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Abstract. An adaptive discontinuous Galerkin multiscale method driven by an energy norm
a posteriori error bound is proposed. The method is based on splitting the problem into a coarse
and a fine scale. Localized fine scale constituent problems are solved on patches of the domain and
are used to obtain a modified coarse scale equation. The coarse scale equation has considerably
less degrees of freedom than the original problem. The a posteriori error bound is used within
an adaptive algorithm to tune the critical parameters, i.e., the refinement level and the size of the
different patches on which the fine scale constituent problems are solved. The fine scale computations
are completely parallelizable, since no communication between different processors is required for
solving the constituent fine scale problems. The convergence of the method, the performance of the
adaptive strategy and the computational effort involved are investigated through a series of numerical
experiments.
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1. Introduction. Problems involving features on several different scales, usu-
ally termed multiscale problems, can be found in many branches of the engineering
sciences. Examples include the modelling of flow in a porous medium and of compos-
ite materials. Multiscale problems involving partial differential equations are often
impossible to simulate with an acceptable accuracy using standard (single mesh) nu-
merical methods. A different approach, usually coming under the general term of
multiscale methods, consists of considering coarse and fine scale contributions to the
solution, with the fine scale contributions approximated on localized patches. The
fine scale contributions are then used to upscale the problem in order to obtain an
approximation to the global multiscale solution.

1.1. Previous work. Numerous multiscale methods have been developed dur-
ing the last three decades, see e.g. [8, 7] for early works, or [16, 29, 15] and references
therein for exposition and recent developments. An important development is the
Multiscale finite element method (MsFEM) by Hou and Wu [21], which was fur-
ther developed in [12], with the introduction of oversampling to reduce resonance
effects. Another approach is the, so-called, Variational multiscale method (VMS) of
Hughes and co-workers [22, 23]. The idea in VMS is to decompose the solution space
into coarse and fine scale contributions. A modified coarse scale problem is then
solved (using a finite element approach), so that the fine scale contribution is taken
into account. To maintain the conformity of the resulting modified finite element
space, homogeneous Dirichlet boundary conditions are imposed on each fine-problem
patch boundary. The Adaptive variational multiscale method (AVMS) using the VMS
framework, introduced by Larson and Målqvist [27], makes use of multiscale-type a
posteriori error bound to adapt the coarse and fine scale mesh sizes as well as the
fine-problem patch-sizes automatically. A priori error analysis can be found in [30].
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An interesting alternative to conforming finite element methods is the class of dis-
continuous Galerkin (DG) methods, whereby the approximation spaces are element-
wise discontinuous; the continuity of the underlying exact solutions is imposed weakly.
DG methods appeared in the 1970s and in the early 1980s [32, 28, 9, 5, 24] and have
recently received renewed interest; we refer to the volumes [13, 14, 20, 33] and the ref-
erences therein for a literature review. DG methods admit good conservation proper-
ties of the state variable and, due to the lack of inter-element continuity requirements
are ideally suited for application to complex and/or irregular meshes. Also, there
has been work to better cope with the case of high contrast diffusion; see e.g. [19]
where a DG method based on weighted average is proposed and analysed. Discontin-
uous Galerkin methods for solving multiscale problems have been discussed using the
framework of the MsFEM [1] and of the Heterogeneous multiscale method (HMM)
[2]; see also [37, 36, 35, 34]. An a priori error analysis for the class of discontinuous
Galerkin multiscale method studied in this paper can be found in [17].

1.2. New contributions. In this work, we propose an adaptive discontinuous
Galerkin multiscale method (ADG-MS) using the framework of VMS. The underling
DG method is based on weighted averages across the element interfaces. The adaptiv-
ity is driven by energy norm a posteriori error bounds. The multiscale method is based
on solving localized problems on patches, which are then upscaled to solve a coarse
scale equation. The lack of inter-element continuity requirements of the approximate
solution, allows for very general meshes which is very common in multiscale applica-
tions, i.e. meshes that contains several types of elements and/or hanging nodes. The
split between the coarse and fine sale is realized using the elemetwise L2-projection
onto the coarse mesh. This is more natural in a multiscale setting than e.g. using
the nodal interpolant as in [27]. It is also much easier and efficient to construct an
L2 orthogonal split using DG rather then CG. The ADG-MS inherits a local conser-
vation property from DG on the coarse scale, which is crucial in many applications
such as porous media flow. The fine scale problems can be solved independently with
localized right hand sides, and it is known that the solutions decay exponentially [17],
which allows for small patches. In this case the ADG-MS converge to the reference
solution and thereby takes full advantage of cancellation between patches, this is not
the case for AVMS [27] since hanging nodes is not allowed. In the a posteriori error
bound, the error is bounded in terms of the size of the different fine-scale patches
and on both the fine-scale and the coarse-scale mesh sizes. An adaptive algorithm
to tune all these parameters automatically is proposed. The numerical experiments
show good performance of the algorithm for a number of benchmark problems.

