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ISS Property for Time-Varying Systems
and Application to Partial-Static Feedback
Stabilization and Asymptotic Tracking

m and constants; > 0 with «; # 0. The following facts are direct
consequences of the previous definitions.

e If a is of classk, it holds that

a(s1 + s2) < a(2s1) + a(2s2), Vs1, 52 > 0. 1.3)

J. Tsinias and |. Karafyllis
e If a € I, then for everyd > 1, we have

Abstract—A concept of input-to-state stability for time-varying control
systems is introduced that constitutes extension of the well-known notion
concerning the autonomous case. We use this concept to derive sufficient
conditions for global stabilization of triangular systems by means of a
time-varying smooth feedback and to achieve asymptotic tracking of
unbounded signals.

a(fs) < 8Ma(s), Vs>0 (1.4)

for a certain integern. Furthermore, there exists a pair of
constantscz > ¢; > 0 such that

c1s < a(s) < ez, s near zero (1.5)

Index Terms— Asymptotic tracking, global feedback stabilization,

input-to-state stability, time-varying systems. + For everya;, az € II, there exists a function; of the same

class with

a1(s) <as(az(s)), Vs>0 (1.6)
ay, az ell = a; +ag,ala2€H. (17)

. INTRODUCTION

Our goal is to provide a concept of input-to-state stability for
time-varying control systems
IIl. MAIN ResuLTs
&= f(t, z, u), (z,u) ER"XR,t>0 (1.2)
A. Input-to-State Stability Properties
and give sufficient conditions for global stabilization for a class of Consider the system (1.1), whose dynamfeRt x R™ x R —

triangular systems by means of time-varying feedback (¢, x). R™ areC' with f(¢,0) = 0 for all ¢ > 0, and let us denote by

The key concepts of our analysis are the notions of completene% %, 10, o, ) its solution at timet that corresponds to input with

attractiveness, and asymptotic stability concerning the general c: flal condition(t,, to, xo, u) = x.. Consider a pair of continuous
(1.1) under the restriction _that gach ad_rms&ble inpusatisfies mappings:, va: RT x R" — R with 7 (£, 2) < (£, x) for al
(x(t), u(t)) € L¢, whereL; is a time-varying subset of the space,, . R",t > 0andvi(t, 0) = 0, i = 1, 2 for everyt > 0. We define
R™ x R and z(t) denotes the trajectory of (1.1) that corresponds - T ’ ’ -
to w. These notions are extensions of those given in [1]-[7] for the
autonomous case, and in Theorem 2.4 of the present paper are used
to derive sufficient conditions for global stabilization for systems

Li:={(r,u) e R" X Riyni(t, ) <u < ylt )}

* We say that (1.1) igomplete with respect td; (L; complete
&= f(t, o) + bt if, for everyt, > 0,T > t,, o, € R" and (essentially
L o o L bounded measurable) input such that the solution:(t) =
Ji =yerr £ 0t oy, o), L<i<m x(t, to, 20, u) of (1.1) exists ort,, T) and satisfies
U= Ymt1, (@391, -5 ym) ER" X R™ (1.2)

(w(t), u(t)) € Ly (2.1)
with « as input, where only the;; components of the whole
state(x, y1, --+, ym) are available. Theorem 2.4 can be extended ,
for systems with unknown time-varying parameters, and is applied
to achieve asymptotic tracking of a given unbounded trajectory.
Particularly, in Section Ill, it is shown that, even for autonomous
systems, the problem of asymptotic tracking of unbounded signals is tN|;r,(t, to, To, u)| <&, V| <6 t, €[0,T), t>t,
reduced to feedback stabilization of a time-varying system under the (2.2)
assumptions of the main Theorem 2.4. and inputu for which z(¢) exists and satisfies (2.1). Particularly,

Notations and Facts:|«| denotes the usual Euclidean norm of a  if the property above holds foI' = +oco, zero is calledL,

for t, < t < T, it follows thatlim;_7|x(#)| < +oo.

We say that the origif0 € R" is stable with respect to
L, (L, stable if, for any integerN > 0, positiveT < +oo,
and= > 0, there exists & = 6(s, T, N) > 0 such that

vectorz € R™, andz’ is its transpose. A function: R™ — R*
is called positive definite ifz(z) > 0 for = # 0 anda(0) = 0;
a functiona: R* — R is of classK if it is continuous(C?),

positive definite, and nondecreasing. By, we denote the subclass

of K consisting of alla € K with a(s) — +oc0 ass — +oo.

uniformly stable(L:-US).

