
Introduction to GGPLOT

Dimitris Fouskakis

Professor in Applied Statistics,

Department of Mathematics,

School of Applied Mathematical & Physical Sciences,

National Technical University of Athens

Email: fouskakis@math.ntua.gr

DATA SCIENCE AND

MACHINE LEARNING

Dimitris FouskakisIntroduction to GGPLOT 2

Visualization

 Creating visualizations (graphical
representations) of data is a key step
in being able to communicate
information and findings to others.

 Intro to ggplot2.

 Preeminent plotting library in R.

 This gets you started with ggplot2;
however, there is a lot more to learn.

Dimitris Fouskakis

GGplot2

 Install and load ggplot2 library.

 ggplot2 comes with a number of
built-in datasets. Here we will use the
mpg dataset, which is a data frame
that contains information about fuel
economy for different cars.

Introduction to GGPLOT 3

Dimitris Fouskakis

Mpg Dataset

Introduction to GGPLOT 4

library(ggplot2)

mpg
A tibble: 234 × 11
manufacturer model displ year cyl trans drv cty hwy
<chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int>
1 audi a4 1.8 1999 4 auto(l5) f 18 29
2 audi a4 1.8 1999 4 manual(m5) f 21 29
3 audi a4 2.0 2008 4 manual(m6) f 20 31
4 audi a4 2.0 2008 4 auto(av) f 21 30
5 audi a4 2.8 1999 6 auto(l5) f 16 26
6 audi a4 2.8 1999 6 manual(m5) f 18 26
7 audi a4 3.1 2008 6 auto(av) f 18 27
8 audi a4 quattro 1.8 1999 4 manual(m5) 4 18 26
9 audi a4 quattro 1.8 1999 4 auto(l5) 4 16 25
10 audi a4 quattro 2.0 2008 4 manual(m6) 4 20 28
... with 224 more rows, and 2 more variables: fl <chr>, class <chr>

Dimitris Fouskakis

Mpg Dataset

 A data frame with 234 rows and 11 variables.

◼ manufacturer

◼ model (model name)

◼ displ (engine displacement, in litres)

◼ year (year of manufacture)

◼ cyl (number of cylinders)

◼ Trans (type of transmission)

◼ drv (f = front-wheel drive, r = rear wheel drive, 4 = 4wd)

◼ cty (city miles per gallon)

◼ hwy (highway miles per gallon)

◼ fl (fuel type)

◼ class ("type" of car)

Introduction to Basic Principles of R 5

Dimitris Fouskakis

Grammar of Graphics

 the data being plotted

 the geometric objects (circles, lines, etc.) that appear on the
plot

 a set of mappings from variables in the data to the
aesthetics (appearance) of the geometric objects

 a statistical transformation used to calculate the data values
used in the plot

 a position adjustment for locating each geometric object on
the plot

 a scale (e.g., range of values) for each aesthetic mapping
used

 a coordinate system used to organize the geometric objects

 the facets or groups of data shown in different plots
Introduction to GGPLOT 6

Dimitris Fouskakis

The Basics

 Call the ggplot() function which creates a blank
canvas.

 Specify aesthetic mappings, i.e. how you want to
map variables to visual aspects. In the next slide
we are simply mapping the displ and hwy variables
to the x- and y-axes.

 You then add new layers that are geometric objects
which will show up on the plot. In the next slide we
add geom_point to add a layer with points (dot)
elements as the geometric shapes to represent the
data.

Introduction to GGPLOT 7

Dimitris Fouskakis

The Basics

create canvas

ggplot(mpg)

variables of interest mapped

ggplot(mpg, aes(x = displ, y = hwy))

data plotted

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point()

Note that when you added the geom layer you used
the addition (+) operator. As you add new layers you
will always use + to add onto your visualization.

Introduction to GGPLOT 8

Dimitris Fouskakis

The Basics

Introduction to GGPLOT 9

Dimitris Fouskakis

Aesthetic Mappings

 The aesthetic mappings take properties of the data
and use them to influence visual characteristics,
such as position, color, size, shape, or
transparency. Each visual characteristic can thus
encode an aspect of the data and be used to
convey information.

