
Introduction to Basic Principles of R

Dimitris Fouskakis

Professor in Applied Statistics,

Department of Mathematics,

School of Applied Mathematical & Physical Sciences,

National Technical University of Athens

Email: fouskakis@math.ntua.gr

DATA SCIENCE AND

MACHINE LEARNING

Dimitris FouskakisIntroduction to Basic Principles of R 2

What is R?

 R is a dialect of the S language.

Dimitris FouskakisIntroduction to Basic Principles of R 3

What is S?

 S is a language that was developed by John
Chambers and others at Bell Labs.

 S was initiated in 1976 as an internal
statistical analysis environment - originally
implemented as Fortran libraries.

 Early versions of the language did not
contain functions for statistical modeling.

 In 1988 the system was rewritten in C and
began to resemble the system that we have
today (this was Version 3 of the language).

 Version 4 of the S language was released in
1998 and is the version we use today.

Dimitris FouskakisIntroduction to Basic Principles of R 4

Back to R

 1991: Created in New Zealand by Ross Ihaka and
Robert Gentleman. Their experience developing R is
documented in a 1996 JCGS paper.

 1993: First announcement of R to the public.
 1995: Martin Machler convinces Ross and Robert to

use the GNU General Public License to make R free
software.

 1996: A public mailing list is created (R-help and R-
devel).

 1997: The R Core Group is formed (containing some
people associated with S-PLUS). The core group
controls the source code for R.

 2000: R version 1.0.0 is released.

Dimitris FouskakisIntroduction to Basic Principles of R 5

Features of R

 Syntax is very similar to S, making it easy for S-PLUS users
to switch over.

 Runs on almost any standard computing platform/OS (even
on the PlayStation 3).

 Frequent releases (annual + bugx releases); active
development.

 Quite lean, as far as software goes; functionality is divided
into modular packages.

 Graphics capabilities very sophisticated and better than
most stat packages.

 Useful for interactive work, but contains a powerful
programming language for developing new tools (user
programmer)

 Very active and vibrant user community; R-help and R-
devel mailing lists.

 It’s free!!!!!

Dimitris FouskakisIntroduction to Basic Principles of R 6

Drawbacks of R

 Essentially based on 40 year old technology.
 Little built in support for dynamic or 3-D

graphics (but things have improved greatly
since the “old days").

 Functionality is based on consumer demand
and user contributions. If no one feels like
implementing your favorite method, then it's
your job! (Or you need to pay someone to do
it).

 Objects must generally be stored in physical
memory; but there have been advancements
to deal with this too.

Dimitris FouskakisIntroduction to Basic Principles of R 7

Design of the R System

 The R system is divided into 2 conceptual parts:
 The “base” R system that you download from

CRAN.
 Everything else.

 CRAN is the “Comprehensive R Archive Network”. It is a
collection of sites which carry identical material,
consisting of the R distribution(s), the contributed
extensions, documentation for R, and binaries.

 R functionality is divided into a number of packages.
 The “base” R system contains, among other things, the

base package which is required to run R and contains the
most fundamental functions.

 The other packages contained in the “base" system
include utils, stats, datasets, graphics, grDevices, grid,
methods, tools, parallel, compiler, splines, tcltk, stats4.

Dimitris FouskakisIntroduction to Basic Principles of R 8

Design of the R System

 And there are many other packages
available.

 There are about 4000 packages (!!!) on
CRAN that have been developed by users
and programmers around the world.

 People often make packages available on
their personal websites; there is no reliable
way to keep track of how many packages
are available in this fashion.

Dimitris FouskakisIntroduction to Basic Principles of R 9

Some R Resources

 Available from CRAN (http://cran.r-
project.org).

