directly implies (2.9a). Moreover, letã3 : R →
R a C∞ strictly increasing function that satisfies:
zã3(z)�a3(|z|), for all |z|�1, zã3(z)�0 for all z ∈
R andã3(0)= 0. Let also� a function of classK+ ∩
C∞(R+) that satisfies:�(t)a−1

3 (exp(−t)/4q(t))�1
and�(t)�1, for all t �0.We next define the feedback
function

k̃(t, z) := − 	(t)((1+ 1
2 q2(t)�2(t))z

+ 3q(t)�(t)ã3(�(t)z)), (2.18)

where	 is the function of classK+ that satisfies (2.5).
Without loss of generality we may assume that	 is of

classK+∩C∞(R+) and consequentlỹk ∈ C∞(R+×
R;R) with k̃(t,0) = 0 for all t �0.
For the rest of proof we adopt the notationz =

y − k(t, x). Using inequalities (2.5), (2.11), (2.15b,c),
(2.16) and definitions (2.17), (2.18), we obtain for all
(t, x, y, �, d) ∈ R+ ×Rn ×R× � × [−1,1]:
d

dt
W(t, x, y)

∣∣∣∣
(2.6)

� − W(t, x, y) − 1
2 q2(t)�2(t)|z|2

+ 2q(t)(a3(|z|) − �(t)zã3(�(t)z))

+ q(t)(|z|�(|x|) − �(t)zã3(�(t)z)). (2.19)

When�(t)|z|�1 we have, by virtue of the assumed
properties forã3 and (2.19), that

d

dt
W(t, x, y)

∣∣∣∣
(2.6)

� − W(t, x, y) − 1
2 q2(t)�2(t)|z|2

+ q(t)(|z|�(|x|) − �(t)zã3(�(t)z)). (2.20a)

When |z|�1/�(t), by (2.19) and due to the fact that
1/�(t)�a−1

3 (exp(−t)/4q(t)) it follows that:

d

dt
W(t, x, y)

∣∣∣∣
(2.6)

� − W(t, x, y) − 1
2 q2(t)�2(t)|z|2

+ q(t)(|z|�(|x|) − �(t)zã3(�(t)z))

+ 1
2 exp(−t). (2.20b)

It follows that (2.20b) holds for all(t, x, y, �, d) ∈
R+ ×Rn ×R × � × [−1,1]. If |z|� |x|, it follows
by (2.15b) that

d

dt
W(t, x, y)

∣∣∣∣
(2.6)

� − W(t, x, y) − 1
2 q2(t)�2(t)|z|2

+ q(t)(a3(|z|) − �(t)zã3(�(t)z)) + 1
2 exp(−t)

and similarly as above (distinguishing the cases
�(t)|z|�1 and |z|�1/�(t)�a−1

3 (exp(−t)/4q(t))),
we obtain

d

dt
W(t, x, y)

∣∣∣∣
(2.6)

� − W(t, x, y) − 1
2 q2(t)�2(t)|z|2 + exp(−t).

(2.20c)
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If |x|�1/�1(t) then by virtue of definition (2.13) and
inequality (2.14b) we obtain

(�(|x|))2�m

(
1

�1(t)

)
�(a1(|x|))��2(t)�(a1(|x|)).

Using the elementary inequalityq(t)|z|�(|x|)�
[1/(2�2(t))](�(|x|))2+ 1

2 q2(t)�2(t)|z|2, the left-hand
side inequality (2.10a) and definition (2.17), we get

|x|� 1

�1(t)
⇒ q(t)|z|�(|x|)� 1

2 W(t, x, y) + 1
2 q2(t)�2(t)|z|2.

By virtue of (2.20b) we obtain for the case|x|�1/�1(t)

d

dt
W(t, x, y)

∣∣∣∣
(2.6)

� − 1
2 W(t, x, y) + exp(−t).

(2.21)

Thus we may conclude that (2.21) holds if|z|� |x|
or |x|�1/�1(t). Finally, we consider the case:
|z|� |x|�1/�1(t). Then by virtue of the right-hand
side inequality (2.10a), inequality (2.14a) and defini-
tion (2.17) it follows thatW(t, x, y)� 1

4p(t)< 1
2p(t).

