
Introduction to Data Tables

Dimitris Fouskakis

Professor in Applied Statistics,

Department of Mathematics,

School of Applied Mathematical & Physical Sciences,

National Technical University of Athens

Email: fouskakis@math.ntua.gr

DATA SCIENCE AND

MACHINE LEARNING

Dimitris FouskakisIntroduction to Data Tables 2

Aim

 Beyond Data Frames.

 Simpler R Data manipulation operations such as subset,
group, update, join etc.. Aim:
◼ concise and consistent syntax irrespective of the set of operations

you would like to perform to achieve your end goal.

◼ performing analysis fluidly without the cognitive burden of having
to map each operation to a particular function from a potentially
huge set of functions available before performing the analysis.

◼ automatically optimising operations internally, and very effectively,
by knowing precisely the data required for each operation, leading
to very fast and memory efficient code.

 Briefly, if you are interested in reducing programming
and compute time tremendously, then this package is for
you. The philosophy that data.table adheres to makes
this possible.

Dimitris Fouskakis

Usefulness

 It works well with very large data
files.

 Can behave just like a data frame.

 Offers fast subset, grouping, update,
and joins.

 Makes it easy to turn an existing data
frame into a data table.

Introduction to Data Tables 3

Dimitris Fouskakis

Example 1

 We will use NYC-flights14 data. It contains On-Time
flights data from the Bureau of Transportation
Statistics for all the flights that departed from New
York City airports in 2014. The data is available
only for Jan-Oct’14.

 We can use data.table’s fast-and-friendly file reader
fread to load flights directly.

 Aside: fread accepts http and https URLs directly as
well as operating system commands such as sed
and awk output. See ?fread for examples.

Introduction to Data Tables 4

Dimitris Fouskakis

Example 1

flights <- fread("flights14.csv")

flights

year month day dep_delay arr_delay carrier origin dest air_time distance hour

1: 2014 1 1 14 13 AA JFK LAX 359 2475 9

2: 2014 1 1 -3 13 AA JFK LAX 363 2475 11

3: 2014 1 1 2 9 AA JFK LAX 351 2475 19

4: 2014 1 1 -8 -26 AA LGA PBI 157 1035 7

5: 2014 1 1 2 1 AA JFK LAX 350 2475 13

dim(flights)

[1] 253316 11

###OR
flights<-fread("https://raw.githubusercontent.com/Rdatatable/data.table/master/vignettes/flights14.csv")")

dim(flights)

[1] 253316 11

Introduction to Data Tables 5

Dimitris Fouskakis

Example 1

 data.table is an R package that
provides an enhanced version of
data.frames, which are the standard
data structure for storing data in base
R. In the previous slide, we created a
data.table using fread(). We can also
create one using the data.table()
function. Here is an example:

Introduction to Data Tables 6

Dimitris Fouskakis

Example 1

DT = data.table(

ID = c("b","b","b","a","a","c"),

a = 1:6,

b = 7:12,

c = 13:18

)

DT

ID a b c

1: b 1 7 13

2: b 2 8 14

3: b 3 9 15

4: a 4 10 16

5: a 5 11 17

6: c 6 12 18

class(DT$ID)

[1] "character"

Introduction to Data Tables 7

Dimitris Fouskakis

Example 1

 You can also convert existing objects
to a data.table using setDT() (for
data.frames and lists) and
as.data.table() (for other structures);
see ?setDT and ?as.data.table for
more details.

Introduction to Data Tables 8

Dimitris Fouskakis

Example 1

 Unlike data.frames, columns of character type are never
converted to factors by default.

 Row numbers are printed with a : in order to visually
separate the row number from the first column.

 When the number of rows to print exceeds the global
option datatable.print.nrows (default = 100), it
automatically prints only the top 5 and bottom 5 rows. If
you’ve had a lot of experience with data.frames, you
may have found yourself waiting around while larger
tables print-and-page, sometimes seemingly endlessly.
You can query the default number like so:
getOption("datatable.print.nrows")

Introduction to Data Tables 9

Dimitris Fouskakis

Example 1

 In contrast to a data.frame, you can do a lot more than just
subsetting rows and selecting columns within the frame of a
data.table, i.e., within [...]. To understand it we will have to first
look at the general form of data.table syntax, as shown below:

DT[i, j, by]

R: i j by

SQL: where | order by select | update group by

 Users who have an SQL background might perhaps immediately
relate to this syntax.