◼ An Introduction to R

◼ Writing R Extensions

◼ R Data Import/Export

◼ R Installation and Administration (mostly
for building R from sources)

Dimitris FouskakisIntroduction to Basic Principles of R 10

Books
 Standard Texts:

◼ Adler (2010). R in a Nutshell, O’Reilly.
◼ Albert (2007). Bayesian Computation with R, Springer.
◼ Albert & Rizzo (2011). R by Example, Springer.
◼ Chambers (2008). Software for Data Analysis: Programming with R, Springer.
◼ Crawley (2007). The R book, Wiley.
◼ Dalgaard (2002). Introductory Statistics with R, Springer – Verlag.
◼ Everitt & Hothorn (2006). A Handbook of Statistical Analyses using R,

Chapman & Hall/CRC Press.
◼ Venables & Ripley (2002). Modern Applied Statistics with S, Springer.
◼ Murrell (2005). R Graphics, Chapman & Hall/CRC Press.
◼ Φουσκάκης (2013). Ανάλυση Δεδομένων με Χρήση της R. Εκδόσεις Τσότρας.

 Other resources:
◼ Springer has a series of books called Use R!.
◼ A longer list of books is at http://www.r-project.org/doc/bib/R-books.html.

Dimitris FouskakisIntroduction to Basic Principles of R 11

Install R

 The home page for the R project, located at
http://r-project.org, is the best starting
place for information about the software. It
includes links to CRAN, which features
precompiled binaries as well as source code
for R, add-on packages, documentation
(including manuals, frequently asked
questions, and the R newsletter) as well as
general background information. Mirrored
CRAN sites with identical copies of these
files exist all around the world. New
versions are regularly posted on CRAN,
which must be downloaded and installed.

Dimitris FouskakisIntroduction to Basic Principles of R 12

Install R

 Windows: More information on Windows-specific
issues can be found in the CRAN R for Windows
FAQ (http://cran.r-
project.org/bin/windows/base/rw-FAQ.html).

 Mac OS: More information on Macintosh-specific
issues can be found in the CRAN R for Mac OS X
FAQ (http://cran.r-
project.org/bin/macosx/RMacOSX-FAQ.html).

 Linux: Precompiled distributions of R binaries are
available for the Debian, Redhat (Fedora), Suse
and Ubuntu Linux, and detailed information on
installation can be found at CRAN.

 In this course the windows version will be used.

http://cran.r-project.org/bin/windows/base/rw-FAQ.html

Dimitris FouskakisIntroduction to Basic Principles of R 13

R Commander

 If you wish you can download a more user-
friendly graphical interface that works in
concert with R called R Commander, created
by John Fox. Users familiar with SPSS and
other drop-down menu type programs will
initially feel more comfortable using R
Commander than R. The R environment is run
with scripts, and in the long run it can be much
more advantageous to have scripts that you
can easily bring back up as you perform
multiple calculations.

 Here we will use the default graphical interface.

Dimitris FouskakisIntroduction to Basic Principles of R 14

Running R

 Once installation is complete, the recommended
next step for a new user would be to start R by
double click the R program.

 Then the R console shows up.

 The `>' character is the prompt, and commands
are executed once the user presses the RETURN
key.

 To terminate the program either press q(), or
close the R main window (not the R console), or
from the menu file choose exit. In all cases you
will be asked if you wish to save the workspace
image and all the objects you have created in
your session.

Dimitris FouskakisIntroduction to Basic Principles of R 15

R windows

 R – Console: You may write R commands
there. This window also displays all the
commands R has run, the results, and error
report. This window appears when you
launch R. To bring this window to the
foreground, click on the window or go to
the Windows pull-down menu and choose
the R Console. You can type and run
commands in this window line by line.

Dimitris FouskakisIntroduction to Basic Principles of R 16

R windows

 R – Editor: Alternatively, you can write all
your commands there and allow R to run
part or all of the commands at once. You
open this window by clicking the New Script
option in the File menu. If you want to redo
your analysis at a later time, or send your
code in a file to someone else, you can
save the scripts. You can also print the
scripts by clicking the Print option from the
File menu.