Clearly, this implies that ifW(t, x, y)� 1
2p(t) then

we must have|z|� |x| or |x|�1/[�1(t)] and conse-
quently (2.9b) holds. The proof is complete.�

Notice that Theorem 2.2 is an existence result. Al-
though the proof of Theorem 2.2 is based on a con-
structive strategy, it cannot be used for the design of the
required output feedback law, since it requires knowl-
edge of a Lyapunov function for system (2.4), which
satisfies the differential inequality (2.10b). Such a Lya-
punov function is guaranteed to exist but is, in general,
difficult to find in practice. However, as the following
example shows, Lyapunov functions that satisfy less
demanding differential inequalities can be used for de-
sign purposes.

Example 2.5. The origin of the following system:

ẋ = −x3 + y,

ẏ = x + u,

(x, y) ∈ R2, u ∈ R (2.22)

cannot be made GAS with the use ofoutput feedback
u= k(y) for anyC1 functionk(·) (since the lineariza-
tion of the closed-loop system has one eigenvalue with

positive real part). Notice that the following subsys-
tem is non-uniformly in time RGAOS and zero is non-
uniformly in time RGAS for the following systemwith
input d ∈ D := [−1,1]:
ẋ = −x3 + d�(t, |x|),
Y = 0 (2.23)

with �(t, s) := 1
2s

3. Therefore by virtue of Theorem
2.2 there exists aC∞ time-varying feedback of the
form k(t, y) with k(t,0) = 0 for all t �0, such that
zero for the following system:

ẋ = −x3 + y,

ẏ = x + k(t, y) + d|(x, y)|,
(x, y) ∈ R2, d ∈ [−1,1] (2.24)

is (non-uniformly in time) RGAS. Consider the Lya-
punov function

V (t, x, y) := 1
2 x2 + 1

2 y2. (2.25)

Clearly, using the elementary Young inequalities
3|x||y|� 1

4x
4 + 27

4 |y|4/3, 27
4 |y|4/3� 9

4 exp(3t)y
4 +

9
2 exp(−3t), we have for all(t, x, y, d) ∈ R+ ×R×
R× [−1,1]:
�V
�t

(t, x, y) + �V
�x

(t, x, y)(−x3 + y)

+ �V
�y

(t, x, y)(x + u + d|(x, y)|)
= −x4 + 2xy + dy|(x, y)| + yu

� − x4 + 3|x||y| + y2 + yu

� − 1
2x

4 + 9
4 exp(3t)y

4

+ y2 + yu + 5exp(−3t).

The latter inequality shows that the smooth output
feedback law:

u = k(t, y) := −9
4 exp(3t)y3 − y − 1

2 y3

guarantees that the following inequality holds for all
(t, x, y, d) ∈ R+ ×R×R× [−1,1]:
�V
�t

(t, x, y) + �V
�x

(t, x, y)(−x3 + y)

+ �V
�y

(t, x, y)(x + k(t, y) + d|(x, y)|)
� − V 2(t, x, y) + 5exp(−3t).
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The latter inequality in conjunction with Theorem 3.1
in [13] guarantees that zero is RGAS for (2.24).

We may relax assumptions B1 and B2 of Theorem
2.2, by making use of state time-varying feedback.
This possibility is further exploited by the following
theorem. Notice that the regularity requirements im-
posed for the original feedback are minimal and thus
generalize the non-smooth “adding an integrator” re-
sults given in[17,21].

Theorem 2.6. Suppose that:
(B3)There exists aC0 functionk : R+ ×Rn → R,

with k(t,0) = 0 for all t �0, such that the mapping
F(t, �, x, k(t, x)) is locally Lipschitz with respect to
x ∈ Rn, uniformly in � ∈ �, such that the following
system is non-uniformly in time RGAOS and zero is
non-uniformly in time RGAS for the following system
with input� ∈ �:

ẋ = F(t, �, x, k(t, x)),
Y = k(t, x). (2.26)

(B4) There exists aC∞ function	 : R+ × Rn ×
R → R, such that

	(t, x, y)g(t, �, x, y)�1

∀(t, �, x, y) ∈ R+ × � ×Rn ×R. (2.27)

