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ISS Property for Time-Varying Systems
and Application to Partial-Static Feedback

Stabilization and Asymptotic Tracking

J. Tsinias and I. Karafyllis

Abstract—A concept of input-to-state stability for time-varying control
systems is introduced that constitutes extension of the well-known notion
concerning the autonomous case. We use this concept to derive sufficient
conditions for global stabilization of triangular systems by means of a
time-varying smooth feedback and to achieve asymptotic tracking of
unbounded signals.

Index Terms— Asymptotic tracking, global feedback stabilization,
input-to-state stability, time-varying systems.

I. INTRODUCTION

Our goal is to provide a concept of input-to-state stability for
time-varying control systems

_x = f(t; x; u); (x; u) 2 Rn �R; t � 0 (1.1)

and give sufficient conditions for global stabilization for a class of
triangular systems by means of time-varying feedbacku = '(t; x).
The key concepts of our analysis are the notions of completeness,
attractiveness, and asymptotic stability concerning the general case
(1.1) under the restriction that each admissible inputu satisfies
(x(t); u(t)) 2 Lt, whereLt is a time-varying subset of the space
Rn � R and x(t) denotes the trajectory of (1.1) that corresponds
to u. These notions are extensions of those given in [1]–[7] for the
autonomous case, and in Theorem 2.4 of the present paper are used
to derive sufficient conditions for global stabilization for systems

_x = f(t; x) + y1b(t)

_yi = yi+1 + gi(t; x; y1; � � � ; yi); 1 � i � m

u := ym+1; (x; y1; � � � ; ym) 2 Rn �Rm (1.2)

with u as input, where only theyi components of the whole
state(x; y1; � � � ; ym) are available. Theorem 2.4 can be extended
for systems with unknown time-varying parameters, and is applied
to achieve asymptotic tracking of a given unbounded trajectory.
Particularly, in Section III, it is shown that, even for autonomous
systems, the problem of asymptotic tracking of unbounded signals is
reduced to feedback stabilization of a time-varying system under the
assumptions of the main Theorem 2.4.

Notations and Facts:jxj denotes the usual Euclidean norm of a
vector x 2 Rn, andx0 is its transpose. A functiona: Rn ! R+

is called positive definite ifa(x) > 0 for x 6= 0 and a(0) = 0;
a function a: R+ ! R+ is of classK if it is continuous(Co),
positive definite, and nondecreasing. ByK1, we denote the subclass
of K consisting of alla 2 K with a(s) ! +1 as s ! +1.
We denote by� the subclass ofK1 consisting of all functionsa
having the polynomial forma(s) = m

i=0
ais

i for a certain integer
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m and constantsai � 0 with a1 6= 0. The following facts are direct
consequences of the previous definitions.

• If a is of classK, it holds that

a(s1 + s2) � a(2s1) + a(2s2); 8 s1; s2 � 0: (1.3)

• If a 2 �, then for every� � 1, we have

a(�s) � �
m
a(s); 8 s � 0 (1.4)

for a certain integerm. Furthermore, there exists a pair of
constantsc2 > c1 > 0 such that

c1s � a(s) � c2s; s near zero: (1.5)

• For everya1; a2 2 �, there exists a functiona3 of the same
class with

a1(s) � a3(a2(s)); 8 s � 0 (1.6)

a1; a2 2�) a1 + a2; a1a2 2 �: (1.7)

II. M AIN RESULTS

A. Input-to-State Stability Properties

Consider the system (1.1), whose dynamicsf : R+ �Rn �R !
Rn areC1 with f(t; 0) = 0 for all t � 0, and let us denote by
x(t; to; xo; u) its solution at timet that corresponds to inputu with
initial conditionx(to; to; xo; u) = xo. Consider a pair of continuous
mappings
1; 
2: R+ � Rn ! R with 
1(t; x) � 
2(t; x) for all
x 2 Rn, t � 0 and
i(t; 0) = 0; i = 1; 2 for everyt � 0. We define

Lt := f(x; u) 2 Rn �R: 
1(t; x) � u � 
2(t; x)g:

• We say that (1.1) iscomplete with respect toLt (Lt complete)
if, for every to � 0; T > to; xo 2 Rn and (essentially
bounded measurable) inputu such that the solutionx(t) =
x(t; to; xo; u) of (1.1) exists on[to; T ) and satisfies

(x(t); u(t)) 2 Lt (2.1)

for to � t < T , it follows that limt!T jx(t)j < +1.
• We say that the origin0 2 Rn is stable with respect to
Lt (Lt stable) if, for any integerN � 0, positiveT < +1,
and" > 0, there exists a� = �("; T; N) > 0 such that

t
N jx(t; to; xo; u)j � "; 8 jxoj � �; to 2 [0; T ); t � to

(2.2)
and inputu for whichx(t) exists and satisfies (2.1). Particularly,
if the property above holds forT = +1, zero is calledLt
uniformly stable(Lt-US).