The origin0 € R" is called aglobal attractor with respect to
L,(L-GA) if (1.1) is L, complete, and for any compact sphere
Sk of radiusR centered ab € R™ and for any integetV > 0,
> 0,and0 < T < +oo thereisar = (R, =, T, N) > 0

We denote byIl the subclass of{.., consisting of all functions:

having the polynomial formu(s) = >-7" a;s' for a certain integer

such that

Nt to, 2o, u)| < &0 Va, € Spoto € [0.T),t > to+ 7
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and inputw for which (2.1) holds for allt > ¢,. In the case
where this property holds with" = +oc, we say that zero is a
global uniform attractor( L,-UGA).

0018-9286/99$10.00 1999 IEEE



2180 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 11, NOVEMBER 1999

e Zero is calledglobally asymptotically stable with respect to ¢, 1 <1 <5 and an integer in such a way that

L(L+-GAS) if it is Ly stableand L,-GA; it is uniformly (1t a2 < V(E 2) < eolal? >
L-GAS(L-UGAS) if, in addition, it is L¢-U'S and Ly-U GA i +av) ol <Vt ) < ealal (2:53)
(an analogous definition can be given for the conceft.efocal ‘0_ (t, 2)| <es|z| (2.5b)
asymptotic stability). ; v

oV
T O

. Finally, if M‘ is.a time-varying subset oR", we say thatM; (t, 2)(F(t, 2) + o(t, 2)b(t))
is L;-invariant, if x(¢, t,, z,, v) € M, for everyt > t, and i
input « such that (2.1) holds and for every initigl,, z,) with + 07‘
t, € My,. ot
Remark 2.1:i) Note that both (2.2) and (2.3) hold if zero is for everyt > 0 and« (near zero) for which
exponentially stable for (1.1) and thosefor which (2.1) is satisfied. o] < es(14£7)7" (2.5d)
They are also fulfilled under the weaker hypothesis that there exists . )
a function C: R? — R* and positive constants and ! such A2) There exist functions,, r; € II and a constant’ > 0 such
that, for all zo € R", t > to, and u for which (2.1) holds, that
we have that|z(¢, to, @0, u)| < Cf(to, |wo|)t* exp(—It). ii) If,
in addition, we assume that the functions, i = 1, 2 satisfy
|v:(t, )] < (14 #)r(|z|) for somerv > 0 andr € K, then as

— V(t, z):
dt”’r)

(t, @) < —cqla)” (2.5¢)

b(D)] < C(L+¢") (2.6a)

<@ +t)ro(lz)  (2.6b)

£t ) + Lol )] + ‘g—j (t. )

a consequence of the definitions bf-AS given above, it follows dp "
that both inequalities (2.2) and (2.3) are satisfied if we reptd¢e-) ‘ 5y (@) S A+ t)ro(fe] +1) (2.6¢)
by (z(t, -), u(t)), provided that (2.1) holds. Particularly, the notions v

Y ol )P @y g ot 2 9] < (L) ) (2.60)

of L, stability andL, attractiveness are strengthened as follows:
* VYN > 0,0 < T < 400, ¢ > 0 = 36 > 0O
tN|((t, to, 2o, w), w(t))] < &, V]|o| < 6, t, €10, T), t > t,
* VN > 0,0 < T < 4oc, e >0, R >0 = 3r > 0
(e (t, to, 2o, u), u(t))] < 5, Va, € Si, to € [0, T), t >
to + 7 for any » for which (2.1) holds.
A criterion for asymptotic stability used in the present work is given
by the following proposition.
Proposition 2.2: Suppose that there exist@ function’: R x

for everyt > 0 and (z, y) € R™ x R.
A3) There exists a function € II such thaD € R" is L;-GAS
for the subsystem (2.4a) with as input, where

Le= {(zy):ly — ot )] <Az} (27)

Then there exist &' mapZ: R* x R — R and a linear
functionT: RT — R such that, if we define

R"™ — RT and positive constants, ¢, co, andcs such that O(t, x, y):=Z(t, y — o(t, 2)) (2.8)
(T4t "> <Vt z) < eo)2| Lo:={(2,y. uw): [u = &(t, z, y)| < T(|(x. v)])}
d Al A (2.9)

(t @) < —ealal,

7 Vi(t, x):= e ft, x)+ 5
vt > 0, (z, u) € L, x near zero

Then the origin isL: locally AS; it is L-GAS if these conditions
hold for everyz € R".