Then for everyC0 function �̄(t, s) : R+ × R+ →
R+, which is locally Lipschitz with respect tos, with
�̄(t, ·) ∈ K∞ for eacht �0, there exists aC∞ function
k̃ : R+ × Rn × R → R, with k̃(t,0) = 0 for all
t �0, such that zero is non-uniformly in time RGAS
for the following system with input(�, d) ∈ D :=
� × [−1,1]:
ẋ = F(t, �, x, y),
ẏ = f (t, �, x, y) + g(t, �, x, y)(k̃(t, x, y)

+ d�̄(t, |(x, y)|)). (2.28)

The proof of Theorem 2.6 is based on the fol-
lowing technical lemma. It shows that without loss
of generality we may assume that the functionk :
R+ ×Rn → R involved in hypothesis B3 is of class
C∞(R+ ×Rn;R).

Lemma 2.7. Suppose that hypothesisB3 holds. Then
there exists a functioñk ∈ C∞(R+ × Rn;R), with

k̃(t,0) = 0 for all t �0, such that the following sys-
tem is non-uniformly in time RGAOS and zero is non-
uniformly in time RGAS for the following system with
input � ∈ �:

ẋ = F(t, �, x, k̃(t, x))
Y = k̃(t, x). (2.29)

Proof. By virtue of Proposition 3.5 in[10], assump-
tion B3 guarantees the existence of a functionU(·) ∈
C∞(R+ ×Rn;R+) and functionsa1(·), a2(·) ∈ K∞,
�(·) ∈ K+ such that

a1(|(x, k(t, x))|)�U(t, x)�a2(�(t)|x|)
∀(t, x) ∈ R+ ×Rn, (2.30a)

�U
�t

(t, x) + �U
�x

(t, x)F (t, �, x, k(t, x))

� − U(t, x), ∀(t, x, �) ∈ R+ ×Rn × �. (2.30b)

Following exactly the same procedure with the proof
of Lemma 2.7 in[14], we can prove that there exist
functionsa3(·), a4(·) of classK∞ and �(·) of class
K+, such that

�U
�t

(t, x) + �U
�x

(t, x)F (t, �, x, k(t, x) + v)

� − U(t, x) + exp(−2t)a3(|x|)a4(�(t)|v|)
∀(t, �, x, v) ∈ R+ × � ×Rn ×R. (2.30c)

Sincek(·) is continuous withk(t,0) = 0 for all t �0,
by virtue of Fact V in[14], there exists̃� ∈ K∞ and
p ∈ K+ such that

|k(t, x)|� �̃(p(t)|x|) ∀(t, x) ∈ R+ ×Rn

which implies that

|k(t, x)|� �̃(
√|x|) ∀t �0 and |x|� 1

p2(t)
.

Define theC0 function : R+ ×R+ → R+:

(t, s) := min

(
2�̃(

√
s),

1

�(t)
a−1
4

(
1

1+ a3(s)

))
(2.31)
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which clearly satisfies

(t, s) := 2�̃(
√

s) ∀t �0 and

s� min

(
1,

(
�̃
−1
(

R

2�(t)

))2)

whereR := a−1
4

(
1

1+ a3(1)

)
.

Consequently, there exists a functionk̃ ∈ C∞(R+ ×
Rn;R), such that

|k̃(t, x) − k(t, x)|�(t, |x|)�2�̃(
√|x|)

∀(t, x) ∈ R+ ×Rn, (2.32a)

k̃(t, x) = 0 ∀t �0 and

|x|� 1

2
min

(
1,

1

p2(t)
,

(
�̃
−1
(

R

2�(t)

))2)
. (2.32b)

Notice that by virtue of (2.32a) and the following
elementary inequalities:

a1(|(x, k(t, x))|)� 1
2 a1(|x|) + 1

2 a1(|k(t, x)|);
�(2|k(t, x)|) + �(4�̃(

√|x|))��(|k̃(t, x)|),
�(|k̃(t, x)|) + �(|x|)��(12|(x, k̃(t, x))|),
where

�(s) := 1

4
min

(
a1

( s

2

)
, a1

((
�̃
−1 ( s

4

))2))

is a function of classK∞, we obtain

ã1(|(x, k̃(t, x))|)�U(t, x)�a2(�(t)|x|), (2.33a)

where ã1(s) := �(s/2), is a function of classK∞.
Moreover, inequalities (2.30c), (2.32a) and definition
(2.31) imply that:

�U
�t

(t, x) + �U
�x

(t, x)F (t, �, x, k̃(t, x))

� − U(t, x) + exp(−2t)

∀(t, x, �) ∈ R+ ×Rn × �. (2.33b)

The rest of proof is an immediate consequence of in-
equalities (2.33a,b) and Proposition 3.6 in[10]. �

We are now in a position to provide the proof of
Theorem 2.6.