 All aesthetics for a plot are specified in the aes()
function call. For example, we can add a mapping
from the class of the cars to a color characteristic:

Introduction to GGPLOT 10

Dimitris Fouskakis

Aesthetic Mappings

ggplot(mpg, aes(x = displ, y = hwy, color = class)) +
geom_point()

Introduction to GGPLOT 11

Dimitris Fouskakis

Aesthetic Mappings

 Note that using the aes() function will cause the visual
channel to be based on the data specified in the
argument. For example, using aes(color = "blue") won’t
cause the geometry’s color to be “blue”, but will instead
cause the visual channel to be mapped from the vector
c("blue") — as if we only had a single type of engine that
happened to be called “blue”. If you wish to apply an
aesthetic property to an entire geometry, you can set
that property as an argument to the geom method,
outside of the aes() call:

Introduction to GGPLOT 12

Dimitris Fouskakis

Aesthetic Mappings

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(color = "blue")

Introduction to GGPLOT 13

Dimitris Fouskakis

Geometric Shapes

 geom_point for drawing individual points (e.g., a scatter
plot)

 geom_line for drawing lines (e.g., for a line charts)

 geom_smooth for drawing smoothed lines (e.g., for
simple trends or approximations)

 geom_bar for drawing bars (e.g., for bar charts)

 geom_histogram for drawing binned values (e.g. a
histogram)

 geom_polygon for drawing arbitrary shapes

 geom_map for drawing polygons in the shape of a map!
(You can access the data to use for these maps by using
the map_data() function).

Introduction to GGPLOT 14

Dimitris Fouskakis

Geometric Shapes

 Each of these geometries will leverage the
aesthetic mappings supplied although the
specific visual properties that the data will map
to will vary. For example, you can map data to
the shape of a geom_point (e.g., if they should
be circles or squares), or you can map data to
the linetype of a geom_line (e.g., if it is solid or
dotted), but not vice versa.

 Almost all geoms require an x and y mapping
at the bare minimum.

Introduction to GGPLOT 15

Dimitris Fouskakis

Geometric Shapes

Left column: x and y mapping needed!

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point()

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_smooth()

Right column: no y mapping needed!

ggplot(data = mpg, aes(x = class)) +

geom_bar()

ggplot(data = mpg, aes(x = hwy)) +

geom_histogram()

Introduction to GGPLOT 16

Dimitris Fouskakis

Geometric Shapes

Introduction to GGPLOT 17

Dimitris Fouskakis

Geometric Shapes

 What makes this really powerful is that you can add
multiple geometries to a plot, thus allowing you to create
complex graphics showing multiple aspects of your data.

plot with both points and smoothed line

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +

geom_smooth()

Introduction to GGPLOT 18

Dimitris Fouskakis

Geometric Shapes

Introduction to GGPLOT 19

Dimitris Fouskakis

Geometric Shapes

 Of course the aesthetics for each geom can be different,
so you could show multiple lines on the same plot (or
with different colors, styles, etc). It’s also possible to
give each geom a different data argument, so that you
can show multiple data sets in the same plot.

 For example, we can plot both points and a smoothed
line for the same x and y variable but specify unique
colors within each geom:

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(color = "blue") +

geom_smooth(color = "red")

Introduction to GGPLOT 20

Dimitris Fouskakis

Geometric Shapes

Introduction to GGPLOT 21

Dimitris Fouskakis

Geometric Shapes

 So as you can see if we specify an aesthetic within ggplot it will be
passed on to each geom that follows. Or we can specify certain aes
within each geom, which allows us to only show certain
characteristics for that specific layer (i.e. geom_point).

color aesthetic passed to each geom layer

ggplot(mpg, aes(x = displ, y = hwy, color = class)) +

geom_point() +

geom_smooth(se = FALSE)

color aesthetic specified for only the geom_point layer

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = class)) +

geom_smooth(se = FALSE)

Introduction to GGPLOT 22

Dimitris Fouskakis

Geometric Shapes

Introduction to GGPLOT 23

Dimitris Fouskakis

Statistical Transformations

 If you look at the bar chart in the next slide, you’ll notice
that the y axis was defined for us as the count of
elements that have the particular type. This count isn’t
part of the data set (it’s not a column in mpg), but is
instead a statistical transformation that the
geom_bar automatically applies to the data. In
particular, it applies the stat_count transformation.