Proof: Suppose that the inequalities above hold forwaft R™.
It follows that

[2(t, to, 20, u)|> < cael (L 4+1") exp(—escy (= £,))|20]”

the origin 0 € R"t' is L,-GAS for the system (2.4)
with « as input. Furthermore, there exist @ function
W: RtxR"T" — RT, positive constants;, 1 < i < 5 and
C, a function7, € II, and an intege? > v such that (2.5)
and (2.6a)—(2.6¢) hold withV, &, (f' +yb', ¢)', (0, 1), &,
and7, instead ofV, ¢, f. b, ¢;, andv, respectively.
Proof: Notice, first, that from (1.3), (1.6), (1.7), (2.6b), and
(2.6d), we get
for anyt > t,, x,, andu such that(x(¢), u(t)) € L, for t > t,. Y ,
The statement is a direct consequence of the previous inequality. lg(t, e y)| < (L +7)ra (|, 9)])

Remark: It should be noticed that the conditions of Proposition
2.2 do not, in general, imply..-uniform asymptotic stability.

B. Partial Static Feedback Stabilization

S (L) (r(dfe]) + ri(4]p(t, 2)])
+r1(4ly = o(t, 2))))
<A+t (4z]) + 71 (A0 + ) ro([2])

. . . i o . + i (4ly — o(t, 2)]))
In this section, we derive sufficient conditions for global stabiliza-

vi » 9 ) — ¢ w
tion for triangular time-varying systems. The corresponding results S @A) (raffz]) +7s(ly +1*9(t" 2)).
extend those in [1] and [6]. Particularly, the methodology generalizes Vt>0, (z y) ER" (2.10)
the design scheme proposed in [6] and [7], although, for the timﬁ)-r a certain integer; > » and functionsrs, r; € TI. Moreover,
varying case, a more technical analysis is required. The following g, (2.6b), we obtain )
the key technical result of our backstepping design. '
Lemma 2.3: Consider the time-varying control system (s )] <ol + |t )| + |y — (2, @)

i = f(t, x) + yb(t) (2.4a) Slal + A+ ) ro(lz]) + |y — (¢, )] (2.11)

v=u+g(t, z,y) (2.4b) for everyz, y, andt > 0. Likewise, by (2.6a)-(2.6c) and (2.10), we
can find an integer. > vy and functiong, ¢ € II such that

whereb: RT — R, f: RT xR" = R",andg: RT x R" x R —
att. o 1+

R areC* with £(t, 0) = 0 andg(t, 0) = 0 for all ¢ > 0. Moreover,
we assume the following.
Al) There existC' mappingsV, ¢: Rt x R® — R with
V(t,0) = ¢(t,0) = 0 for all ¢ > 0, positive constants

Oy d~
a_(: (t o))+ o (le))lf(t, ) + yb(t)|

n ‘%f (t,2)| < A+ 2)(p(l=) + ally — ¢(t. 2)]) (2.12)
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for all ¢ > 0, =, andy. Next, recall (1.6) and (1.7), from which it Define

follows that, for every constarg > 0, a functions € II can be 9
W(t, x, y) :==V(t, 2) +a(t)(y — ¢(t, x))

found with
2
/ 3 C1 <
E(s +7o(5)) + (£ +1)v(s) +p(s) + q(7(s)) a(t) : = P(= )1t ) (2.18)
0’(%7(8)), Vs> 0. (2.13)
Let vs be an integer such that 58; agg;artaln constarl < ¢ < 1/v/2. By (2.5a), (2.17¢), and (2.18),
vz > max{vs, 3v}. (2.14)

Wi(t, x, y)