Proof of Theorem 2.6. Let a C0 function �̄(t, s) :
R+ ×R+ → R+, which is locally Lipschitz with re-
spect tos, with �̄(t, ·) ∈ K∞ for eacht �0. By virtue
of Proposition 3.5 in[10], assumption B3 guarantees
the existence of a functionU(·) ∈ C∞(R+×Rn;R+)

and functionsa1(·), a2(·) ∈ K∞,�(·) ∈ K+ such that
inequalities (2.30a,b) hold. By virtue of Fact V in
[14], Corollary 10 and Remark 11 in[18], there ex-
ists a function�(·) of classK∞ and a functionr(·)
of classK+ ∩ C∞(R+) such that (2.11) holds for all
(t, x, z) ∈ R+ × Rn × R. Due to the Lipschitz as-
sumption for the dynamics, it follows that there exists
aC0 functionL : R+×R+ → R+ such that the map-
pingsL(·, t), L(t, ·) are non-decreasing for allt �0
and such that∣∣∣∣�U�x (t, x)

∣∣∣∣ |F(t, �, x, k(t, x) + z)

− F(t, �, x, k(t, x))|� |z|L(t, |x| + |z|)
∀(t, x, �, z) ∈ R+ ×Rn × � ×R. (2.34)

Define

W(t, x, y) := U(t, x) + 1
2 (y − k(t, x))2 (2.35)

and let

a(s) := min{a1(12s), 18s2}
(obviously is a classK∞ function). Clearly, by virtue
of (2.30a) we have

W(t, x, y)�a1(|(x, k(t, x))|) + 1
2 (y − k(t, x))2

�a(2|(x, k(t, x))|) + a(2|y − k(t, x)|)
�a(|(x, k(t, x))| + |y − k(t, x)|)

which implies

a(|(x, y)|)�W(t, x, y). (2.36)

For the rest of proof we adopt the notationz = y −
k(t, x). Using inequalities (2.11), (2.30b), (2.34) and
definition (2.35), we obtain for all(t, x, y, �, d) ∈
R+ ×Rn ×R× � × [−1,1]:
d

dt
W(t, x, y)

∣∣∣∣
(1.1),u=v+d�̄(t,|(x,y|)

� − W(t, x, y) + 1
2 z2 + zg(t, �, x, y)v

+ |z|L(t, |x| + |z|) + r(t)|z|(�(|x|)
+ �(|z|)). (2.37)

Inequalities (2.27) and (2.37) enable us to construct,
using standard partition of unity arguments (see
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[13,20]), a C∞ function k̃ : R+ × Rn × R → R,
with k̃(t,0) = 0 for all t �0, such that

d

dt
W(t, x, y)

∣∣∣∣
(2.28)

� − W(t, x, y) + exp(−t)

∀(t, x, y, �, d) ∈ R+ ×Rn ×R× � × [−1,1].
(2.38)

The proof is complete, since inequalities (2.36) and
(2.38) in conjunction with Theorem 3.1 in[13] guar-
antee that zero is RGAS for (2.28).�

Remark 2.8. Conditions B1 and B2 (B3 and B4) do
not in general guarantee that the feedback stabilizer
k̃(·) satisfies the same property B1 (B3) imposed for
the original feedbackk(·). This case arises only for
time-varying feedback and especially when the feed-
back mapk̃(t, x(t), y(t)) evaluated along the solution
of the closed-loop system (2.6) ((2.28)) does not con-
verge to zero ast → +∞. This is a drawback for
the achievement of robust feedback stabilization for
higher dimensional triangular time-varying systems by
applying backstepping design. Therefore, some addi-
tional conditions should be imposed, concerning the
dynamics of system (1.1), the rate of convergence of
the solution of (2.4) ((2.26)) to zero and the original
feedback mapk(·) in order to propagate B1 (B3) to the
new feedback map̃k(·). This possibility is exploited
in [8], where the notion of�-robust global asymptotic
stability (�-RGAS) is introduced.