1.3. Outline. The rest of this work is structured as follows. Section 2 is devoted
to setting up the model problem, the basic DG discretization and some notation. A
general framework for multiscale problems along with the discontinuous Galerkin
multiscale method is derived in Section 3, and the a posteriori error bound is derived
in Section 4. The implementation of the method and the adaptive algorithm are
discussed in Section 5. In Section 6, a number of numerical experiments are presented,
and finally some conclusions are drawn in Section 7.

2. Preliminaries. In this section we define some notations and the underling
DG method is presented.

2.1. Notation. Let ω ⊆ Rd, d = 2, 3 be an open polygonal domain. Denote the
L2(ω)-inner product by (·, ·)L2(ω) , and the corresponding norm by ‖ ·‖L2(ω). Also, let

H1(ω) be the Sobolev space with norm ‖ · ‖H1(ω) := (‖ · ‖2L2(ω) + ‖∇ · ‖2L2(ω))
1/2 and
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Hs(ω) the standard Hilbertian Sobolev space of index s ∈ R. We shall also make use
of the space L∞(ω) consisting of almost everywhere bounded functions, with norm
‖ · ‖L∞(ω) := ess supω| · |; see, e.g., [3] for details. Finally, the d-dimensional Lebesgue
measure will be denoted by µd(·).

2.2. The Model problem. Let Ω ⊂ Rd be an open polygonal domain with
Lipschitz boundary ∂Ω, d = 2, 3, and consider the elliptic boundary value problem
find u ∈ {v ∈ H1(Ω) : v|∂Ω = 0} fulfilling

−∇ ·A∇u = f u ∈ Ω, (2.1)

u = 0 u ∈ ∂Ω, (2.2)

with f ∈ L2(Ω) and A ∈ L∞(Ω,Rd,dsym) such that A has uniform spectral bounds,
bounded below by α > 0 ∈ R almost everywhere.

2.3. Discretization and subdivision. The domain Ω is subdivided into a par-
tition K = {K} of shape-regular and closed elements K with boundaries ∂K, i.e.
Ω̄ = ∪K∈KK̄. On the partition K, let h : ∪K∈KK → R be a mesh-function defined
element-wise by h|K := diam(K), K ∈ K. The partition is allowed to be irregular (i.e.
hanging nodes are allowed) and it is locally quasi uniform in the sense that the ratio
of the mesh function h for neighboring elements is uniformly bounded from above and
below. Let ΓB be the set of all boundary edges and ΓI be the set of all interior edges
(or faces when d = 3) such that Γ = ΓB ∩ΓI is the set of all edges in the partition K.
Associated with the diffusion tensor, we consider the element-wise constant functions
A0, A0 : ∪K∈KK → R defined by the biggest and smallest eigenvalue of A, respec-
tively, on each element K. For Ki,Kj ∈ K, with µd−1(∂Ki ∩ ∂Kj) > 0, let Ki,Kj be
denoted by K+ and K−, where K+ is the element with the higher index. On interior
element interfaces e ∈ ΓI we shall make use of the shorthand notation v+ := v|K+ ,
v− := v|K− ; on boundary edges we set v+ := v|K . We also define the weighted mean
value by

{v}w := wK+(e)v
+ + wK+(e)v

−, (2.3)

where

wK+(e) :=
A0|K−

A0|K+ +A0|K−
, wK−(e) :=

A0|K+

A0|K+ +A0|K−
, (2.4)

for each e ∈ ΓI and

wK+(e) = 1, wK+(e) = 0, (2.5)

for e ∈ ΓB . Further, the jump across element interfaces is defined by

[v] := v+ − v− for e ∈ ΓI , and [v] := v+ for e ∈ ΓB , (2.6)

and the harmonic mean value γe by

γe :=
2A0|K+ ·A0|K−
A0|K+ +A0|K−

. (2.7)

Also, n will denote the outward unit normal to ∂K+ when µd−1(∂K+ ∩ ∂K−) > 0.
When µd−1(∂K ∩ ∂Ω) > 0, n will be the outward unit normal to ∂Ω.
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2.4. The Discontinuous Galerkin method. For a nonnegative integer r, we
denote by Pr(K̂), the set of all polynomials on K̂ of total degree at most r, if K̂ is
the reference d-simplex or, of degree at most r in each variable, if K̂ the reference
d-hypercube.