 The way to read it (out loud) is:
◼ Take DT, subset/reorder rows using i, then calculate j, grouped by by.

 Let’s begin by looking at i and j first - subsetting rows and
operating on columns.

Introduction to Data Tables 10

Dimitris Fouskakis

Basics

 Get all the flights with “JFK” as the origin airport in the
month of June.

ans <- flights[origin == "JFK" & month == 6L] #(6L denotes integer)

head(ans)

year month day dep_delay arr_delay carrier origin dest air_time distance hour

1: 2014 6 1 -9 -5 AA JFK LAX 324 2475 8

2: 2014 6 1 -10 -13 AA JFK LAX 329 2475 12

3: 2014 6 1 18 -1 AA JFK LAX 326 2475 7

4: 2014 6 1 -6 -16 AA JFK LAX 320 2475 10

5: 2014 6 1 -4 -45 AA JFK LAX 326 2475 18

6: 2014 6 1 -6 -23 AA JFK LAX 329 2475 14

Introduction to Data Tables 11

Dimitris Fouskakis

Basics

 Within the frame of a data.table, columns can be
referred to as if they are variables, much like in SQL.
Therefore, we simply refer to dest and month as if they
are variables. We do not need to add the prefix flights$
each time. Nevertheless, using flights$dest and
flights$month would work just fine.

 The row indices that satisfy the condition origin == "JFK"
& month == 6L are computed, and since there is nothing
else left to do, all columns from flights at rows
corresponding to those row indices are simply returned
as a data.table.

 A comma after the condition in i is not required. But
flights[dest == "JFK" & month == 6L,] would work just
fine. In data.frames, however, the comma is necessary.

Introduction to Data Tables 12

Dimitris Fouskakis

Basics

 Get the first two rows from flights.
ans <- flights[1:2]

ans

year month day dep_delay arr_delay carrier origin dest air_time
distance hour

1: 2014 1 1 14 13 AA JFK LAX 359 2475 9

2: 2014 1 1 -3 13 AA JFK LAX 363 2475 11

 In this case, there is no condition. The row indices are
already provided in i. We therefore return a data.table
with all columns from flights at rows for those row
indices.

Introduction to Data Tables 13

Dimitris Fouskakis

Basics

 Sort flights first by column origin in ascending order, and
then by dest in descending order:

 We can use the R function order() to accomplish this.
ans <- flights[order(origin, -dest)]

head(ans)

year month day dep_delay arr_delay carrier origin dest air_time distance hour

1: 2014 1 5 6 49 EV EWR XNA 195 1131 8

2: 2014 1 6 7 13 EV EWR XNA 190 1131 8

3: 2014 1 7 -6 -13 EV EWR XNA 179 1131 8

4: 2014 1 8 -7 -12 EV EWR XNA 184 1131 8

5: 2014 1 9 16 7 EV EWR XNA 181 1131 8

6: 2014 1 13 66 66 EV EWR XNA 188 1131 9

Introduction to Data Tables 14

Dimitris Fouskakis

Basics

 Select arr_delay column, but return it as a vector.
ans <- flights[, arr_delay]

head(ans)

[1] 13 13 9 -26 1 0

 Since columns can be referred to as if they are
variables within the frame of data.tables, we
directly refer to the variable we want to subset.
Since we want all the rows, we simply skip i.

 It returns all the rows for the column arr_delay.

Introduction to Data Tables 15

Dimitris Fouskakis

Basics

 Select arr_delay column, but return as a data.table
instead.

ans <- flights[, list(arr_delay)]

head(ans)

arr_delay

1: 13

2: 13

3: 9

4: -26

5: 1

6: 0

Introduction to Data Tables 16

Dimitris Fouskakis

Basics

 Select both arr_delay and dep_delay columns.
ans <- flights[, .(arr_delay, dep_delay)]

head(ans)

arr_delay dep_delay

1: 13 14

2: 13 -3

3: 9 2

4: -26 -8

5: 1 2

6: 0 4

alternatively

ans <- flights[, list(arr_delay, dep_delay)]

Introduction to Data Tables 17

Dimitris Fouskakis

Basics

 Select both arr_delay and dep_delay columns and
rename them to delay_arr and delay_dep.