3. Robust partial state feedback stabilization of
autonomous control systems

In this section we consider the problem of robust
partial state feedback stabilization of autonomous con-
trol systems. The notions of non-uniform in time�-
RGAS introduced in[8] as well as the notion of non-
uniform in time RGAOS introduced in[10] are used
extensively.
Consider the system

ż = f0(z, x),

ẋi = fi(�, x1, . . . , xi) + gi(�, x1, . . . , xi)xi+1,

i = 1, . . . , n − 1,

ẋn = fn(�, z, x) + gn(�, z, x)u,
x = (x1, . . . , xn) ∈ Rn, z ∈ Rl , u ∈ R, � ∈ �,

(3.1)

where� ⊂ Rp is a compact set, the mappingsf0,
fi, gi (i = 1, . . . , n) are continuous and locally Lips-
chitz with respect to(z, x), uniformly in � ∈ �, with
fi(�,0, . . . ,0)=0 (i=1, . . . , n−1),f0(0,0)=0 and
fn(�,0,0) = 0 for all � ∈ �. We make the following
assumptions:

(H1) There exists a constantc >0 such that for all
(z, x, �) ∈ Rl ×Rn × � it holds that:

c�gi(�, x1, . . . , xi), i = 1, . . . , n − 1, (3.2a)

c�gn(�, z, x). (3.2b)

(H2) 0∈ Rl is GAS for the system: ż = f0(z,0).
(H3) The subsysteṁz=f0(z, x) is forward complete

with x as input.

Under the above hypotheses we can prove the fol-
lowing theorem.

Theorem 3.1. Consider system(3.1)and suppose that
hypothesesH1, H2andH3are fulfilled. Then for every
C0 function �̄(t, s) : R+ ×R+ → R+, which is lo-
cally Lipschitz with respect to s, with �̄(t, ·) ∈ K∞ for
eacht �0, there exists aC∞ mappingk : R+×Rn →
R, with k(·,0) = 0, such that0 ∈ Rl ×Rn is RGAS
for the system(3.1)with u = k(t, x) + d�̄(t, |(z, x)|)
and input(�, d) ∈ D := � × [−1,1].

Proof. By virtue of Theorem 2.2 it suffices to prove
that there exists aC∞ function k̄ : R+ × Rn−1 →
R, with k̄(t,0) = 0 for all t �0, and aC0 function
�(t, s) : R+ ×R+ → R+, which is locally Lipschitz
with respect tos, with �(t, ·) ∈ K∞ for eacht �0,
such that the following system is non-uniformly in
time RGAOS and zero is non-uniformly in time RGAS
for the following system, with input(�, d) ∈ D :=
� × [−1,1]:
ż = f0(z, x),

ẋi = fi(�, x1, . . . , xi) + gi(�, x1, . . . , xi)xi+1,

i = 1, . . . , n − 1,

xn = k̄(t, x1, . . . , xn−1) + d�(t, |(z, x1, . . . , xn−1)|),
Y = k̄(t, x1, . . . , xn−1). (3.3)

For the rest of proof we denote
 = (x1, . . . , xn−1) ∈
Rn−1. The proof is divided in two parts.

Part I : Construction of partial state feedback. By
virtue of Hypotheses H2 and H3 and Proposition 3.7
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in [14], the subsysteṁz=f0(z, x) is non-uniformly in
time ISS withx as input and there exist functions� ∈
KL, � ∈ K∞, �̄ ∈ K+ such that the unique solution
of ż=f0(z, x) initiated fromz0 ∈ Rl at timet0�0 and
corresponding to inputx(·) ∈ L∞

loc([t0,+∞)), satisfies
the estimate:

|z(t)|��(|z0|, t − t0)

+ sup
t0��� t

�(�(�̄(�)|x(�)|), t − �) ∀t � t0.