Consider the space V := Vh + H1+ε(Ω) with ε > 0 but arbitrary small, and let
the discontinuous finite element space be given by

Vh := {v ∈ L2(Ω) : v ◦ FK |K ∈ Pr(K̂), K̂ ∈ K}, (2.8)

where FK : K̂ → K is the respective elemental map for K ∈ K.
The discontinuous Galerkin method then reads: find uh ∈ Vh such that

a(uh, v) = `(v), ∀v ∈ Vh, (2.9)

where the bilinear form a(·, ·) : V ×V → R and the linear form `(·) : V → R are given
by

a(v, z) :=
∑
K∈K

(A∇v,∇z)L2(K) −
∑
e∈Γ

(
(n · {AΠ∇v}w, [z])L2(e) (2.10)

+ (n · {AΠ∇z}w, [v])L2(e) −
σeγe
he

([v], [z])L2(e)

)
,

`(v) :=(f, v)L2(Ω), (2.11)

respectively. Here Π : (L2(Ω))d → (Vh)d denotes the orthogonal L2-projection oper-
ator onto (Vh)d, he := diam(e), and σe ∈ R is a positive constant. The bilinear form
(2.11) is coercive with respect to the natural energy norm,

|||v||| =

(∑
K∈K

‖A1/2∇v‖2L2(K) +
∑
e∈Γ

σeγe
he
‖[v]‖2L2(e)

)1/2

(2.12)

if σe is chosen to be large enough. We refer, e.g., to [14, 6] and references therein for
details on the analysis of DG methods for elliptic problems. Discontinuous Galerkin
methods with weighted averages were introduced in [10, 19].

Remark 2.1. For all v ∈ Vh, we have Π∇v = ∇v, therefore the bilinear form
(2.10) with v, z ∈ Vh is reduced to the more familiar form

a(v, z) =
∑
K∈K

(A∇v,∇z)L2(K) −
∑
e∈Γ

(
(n · {A∇v}w, [z])L2(e)

+ (n · {A∇z}w, [v])L2(e) −
σeγe
he

([v], [z])L2(e)

)
. (2.13)

3. The Multiscale method. In the VMS framework, the finite element solution
space Vh is decoupled into coarse and fine scale contributions, viz., Vh = VH ⊕ Vf ,
with VH ⊂ Vh. To this end, let ΠH : L2(Ω) → VH be the (ortogonal) L2-projection
onto the coarse mesh. The split between the coarse and fine scales is then determined
by, VH := ΠHVh and Vf := (I−ΠH)Vh = {v ∈ Vh : ΠHv = 0} where I is the identity
operator.

The multiscale map T : VH → Vf from the coarse to the fine scale is defined as

a(T vH , vf ) = −a(vH , vf ) ∀vH ∈ VH and ∀vf ∈ Vf . (3.1)
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The next step is to decompose uh and v in (2.9) into coarse and fine scale components.
In particular, we have

uh = uH + T uH + uf , (3.2)

and v = vH + vf , with uH , vH ∈ VH and T uH , vf ∈ Vf , for some uf ∈ Vf . Equation
(2.9) is equivalent to the problem: find uH ∈ VH and vf ∈ Vf such that

a(uH + T uH + uf , vH + vf ) = `(vH + vf ), ∀vH ∈ VH and ∀vf ∈ Vf . (3.3)

The fine scale component uf can be computed by letting vH = 0 in (3.3) and using
the multiscale map (3.1). We obtain the fine scale problem driven by the right hand
side data f: find uf ∈ Vf such that

a(uf , vf ) = `(vf ), ∀vf ∈ Vf . (3.4)

The coarse scale solution is obtained by letting vf = 0 in (3.3): find uH ∈ VH such
that

a(uH + T uH , vH) = `(vH)− a(uf , vH), ∀vH ∈ VH . (3.5)

In (3.5), T vH and uf are unknown and obtained by solving (3.1) and (3.4). Note that
the linear system (3.5) has dim(VH) unknowns.

3.1. Localization and Discretization. The bilinear form is characterized by
more local behavior in Vf than in Vh [30, 17]. This motivates us to solve the fine scale
equations on (localized) overlapping patches, instead of the whole domain Ω. The
patches are chosen large enough to ensure sufficiently accurate computations of T vH
and uf . The computations of the fine scale components of the solution can be done
in parallel with localized right hand sides. To define the coarse space VH , we begin
by fixing a coarse mesh KH . Then, VH is defined as,

VH := {v ∈ L2(Ω) : v ◦ FK |K ∈ Pr(K̂), K̂ ∈ KH}. (3.6)

Definition 3.1. For all K ∈ KH , define element patches of size L patch as

ω1
K = int(K)

ωLK = int(∪{K ′ ∈ KH | K ′ ∩ ω̄LK}), L = 2, 3, . . . .
(3.7)

The patch ωLK will be refered to as a L-layer patch. This is illustrated in Figure 3.1.

On each L-layer patch, we let K(ωLK) be a restiction of K to ωLK , such that
∪K∈K(ωL

K) = ω̄LK . Also let ΓI(ωLK) and ΓB(ωLK) be the interior respectively boundary

edges on K(ωLK). Moreover, we assume that KH |ωL
K

and K(ωLK) are nested, that is,

every coarse element KH ∈ KH |ωL
K

coincides with a union of fine elements K ∈ K(ωLK).

Also, the fine test spaces Vf (ωLK), are defined by

Vf (ωLK) := {v ∈ Vf : v|Ω\ωL
K

= 0}. (3.8)

Finally, let the indicator function be χK = 1 on element K and 0 otherwise and
MK be the index set of all basis functions φj ∈ VH that have support on K i.e.,
χK =

∑
j∈MK

φj .
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Figure 3.1. Example of a one ω1
K , two ω2

K , and three ω3
K layer patches around element T in

a quadrilateral mesh.