• The origin 0 2 Rn is called aglobal attractor with respect to
Lt(Lt-GA) if (1.1) isLt complete, and for any compact sphere
SR of radiusR centered at0 2 Rn and for any integerN � 0,
" > 0, and0 < T < +1 there is a� = �(R; "; T; N) > 0
such that

t
N jx(t; to; xo; u)j � "; 8xo 2 SR; to 2 [0; T ); t � t0 + �

(2.3)

and inputu for which (2.1) holds for allt � to. In the case
where this property holds withT = +1, we say that zero is a
global uniform attractor(Lt-UGA).
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• Zero is calledglobally asymptotically stable with respect to
Lt(Lt-GAS) if it is Lt stable and Lt-GA; it is uniformly
Lt-GAS(Lt-UGAS) if, in addition, it isLt-US andLt-UGA
(an analogous definition can be given for the concept ofLt-local
asymptotic stability).

• Finally, if Mt is a time-varying subset ofRn, we say thatMt

is Lt-invariant, if x(t; to; xo; u) 2 Mt for every t � to and
input u such that (2.1) holds and for every initial(to; xo) with
xo 2 Mt .

Remark 2.1: i) Note that both (2.2) and (2.3) hold if zero is
exponentially stable for (1.1) and thoseu for which (2.1) is satisfied.
They are also fulfilled under the weaker hypothesis that there exists
a function C: R2 ! R+ and positive constantsa and l such
that, for all x0 2 Rn, t � t0, and u for which (2.1) holds,
we have thatjx(t; t0; x0; u)j � C(t0; jx0j)t

a exp(�lt). ii) If,
in addition, we assume that the functions
i, i = 1; 2 satisfy
j
i(t; x)j � (1 + t�)r(jxj) for some� � 0 and r 2 K, then as
a consequence of the definitions ofLt-AS given above, it follows
that both inequalities (2.2) and (2.3) are satisfied if we replacex(t; �)
by (x(t; �); u(t)), provided that (2.1) holds. Particularly, the notions
of Lt stability andLt attractiveness are strengthened as follows:

• 8N � 0, 0 < T < +1, " > 0 ) 9� > 0:
tN j(x(t; t0; x0; u); u(t))j � ", 8jxoj � �; to 2 [0; T ); t � to

• 8N � 0; 0 < T < +1, " > 0; R > 0 ) 9� > 0:
tN j(x(t; to; xo; u); u(t))j � ", 8xo 2 SR; to 2 [0; T ); t �
t0 + � for any u for which (2.1) holds.

A criterion for asymptotic stability used in the present work is given
by the following proposition.

Proposition 2.2: Suppose that there exist aC1 functionV : R+�
Rn ! R+ and positive constantsa; c1; c2, andc3 such that

c1(1 + t
a)�1jxj2 �V (t; x) � c2jxj

2

d

dt
V (t; x) :=

@V

@x
f(t; x) +

@V

@t
(t; x) � �c3jxj

2
;

8 t � 0; (x; u) 2 Lt; x near zero:

Then the origin isLt locally AS; it is Lt-GAS if these conditions
hold for everyx 2 Rn.

Proof: Suppose that the inequalities above hold for allx 2 Rn.
It follows that

jx(t; to; xo; u)j
2 � c2c

�1

1 (1 + t
a) exp(�c3c

�1

2 (t� to))jxoj
2

for any t � to; xo, andu such that(x(t); u(t)) 2 Lt for t � to.
The statement is a direct consequence of the previous inequality.

Remark: It should be noticed that the conditions of Proposition
2.2 do not, in general, implyLt-uniform asymptotic stability.

B. Partial Static Feedback Stabilization

In this section, we derive sufficient conditions for global stabiliza-
tion for triangular time-varying systems. The corresponding results
extend those in [1] and [6]. Particularly, the methodology generalizes
the design scheme proposed in [6] and [7], although, for the time-
varying case, a more technical analysis is required. The following is
the key technical result of our backstepping design.

Lemma 2.3: Consider the time-varying control system

_x = f(t; x) + yb(t) (2.4a)

_y =u+ g(t; x; y) (2.4b)

whereb: R+ ! Rn; f : R+�Rn ! Rn, andg: R+�Rn�R !
R areC1 with f(t; 0) = 0 andg(t; 0) = 0 for all t � 0. Moreover,
we assume the following.