By (2.11)—(2.14), a constarff, > ( can be determined in such a . ) 5
y 211)-2.14) > e1(1+ ) Mo = 2a(Ol(t, o)l ly] + a(t)y”

way that the following hold for allE > E,:

vy — 1 2 2
Ella, )|+ (L+2)q(ly — o(t, )]) + |g(t, x, y)| > <61(1 +1) 7 el = Sa()e’(t I)) +y a(t)(1—<?)
dy e
<‘_ (t, —'(|T|)>|f(t x) + yb(t)| + ‘—Y (t, ) > c:_)((i ))(1 +4) 7 2P + 01;[ (1+17) %>
< E(lel + 1+ ol + () + (1 +272)p(Ja]) > amt“rm, P Y0, ) < RO+
+2(1+17)q(v([]))
(2.19a)
< E(14t")0(3(]2]))
< E(14t"%)a(ly — ¢(t, 2)]). for someé; > 0. Likewise, by (2.5a), (2.5b), (2.17¢c), (2.17d), and
for L(lz) < |y — (¢, #)| < A(|z]) andt > 0;  (2.15a) ;2.\:/2/, ?r];)talr of positive constants andzs can be found in such
clrs -+ (|52 0|+ 52 )11t ) 4 i) —
|22 00yl = ot 2+l 2 ) S Vi) w2t )+ 200" <l )l @190)
— (4 )a(ly = (1. ) gy 0

<&l 4+ X+t ro(lx) + 1y — @t 1))
+ (L +#)p(l2]) + [y — o(t, 2)]
SEQ+t7)o(ly — ¢t 2)]).
for ly — o(t, )| > $7(|2]) andt > 0. (2.15b) for all t > 0 and |(z, y)] < R(1+ t“)~'. Next, we evaluate
the derivative(d/dt)1W of W along the trajectories of (2.4) with
= ® + u, namely, with respect to

<[t ) +2a<f>{a—"”<f, x>+1{|y—¢<t,m>|
€@ Ox
< esl(=, vl (2.20)

Leto,, g.: R — R be a pair ofC'! odd functions, whose restrictions
onR™ coincide withs andq, respectively. Let > 0 be an arbitrary ¢

constant satisfying (2.13) and (2.15), and let @ = f(t, ,E) + yb(t)
E(t, 8) = — (B(L4+t")oo(s) + (L +t7)q0(s)), =, 2, y)+u+ gt x, y)
['(s):=¢s, 52 0. (2.16) with
We establish that, for appropriate choice of the consErthe origin [u] <T(|(x, v)]) (2.21)

is L;-GAS for the system (2.4) withl,, ®, and T, as defined in
(2.7)=(2.9) and (2.16). Particularly, we show that (2.1) and (2.2) hotfrere® andT" are defined in (2.8) and (2.16). We find

for the trajectories of (2.4), with satisfying (2.9). For simplicity, we d
deal only with the casé&V = 0. The general case follows similarly, 7 Wt 2y
and is left to the reader. The proof is divided into two parts. / ; o )V
Part I—Local Stabilization: From (1.5), (2.6b), (2.6c), (2.11), < 5y O (flt @) + ot b)) + 5 (1, @)
(2.12), and the definition of functions, andg,, it follows that there v
exist positive constantdf, M, andR < ¢s, cs being the constant + ‘ Oz (t, @) |[b(D)]ly = o(t, )|

defined in (2.5d), such that
(2, )| S MQA+1)(J2[+ ly — ot 2)])  (2.174)

T 2a(n)ly - ot >|‘§—‘” (t, )

My = o(t, )] <aolly — ot 2)) + g0y — @(t, 2)]) (It o)+ |y — @, )[4 [t 2)|[b(t)])
< My =2t @)l +2a(t)]y = ot )| (lg(f, roy)[+ (L4 17)
forall¢ > 0 andx, y 9
with |(z, y)] < R(1+ )" “qolly = o(t, 2)]) + 8”; (t, ) )
(2.17b)

+|a())(y — o(t, ©)* = 2Ea(t)(1 +3)
ly = olt, 2)loa(ly — o(t, 2)])

<M1+t (2.17c)
+20ula(t)ly — o(t, 2)l,  for [ul < €l(a. y)| (2:22)

ot ol +] 5 0,

for everyt > 0 andx, y with |(x, y)| < R(1+t*)"*. By taking
into account (2.5c), (2.5d), (2.12), (2.14), (2.17), and (2.18), and then
(2.17d) completing the squares on the right-hand side expression in (2.22),