3.2. The Discontinuous Galerkin Multiscale method. For each K ∈ KH
the following local problems need to be solved: find T̃ φj ∈ Vf (ωLK), ∀j ∈ MK and
Uf,K ∈ Vf (ωLK) such that

a(T̃ φj , vf ) = −a(φj , vf ), ∀vf ∈ Vf (ωLK), (3.9)

a(Uf,K , vf ) = `(χKvf ), ∀vf ∈ Vf (ωLK). (3.10)

The modified coarse scale problem is formulated as: find UH ∈ VH such that

a(UH + T̃ UH , vH) = `(vH)− a(Uf , vH), ∀vH ∈ VH , (3.11)

where Uf :=
∑
K∈KH

Uf,K . The approximate solution to the multiscale problem is
given by

U = UH + T̃ UH + Uf . (3.12)

The above procedure will be referred to as the discontinuous Galerkin multiscale
method.

We note that the approximation U is not equal to uh in general, since the domains
of the fine scale problems are truncated. However, as discussed above it is expected
that U is a good approximation to uh, due to the decaying nature of the fine scale
solutions away from the respective patch. For the approximation U to converge to
the exact solution u in (2.1) in the limit, both the support of the local problems
need to be increase to the whole domain and the fine scale mesh-parameter need to
decrease, h→ 0. The multiscale method proposed here differs from the one proposed
in [17], in that a right hand side correction is present. Using the formulation without
the presense a right hand side correction, the multiscale solution converge to a some
H-perturbation of the exact solution u.

Remark 3.2. Note that for a non-uniform mesh K (and/or KH), the convergence
results presented in [17] still hold if the corrected basis function are computed on
patches of a common reference mesh K. On the other hand if the adaptive algorithm is
used such that the overlap between different corrected basis functions are computed on
different meshes (e.g. [27]), less cancellation of the error will occue and convergence
can no longer be guarantied by the argument in [17].
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3.3. Local conservation property. The DG methods are known to have good
local conservation properties in that the normal fluxes are conservative. The ADG-
MS inherits this property on the coarse scale. To see this, we introduce the normal
fluxes on element KH ∈ KH as

σ̂(U) := ({n ·A∇U}w − σeγeh−1
e [U ])[χKH

], e ∈ ∂KH , (3.13)

where U = UH + T̃ UH +Uf , χKH
= 1 on element KH and χKH

= 0 otherwice ([χKH
]

is either 1 or −1), and each interface e is a face of a fine scale element K ∈ K, i.e.,
the number of edges can exceed the number of faces for each element KH . By setting
w ∈ VH to be w = χKH

in (2.10), (2.11), and by using the discrete normal fluxes
defined in (3.13), we arrive to the discrete element-wise conservation law

(f, 1)L2(KH) + (σ̂(U), 1)L2(∂KH) = 0, (3.14)

for all KH ∈ KH .

4. A Posteriori Error Bound in Energy Norm. Let the constant 0 ≤ C <
∞ be any generic constant neither depending on H, h, L, nor A; let a . b abbreviates
the inequality a ≤ Cb. The following approximation results will be used frequently
throughout this section. Let π be the orthogonal L2-projection operator onto element-
wise constant functions. Then π satisfies the following approximation properties: for
an element K, we have

||v − πv||L2(K) .
hK√
A0

||A1/2∇v||L2(K), ∀v ∈ H1(K), (4.1)

||v − πv||L2(∂K) .

√
hK
A0
||A1/2∇v||L2(K) ∀v ∈ H1(K). (4.2)

Lemma 4.1. Let Ich : Vh → Vh ∩ H1(Ω) be a averging interpolation operator
defined pointwise as

Ichvh(x̃) =
1

|Kx̃|
∑
K∈Kx̃

vh(x̃)|K , (4.3)

where Kx̃ is the set of elements in K for which x̃ belong, with the cardinal |Kx̃|. Then,

||vh − Ichvh||2L2(K) . ||
√
he[vh]||2L2(∂K), (4.4)

||A1/2∇(vh − Ichvh)||2L2(K) . A0|| 1√
he

[vh]||2L2(∂K). (4.5)

holds for all vh ∈ Vh and K ∈ K.
The proof, omitted here, follows closely that of [25]. Lemma 4.1 can also be

extended to irregular meshes. There a hierarchical refinement of the mesh is performed
to eliminate the hanging nodes; we refer to [26] for details. For irregular meshes the
constant in the bounds of Lemma 4.1 also depends on the number of hanging nodes
on each face.

Remark 4.2. The result in Lemma 4.1 can be sharpened if the diffusion tensor
is isotropic and a locally quasi-monotone [31] distribution is assumed to hold. Then
A0|K can be replaced by the harmonic mean value γe on face e; see [11].