Dimitris FouskakisIntroduction to Basic Principles of R 17

R windows

 R – Graphics: This window opens
automatically when you create a
graph. To bring a graph to the
foreground, click on the graphics
window or go to the Windows pull-
down menu and choose the R
Graphics window. Graphs can be
saved in various formats, such as jpg,
png, bmp, ps, pdf, emf, pictex, x_g
and so on.

Dimitris FouskakisIntroduction to Basic Principles of R 18

R Console

Pull down menus

Toolbar

Type Command Here

Dimitris FouskakisIntroduction to Basic Principles of R 19

Toolbar & Menu Bar

 Like most window-based programs, R has a
toolbar and a menu bar with pull-down
menus that you can use to access many of
the features of the program. The toolbar
contains buttons for more commonly used
procedures. To see what each button does,
hold the mouse over the button for a
moment and a description of what the
button does will appear. The following is a
summary of the main pull-down menus
and their functions:

Dimitris FouskakisIntroduction to Basic Principles of R 20

Toolbar & Menu Bar

Dimitris FouskakisIntroduction to Basic Principles of R 21

Getting Help

 R provides help files for all its
functions. To access a help file, use
the Help pull-down menu, or type ?
followed by a function name in the R
console. For example, to get help on
the scan function, type:

> ?scan

Dimitris FouskakisIntroduction to Basic Principles of R 22

Notation & Common R Operators

> Indicates the prompt at the start of each new line in the R console.

The comment operator. Often called the “hash sign” or “pound sign”. Any type following
the # on a line indicates a comment. R will ignore (not execute or attempt to
interpret) anything written as a comment. Comments are a good way to indicate what
you intend a line to do, or to describe a variable or command. They are useful to you
when you read your code later or, and are useful to others with whom you share your
code.

<- The assignment operator. This operator assigns the value on the right to the symbol on
the left. Some pronounce this as “gets”, so the statement x <- 5 is read “x gets 5”.
Once you have assigned 5 to x, R will fill in the value 5 in expressions using x. You can
also use the = sign for assignment, but in R the <- sign is more conventional. The
operator -> assigns the value on the left to the symbol on the right.

== Boolean equality operator. A double = sign is used in logical statements, assessing
whether two quantities are equal.

x <- 5 # assigns the value 5 to x
x == 5 # returns TRUE
x = 6 # assigns the value 6 to x, overwriting the previous statement x <- 5.

[Note that ‘=’ accomplishes the same thing as ‘<-’] Now,
x == 5 # returns FALSE

Dimitris FouskakisIntroduction to Basic Principles of R 23

Arithmetic Operators in R

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

^ Exponentiation

% / % Integer Division

% % Modulus

Dimitris FouskakisIntroduction to Basic Principles of R 24

Example
> 3+3 # this is my first command
[1] 6
> 9-2
[1] 7
> 17/3
[1] 5.666667
> 4*2
[1] 8
> 2^3
[1] 8
> 17%/%3
[1] 5
> 17%%3
[1] 2
> 7/0
[1] Inf

Dimitris FouskakisIntroduction to Basic Principles of R 25

Special Numbers

 R supports 4 special numeric values: Inf, -Inf, NaN,
NA and NULL. The first 2 are positive and negative
infinity. NaN is short for “not-a-number” and means
that our calculation either didn’t make mathematical
sense or could not be performed properly. NA is short
of “not available” and represents a missing value-a
problem all too common in data analysis. NULL
represents a null object in R.

 There a functions available to check for these special
values (see examples in the next slides).