 Since .() is just an alias for list(), we can name columns
as we would while creating a list.

ans <- flights[, .(delay_arr = arr_delay, delay_dep = dep_delay)]

head(ans)

delay_arr delay_dep

1: 13 14

2: 13 -3

3: 9 2

4: -26 -8

5: 1 2

6: 0 4

Introduction to Data Tables 18

Dimitris Fouskakis

Basics

 How many trips have had total delay
< 0?

ans <- flights[, sum((arr_delay + dep_delay) < 0)]

ans

[1] 141814

Introduction to Data Tables 19

Dimitris Fouskakis

Basics

 Calculate the average arrival and departure delay
for all flights with “JFK” as the origin airport in the
month of June.

ans <- flights[origin == "JFK" & month == 6L,

.(m_arr = mean(arr_delay), m_dep =

mean(dep_delay))]

ans

m_arr m_dep

1: 5.839349 9.807884

Introduction to Data Tables 20

Dimitris Fouskakis

Basics

 We first subset in i to find matching row indices where
origin airport equals "JFK", and month equals 6L. We do not
subset the entire data.table corresponding to those rows
yet.

 Now, we look at j and find that it uses only two columns.
And what we have to do is to compute their mean.
Therefore we subset just those columns corresponding to
the matching rows, and compute their mean().

 Because the three main components of the query (i, j and
by) are together inside [...], data.table can see all three
and optimise the query altogether before evaluation, not
each separately. We are able to therefore avoid the entire
subset (i.e., subsetting the columns besides arr_delay and
dep_delay), for both speed and memory efficiency.

Introduction to Data Tables 21

Dimitris Fouskakis

Basics

 How many trips have been made in 2014 from “JFK” airport
in the month of June?

ans <- flights[origin == "JFK" & month == 6L, length(dest)]

ans

[1] 8422

 The function length() requires an input argument. We just
needed to compute the number of rows in the subset. We
could have used any other column as input argument to
length() really. This approach is reminiscent of SELECT
COUNT(dest) FROM flights WHERE origin = 'JFK' AND month
= 6 in SQL.

 This type of operation occurs quite frequently, especially
while grouping, to the point where data.table provides a
special symbol .N for it.

Introduction to Data Tables 22

Dimitris Fouskakis

Basics

 .N is a special built-in variable that holds the number of
observations in the current group. It is particularly useful
when combined with by as we’ll see later. In the absence
of group by operations, it simply returns the number of
rows in the subset.

 So we can now accomplish the same task by using .N as
follows:

ans <- flights[origin == "JFK" & month == 6L, .N]

ans

[1] 8422

Introduction to Data Tables 23

Dimitris Fouskakis

Basics

 Once again, we subset in i to get the row indices where
origin airport equals “JFK”, and month equals 6.

 We see that j uses only .N and no other columns. Therefore
the entire subset is not materialised. We simply return the
number of rows in the subset (which is just the length of
row indices).

 Note that we did not wrap .N with list() or .(). Therefore a
vector is returned.

 We could have accomplished the same operation by doing
nrow(flights[origin == "JFK" & month == 6L]). However, it
would have to subset the entire data.table first
corresponding to the row indices in i and then return the
rows using nrow(), which is unnecessary and inefficient.

Introduction to Data Tables 24

Dimitris Fouskakis

Basics

 Select both arr_delay and dep_delay columns the
data.frame way.

ans <- flights[, c("arr_delay", "dep_delay")]

head(ans)

arr_delay dep_delay

1: 13 14

2: 13 -3

3: 9 2

4: -26 -8

5: 1 2

6: 0 4

Introduction to Data Tables 25

Dimitris Fouskakis

Basics

 Select columns named in a variable using the .. prefix.
select_cols = c("arr_delay", "dep_delay")

flights[, ..select_cols]

arr_delay dep_delay

1: 13 14

2: 13 -3

3: 9 2

4: -26 -8

5: 1 2

 .. signals to data.table to look for the select_cols variable
“up-one-level”, i.e., in the global environment in this
case.