First we derive a posteriori error bound for the underling (one scale) DG method.
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Theorem 4.3. Let u, uh be given by (2.1)-(2.2) and (2.9), respectively. Let also
Ichuh ∈ Vh∩H1(Ω) be given by (4.3). Moreover, let E := Ec+Ed where Ec := u−Ichuh
and Ed := Ichuh − uh. Then

|||E||| . (
∑
K∈K

%2
K)1/2 + (

∑
K∈K

ζ2
K)1/2, (4.6)

where

%K =
hK√
A0

||(1−Π)(f +∇ ·A∇uh)||L2(K), (4.7)

+

√
hK
A0

(
||(1− wK(e))n · [A∇uh]||L2(∂K\ΓB) + ||σeγe

he
[uh]||L2(∂K)

)
,

ζ2
K = ||A1/2∇(uh − Ichuh)||2L2(K) + ||

√
σeγe
he

[uh]||2L2(∂K). (4.8)

Remark 4.4. Using Ichuh as the conforming part of uh, we arrive to an a pos-
teriori bound whereby Ichuh can either be evaluated directly, or bounded using Lemma
4.1. Another possible choice is a weighted averging interpolation operator with the
weights depending on the diffusion tensor [4].

Remark 4.5. Concerning the lower efficiency bounds, the term (4.7) is robust
with respect to the diffusion tensor; see [18]. But to prove that (4.8) is robust with
respect to the diffusion tensor, to the authors’ knowledge, the diffusion tensor has to
be isotropic and satisfy a locally quasi-monotone property [31, 11].

Proof. Note that

|||E||| ≤ |||Ec|||+ |||Ed|||, (4.9)

where the first part can be bounded by

|||Ec|||2 . a(Ec, Ec) = a(E , Ec)− a(Ed, Ec) . a(E , Ec) + |||Ed||||||Ec|||. (4.10)

Let πh be the L2-orthogonal projection onto the element-wise constant functions and
define η := Ec − πhEc. We then have

a(E , Ec) = a(u, Ec)− a(uh, Ec) = `(Ec)− a(uh, Ec) = `(η)− a(uh, η), (4.11)

which implies

|||Ec|||2 = a(Ec, Ec) =
(
`(η)− a(uh, η)

)
− a(Ed, Ec). (4.12)

Upon integration by parts and using the identity [vw] = {v}w[w] + {w}w̄[v] where w̄
is the skew-weighted average given by

{v}w̄ := wK−(e)v
+ + wK+(e)v

−, (4.13)

the first term on the right-hand side of (4.12) yields

`(η)− a(uh, η)

=
∑
K∈K

(f +∇ ·A∇uh, η)L2(K) +
∑
e∈Γ

(
− (n · [A∇uh], {η}w̄)L2(e\ΓB) (4.14)

+(n · {AΠ∇η}w, [uh])L2(e) − σγeh−1
e ([uh], [η])L2(e)

)
.
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The first term on the right-hand side of (4.14) can be bounded as follows,∑
K∈K

(f+∇·A∇uh, η)L2(K) .
∑
K∈K

hK√
A0

||(1−Π)(f+∇·A∇uh)||L2(K)||A1/2∇Ec||L2(K),

using (4.1). The second term on the right-hand side of (4.14) gives∑
e∈Γ\ΓB

(n · [A∇uh], {η}w̄)L2(e) (4.15)

.
∑
K∈K

√
hK
A0
||(1− wK(e))n · [A∇uh]||L2(∂K\ΓB)||A1/2∇Ec||L2(K),

using (4.2). For the third term on the right-hand side of (4.14), noting that∇η = ∇Ec,
we deduces∑

e∈Γ

(n · {AΠ∇Ec}w, [Ed])L2(e) .
∑
K∈K

1√
hKA0

||γe[Ed]||L2(∂K)||A1/2∇Ec||L2(K),

using an inverse estimate and the L2-stability of Π. For the last term on the right-hand
side of (4.14), we have

∑
e∈Γ

σeγe
he

([uh], [η])L2(e) .
∑
K∈K

√
hK
A0
||σeγe
he

[uh]||L2(∂K\ΓB)||A1/2∇Ec||L2(K).

The last term on the right-hand side of (4.12) is bounded using the continuity if the
bilinear form. Combining all the above bounds and using Lemma 4.1 to bound the
nonconforming part, the result follows.