ggplot(mpg, aes(x = class)) +

geom_bar()

Introduction to GGPLOT 24

Dimitris Fouskakis

Statistical Transformations

Introduction to GGPLOT 25

Dimitris Fouskakis

Statistical Transformations

 ggplot2 supports many different
statistical transformations. For
example, the “identity”
transformation will leave the data “as
is”. You can specify which statistical
transformation a geom uses by
passing it as the stat argument. For
example, consider our data already
had the count as a variable:

Introduction to GGPLOT 26

Dimitris Fouskakis

Statistical Transformations

class_count <- dplyr::count(mpg, class)

class_count

A tibble: 7 × 2

class n

<chr> <int>

1 2seater 5

2 compact 47

3 midsize 41

4 minivan 11

5 pickup 33

6 subcompact 35

7 suv 62

Introduction to GGPLOT 27

Dimitris Fouskakis

Statistical Transformations

 We can use stat = "identity" within
geom_bar to plot our bar height
values to this variable. Also, note that
we now include n for our y variable:

ggplot(class_count, aes(x = class, y = n)) +

geom_bar(stat = "identity")

Introduction to GGPLOT 28

Dimitris Fouskakis

Statistical Transformations

Introduction to GGPLOT 29

Dimitris Fouskakis

Statistical Transformations

 We can also call stat_ functions directly to add additional
layers. For example, here we create a scatter plot of
highway miles for each displacement value and then use
stat_summary to plot the mean highway miles at each
displacement value.

ggplot(mpg, aes(displ, hwy)) +

geom_point(color = "grey") +

stat_summary(fun.y = "mean", geom = "line", size = 1,
linetype = "dashed")

Introduction to GGPLOT 30

Dimitris Fouskakis

Statistical Transformations

Introduction to GGPLOT 31

Dimitris Fouskakis

Position Adjustment

 In addition to a default statistical transformation, each
geom also has a default position adjustment which
specifies a set of “rules” as to how different components
should be positioned relative to each other. This position
is noticeable in a geom_bar if you map a different
variable to the color visual characteristic (stacked
barplot):

bar chart of class, colored by drive (front, rear, 4-wheel)

ggplot(mpg, aes(x = class, fill = drv)) +

geom_bar()

Introduction to GGPLOT 32

Dimitris Fouskakis

Position Adjustment

Introduction to GGPLOT 33

Dimitris Fouskakis

Position Adjustment

 The geom_bar by default uses a position adjustment of
"stack", which makes each rectangle’s height proportional to
its value and stacks them on top of each other. We can use the
position argument to specify what position adjustment rules to
follow:

position = "dodge": values next to each other (grouped barplot)

ggplot(mpg, aes(x = class, fill = drv)) +

geom_bar(position = "dodge")

position = "fill": percentage chart (stacked barplot with % in y-axis)

ggplot(mpg, aes(x = class, fill = drv)) +

geom_bar(position = "fill")

Introduction to GGPLOT 34

Dimitris Fouskakis

Position Adjustment

Introduction to GGPLOT 35

Dimitris Fouskakis

Managing Scales

 Whenever you specify an aesthetic mapping, ggplot uses a particular
scale to determine the range of values that the data should map to.
Thus when you specify

color the data by engine type

ggplot(mpg, aes(x = displ, y = hwy, color = class)) +

geom_point()

 ggplot automatically adds a scale for each mapping to the plot:

same as above, with explicit scales

ggplot(mpg, aes(x = displ, y = hwy, color = class)) +

geom_point() +

scale_x_continuous() +

scale_y_continuous() +

scale_colour_discrete()

Introduction to GGPLOT 36

Dimitris Fouskakis

Managing Scales

 Each scale can be represented by a function with the following name:
scale_, followed by the name of the aesthetic property, followed by an
_ and the name of the scale. A continuous scale will handle things like
numeric data (where there is a continuous set of numbers), whereas a
discrete scale will handle things like colors (since there is a small list of
distinct colors).