Dimitris FouskakisIntroduction to Basic Principles of R 26

Special Numbers Example

> 7/0
[1] Inf
> -10^1000
[1] –Inf
> exp(-Inf)
[1] 0
> log(-2)
[1] NaN
> 0/0
[1] NaN
> x<-1
> names(x)
[1] NULL

> is.null(x)
[1] FALSE
> is.null(names(x))
[1] TRUE
> x<-c(0,Inf,-Inf, NaN, NA)
> is.finite(x)
[1] TRUE FALSE FALSE FALSE FALSE
> is.infinite(x)
[1] FALSE TRUE TRUE FALSE FALSE
> is.nan(x)
[1] FALSE FALSE FALSE TRUE FALSE
> is.na(x)
[1] FALSE FALSE FALSE TRUE TRUE

Dimitris FouskakisIntroduction to Basic Principles of R 27

Logical Operators

Operator Description

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Exactly equal to

!= Not equal to

!x Not x

x|y x OR y

x&y x AND y

isTRUE(x) Test if x is TRUE

Dimitris FouskakisIntroduction to Basic Principles of R 28

Examples

> x<-56
> x
[1] 56
> 5*2->y
> y
[1] 10
> x>y
[1] TRUE
> y<4
[1] FALSE

> x>=56
[1] TRUE
> y<=9
[1] FALSE
> x==56
[1] TRUE
> y!=1
[1] TRUE
> !(5>3)
[1] FALSE

Dimitris FouskakisIntroduction to Basic Principles of R 29

Examples

An example
> x <- c(1:10)
> x[(x>8) | (x<5)]
yields 1 2 3 4 9 10

How it works
> x <- c(1:10)
> x
1 2 3 4 5 6 7 8 9 10
> x > 8
F F F F F F F F T T
> x < 5
T T T T F F F F F F
> x > 8 | x < 5
T T T T F F F F T T
> x[c(T,T,T,T,F,F,F,F,T,T)]
1 2 3 4 9 10

Dimitris FouskakisIntroduction to Basic Principles of R 30

More on the Assignment Operator

 R είναι is case sensitive, i.e. x and Χ are different
objects.

 When you use the assignment operator the result is
not visible on screen. To see the value that your
object took just type its name.

 Objects could also be vectors, matrices, data frames,
or lists (more later).

 An object could be present in both parts of the
assignment operator, but before we should give it a
value.
> x<-5
> x<-x+3
> x
[1] 8

Dimitris FouskakisIntroduction to Basic Principles of R 31

More on Logical Operators

 We usually use the symbols & (AND), |
(OR) to combine two or more logical
operators.

> (5>3) & (8>10)

[1] FALSE

> (5>3) | (8>10)

[1] TRUE

 Logical operators are frequently used
in loops, e.g. if, for, etc. (more later).

Dimitris FouskakisIntroduction to Basic Principles of R 32

Basic Mathematical Functions in R

Function Description Function Description

sqrt() Square root asin() Inverse sine

abs() Absolute value atan() Inverse tangent

log() Natural logarithm (ln) gamma() Gamma function

log2() Logarithm base 2 lgamma() Natural logarithm of gamma

function

log10() Logarithm base 10 beta() Beta function

exp() Exponential function floor() Previous integer

cos() Cosine ceiling() Next integer

sin() Sine factorial() Factorial

tan() Tangent choose() Combinations

acos() Inverse cosine lchoose() Natural logarithm of combinations

Dimitris FouskakisIntroduction to Basic Principles of R 33

Examples

> lgamma(4)
[1] 1.791759
> floor(4.9)
[1] 4
> ceiling(4.1)
[1] 5
> factorial(5)
[1] 120
> choose(5,2)
[1] 10
> lchoose(5,2)
[1] 2.302585

> sqrt(16)
[1] 4
> abs(-2)
[1] 2
> log(10)
[1] 2.302585
> log2(10)
[1] 3.321928
> log10(10)
[1] 1
> exp(3)
[1] 20.08554
> cos(pi)
[1] -1
> sin(2*pi)
[1] -2.449213e-16
> tan(pi/2)
[1] 1.633178e+16

> sin(pi/2)
[1] 1
> tan(0)
[1] 0
> acos(0.2)
[1] 1.369438
> atan(2)
[1] 1.107149
> asin(0)
[1] 0
> gamma(2)
[1] 1
> beta(2,3)
[1] 0.08333333

Dimitris FouskakisIntroduction to Basic Principles of R 34

General Functions in R

 builtins(): built-in functions in R.

 cat() or print(): Print on screen.

 ls(): list all objects

 rm(): remove objects.

 getwd(): returns working directory.

 setwd(): changes working directory.

 list.files(): returns a list with all files in
working directory.

 date() or Sys.time(): Returns current day
& time.