A posteriori error estimate for the ADG-MS is given below.
Theorem 4.6. Let u, U be defined in (2.1)-(2.2) and (3.12), respectively and set

IchU ∈ H1(Ω). Set E := Ec + Ed where Ec := u − IchU and Ed := IchU − U . Define

UKH
:=
∑
j∈MKH

Uj(φj + T̃ φj) +Uf,KH
, where Uj are the nodal values calculated by

(3.11) for all KH . Then, E satisfies the estimate

|||E ||| . (
∑
K∈K

%2
K)1/2 + (

∑
K∈K

ζ2
K)1/2 + (

∑
KH∈K̃H

ρ2
ωL

KH

)1/2,
(4.16)

where

ρ2
ωL

KH

=
∑

e∈ΓB(ωL
KH

)

(
H2
KO

H

hKOA0|KO
H

)(
||n · {A∇Ui}w||L2(e) +

σeγe
he
||[Ui]||L2(e)

)2

,(4.17)

measures the effect of the truncated patches, KO,KO
H are from outside of ωLKH

, and

%K =
hK√
A0

||(1−Π)(f +∇ ·A∇U)||L2(K), (4.18)

+

√
hK
A0

(
||(1− wK(e))n · [A∇U ]||L2(∂K) + ||σeγe

he
[U ]||L2(∂K)

)
,

ζ2
K = ||

√
A∇(U − IchU)||2L2(K) + ||

√
σeγe
he

[U ]||2L2(∂K). (4.19)
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messuring the refinement level of the fine scale.
Remark 4.7. One adaptive strategy is to refine, with a standard a posteriori

error bound (e.g. using Theorem 4.3), the coarse mesh as much one can afford, and
then further improve the using Theorem 4.6. Note that fine scale problems do not
have to be solved everywhere.

Remark 4.8. For the estimator, ρωL
KH

, to make sence we have to assume that

H2
KH

. hK . This is not unreasonable since, otherwise each fine scale problem would
be more expensive to solve than the coarse scale problem.

Proof. Using the same idea as in Theorem 4.3. We first, note that

|||Ec|||2 = a(Ec,Ec) = a(E ,Ec)− a(Ed,Ec). (4.20)

Then, using (2.9) and the fine scale equations (3.9)–(3.10), we have

a(E ,Ec) = `(Ec)− a(U,Ec), (4.21)

= `(Ec − vH)− a(U,Ec − vH), (4.22)

= `(Ec − vH − vf )− a(U,Ec − vH − vf ) + `(vf )− a(U, vf ), (4.23)

for any vH ∈ VH and vf ∈ Vf . Note that,

`(vf )− a(U, vf ) =
∑

KH∈K̃H

`(χKH
vf )− a(UKH

, vf ) (4.24)

=
∑

KH∈K̃H

∑
e∈ΓB(ωL

KH
)

(
(n · {A∇Ui}w, [ξLKH

vf ])L2(e) (4.25)

+(n · {A∇ξLKH
vf}w, [Ui])L2(e) −

σeγe
he

([Ui], [ξ
L
KH

vf ])L2(e)

)
,

where ξLKH
= 0 on ωLKH

and ξLKH
= 1 otherwise, i.e. vf = ξLKH

vf + (1− ξLKH
)vf where

(1− ξLKH
)vf ∈ Vf (ωLKH

). Then, applying (4.25), we deduce

a(E ,Ec) =
(
`(Ec − vH − vf )− a(U,Ec − vH − vf )

)
(4.26)

+
∑

KH∈K̃H

∑
e∈ΓB(ωL

KH
)

(
(n · {A∇Ui}w, [ξLKH

vf ])L2(e)

+(n · {A∇ξLKH
vf}w, [Ui])L2(e) −

σeγe
he

([Ui], [ξ
L
KH

vf ])L2(e)

)
= : I + II.

Term I can be estimated as in the proof of Theorem 4.3, upon selecting vH := πHEc
and vf = πf (Ec− πHEc) = πfEc, where πH and πf are the element-wise constant L2-
orthogonal projections onto the coarse space VH on the fine space Vf , respectively.
We note that, by construction, πfπHv = 0, for all v ∈ Vh.

Since vf is chosen to be piecewise constant the second term in II is equal to zero.
For each K ∈ K, and for each e ∈ ΓB(ωLKH

)\ΓB , we have∣∣∣(n · {A∇Ui}w, [ξLKH
vf ])L2(e) −

σeγe
he

([Ui], [ξ
L
KH

vf ])L2(e)

∣∣∣
.
(
||n · {A∇Ui}w||L2(e) +

σeγe
he
||[Ui]||L2(e)

)
||[ξLKH

vf ]||L2(e),
(4.27)

using (4.28) and the Cauchy-Schwarz inequality, for e ∈ ΓB , the first term in (4.27)
disappears. Note that, ||[ξLKH

vf ]||L2(e) is either ||[v+
f ]||L2(e) or ||[v−f ]||L2(e) depending
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on ξLKH
. To bound the term involving vf , for simplicity let vf be either v+

f or v−f , we
note that:

||vf ||L2(e) .
1√
hK
‖vf‖L2(K) .

1√
hK
‖vf‖L2(KH)

.
1√
hK
||Ec − πHEc||L2(KH) .

HKH√
hK
||∇Ec||L2(KH)

.
HKH√
hKA0

||
√
A∇Ec||L2(K), (4.28)

using a trace inequality, and the L2-stability of πf , viz., ||πfv||L2(KH) ≤ ||v||L2(KH).

Combining the above and summing over all patches, using the discrete version of
the Cauchy-Schwarz inequality, the proof is concluded.