‘gi(t,.r) < M@ ++), Vi>0andlz|<RA+t")"".
X
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we can find a constan® > F, such that Property 3:
DWWl v ) €~ Sedel? = SaEQ (g — o )7 T SV PISTE conbiert & andT there exsts & =
< -l e, y)R (2.232) |w(t, to, wo, u)| <2, VE>T1,t, €0, T7], wo € My, N Ss
vt 2>0, (. y)| < T lu] < T(|(x, y)])(2.23b) (2.30)
for some @& > 0. By virtue of (2.19a), (2.19b), and for everyw for which (2.28) holds. Moreovery(t) exists and
(2.23), it follows that the solution w(t, to, we, u) := satisfiesw(t) € M, Vit > to.

(x(t, to, To, u), y(t, to, To, u)), wo := (w0, yo) Of (2.21) satisfies Il) For every positives andT™, there exists & = §(z, T") > 0

(DK (L + )7 exp(—l(t — t))|wol,  VE>t, (2.24) with

) . w(t, to, we, u)| < =, t>to, to , T, wo € M,
for certain positive constants” and¢ and as long as (2.23b) holds. ot wor )] < viz €l 1] € Me, 15

Notice next that there exists an appropriate small positive constant (2.31)
p such that and for everyu for which (2.28) holds.
exp (t, exp (t V>t (2.25) Using (2.15b), we can also establish the following property.
p1+f3y —(l_l_fy)l $+3v 1/2° = Yo : . ’
0 ; ) (14 7) Property 4: For every positive$’ and t, and for any initial
Without loss of generality, assume thak —! < 1. We define ;;]O tE Sy \(Miy U Ay, ), there is aT" = T'(t,, wo, u) > 0 such
a
) , pRK™!
Ae = {u e el < T } Wt to, wo, u) €M, UA,  fort, <t<T  (2.32a)
) R w(T', to, Wo, w) € My U Aps (2.32b)
Bei={(e sl vl € 14 | 2.26)

provided that (2.28) holds. Moreover, the trajectarft) is defined
Obviously, then,4A; C B; for all ¢ > 0, and the following holds. for everyt, <t < T'.

Property 1: “Local Attractiveness”—For any positive and 7', Indeed, by (2.15b) and evaluating the time derivativéloR)(y —
there is a constant = 7(z, T) > 0 such that ©(t, z))? along the trajectories of (2.21), we obtain

£ 0y Wo ) L < >, o , 4], Wo £ . 1d p

|JJ(t, t“,w 7U)|_ 5 Vt_Tt [ [0 T] € 4,&0 (2 27) 5%(9,_%‘(157 ;17))2

and for any inpute for which
(w(t. tor wor w). u(t)) € L o= {(x, y, w): [u] < T(|(x. y)])}.
2.28 9% by~ 2%
(2.28) 5 () +0(0) - 57

“Local Stability"—For every initialt, > 0, w, € A;, and inputu
such that (2.23b) holds, the corresponding trajectaf) exists and

= (y— olt, o) (cw, v y) 4t gt y)

< —E(1+1%)y — p(t, 2)lo(y — o (t, 2)])

satisfiesw(t) € B, for all + > t. = (L + )|y — ot 2)]a(ly — @(t, 2)|)
In order to establish this property, we take into account ;
(2.24)—(2.26), from which we gefw(t. to, wo, u)|R(1 + tV)7* +ly — (t, )] <$|(4’37 Y|+ 19, =, y)]
for everyt > t, > 0, w, € A;, andu such that (2.28) holds. 90 9
The desired property is then a direct implication of the previous +‘W (f(t, =) —|—yb(f)){ + ‘ED
inequality. .
Part I—Global Part: We establish that the origi® € R™*' <=y —olt, 2)"
for the system (2.4) ii_,-GAS, where L, is defined by (2.9) Or, 1,5 by (2.6b), it follows that
equivalently,0 € R is L-GAS for (2.21) with L as defined in
(2.28). Let ly(t) = o(t, 2(t))] < exp(=(t = to))|yo — @(to. x0)]
M= (G )i ly = ot o)l <5} (@229) < exp(={f = £)){1 + 1o )F{[(zo, 30)l) (2.33)