Introduction to Data Tables 26

Dimitris Fouskakis

Basics

 Select columns named in a variable using with = FALSE
flights[, select_cols, with = FALSE]

arr_delay dep_delay

1: 13 14

2: 13 -3

3: 9 2

4: -26 -8

5: 1 2

 Setting with = FALSE disables the ability to refer to
columns as if they are variables, thereby restoring the
“data.frame mode”.

Introduction to Data Tables 27

Dimitris Fouskakis

Basics

 We can also deselect columns using - or !. For example:

returns all columns except arr_delay and dep_delay

ans <- flights[, !c("arr_delay", "dep_delay")]

or

ans <- flights[, -c("arr_delay", "dep_delay")]

Introduction to Data Tables 28

Dimitris Fouskakis

Basics

 Select by specifying start and end column names.

returns year, month and day

ans <- flights[, year:day]

returns day, month and year

ans <- flights[, day:year]

returns all columns except year, month and day

ans <- flights[, -(year:day)]

ans <- flights[, !(year:day)]

Introduction to Data Tables 29

Dimitris Fouskakis

Aggregations

 How can we get the number of trips
corresponding to each origin airport?

ans <- flights[, .(.N), by = .(origin)]

ans

origin N

1: JFK 81483

2: LGA 84433

3: EWR 87400

or equivalently using a character vector in 'by'

ans <- flights[, .(.N), by = "origin"]

Introduction to Data Tables 30

Dimitris Fouskakis

Aggregations

 We know .N is a special variable that holds the number of
rows in the current group. Grouping by origin obtains the
number of rows, .N, for each group.

 By doing head(flights) you can see that the origin airports
occur in the order “JFK”, “LGA” and “EWR”. The original
order of grouping variables is preserved in the result. This
is important to keep in mind!

 Since we did not provide a name for the column returned in
j, it was named N automatically by recognising the special
symbol .N.

 by also accepts a character vector of column names. This is
particularly useful for coding programmatically, e.g.,
designing a function with the grouping columns as a
(character vector) function argument.

Introduction to Data Tables 31

Dimitris Fouskakis

Aggregations

 When there’s only one column or expression to refer to
in j and by, we can drop the .() notation. This is purely
for convenience. We could instead do:

ans <- flights[, .N, by = origin]

ans

origin N

1: JFK 81483

2: LGA 84433

3: EWR 87400

Introduction to Data Tables 32

Dimitris Fouskakis

Aggregations

 How can we calculate the number of trips for each origin
airport for carrier code "AA"?

ans <- flights[carrier == "AA", .N, by = origin]

ans

origin N

1: JFK 11923

2: LGA 11730

3: EWR 2649

 We first obtain the row indices for the expression carrier ==
"AA" from i.

 Using those row indices, we obtain the number of rows while
grouped by origin. Once again no columns are actually
materialised here, because the j-expression does not require
any columns to be actually subsetted and is therefore fast and
memory efficient.

Introduction to Data Tables 33

Dimitris Fouskakis

Aggregations

 How can we get the total number of trips for each origin, dest pair for
carrier code "AA"?

ans <- flights[carrier == "AA", .N, by = .(origin, dest)]

head(ans)

origin dest N

1: JFK LAX 3387

2: LGA PBI 245

3: EWR LAX 62

4: JFK MIA 1876

5: JFK SEA 298

6: EWR MIA 848

or equivalently using a character vector in 'by'

ans <- flights[carrier == "AA", .N, by = c("origin", "dest")]

 by accepts multiple columns. We just provide all the columns by which
to group by. Note the use of .() again in by – again, this is just
shorthand for list(), and list() can be used here as well. Again, we’ll
stick with .() here.

Introduction to Data Tables 34

Dimitris Fouskakis

Aggregations

 How can we get the average arrival and departure delay for
each orig, dest pair for each month for carrier code "AA"?

ans <- flights[carrier == "AA",

.(mean(arr_delay), mean(dep_delay)),

by = .(origin, dest, month)]

ans

origin dest month V1 V2

1: JFK LAX 1 6.590361 14.2289157

2: LGA PBI 1 -7.758621 0.3103448

3: EWR LAX 1 1.366667 7.5000000

4: JFK MIA 1 15.720670 18.7430168

5: JFK SEA 1 14.357143 30.7500000

Introduction to Data Tables 35

Dimitris Fouskakis

Aggregations

 Since we did not provide column
names for the expressions in j, they
were automatically generated as V1
and V2.