5. Implementation and Adaptivity. The system of equations arising from
the discretization of the modified coarse multiscale problem (3.11) is given by

KU = b− d, (5.1)

where Ki,j = a(φj + T̃ φj , φi), bi = `(φi), and di = a(Uf , φi). To assemble the right

and left hand sides of (5.1), T̃ φi and Uf,i need to be computed for all i ∈ N . This
can be done in parallel since no commutation is needed between the different fine
scale problems. For each fine scale problem it is also possible to assemble Ki,j =

a(φj + T̃ φj , φi), bi = `(φi), and di =
∑
j∈N a(Uf,j , φi) for a fixed i and for all j

such that µd(supp(φj) ∩ ω̄K) > 0. The constraints needed on the fine scale test

spaces to solve T̃ φi and Uf,i are Vf = {v ∈ Vh : ΠHv = 0}, which are implemented
using Lagrange multipliers. The spaces Vf and VH are orthogonal with respect to the
L2-inner product.

Let VH = span{φi} and Vf = span{ϕi}. Then, the system of equations to be
solved on the fine scale is given by(

K PT

P 0

)
ξ =

(
b
0

)
, (5.2)

where

P =


(φ1, ϕ1) (φ1, ϕ2) . . . (φ1, ϕN )
(φ2, ϕ1) (φ2, ϕ2) . . . (φ2, ϕN )

...
...

. . .
...

(φM , ϕ1) (φM , ϕ2) . . . (φM , ϕN )

 , (5.3)

with Kk,l = ai(ϕk, ϕl) and b either bk = li(ϕk) for (3.10) or bk = −ai(φi, ϕk) for (3.9).

Using the a posteriori error estimate above it is possible to design an adaptive
algorithm that automatically tunes the fine mesh size and the size of the patches. In
the numerical experiments below, we have implemented Algorithm 1, which extends
the patches in all directions and uses a uniform mesh refinement of the fine scale on
each coarse element. A more elaborate algorithm which only extends in the direc-
tion where the error is large and uses adaptive mesh refinement would be a possible
extension, since the a posteriori indicators above contain local contributions of each
individual patch-boundary face and of each fine scale element residual.
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Algorithm 1 Adaptive Discontinuous Galerkin Multiscale Method

1: Initialize the coarse mesh, KH with mesh function H, and a fine mesh, Kh with
meshfunction h, by using to uniform refinements of KH i.e., h = H/4.

2: For all KH let the size of the patches be ω3
KH

.
3: Set the mesh refinment level to X%.
4: while (

∑
K∈K %

2
h,K)1/2 + (

∑
K∈K ζ

2
h,K)1/2 + (

∑
KH∈KH

ρ2
ωL

KH

)1/2 > TOL do

5: for K ∈ K̃H do
6: Solve the fine scale problems (3.1) and (3.10).
7: Compute the matrix and vector entries on the coarse scale (5.1).
8: end for
9: Solve the modified coarse scale problem (3.11).

10: Mark the indicator with X% largest error in {%2
h,K + ζ2

h,K , ρ
2
L,ωi
}.

11: for KH ∈ KH do
12: if ρ2

L,ωi
is marked then

13: ωLKH
:= ωL+1

KH

14: end if
15: if ρ2

h,K + ζ2
h,K is marked then

16: h|KH
:= h|KH

/2
17: end if
18: end for
19: end while

6. Numerical examples. We present some numerical experiments where the
converge of the method as well as the performance of the adaptive algorithm is inves-
tigated.

6.1. Convergence. We consider the model problem (2.1)–(2.2) on the L-shaped
domain constructed by removing the lower right quadrant in the unit square, with
forcing function f = 1. We consider a coarse quadrilateral mesh of size H = 2−4.
Furthermore each coarse element K ∈ KH is further subdivided using two uniform
refinements to construct the fine mesh. The error is measured in the relative energy
norm, (2.12), where uh is the DG solution on the fine mesh i.e., there is only a
truncation error (due to the fine scale patch size) between the multiscale solution and
the DG solution. The permeabilities One and SPE 1, illustrated in Figure 6.1, are
used. In One, we have A = 1, and in SPE the data is taken from the tenth SPE
comparative solution project and is projected into the fine mesh. Exponential decay
is observed with respect to the number of layers for the different permeabilities One
and SPE, until the patches covers the whole domain when L = 8; this is illustrated
in Figure 6.2. As expected, when L = 8, only round off error between the multiscale
solution and the reference solution is observed. Note that we have convergence to uh
sine the right hand side correction fine scale correction is included.