(3.4)

Lemma 2.2 in[8] guarantees the existence of a func-
tion � ∈ K∗ (see the Notations for the definition of
the classK∗) such that�̄(t)��(t), for all t �0. Fur-
thermore, Corollary 5.1 in[8], asserts that for every
� ∈ K∞ being locally Lipschitz, there exists aC∞
mappingk̄ : R+ × Rn−1 → R, with k̄(·,0) = 0, a
function� ∈ K∞ and a constantp�0, with

�r (t)|k̄(t, 
)|��(�p+r (t)|
|)
∀(t, 
) ∈ R+ ×Rn−1, r�0 (3.5)

such that 0∈ Rn−1 is �-RGAS for the following
system with(�, d) ∈ D := � × [−1,1] as input:
ẋi = fi(�, x1, . . . , xi) + gi(�, x1, . . . , xi)xi+1,

i = 1, . . . , n − 1,

xn = k̄(t, 
) + d�(|
|). (3.6)

Part II : Stability analysis for the closed-loop sys-
tem. By virtue of Lemma 2.4 in[8] and the fact that
0 ∈ Rn−1 is �-RGAS for (3.6), we obtain that for ev-
ery p�0, there exist functions̃� ∈ KL and� ∈ K+
such that the following estimate holds for the solution
of (3.6):

|
(t)|� 1

�p(t)
�̃(�(t0)|
0|, t − t0)

∀t � t0 ∀(�, d) ∈ MD. (3.7)

Estimation (3.7) in conjunction with (3.5) and the fact
that�(t)�1 for all t �0, implies that the following
system is non-uniformly in time RGAOS and zero
is non-uniformly in time RGAS, with input(�, d) ∈
D := � × [−1,1]:
ẋi = fi(�, x1, . . . , xi) + gi(�, x1, . . . , xi)xi+1,

i = 1, . . . , n − 1,

xn = k̄(t, 
) + d�(|
|),
Y = �(t)|(
, k̄(t, 
))|. (3.8)

We define:f (t, �, 
, v)=(f1(�, x1)+g(�, x1)x2, . . . ,
fn−1(�, 
) + gn−1(�, 
)k̄(t, 
) + gn−1(�, 
)v), where
v ∈ R. Since system (3.8) is non-uniformly in time
RGAOS and zero is non-uniformly in time RGAS for
(3.8), by virtue of Proposition 3.5 in[10] and the fact
that�(t)�1 for all t �0, there exists a functionU(·) ∈
C∞(R+ × Rn−1;R+) and functionsa1(·), a2(·) ∈
K∞, �̄(·) ∈ K+ such that

a1(�(t)|(
, k̄(t, 
))|)�U(t, 
)�a2(�̄(t)|
|)
∀(t, 
) ∈ R+ ×Rn−1, (3.9a)

|v|��(|
|) ⇒ �U
�t

(t, 
) + �U
�


(t, 
)f (t, �, 
, v)

� − U(t, 
) ∀(t, �, 
) ∈ R+ × � ×Rn−1.

(3.9b)

Define a(t, s) := sup{|(�U/�x)(t, 
)(f (t, �, 
, v) −
f (t, �, 
,0))|; |v|�s, � ∈ �,�(|
|)�s}. Clearly, this
function is continuous witha(t,0) = 0 and conse-
quently, by Fact V in[14] there exist functionsa3(·) ∈
K∞ and�(·) ∈ K+ such that:a(t, s)�a3(�(t)s), for
all t, s�0. Thus by virtue of (3.9b) (and by distin-
guishing the cases|v|��(|
|) and�(|
|)� |v|), we
obtain

�U
�t

(t, 
) + �U
�


(t, 
)f (t, �, 
, v)

� − U(t, 
) + a3(�(t)|v|)
∀(t, �, 
, v) ∈ R+ × � ×Rn−1 ×R. (3.9c)

Inequalities (3.9a) and (3.9c), imply that the following
estimate holds for the solution of
̇=f (t, �, 
, v) ini-
tiated from
0 ∈ Rn−1 at timet0�0 and correspond-
ing to input(�(·), v(·)) ∈ M� × L∞

loc([t0,+∞)):

�(t)|(
(t), k̄(t, 
(t)))|� �̄(�̄(t0)|
0|, t − t0)

+ sup
t0��� t

a−1
1 (2a3(�(�)|v(�)|))) ∀t � t0, (3.10)

where�̄(s, t) := a−1
1 (2 exp(−t)a2(s)).