A1) There existC1 mappingsV; ': R+ � Rn ! R with
V (t; 0) = '(t; 0) = 0 for all t � 0, positive constants

ci; 1 � i � 5 and an integer� in such a way that

c1(1 + t
v)�1jxj2 �V (t; x) � c2jxj

2 (2.5a)

@V

@x
(t; x) � c3jxj (2.5b)

d

dt
V (t; x) :=

@V

@x
(t; x)(f(t; x) + '(t; x)b(t))

+
@V

@t
(t; x) � �c4jxj

2 (2.5c)

for every t � 0 andx (near zero) for which

jxj � c5(1 + t
�)�1: (2.5d)

A2) There exist functionsro; r1 2 � and a constantC > 0 such
that

jb(t)j � C(1 + t
�) (2.6a)

jf(t; x)j+ j'(t; x)j+
@'

@t
(t; x) � (1 + t

�)ro(jxj) (2.6b)

@'

@x
(t; x) � (1 + t

�)ro(jxj+ 1) (2.6c)

jg(t; x; y)j � (1 + t
�)r1(j(x

0

; y)j) (2.6d)

for every t � 0 and (x; y) 2 Rn � R.
A3) There exists a function
 2 � such that0 2 Rn is Lt-GAS

for the subsystem (2.4a) withy as input, where

Lt := f(x; y): jy � '(t; x)j � 
(jxj)g: (2.7)

Then there exist aC1 map�: R+ �R ! R and a linear
function �: R+ ! R+ such that, if we define

�(t; x; y) :=�(t; y � '(t; x)) (2.8)

L̂t := f(x; y; u): ju� �(t; x; y)j � �(j(x; y)j)g

(2.9)

the origin 0 2 Rn+1 is L̂t-GAS for the system (2.4)
with u as input. Furthermore, there exist aC1 function
W : R+�Rn+1 ! R+, positive constantsci; 1 � i � 5 and
C, a functionro 2 �, and an integer� � � such that (2.5)
and (2.6a)–(2.6c) hold withW; �; (f 0+yb0; g)0; (0; 1)0; ci,
and�, instead ofV; '; f; b; ci, and�, respectively.

Proof: Notice, first, that from (1.3), (1.6), (1.7), (2.6b), and
(2.6d), we get

jg(t; x; y)j � (1 + t
�)r1(j(x; y)j)

� (1 + t
�)(r1(4jxj) + r1(4j'(t; x)j)

+ r1(4jy � '(t; x)j))

� (1 + t
�)(r1(4jxj) + r1(4(1 + t

�)ro(jxj))

+ r1(4jy � '(t; x)j))

� (1 + t
� )(r2(jxj) + r3(jy � '(t; x)j));

8 t � 0; (x; y) 2 Rn+1 (2.10)

for a certain integer�1 � � and functionsr2; r3 2 �. Moreover,
from (2.6b), we obtain

j(x; y)j � jxj + j'(t; x)j+ jy � '(t; x)j

� jxj + (1 + t
�)ro(jxj) + jy � '(t; x)j (2.11)

for everyx; y, andt � 0. Likewise, by (2.6a)–(2.6c) and (2.10), we
can find an integer�2 � �1 and functionsp; q 2 � such that

jg(t; x; y)j+
@'

@x
(t; x) +

d


ds
(jxj) jf(t; x) + yb(t)j

+
@'

@t
(t; x) � (1 + t

� )(p(jxj) + q(jy � '(t; x)j)) (2.12)
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for all t � 0; x, andy. Next, recall (1.6) and (1.7), from which it
follows that, for every constant� > 0, a function� 2 � can be
found with

�(s+ ro(s)) + (� + 1)
(s) + p(s) + q(
(s))

� � 1

2

(s) ; 8 s � 0: (2.13)

Let �3 be an integer such that

�3 � maxf�2; 3�g: (2.14)

By (2.11)–(2.14), a constantEo > 0 can be determined in such a
way that the following hold for allE � Eo:

�j(x; y)j+ (1 + t� )q(jy � '(t; x)j) + jg(t; x; y)j
+

@'

@x
(t; x) +

d


ds
(jxj) jf(t; x) + yb(t)j+ @'

@t
(t; x)

� �(jxj + (1 + t�)ro(jxj) + 
(jxj)) + (1 + t� )p(jxj)
+ 2(1 + t� )q(
(jxj))

� E(1 + t� )� 1

2

(jxj)

� E(1 + t� )�(jy � '(t; x)j);
for 1

2

(jxj) � jy � '(t; x)j � 
(jxj) and t � 0; (2.15a)

�j(x; y)j+ @'