6.2. Adaptivity for a problem with analytic solution. Let us consider the
model problem (2.1)–(2.2) on a unit square, using the permeability, A = 1, and the

forcing function, f = 4a2(1 − ar2)e−ar
2

. Using a = 400, the analytic solution can

be approximated sufficiently well by u = ae−ar
2

, which represent a Gaussian pulse
in the middle of the domain. Consider a coarse quadrilateral mesh of size H = 2−4,

1Data is taken from the tenth SPE comparative solution project http://www.spe.org/web/csp/
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Figure 6.1. Permeability structure of One and SPE in log scale on a L-shaped domain.
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Figure 6.2. Convergence in relative energy norm (2.12), on a L-shaped domain when the
number of layers are increased using the different permeabilities One and SPE.

and a fine mesh of size h = 2−6. The adaptive algorithm (Algorithm 1) with 10%
refinement level is used. The starting values in the adaptive algorithm are, that each
patch consist of 3 layers and the fine scale mesh are uniformly refined two times.
Figure 6.3 shows the how the error and error indicators decrease in each iteration
of the adaptive algorithm and Figure 6.4 show were the adaptive algorithm put the
computational effort, which is in the position of the pulse.

6.3. Adaptivity on an L-shaped domain. Consider the model problem and
the same data as in Section 6.1. An adaptive algorithm is used where multiscale
solution is compared to a reference solution computed with the standard DG solution
on a uniform quadrilteral mesh with mesh size h = 2−9, see Figure 6.3. Let the
coarse mesh consist of a uniform quadrilteral mesh of size H = 2−4. The starting
values in the adaptive algorithm (Algorithm 1) are that each patch consist of 3 layers
(L = 3) and the fine scale mesh are two uniform refinments of the coarse mesh.
In each iteration a refinment level of 30% is used. Figure 6.3 shows how the error
decreases after each iteration in the adaptive algorithm. Also, the adaptive algorithm
chooses to increase the patches in the beginning since the error from the truncation
is initially larger than the discretization error and after a few iterations it is starting
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Figure 6.3. Convergence in relative energy norm 2.12, using a adaptive algorithm on the unite
square with Gaussion puls in the middle.

Figure 6.4. The level of refinement and size of the patches illustrated in the left resp. right
plots, using a adaptive algorithm on a unite square with Gaussion puls in the middle. White is
where most refinements resp. bigger size are used and black is where least refinements resp. smallest
patches are used.

to refine the fine scale mesh more and more. When the patch sizes are increased the
error, due to truncation, decays exponentially independent of the regularity of the
solution as shown theoretically in [17]. This is not true for the discretization error.
This motivates the use of an adaptive algorithm which tune the error between the
truncation and discretization. Figure 6.7 shows where the adaptive algorithm put
most computational effort.

6.4. Adaptivity for flow in porous media. We consider the problem (2.1)–
(2.2) on the unit square Ω = [0, 1]2, with forcing function f = −1 in the lower left
corner {0 ≤ x, y ≤ 1/128}, f = 1 in the upper right corner {127/128 ≤ x, y ≤ 1},
and f = 0 otherwise. The following permeabilities SPE11 and SPE21 are used
and projected into a mesh with 64× 64 elements, see Figure 6.8. The computational
domain Ω is split into 32×32 coarse square elements KH ∈ KH . The error is measured
in the relative energy norm, with the reference solution uh being the DG solution
computed on a 512× 512-element mesh. The adaptive algorithm (Algorithm 1) with
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Figure 6.5. Reference solution for the different permeabilities computed on a mesh with size
h = 2−9 and projected to a mesh with size h = 2−6.
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algorithm and where, ρL is the truncation error indicator, %K and ζK are the discretization error
indicators.
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Figure 6.7. The level of refinement and size of the patches illustrated in the upper resp. lower
plots for the different permeability One (left) and SPE (right). White is where most refinements
resp. larger patch are used and black is where least refinements resp. smallest patches are used.

(a) SPE11, αmax/αmin = 6.1765 ·
105

(b) SPE21, αmax/αmin = 5.0193 ·
105

Figure 6.8. Permeabilities projection in log scale.

refinment level 30% are used. In Iteration 1 the multiscale problem is solved using two
refinement on each coarse element and each fine scale problem is solved with L = 3,
and so on. Even though complicated permeabilities with αmax/αmin ∼ 105 are used,
the proposed adaptive algorithm is able to reduce relative error considerably; this is
shown in Figure 6.9.

7. Concluding remarks. An adaptive multiscale method based on discontin-
uous Galerkin discretization has been proposed and assessed in practice. There are
several different advantages for using the proposed multiscale method. The possibility
to allow a global underling reference grid (using the DG framework including hanging
nodes) is crucial. This does not only account for cancellation of the error between
different fine scale problems in the a posteriori error bound, it also fits the method
into the convergence framework presented in [17]. It admits a local conservation of the
state variable, which is crucial in many applications e.g. prous media flow. The mul-
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Figure 6.9. Relative in error broken energy norm against the number of iterations using the
adaptive algorithm for flow in porous media.

tiscale method and the adaptive algorithm admit naturally parallel implementation,
which results in further savings in computational time.

An adaptive algorithm for which the coarse scale, the fine scale, and the size of the
different patches are taken into account, based on an energy norm a posteriori bound is
proposed. Using the proposed multiscale method together with the adaptive algorithm
lead to substantial computational savings and perform very well when applied to
challenging benchmark problems.
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