Consider the system

ż = f0(z, 
, k̄(t, 
) + v),


̇ = f (t, �, 
, v),
z ∈ Rl , 
 ∈ Rn−1, v ∈ R, � ∈ �. (3.11)

Using estimate (3.4) in conjunction with estimate
(3.10) forv ≡ 0 and the fact̄�(t)��(t) for all t �0,
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we obtain

|z(t)|��(|z0|, t − t0)

+ sup
t0��� t

�(�(�̄(�̄(t0)|
0|, � − t0)), t − �)

∀t � t0. (3.12)

By virtue of Fact VI in[14], there exists aKL function
R : R+ ×R+ → R+ such that

sup
t0��� t

�(�(�̄(s, � − t0)), t − �)�R(s, t − t0)

∀t � t0.

The latter inequality in conjunction with estimate
(3.12) for the casev ≡ 0 implies that 0∈ Rl ×Rn−1

is RGAS for system (3.11) withv ≡ 0. More-
over, using estimates (3.4) and (3.10) and the fact
�̄(t)��(t), for all t �0, we obtain that for allt � t0
and (�(·), v(·)) ∈ M� × L∞

loc([t0,+∞)) the solution
of (3.11) satisfies

|z(t)|��(|z0|,0)
+ sup

t0��� t

�(�(2�(�)|(
(�), k̄(t, 
(�)))|)
+ �(2�(�)|v(�)|),0)

��(|z0|,0)
+ sup

t0��� t

�(2�(2�(�)|(
(�), k̄(t, 
(�)))|),0)
+ sup

t0��� t

�(2�(2�(�)|v(�)|),0)

��(|z0|,0) + �(4�(4�̄(�̄(t0)|
0|,0)),0)

+ sup
t0��� t

�

(
4�

(
4 sup

t0� s ��
a−1
1

× (2a3 (�(s)|v(s)|))
)

,0

)

+ sup
t0��� t

�(2�(2�(�)|v(�)|),0).

The latter inequality combined with estimate (3.10)
and the fact that�(t)�1, for all t �0, implies that

|(z(t), 
(t), k̄(t, 
(t)))| (3.13)

�a(�̃(t0)|(z0, 
0)|)
+ sup

t0��� t

�(�(�)|v(�)|) ∀t � t0. (3.13)

for certain functionsa, � ∈ K∞ and �̃, � ∈ K+ and
for all (�(·), v(·)) ∈ M� ×L∞

loc([t0,+)). We complete

the proof by noticing that since estimates (3.10) and
(3.13) hold for the solutions of system (3.11) and 0∈
Rl ×Rn−1 is RGAS for system (3.12) withv ≡ 0, it
follows by virtue of Proposition 4.2 in[10] that there
exists aC0 function�(t, s) : R+ ×R+ → R+, which
is locally Lipschitz with respect tos, with �(t, ·) ∈ K∞
for eacht �0, such that system (3.3) is non-uniformly
in time RGAOS and zero is non-uniformly in time
RGAS for (3.3). The proof is complete.�

Remark 3.2. (i) Notice that in the proof of Theorem
3.1 the result of Theorem 2.2 is explicitly used. If
Theorem 2.6 was used instead of Theorem 2.2, we
would have obtained a feedback law that depends on
the whole state(z, x) of system (3.1). This applica-
tion clearly shows that the two different solutions of
the problems of “adding an integrator” given in the
previous section lead to different feedback forms, as
already remarked in the Introduction.
(ii) Notice that Theorem 3.1 is an existence result.

Its proof cannot be used for the design of the required
partial state feedback law, since it involves the exis-
tence result of Theorem 2.2.

We are now in a position to address the problem
of partial state feedback stabilization for (1.2). The
proof of the following corollary is an immediate con-
sequence of Theorem 3.1 and will be omitted.