@x
(t; x) +

d


ds
(jxj) jf(t; x) + yb(t)j

+
@'

@t
(t; x) + jy � '(t; x)j+ jg(t; x; y)j

� (1 + t� )q(jy � '(t; x)j)
� �(jxj + (1 + t�)ro(jxj) + jy � '(t; x)j)
+ (1 + t� )p(jxj) + jy � '(t; x)j

� E(1 + t� )�(jy � '(t; x)j);
for jy � '(t; x)j � 1

2

(jxj) andt � 0: (2.15b)

Let �o; qo: R! R be a pair ofC1 odd functions, whose restrictions
onR+ coincide with� andq, respectively. Let� > 0 be an arbitrary
constant satisfying (2.13) and (2.15), and let

�(t; s) := � ((E(1+ t� )�o(s) + (1 + t� )qo(s));

�(s) := �s; s � 0: (2.16)

We establish that, for appropriate choice of the constantE, the origin
is L̂t-GAS for the system (2.4) witĥLt; �, and�, as defined in
(2.7)–(2.9) and (2.16). Particularly, we show that (2.1) and (2.2) hold
for the trajectories of (2.4), withu satisfying (2.9). For simplicity, we
deal only with the caseN = 0. The general case follows similarly,
and is left to the reader. The proof is divided into two parts.

Part I—Local Stabilization: From (1.5), (2.6b), (2.6c), (2.11),
(2.12), and the definition of functions�o andqo, it follows that there
exist positive constantsM; M , andR � c5, c5 being the constant
defined in (2.5d), such that

j(x; y)j �M(1 + t�)(jxj+ jy � '(t; x)j) (2.17a)

M jy � '(t; x)j ��o(jy � '(t; x)j) + qo(jy � '(t; x)j)
�M jy � '(t; x)j

for all t � 0 andx; y

with j(x; y)j � R(1 + t�)�1

(2.17b)

jf(t; x)j+ j'(t; x)j+ @'

@t
(t; x) �M(1 + t�)jxj (2.17c)

@'

@x
(t; x) �M(1 + t�); 8 t � 0 and jxj � R(1 + t�)�1:

(2.17d)

Define

W (t; x; y) :=V (t; x) + a(t)(y � '(t; x))2

a(t) :=
c1"

2

2M2(1� "2)(1 + t�)3
(2.18)

for a certain constant0 < " < 1=
p
2. By (2.5a), (2.17c), and (2.18),

we get

W (t; x; y)

� c1(1 + t�)�1jxj2 � 2a(t)j'(t; x)j jyj + a(t)y2

� c1(1 + t�)�1jxj2 � 1

"2
a(t)'2(t; x) + y2a(t)(1� "2)

� c1(1� 2"2)

2(1� "2)
(1 + t�)�1jxj2 + c1"

2

2M2
(1 + t�)�3y2

� c1(1 + t3�)�1j(x; y)j2 8 t � 0; j(x; y)j � R(1 + t�)�1

(2.19a)

for somec1 > 0. Likewise, by (2.5a), (2.5b), (2.17c), (2.17d), and
(2.19), a pair of positive constantsc2 and c3 can be found in such
a way that

W (t; x; y)

� V (t; x) + 2a(t)'2(t; x) + 2a(t)y2 � c2j(x; y)j2 (2.19b)

@W

@(x; y)
(t; x; y)

� @V

@x
(t; x) + 2a(t)

@'

@x
(t; x) + 1 jy � '(t; x)j

� c3j(x; y)j (2.20)

for all t � 0 and j(x; y)j � R(1 + t�)�1. Next, we evaluate
the derivative(d=dt)W of W along the trajectories of (2.4) with
u := � + u, namely, with respect to

_x = f(t; x) + yb(t)

_y =�(t; x; y) + u+ g(t; x; y)

with

juj ��(j(x; y)j) (2.21)

where� and� are defined in (2.8) and (2.16). We find

d

dt
W (t; x; y)

� @V

@x
(t; x)(f(t; x) + '(t; x)b(t)) +

@V

@t
(t; x)

+
@V

@x
(t; x) jb(t)jjy � '(t; x)j

+ 2a(t)jy � '(t; x)j @'
@x

(t; x)

� (jf(t; x)j+ jy � '(t; x)jjb(t)j+ j'(t; x)jjb(t)j)
+ 2a(t)jy � '(t; x)j jg(t; x; y)j+ (1 + t� )

� qo(jy � '(t; x)j) + @'

@t
(t; x)

+ j _a(t)j(y � '(t; x))2 � 2Ea(t)(1+ t� )