 While the default scales will work fine, it is possible to explicitly add
different scales to replace the defaults. For example, you can use a
scale to change the direction of an axis:

milage relationship, ordered in reverse

ggplot(mpg, aes(x = cty, y = hwy)) +

geom_point() +

scale_x_reverse() +

scale_y_reverse()

Introduction to GGPLOT 37

Dimitris Fouskakis

Managing Scales

Introduction to GGPLOT 38

Dimitris Fouskakis

Managing Scales

 Similarly, you can use scale_x_log10() and
scale_x_sqrt() to transform your scale. You can also use
scales to format your axes:

ggplot(mpg, aes(x = class, fill = drv)) +

geom_bar(position = "fill") +

scale_y_continuous(breaks = seq(0, 1, by = .2), labels =
scales::percent)

Introduction to GGPLOT 39

Dimitris Fouskakis

Managing Scales

Introduction to GGPLOT 40

Dimitris Fouskakis

Managing Scales

 A common parameter to change is which set of colors to
use in a plot. While you can use the default coloring, a
more common option is to leverage the pre-defined
palettes from colorbrewer.org. These color sets have
been carefully designed to look good and to be viewable
to people with certain forms of color blindness. We can
leverage color brewer palletes by specifying the
scale_color_brewer() function, passing the pallete as an
argument.

Introduction to GGPLOT 41

Dimitris Fouskakis

Managing Scales

default color brewer

ggplot(mpg, aes(x = displ, y = hwy, color = class)) +

geom_point() +

scale_color_brewer()

specifying color palette

ggplot(mpg, aes(x = displ, y = hwy, color = class)) +

geom_point() +

scale_color_brewer(palette = "Set3")

Introduction to GGPLOT 42

Dimitris Fouskakis

Managing Scales

Introduction to GGPLOT 43

Dimitris Fouskakis

Managing Scales

 Note that you can get the palette name from
the colorbrewer website by looking at the
scheme query parameter in the URL. Or see
the diagram at
https://bl.ocks.org/mbostock/5577023 and
hover the mouse over each palette for the
name.

 You can also specify continuous color values by
using a gradient scale, or manually specify the
colors you want to use as a named vector.

Introduction to GGPLOT 44

https://bl.ocks.org/mbostock/5577023

Dimitris Fouskakis

Coordinate Systems

 The next term from the Grammar of Graphics that can
be specified is the coordinate system. As with scales,
coordinate systems are specified with functions that all
start with coord_ and are added as a layer. There are a
number of different possible coordinate systems to use,
including:
◼ coord_cartesian the default cartesian coordinate system, where

you specify x and y values (e.g. allows you to zoom in or out).

◼ coord_flip a cartesian system with the x and y flipped

◼ coord_fixed a cartesian system with a “fixed” aspect ratio (e.g.,
1.78 for a “widescreen” plot)

◼ coord_polar a plot using polar coordinates

◼ coord_quickmap a coordinate system that approximates a good
aspect ratio for maps. See documentation for more details.

Introduction to GGPLOT 45

Dimitris Fouskakis

Coordinate Systems

zoom in with coord_cartesian

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +

coord_cartesian(xlim = c(0, 5))

flip x and y axis with coord_flip

ggplot(mpg, aes(x = class)) +

geom_bar() +

coord_flip()

Introduction to GGPLOT 46

Dimitris Fouskakis

Coordinate Systems

Introduction to GGPLOT 47

Dimitris Fouskakis

Facets

 Facets are ways of grouping a data plot into multiple
different pieces (subplots). This allows you to view a
separate plot for each value in a categorical variable. You
can construct a plot with multiple facets by using the
facet_wrap() function. This will produce a “row” of
subplots, one for each categorical variable (the number
of rows can be specified with an additional argument):

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +

facet_grid(~ class)

Introduction to GGPLOT 48

Dimitris Fouskakis

Facets

Introduction to GGPLOT 49

Dimitris Fouskakis

Facets

 You can also facet_grid to facet your data by more than
one categorical variable. Note that we use a tilde (~) in
our facet functions. With facet_grid the variable to the
left of the tilde will be represented in the rows and the
variable to the right will be represented across the
columns.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +

facet_grid(year ~ cyl)

Introduction to GGPLOT 50

Dimitris Fouskakis

Facets

Introduction to GGPLOT 51

Dimitris Fouskakis

Labels & Annotations

 Textual labels and annotations (on the plot, axes,
geometry, and legend) are an important part of making
a plot understandable and communicating information.
Although not an explicit part of the Grammar of Graphics
(they would be considered a form of geometry), ggplot
makes it easy to add such annotations.