 Once again, note that the input order
of grouping columns is preserved in
the result.

Introduction to Data Tables 36

Dimitris Fouskakis

Aggregations

 data.table retaining the original order of groups is intentional
and by design. There are cases when preserving the original
order is essential. But at times we would like to automatically
sort by the variables in our grouping.

 So how can we directly order by all the grouping variables?
ans <- flights[carrier == "AA",

.(mean(arr_delay), mean(dep_delay)),

keyby = .(origin, dest, month)]

ans

origin dest month V1 V2

1: EWR DFW 1 6.427673 10.0125786

2: EWR DFW 2 10.536765 11.3455882

3: EWR DFW 3 12.865031 8.0797546

4: EWR DFW 4 17.792683 12.9207317

5: EWR DFW 5 18.487805 18.6829268

Introduction to Data Tables 37

Dimitris Fouskakis

Aggregations

 All we did was to change by to keyby.
This automatically orders the result
by the grouping variables in
increasing order. In fact, due to the
internal implementation of by first
requiring a sort before recovering the
original table’s order, keyby is
typically faster than by because it
doesn’t require this second step.

Introduction to Data Tables 38

Dimitris Fouskakis

Chaining

 Let’s reconsider the task of getting the total number of trips for each
origin, dest pair for carrier “AA”.

ans <- flights[carrier == "AA", .N, by = .(origin, dest)]

 How can we order ans using the columns origin in ascending order, and
dest in descending order?

 We can store the intermediate result in a variable, and then use
order(origin, -dest) on that variable. It seems fairly straightforward.

ans <- ans[order(origin, -dest)]

head(ans)

origin dest N

1: EWR PHX 121

2: EWR MIA 848

3: EWR LAX 62

4: EWR DFW 1618

5: JFK STT 229

6: JFK SJU 690

Introduction to Data Tables 39

Dimitris Fouskakis

Chaining

 But this requires having to assign the intermediate result and then
overwriting that result. We can do one better and avoid this
intermediate assignment to a temporary variable altogether by
chaining expressions.

ans <- flights[carrier == "AA", .N, by = .(origin, dest)][order(origin, -dest)]

head(ans, 10)

origin dest N

1: EWR PHX 121

2: EWR MIA 848

3: EWR LAX 62

4: EWR DFW 1618

5: JFK STT 229

6: JFK SJU 690

...

 We can tack expressions one after another, forming a chain of
operations, i.e., DT[...][...][...].

Introduction to Data Tables 40

Dimitris Fouskakis

Expressions in by

 We would like to find out how many flights started late
but arrived early (or on time), started and arrived late
etc…

ans <- flights[, .N, .(dep_delay>0, arr_delay>0)]

ans

dep_delay arr_delay N

1: TRUE TRUE 72836

2: FALSE TRUE 34583

3: FALSE FALSE 119304

4: TRUE FALSE 26593

Introduction to Data Tables 41

Dimitris Fouskakis

Expressions in by

 The last row corresponds to dep_delay > 0 = TRUE and
arr_delay > 0 = FALSE. We can see that 26593 flights
started late but arrived early (or on time).

 Note that we did not provide any names to by-
expression. Therefore, names have been automatically
assigned in the result. As with j, you can name these
expressions as you would elements of any list, e.g. DT[,
.N, .(dep_delayed = dep_delay>0, arr_delayed =
arr_delay>0)].

Introduction to Data Tables 42

Dimitris Fouskakis

Multiple columns in j - .SD

 It is of course not practical to have to type mean(myCol) for
every column one by one. What if you had 100 columns to
average mean()?

 How can we do this efficiently, concisely? Suppose we can refer
to the data subset for each group as a variable while grouping,
then we can loop through all the columns of that variable using
the already- or soon-to-be-familiar base function lapply(). No
new names to learn specific to data.table.

 Special symbol .SD: data.table provides a special symbol,
called .SD. It stands for Subset of Data. It by itself is a
data.table that holds the data for the current group defined
using by.

Introduction to Data Tables 43

Dimitris Fouskakis

Multiple columns in j - .SD

 Let’s use the data.table DT from before to get a glimpse of
what .SD looks like.