� jy � '(t; x)j�o(jy � '(t; x)j)
+ 2juja(t)jy � '(t; x)j; for juj � �j(x; y)j (2.22)

for every t � 0 andx; y with j(x; y)j � R(1 + t�)�1. By taking
into account (2.5c), (2.5d), (2.12), (2.14), (2.17), and (2.18), and then
completing the squares on the right-hand side expression in (2.22),
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we can find a constantE � Eo such that

d

dt
W (t; x; y) � �

1

2
c4jxj

2 �
1

2
a(t)E(1+ t� )(y � '(x; t))2

� � c4W (t; x; y) (2.23a)

8 t � 0; j(x; y)j �
R

1 + t�
; juj � �(j(x; y)j)(2.23b)

for some c4 > 0. By virtue of (2.19a), (2.19b), and
(2.23), it follows that the solution !(t; to; !o; u) :=
(x(t; to; xo; u); y(t; to; xo; u)); !o := (xo; yo) of (2.21) satisfies

j!(t)jK(1 + t3�)1=2 exp(�`(t� to))j!oj; 8 t � to (2.24)

for certain positive constantsK and` and as long as (2.23b) holds.
Notice next that there exists an appropriate small positive constant
� such that

�
exp `to
1 + t3�0

�
exp `t

(1 + t�)(1 + t3�)1=2
; 8 t � to: (2.25)

Without loss of generality, assume that�K�1 < 1. We define

At := (x; y): j(x; y)j �
�RK�1

1 + t3�

Bt := (x; y): j(x; y)j �
R

1 + t�
: (2.26)

Obviously, then,At � Bt for all t � 0, and the following holds.
Property 1: “Local Attractiveness”—For any positive" and T ,

there is a constant� = �("; T ) > 0 such that

j!(t; to; !o; u)j � "; 8 t � �; to 2 [0; T ]; !o 2 At (2.27)

and for any inputu for which

(!(t; to; !o; u); u(t)) 2 L := f(x; y; u): juj � �(j(x; y)j)g:

(2.28)

“Local Stability”—For every initialto � 0; !o 2 At and inputu
such that (2.23b) holds, the corresponding trajectory!(t) exists and
satisfies!(t) 2 Bt for all t � t0.

In order to establish this property, we take into account
(2.24)–(2.26), from which we getj!(t; to; !o; u)jR(1 + t�)�1

for every t � to > 0; !o 2 At and u such that (2.28) holds.
The desired property is then a direct implication of the previous
inequality.

Part II—Global Part: We establish that the origin0 2 Rn+1

for the system (2.4) iŝLt-GAS, where L̂t is defined by (2.9) or,
equivalently,0 2 Rn+1 is L-GAS for (2.21) withL as defined in
(2.28). Let

Mt := f(x; y): jy � '(t; x)j � 
(jxj)g: (2.29)

Property 2: The setMt is positively invariant, namely,!(t) 2Mt

for all t � to with !o 2Mt , provided that the corresponding input
u satisfies (2.28).

To establish this property, it suffices to show that

_y(t) =�(t; x(t); y(t)) + u(t) + g(t; x(t); y(t))

�
@'

@x
(f(t; x(t)) + y(t)b(t)) +

@'

@t
+
d


ds
(jxj)

djx(t)j

dt
;

for 1

2

(jx(t)j) � y(t)� '(t; x(t)) < 
(jx(t)j)

�
@'

@x
(f(t; x(t)) + y(t)b(t)) +

@'

@t
+
d


ds
(jxj)

djx(t)j

dt
;

for 1

2

(jx(t)j) � '(t; x(t))� y(t) < 
(jx(t)j)

but this is a direct consequence of (2.15a) and the definition of�.
For each� > 0, let us denote byS� the closed sphere of radius�

centered at0 2 Rn+1. The following property is a direct consequence
of Property 2, our Hypothesis A3, (2.17c), and Remark 2.1ii).

Property 3:

I) For every positive constant�; ", andT �, there exists a� =
�(�; "; T �) > 0 such that

j!(t; to; !o; u)j � "; 8 t � �; to 2 [0; T �]; !o 2Mt \ S�

(2.30)

for everyu for which (2.28) holds. Moreover,!(t) exists and
satisfies!(t) 2 Mt, 8 t � t0.

II) For every positive" andT �, there exists a� = �("; T �) > 0
with

j!(t; to; !o; u)j � "; 8 t � to; to 2 [0; T �]; !o 2Mt \ S�

(2.31)

and for everyu for which (2.28) holds.