 You can add titles and axis labels to a chart using the
labs() function (not labels, which is a different R
function!):

Introduction to GGPLOT 52

Dimitris Fouskakis

Labels & Annotations

ggplot(mpg, aes(x = displ, y = hwy, color = class)) +

geom_point() +

labs(title = "Fuel Efficiency by Engine Power",

subtitle = "Fuel economy data from 1999 and 2008 for

38 popular models of cars",

x = "Engine power (litres displacement)",

y = "Fuel Efficiency (miles per gallon)",

color = "Car Type")

Introduction to GGPLOT 53

Dimitris Fouskakis

Labels & Annotations

Introduction to GGPLOT 54

Dimitris Fouskakis

Labels & Annotations

 It is also possible to add labels into the plot itself (e.g.,
to label each point or line) by adding a new geom_text
or geom_label to the plot; effectively, you’re plotting an
extra set of data which happen to be the variable
names:

library(dplyr)

a data table of each car that has best efficiency of its type

best_in_class <- mpg %>% group_by(class) %>% filter(row_number(desc(hwy)) ==
1)

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = class)) +

geom_label(data = best_in_class, aes(label = model), alpha = 0.5)

Introduction to GGPLOT 55

labels 50% transparent

Dimitris Fouskakis

Labels & Annotations

Introduction to GGPLOT 56

Dimitris Fouskakis

The Operator %>%

 The infix operator %>% is not part of base R, but
is in fact defined by the package magrittr (CRAN)
and is heavily used by dplyr (CRAN).

 What the function does is to pass the left hand
side of the operator to the first argument of
the right hand side of the operator. In the
following example, the data frame iris gets passed
to head():

Introduction to Basic Principles of R 57

Dimitris Fouskakis

The Operator %>%

library(magrittr)

iris %>% head()

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

 Thus, iris %>% head() is equivalent to head(iris).

Introduction to Basic Principles of R 58

Dimitris Fouskakis

The Operator %>%

 Often, %>% is called multiple times to "chain"
functions together, which accomplishes the same
result as nesting. For example in the chain below,
iris is passed to head(), then the result of that is
passed to summary().

iris %>% head() %>% summary()

 Thus iris %>% head() %>% summary() is
equivalent to summary(head(iris)). Some people
prefer chaining to nesting because the functions
applied can be read from left to right rather than
from inside out.

Introduction to Basic Principles of R 59

Dimitris Fouskakis

Operator %>%
mpg %>% group_by(class) %>% filter(row_number(desc(hwy)) == 1)

 In the above we further use the functions group_by
and filter from the package dplyr.

 At the beginning the dataset mpg is grouped by
class of the car.

 In the resulting object we then apply function filter
that returns rows with the condition

row_number(desc(hwy)) == 1; i.e. the row in
each car with the highest hwy (highway miles
per gallon).

 The result therefore is the car in each class
with the highest highway miles per gallon.

Introduction to Basic Principles of R 60

Dimitris Fouskakis

Labels & Annotations

 Back to the plot we produced.

 Notice that two labels overlap one-another in the top left
part of the plot. We can use the geom_text_repel
function from the ggrepel package to help position
labels.

library(ggrepel)

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = class)) +

geom_text_repel(data = best_in_class, aes(label =
model))

Introduction to GGPLOT 61

Dimitris Fouskakis

Labels & Annotations

Introduction to GGPLOT 62

Dimitris Fouskakis

Other Visualization Libraries

 ggvis is a library that uses the Grammar of Graphics
(similar to ggplot), but for interactive visualizations.

 plotly is a open-source library for developing interactive
visualizations. It provides a number of “standard”
interactions (pop-up labels, drag to pan, select to zoom,
etc) automatically. Moreover, it is possible to take a
ggplot2 plot and wrap it in Plotly in order to make it
interactive. Plotly has many examples to learn from,
though a less effective set of documentation.

 htmlwidgets provides a way to utilize a number of
JavaScript interactive visualization libraries. JavaScript is
the programming language used to create interactive
websites (HTML files), and so is highly specialized for
creating interactive experiences.

Introduction to GGPLOT 63