Corollary 3.3. Consider system(1.2),where themap-
pings f, a, b are locally Lipschitz with respect to(z, x),
with f (0,0)=0 anda(0,0)=0.We make the follow-
ing assumptions:
(A1) There exists aC∞ mapping r : Rn →

(0,+∞), such that for all(z, x) ∈ Rl ×Rn it holds
that: 1�b(z, x)r(x).
(A2) 0 ∈ Rl is GAS for the system: ż = f (z,0).
(A3) The subsysteṁz=f (z, x) is forward complete

with x as input.
Then for everyC0 function �̄(t, s) : R+ ×R+ →

R+, which is locally Lipschitz with respect tos, with
�̄(t, ·) ∈ K∞ for eacht �0, there exists aC∞ mapping
k : R+ ×Rn → R, with k(·,0)= 0, such that system
(1.2)withu=k(t, x)+d�̄(t, |(z, x)|) is (non-uniformly
in time) RGAS with inputd ∈ [−1,1].

System (1.2) is important because under mild con-
ditions a general affine control system, can take the
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form (1.2) after an appropriate change of coordinates
(see[4]). It should be emphasized that ifa(z,0) = 0
for all z ∈ Rl , then A2 is also a necessary condition
for the stabilization of (1.2) by means of a locally Lip-
schitz mappingk : R+ ×Rn → R, with k(·,0) = 0.

4. Conclusions

We have considered two different problems of
“adding an integrator” for time-varying systems and
we have given sufficient conditions for the solution
of these problems that are weaker of the correspond-
ing conditions given in the literature (Theorems 2.2
and 2.6). To this end, we have used the notion of
non-uniform in time Robust Global Asymptotic Out-
put Stability (RGAOS). Applications to problems of
partial state feedback global stabilization were given.

Appendix

Proof of Lemma 2.4. First notice that by virtue of
(2.8) we obtain the following property:

if W(t, x)�cp(t) then
d

dt
W(t, x)

∣∣∣∣
(2.1)

� ṗ(t) ∀d ∈ D. (A.1)

Next we claim that the setLt := {x ∈ Rn :
W(t, x)�p(t)} is positively invariant for (2.1). To
prove this suppose (the contrary) that there exists
some initial conditionx0 ∈ Lt0, some timet1> t0 and
an inputd(·) ∈ MD such thatW(t1, x(t1))>p(t1).
Let

T := max{t; t0� t � t1,W(t, x(t))�p(t)}
and sinceW(t, x(t)) is continuous with respect tot ,
we obtainW(T, x(T ))=p(T ) andW(t, x(t))�p(t)>

cp(t) for all t ∈ [T , t1]. Since the solution of (2.1)
x(t) is absolutely continuous with respect tot , it
follows thatW(t, x(t)) is also absolutely continuous
with respect tot . By virtue of (A.1), this implies:

W(t1, x(t1)) = W(T, x(T ))

+
∫ t1

T

d

dt
W(�, x(�))

∣∣∣∣
(2.1)

d��p(t1)

which obviously is a contradiction.

Let (t0, x0, d) ∈ R+ ×Rn × MD be arbitrary and
consider the solutionx(t) of (2.1) with initial condition
x(t0)=x0 corresponding to inputd(·) ∈ MD. Let also
t > t0 be sufficiently small such that the solution exists.
If x(t) /∈Lt , then positive invariance ofLt implies that:
x(�) /∈L� (or equivalentlyW(�, x(�))>p(�)> cp(�))
for all � ∈ [t0, t]. Hence, the comparison princi-
ple in conjunction with (2.8) implies for this case:
W(t, x(t))�(p(t)/p(t0))

1/cW(t0, x0). Due to the fact
thatp(t) is decreasing and 0<c<1, wemay conclude
that if x(t) /∈Lt then W(t, x(t))�[p(t)/p(t0)] ×
W(t0, x0). On the other hand, ifx(t) ∈ Lt , then we
obtain that:W(t, x(t))�p(t). Thus in any case and
using (2.7) we are led to the following estimate for
the solution of (2.1):

a(|x(t)|)�W(t, x(t))

�p(t)

(
1+ 1

p(t0)
W(t0, x0)

)
. (A.2)

Clearly, (A.2) implies that the solution of (2.1) exists
for all t � t0 and that (2.1) is robustly forward com-
plete. Moreover, since limt→+∞ p(t) = 0, (A.2) im-
plies that the output attractivity property is satisfied for
(2.1) with outputH(t, x) := x. Consequently, (A.2)
in conjunction with Lemma 3.5 in[10] implies that
zero is non-uniformly in time RGAS for (2.1). The
proof is complete. �
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