Using (2.15b), we can also establish the following property.
Property 4: For every positive�0 and to and for any initial

!o 2 S� n(Mt [ At ), there is aT 0 = T 0(to; !o; u) > 0 such
that

!(t; to; !o; u) =2Mt [At for to � t < T 0 (2.32a)

!(T 0; to; !o; u) 2MT [ AT (2.32b)

provided that (2.28) holds. Moreover, the trajectory!(t) is defined
for every to � t � T 0.

Indeed, by (2.15b) and evaluating the time derivative of(1=2)(y�
'(t; x))2 along the trajectories of (2.21), we obtain

1

2

d

dt
(y � '(t; x))2

= (y � '(t; x)) �(t; x; y) + u+ g(t; x; y)

�
@'

@x
(f(t; x) + yb(t))�

@'

@t

� �E(1 + t� )jy � '(t; x)j�(jy � '(t; x)j)

� (1 + t� )jy � '(t; x)jq(jy � '(t; x)j)

+ jy � '(t; x)j �j(x; y)j+ jg(t; x; y)j

+
@'

@x
(f(t; x) + yb(t)) +

@'

@t

� �(y � '(t; x))2:

Thus, by (2.6b), it follows that

jy(t)� '(t; x(t))j � exp(�(t� to))jyo � '(to; xo)j

� exp(�(t� to))(1 + t�o)r(j(xo; yo)j) (2.33)

for certainr 2 � and for everyt � to for which the solution!(t)
exists on[to; t] and satisfies both (2.28) and

1

2

(jx(t)j) � jy(t)� '(t; x(t))j: (2.34)

Assume that(1=2)�RK�1 < r(�0), K being the constant defined
in (2.24), and define

s(t) := 
�1
�RK�1

1 + t3�
: (2.35)

Then for everyt � to for which !(t) exists on[to; t] and satisfies
(2.28), and as long as!(t) =2 S� n(Mt [ At), we have by (2.26),
(2.34), and (2.35)

jy(t)� '(t; x(t))j �
1

2

(jx(t)j) �

1

2

(s(t)) =

1

2

�RK�1

1 + t3�
:

(2.36)
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For each�0 and to, consider a positive constantT = T (to; �
0)

satisfying

1=2�RK�1

1 + T 3�
= exp(�(T � to))(1 + t�o)r(�

0): (2.37)

This, in conjunction with (2.26), (2.33), and (2.36), implies that,
for eachto and!o 2 S� n(Mt [ At ), there exists a timeT 0 =
T 0(to; !o; u) � T such that (2.32) hold. We now establish that each
solution!(t), starting from!o at timeto, exists for everyt � to as
long as it remains outsideMt [ At. Suppose, on the contrary, that
!(t) exists on[t0; T 00) for someT 00 � T 0 in such a way that (2.28)
holds and!(t) =2 Mt for to � t < T 00, but limt!T j!(t)j =
1. Assume, first, thatlimt!T jx(t)j < 1. Then (2.6b) and
(2.34) imply thatlimt!T jy(t)j � limt!T jy(t) � '(t; x(t))j +
limt!T ro(jx(t)j)(1 + t�) < 1; hence, limt!T j!(t)j < 1,
a contradiction. The other case islimt!T jx(t)j = 1. The left-
hand inequality in (2.33), (2.34), and the fact that
 2 K1 imply
1 = (1=2)
(limt!T jx(t)j) � limt!T jy(t)� '(t; x(t))j < 1,
a contradiction. Hence,!(t) is defined for everyto � t � T 0, and
since, by Property 1,!(t) 2 Mt [ Bt for t � T 0, is defined for
everyt � to. This, in particular, means that (2.21) isL complete. To
complete the proof, we also need to establish the following property,
which is a consequence of Property 4.

Property 5: For every ~T > 0 and � > 0, there exists a positive
�0 < � such that j!(T 0(to; !o; u); to; !o; u)j � �; 8!o 2
S� n(Mt [ At ), for any to 2 [0; ~T ] and inputu such that (2.28)
holds for to � t � T 0 = T 0(to; !o; u), where the latter is defined
in Property 4.

The proof is similar to that given in Property 4 to establish
completeness. Suppose, on the contrary, that there exist a� > 0,
sequences of vectorsRn+1 3 !ok ! 0 as k ! +1; times
T 0k < T; tok < ~T , and inputsuk such that the corresponding solution
!k(�) = (xk(�); yk(�)) of (2.21) satisfies(!k(t); uk(t)) 2 L,
!k(t) =2 Mt [ At for tok � t < T 0k; !k(T

0

k) 2 MT [ AT , but

j!k (T 0k)j � � for all integersk. Assume, first, thatlimjxk(T 0k)j = 0.
Then (2.6b) and the first inequality in (2.33) yieldlimjyk(T 0k)j �
limjyk(T