Property 2: The set)/; is positively invariant, namely, (¢) € M, for certain7 € Il and for everyt > #, for which the solution.(#)
for all + > t, with w, € M;,, provided that the corresponding inputeXists on[t,, 7] and satisfies both (2.28) and

u satisfies (2.28). s$(l=®)]) < ly(t) — o(t, 2(t)]. (2.34)

To establish this property, it suffices to show that
L R , i Assume that(1/2)pRK ™" < 7(&'), K being the constant defined
(1) = (e, (1) y(0) + ult) + g(t. (1), (1)) in (2.24), and define

dp / ’ 9 | dy ,  dlx(t)]
< 5 (@) +y@b(0) + 25 + == (el) =7 o(t) 1= 4! pRE ™! (2.35)
fgr 37D < y(t) = ot ﬂé(t)) <d’>"(|=1’ t)|()l| o ST 1+ ) '
1 x(t
z _i (f(t. x(t)) +y()b(1) + ()_f + d_z (l]) iif » Then for everyt > t, for which w(t) exists on[t., ¢] and satisfies
for 2 (| (t)]) < @(t. x(t)) — y(t) < v(|z(1)]) (2.28), and as long as(t) ¢ Ss/\(M, U A;), we have by (2.26),

but this is a direct consequence of (2.15a) and the definitioh. of (2.34), and (2.35)

For eachs > 0, let us denote by the closed sphere of radids o 1 1 1 pRK !
centered ab € R™T'. The following property is a direct consequence ly(t) = (t, x(2)] 2 2 (le®l) 2 2 (s(t) = 2 143
of Property 2, our Hypothesis A3, (2.17c), and Remark 2.1ii). (2.36)
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For eaché’ andt,, consider a positive constafft = T'(t,, &) Theorem 2.4: For the system (1.2), where only:, - -+, ym) iS
satisfying available, assume that hypotheses (Al) and (A3) are satisfied for
) . the subsystem = f(¢, ») + yb(¢) with ¢ = 0, and that there exist
1/2pRE™ = exp(—(T — to))(1 4+ t1)7(8"). (2.37) functionsr; €I, i = 0, 1, ---, m, and an integer such that (2.5a),
L+ T3 (2.5d), and (2.6) hold, and further,

This, in conjunction with (2.26), (2.33), and (2.36), implies that,

for eacht, andw, € Ss/\(M;, U A, ), there exists a timd’ = |f(t’ ol <L+ ro(fa]),

T'(t,, wo, u) < T such that (2.32) hold. We now establish that each |7i(t. .51, -+, )| <(1+")ri([(z, g1, -+, i) D).
solutionw(t), starting fromw, at timet,, exists for everyt > ¢, as i=1,---,m Va,yi,--,yi,t>0.
long as it remains outsid&/; U A;. Suppose, on the contrary, that (2.39)
w(t) exists on[ty, 7"") for someT” < T' in such a way that (2.28)

holds andw(t) ¢ M, for t, < t < T, but lim, _y»|w(t)| = Then there exis€' mappingsZ;: Rt x R - R,i=1,---, m

oc. Assume, first, thaflim, rv|z(t)] < oo. Then (2.6b) and with Z;(t, 0) = 0 for ¢ > 0 so that the feedback
(2.34) imply thatlim,_ 7~ |y(t)| < lim,_pr|y(t) — @(t, 2(t))| +
my_gro(le())(1 + ) < oo; hence,imy_yn|w(t)] < oo, &= Zmlts Yym = Zm—i(ts -5 Zalt, y2 =Za(t, y1))--+)) (2.40)
a contradiction. The other case lisu, .7 ~|x(t)| = oc. The left-
hand inequality in (2.33), (2.34), and the fact thae K., imply
oo = (1/2)v(limy_yu|x(t)]) < limy_pn|y(t) — @(t, z(t))| < oo,
a contradiction. Hencey(t) is defined for every, < ¢t < T”, and
since, by Property 1u(t) € M; U B; for t+ > T', is defined for
everyt > t,. This, in particular, means that (2.21)liscomplete. To
complete the proof, we also need to establish the following proper%
which is a consequence of Property 4.