DT

ID a b c

1: b 1 7 13

2: b 2 8 14

3: b 3 9 15

4: a 4 10 16

5: a 5 11 17

6: c 6 12 18

Introduction to Data Tables 44

Dimitris Fouskakis

Multiple columns in j - .SD

DT[, print(.SD), by = ID]

a b c

1: 1 7 13

2: 2 8 14

3: 3 9 15

a b c

1: 4 10 16

2: 5 11 17

a b c

1: 6 12 18

Empty data.table (0 rows) of 1 col: ID

Introduction to Data Tables 45

Dimitris Fouskakis

Multiple columns in j - .SD

 .SD contains all the columns except the grouping
columns by default.

 It is also generated by preserving the original order -
data corresponding to ID = "b", then ID = "a", and then
ID = "c".

 To compute on (multiple) columns, we can then simply
use the base R function lapply().

DT[, lapply(.SD, mean), by = ID]

ID a b c

1: b 2.0 8.0 14.0

2: a 4.5 10.5 16.5

3: c 6.0 12.0 18.0

Introduction to Data Tables 46

Dimitris Fouskakis

Multiple columns in j - .SD

 .SD holds the rows corresponding to columns a, b and c
for that group. We compute the mean() on each of these
columns using the already-familiar base function
lapply().

 Each group returns a list of three elements containing
the mean value which will become the columns of the
resulting data.table.

 Since lapply() returns a list, so there is no need to wrap
it with an additional .().

Introduction to Data Tables 47

Dimitris Fouskakis

Multiple columns in j - .SD

 How can we specify just the columns we would like to
compute the mean() on?

 Using the argument .SDcols. It accepts either column
names or column indices. For example, .SDcols =
c("arr_delay", "dep_delay") ensures that .SD contains
only these two columns for each group.

 You can also provide the columns to remove instead of
columns to keep using - or ! sign as well as select
consecutive columns as colA:colB and deselect
consecutive columns as !(colA:colB) or -(colA:colB).

 Now let us try to use .SD along with .SDcols to get the
mean() of arr_delay and dep_delay columns grouped by
origin, dest and month.

Introduction to Data Tables 48

Dimitris Fouskakis

Multiple columns in j - .SD

flights[carrier == "AA", ## Only on trips with carrier "AA"

lapply(.SD, mean), ## compute the mean

by = .(origin, dest, month), ## for every 'origin,dest,month'

.SDcols = c("arr_delay", "dep_delay")] ## for just those specified in .SDcols

origin dest month arr_delay dep_delay

1: JFK LAX 1 6.590361 14.2289157

2: LGA PBI 1 -7.758621 0.3103448

3: EWR LAX 1 1.366667 7.5000000

4: JFK MIA 1 15.720670 18.7430168

5: JFK SEA 1 14.357143 30.7500000

196: LGA MIA 10 -6.251799 -1.4208633

197: JFK MIA 10 -1.880184 6.6774194

198: EWR PHX 10 -3.032258 -4.2903226

199: JFK MCO 10 -10.048387 -1.6129032

200: JFK DCA 10 16.483871 15.5161290

Introduction to Data Tables 49

Dimitris Fouskakis

Subset .SD for each group

 How can we return the first two rows for each month?
ans <- flights[, head(.SD, 2), by = month]

head(ans)

month year day dep_delay arr_delay carrier origin dest air_time distance hour

1: 1 2014 1 14 13 AA JFK LAX 359 2475 9

2: 1 2014 1 -3 13 AA JFK LAX 363 2475 11

3: 2 2014 1 -1 1 AA JFK LAX 358 2475 8

4: 2 2014 1 -5 3 AA JFK LAX 358 2475 11

5: 3 2014 1 -11 36 AA JFK LAX 375 2475 8

6: 3 2014 1 -3 14 AA JFK LAX 368 2475 11

Introduction to Data Tables 50

Dimitris Fouskakis

Subset .SD for each group

 .SD is a data.table that holds all the
rows for that group. We simply subset
the first two rows as we have seen
here already.

 For each group, head(.SD, 2) returns
the first two rows as a data.table,
which is also a list, so we do not have
to wrap it with .().

Introduction to Data Tables 51