0

k) � '(T 0k; xk(T
0

k))j + limj'(T 0k; xk(T
0

k))j = 0, hence,
j!k(T

0

k)j ! 0, a contradiction. The caselimjxk(T 0k)j > 0 is
also excluded since, otherwise, by (2.34) and the fact that!ok !
0, we would have0 < (1=2)
(limjxk(T

0

k)j) � limjyk(T
0

k) �
'(T 0k; xk(T

0

k))j = 0, a contradiction.
We are now in a position to establish that0 2 Rn+1 is an

L attractor for (2.21). Consider the constants�; "; T �, and � as
defined by (2.30) of Property 3. Without loss of generality, we may
assume that" and� coincide with the corresponding constants defined
in (2.27) of Property 1 andT � > T , whereT is defined in (2.37).
We also use Properties 4 and 5 with the same�, appropriately small
�0 > 0, and ~T := T � � T . We claim that

j!(t; to; !o; u)j < "; 8 to 2 [0; ~T ]; t � T + �; !o 2 S�

(2.38)

for eachu such that (2.28) holds. We distinguish the following two
cases:

• !(t) =2 At; 8 t � to;
• !(t) = !(t; To; !; u) for someTo > 0 and! 2 AT .

For the first case, (2.38) is a consequence of Properties 2–5, whereas,
for the second case we apply (2.27) of Property 1. Similarly, by
using (2.31) and Properties 4 and 5, we can establish that0 2 Rn+1

is L stable, and thusL-AS for (2.21). Finally, the rest of the proof is
a consequence of definition (2.8) and (2.16) of� and (2.20). Details
are left to the reader.

As a direct consequence of Lemma 2.3, we obtain the following.

Theorem 2.4: For the system (1.2), where only(y1; � � � ; ym) is
available, assume that hypotheses (A1) and (A3) are satisfied for
the subsystem_x = f(t; x) + yb(t) with ' � 0, and that there exist
functionsri 2 �; i = 0; 1; � � � ; m, and an integer� such that (2.5a),
(2.5d), and (2.6) hold, and further,

jf(t; x)j �(1 + t�)ro(jxj);

jgi(t; x; y1; � � � ; yi)j �(1 + t�)ri(j(x; y1; � � � ; yi)j);

i = 1; � � � ; m 8x; y1; � � � ; yi; t � 0:

(2.39)

Then there existC1 mappings�i: R
+ �R ! R; i = 1; � � � ; m

with �i(t; 0) = 0 for t � 0 so that the feedback

u := �m(t; ym��m�1(t; � � � ; �2(t; y2��1(t; y1)) � � �)) (2.40)

globally asymptotically stabilizes (1.2) at0 2 Rn+m [namely, the
origin of the closed-loop (1.2) with (2.40) is globally asymptotically
stable].

The proof follows directly by the use of Lemma 2.3 and the
induction procedure.

Remark 2.5: The result of Theorem 2.4 can directly be extended
for systems (1.2) containing unknown parameters. Particularly, the
result is valid under the same hypothesis for unknown dynamicsf
andgi satisfying (2.39) for some knownri. Another straightforward
extension can be obtained for systems (1.2), where eachyi satisfies
_yi = di(t)yi+1 + gi(�) where eachdi is everywhere strictly positive
and satisfiesdi(t) + j _di(t)j � C(1 + t�) for every t � 0 for some
C > 0 and integer�.

Example 2.6: Consider the planar system_x = y+p(t; x); _y = u,
where p is a polynomial oft and x. It turns out thatjp(t; x)j �
(1+t�)ro(jxj); 8 t; x for a certain integer� andro 2 �. Let q: R !
R be the odd extension ofro, and let �o be an arbitrary positive
constant. Then we can easily verify that all conditions of Lemma
2.3 hold withV (t; x) := x2; '(t; x) := �q(x)(1 + t�)� x� �ox,

(s) = �os; thus, the system is globally feedback stabilizable. If,
in addition,xp(t; x) � �q̂(t)p̂(x)jxj for certain q̂(�) > 1, p̂ being
positive definite, then all conditions of Lemma 2.3 are fulfilled with
' � 0; hence, global stabilization can be achieved by means of a
time-varying feedback being independent ofx.

By extending the analysis of the previous example, we can easily
establish by the induction procedure the following result concerning
triangular systems:

_xi =xi+1 + fi(t; x1; � � � ; xi);

i = 1; � � � ; n; xi 2 R; u := xi+1: (2.41)

Corollary 2.7: Assume that each fi is C1, possibly
unknown, and there exist some knownri 2 � and
an integer � such that jfi(t; x1; � � � ; xi)j � (1 +
t�)ri(j(x1; � � � ; xi)j); 8 (x1; � � � ; xi); t � 0; i = 1; � � � ; n.
Then (2.41) is globally asymptotically stabilizable by means of a
time-varying feedback.