Property 5: For everyT > 0 and§ > 0, there exists a positive
8" < & such that|w(T'(to, wo, u), to, wo, u)] < 6, Vw, €

globally asymptotically stabilizes (1.2) te R"™™ [namely, the
origin of the closed-loop (1.2) with (2.40) is globally asymptotically
stable].

The proof follows directly by the use of Lemma 2.3 and the
induction procedure.
Remark 2.5: The result of Theorem 2.4 can directly be extended
¥ systems (1.2) containing unknown parameters. Particularly, the
result is valid under the same hypothesis for unknown dynarfiics
andg; satisfying (2.39) for some knowr . Another straightforward

Sy \(M,. U A,.), for any#, € [0, 7] and inputu such that (2 28) extension can be obtained for systems (1.2), where gacatisfies

y ; 9: = di(t)yi+1 + gi(-) where eachl; is everywhere strictly positive
ir;o'gfof;erri;i t < T =T'(to, wo, u), where the latter is defined and satisfiesl; () + |d:(t)| < C(1 + ") for everyt > 0 for some

C' > 0 and integerv.
The proof is similar to that given in Property 4 to establish Example 2.6: Consider the planar systein= y+p(t, z), § = u,

mpleten n th ntrary, that there exi . -
completeness. Suppose, on the contrary, that there exist>a0, Wherep is a polynomial oft and x. It turns out that|p(?, )| <

sequences of vector®"*! o 0 as k times L
Ty q< T, tor < T, and in utsa:9 STJCI}‘I t;;lt the corre_s> otgfn solutlon(1+t ro{|z), Vi, = fora certain integep andr, € II. Letq: R —
k ok PutSti P g R be the odd extension of,, and let¢, be an arbitrary positive

”"O = ( ()/ yr(-)) of (2.21) /satlsfles/(w; (), we(t)) € L, constant. Then we can easily verify that all conditions of Lemma
wi(t) ¢ My U A for tor < ¢ < T, wi(T)) € &l( v ATIC’ but 2.3 hold withV (¢, z) := 2%, ¢(t, x) := —q(2)(1 + t*) — x — Eoa
ll/:dhkéngéZ) |6%)be:(g<r:iatlrl1;ntf?rgs?riﬁ; (ﬁjsasllLtjymlen f('?;;;‘iﬁg%ﬁ?}[;g ~(s) = &,s; thus, the system is globally feedback stabilizable. If,
The . alit . LR = in addition, zp(t, ) < —¢(t)p(x)|x| for certaing(-) > 1, p being
11Hl|ykl(Tli) = p(Ti, wn(Tp))| + lim|o(Tg, @ (T5))| = 0, hence, ,itive definite, then all conditions of Lemma 2.3 are fulfilled with
|“|’k(Tk)|| ; dO‘ a conttrhadlct_lon.bThez gZShmgr’tfékaﬂ t?thq[ IS" & = 0; hence, global stabilization can be achieved by means of a
also excluded since, otherwise, by (2.3 ) and the Tact-al= " time-varying feedback being independentaof

0, we would have0 < (1/2)y(lmler(T)]) < limfyn(T%) — By extending the analysis of the previous example, we can easily

¢ (Ti. 2 (T}))| = 0, a contradiction. - establish by the induction procedure the following result concerning
We are now in a position to establish thate R"*™' is an triangular systems:

L attractor for (2.21). Consider the constanfs=, T, and 7 as

defined by (2.30) of Property 3. Without loss of generality, we may & = x4 + filt, xq, oo, ),

assume that andr coincide with the corresponding constants defined i=1, e, n, 2 € R, U= Tigs. (2.41)
in (2.27) of Property 1 and™ > T, whereT is defined in (2.37).

We also use Properties 4 and 5 with the samappropriately small ~ Corollary 2.7: Assume that each f; is C', possibly

§' > 0,andT := T* — T. We claim that unknown, and there exist some knowmn; ¢ II and
e ‘ an integer » such that |fi(t, z1,---, )] < (1 +
|w(t,to,wo,u‘)|<6, Vtoe[()aT]thT‘i'vaoESé’ (|71 |) v(71 e, T ) t > 0,7 = 1_...,77_