III. A SYMPTOTIC TRACKING

We briefly discuss the applicability of the methodology devel-
oped in the previous section to asymptotic tracking. For reasons of
simplicity, let us consider the autonomous case:

_x =Ax + y1b

_y1 = y2 + g1(x; y1)

_y2 = y3 + g2(x; y1; y2)

_y3 =u; x 2 Rn; yi 2 R; i = 1; 2; 3 (3.1)
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and assume thatA andb are time invariant,A is Hurwitz, g1 andg2
areC2 vanishing at zero, and the following holds globally:

jDgi(x; y1; � � � ; yi)j � ri(j(x; y1; � � � ; yi)j) (3.2)

for i = 1; 2 for certain functionsri 2 � (Dgi represents the
derivative ofgi). Let us denote byS the class of smooth functions
�: R+ ! R with the property that, for everyi = 0; 1; 2; � � � ; there
is a constantC > 0 and an integer� such that

j�(i)(t)j � C(1 + t
�); 8 t � 0:

Consider aC2 signal�: R+ ! R, and assume that it is of classS.
Our goal is to find a feedback law, being independent ofx, in such
a way that they1 component of the resulting closed-loop system
satisfies

jy1(t)� �(t)j ! 0 ast! +1 (3.3)

for every initial state(x0; y0) 2 Rn+3 and timet0. We proceed as
follows.

Let us first denote by�(t) := x(t; 0; �) the solution of the linear
equation

_x = Ax + �b

starting from zero at timet = 0 and corresponding to the signal�.
Obviously, since� 2 S andA is Hurwitz, � is of classS as well.

We define

a := x� �; w1 := y1 � �(t); w2 := y2; w3 := y3: (3.4)

Then (3.1) takes the equivalent form:

_a =Aa+ w1b

_w1 = y2 + g1(a+ �; y1)� �
(1) = w2 + F1(t; a; w1)

_w2 = y3 + g2(a+ �; y1; y2) = w3 + F2(t; a; w1; w2)

_w3 =u (3.5a)

where

F1(t; a; w1) := g1(a+ �; w1 + �(t))� �
(1)(t)

F2(t; a; w1; w2) := g2(a+ �; w1 + �(t); w2): (3.5b)

Notice that (3.5a) has the triangular structure of (1.2), but its dynamics
do not, in general, vanish forw = 0 and t � 0. As in the case
of bounded signals (see, for instance, [2]), we transform (3.5) into
a system of the form (1.2) whose dynamics vanish at zero, so the
problem is reduced to partial feedback stabilization of a system with
a triangular structure. In our case, the resulting system will be time-
varying and satisfies the hypothesis of Theorem 2.4. We apply the
transformation

z1 :=w1

z2 :=w2 + F1(t; 0; 0)

z3 :=w3 + F2(t; 0; 0; �F1(t; 0; 0)) +
d

dt
F1(t; 0; 0): (3.6)

Using (3.6) and feedback

u := u+ �1(t);

�1(t) := �
d

dt
F2(t; 0; 0; F1(t; 0; 0)) +

d

dt
F!(t; 0; 0)

(3.7)

the system (3.5) becomes

_a =Aa+ z1b

_z1 = z2 + F1(t; a; z1)� F1(t; 0; 0)

_z2 = z3 + F2(t; a; z1; z2 � F1(t; 0; 0))

� F2(t; 0; 0; �F1(t; 0; 0))

_z3 =u: (3.8)

Since both� and� belong toS, it follows that there exist functions
r1; r2 2 �, and an integerm such that

jF1(t; a; z1)� F1(t; 0; 0)j � (1 + t
m)r1(j(a; z1)j)

jF2(t; a; z1; z2 � F1(t; 0; 0))� F2(t; 0; �F1(t; 0; 0); 0)j

� (1 + t
m)r2(j(a; z1; z2)j)

for everya; z1; z2; �, andt � 0. The previous inequalities and our
assumption that the matrixA is Hurwitz assert that all hypotheses of
Theorem 2.4 are fulfilled for (3.8); thus, there exists a time-varying
C1 feedbacku = '2(t; z1; z2) which globally asymptotically
stabilizes (3.8) at the origin. This, by virtue of the first equations
in (3.4) and (3.6), implies that, for the original system (3.1) with
u = �1(t)+'2(t; y1 + �(t); y2 +F1(t; 0; 0)), the desired property
(3.3) holds.
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