(2.38) Then (2.41) |s gIobaIIy asymptotically stabilizable by means of a

time-varying feedback.
for eachwu such that (2.28) holds. We distinguish the following two

cases: Ill. ASYMPTOTIC TRACKING
o w(t) & Ay, YVt > 1o : ; l i ili
e w(t) = w(t, T, 7, u) for someT, > 0 and@ € A, . We briefly discuss the applicability of the methodology devel-

For the first case, (2.38) is a consequence of Properties 2-5, Whereged In the previous section to asymptotic tracking. For reasons of
|mpI|C|ty let us consider the autonomous case:

for the second case we apply (2.27) of Property 1. Similarly, by
using (2.31) and Properties 4 and 5, we can establisttigaRR ™" @ =Ax + b
is L stable and thusL-AS for (2.21). Finally, the rest of the proof is L o
a consequence of definition (2.8) and (2.16)fo&nd (2.20). Details "{1 =y2+gi(e, p)
are left to the reader. O Y2 =ys + g2(x, y1, y2)

As a direct consequence of Lemma 2.3, we obtain the following. ¥Ys = u; r€R", y;€R, i=1,2,3 3.1)
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and assume that andb are time invariantA is Hurwitz, g andg.  Since bothd and¢ belong toS, it follows that there exist functions
are C? vanishing at zero, and the following holds globally: 71, 72 € II, and an integefn such that
|Dgi(‘/"’> Y, =m0y yz)' S l'i(|(iL’, Yis = yi)l) (32)

for i = 1,2 for certain functionsr; € I (Dg; represents the  [Fi(t, a. z1) = Fi(t, 0, 0)] < (1+#")71(|(a, 1))
derivative ofg;). Let us denote bys the class of smooth functions |Fa(t, a, z1. 22 — Fi(t, 0, 0)) — Fa(t, 0, =Fy (¢, 0, 0), 0)]
& RT — R with the property that, for every= 0, 1, 2, -- -, there < (14 B
is a constant” > 0 and an integer such that < (A4 17)72(|(a, 21, 22)))

EOm) < ca+e), vEo.
) 5 N . for everya, z1, z2, 8, andt > 0. The previous inequalities and our
Consider a signal¢: R — R, and assume that itis of class 55 mption that the matri is Hurwitz assert that all hypotheses of

Our goal is to find a feedback law, being independent oin such  theorem 2.4 are fulfilled for (3.8); thus, there exists a time-varying
a way that they; component of the resulting closed-loop SYStemh1 teadbacku = oa(t, =1, =») which globally asymptotically

satisfies stabilizes (3.8) at the origin. This, by virtue of the first equations
lyi () — &(t)] — O ast — +oo (3.3) in (3.4) and (3.6), implies that, for the original system (3.1) with
for every initial state(zo, yo) € R"? and timeto. We proceed as .. . O1(1) + @2(t, 1+ £(0), y2 + Fi(1, 0, 0)), the desired property
follows. ’ (3.3) holds.
Let us first denote by(#) := =(¢, 0; £) the solution of the linear
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Fi(t, a, w1) :=gi(a+ 8, w1 +£(t)) — E(l)(t)
Fy(t, a, wi, w2) :=ga(a+ 8, w1 +E(F), wa). (3.5b)

Notice that (3.5a) has the triangular structure of (1.2), but its dynamics
do not, in general, vanish fow = 0 and¢ > 0. As in the case

of bounded signals (see, for instance, [2]), we transform (3.5) into
a system of the form (1.2) whose dynamics vanish at zero, so the
problem is reduced to partial feedback stabilization of a system with
a triangular structure. In our case, the resulting system will be time-
varying and satisfies the hypothesis of Theorem 2.4. We apply the
transformation

Z1 =Wy

22 1= W2 + Fl(t, 07 0)
Z3 1= W3 + 1:’2(1'7 0, 0, —Fl (t, 07 O)) + %Fl(t 0, 0) (36)

Using (3.6) and feedback

wi=u+ o1 (t),
d d
o1(t):= — — | F»(t, 0,0, F1(£,0,0)) + — Fi(¢, 0, 0)
dt dt

3.7)
the system (3.5) becomes
a=Aa+ 21b
=z + Fi(t, a, z1) — Fi(t, 0, 0)
Z2 =z3 + Fa(t, a, z1, z2 — F1(¢, 0, 0))
- F (¢, 0,0, =F1(¢, 0, 0))
Z3 =u. (3.8)
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