Dimitris FouskakisIntroduction to Basic Principles of R 35

Classes of Objects in R

 R has five basic classes of objects:
◼ Numeric (real number)

> x<- 3
◼ Complex

> x<-complex(real=4, imaginary=3)
> x
[1] 4 +3i

◼ Logical
> x <-3
> y <- x > 4
> y
[1] FALSE

◼ Character
> x <- “DIMITRIS”
> x

[1] “DIMITRIS”

 Use the function mode() or class() to check
the objects class.

Dimitris FouskakisIntroduction to Basic Principles of R 36

Data Types in R

◼ Vectors.

◼ Matrices.

◼ Arrays.

◼ Data frames.

◼ Lists.

 In the 3 first cases objects should be of the
same type.

 A list allows you to gather a variety of
(possibly unrelated) objects under one
name.

Dimitris FouskakisIntroduction to Basic Principles of R 37

Vectors

 Vectors in R are lists of objects of the
same type.

◼ Numerical Vectors.

◼ Character Vectors.

◼ Logical Vectors.

◼ Factors.

Dimitris FouskakisIntroduction to Basic Principles of R 38

Numerical Vectors

 To create a numerical vector use the function
c().

> x<-c(1,2,3,4,5)
> x
[1] 1 2 3 4 5

 The same function can be used to concatenate
already defined vectors

> x<-c(1,2,3,4,5)
> y<-c(6,7)
> z<-c(10,x,y)
> z
[1] 10 1 2 3 4 5 6 7

Dimitris FouskakisIntroduction to Basic Principles of R 39

Numerical Vectors

 Functions for numerical vectors:
◼ Length:

> x<-c(1,2,3,4,5)
> length(x)
[1] 5

◼ Min & Max
> min(x)
[1] 1
> max(x)
[1] 5

◼ Sum & Product
> sum(x)
[1] 15
> prod(x)
[1] 120

Dimitris FouskakisIntroduction to Basic Principles of R 40

Numerical Vectors

◼ Sort

> x<-c(3,5,2,1,6)

> sort(x)

[1] 1 2 3 5 6

> sort(x,decreasing=T)

[1] 6 5 3 2 1

◼ Rank

> x<-c(3,5,2,1,6)

> rank(x)

[1] 3 4 2 1 5

Dimitris FouskakisIntroduction to Basic Principles of R 41

Numerical Vectors

◼ Rank & Ties
 Average: assigns each tied element the "average" rank

> x2<-c(3,5,2,1,6,3)

> rank(x2, ties.method="average")

[1] 3.5 5.0 2.0 1.0 6.0 3.5

 First: lets the "earlier" entry "win", so the ranks are in numerical order

> rank(x2, ties.method="first")

[1] 3 5 2 1 6 4

 Random: breaks ties randomly

> rank(x, ties.method="random")

[1] 4 5 2 1 6 3

> rank(x, ties.method="random")

[1] 3 5 2 1 6 4

 Min/Max: assigns every tied element to the lowest/highest rank

> rank(x, ties.method="min")

[1] 3 5 2 1 6 3

> rank(x, ties.method="max")

[1] 4 5 2 1 6 4

Dimitris FouskakisIntroduction to Basic Principles of R 42

Numerical Vectors

◼ Order

> x<-c(3,5,2,1,6)

> order(x)

[1] 4 3 1 2 5

(thus the smallest value is on the 4th position,
the next one on the 3rd, etc).

Dimitris FouskakisIntroduction to Basic Principles of R 43

Numerical Vectors

 Assign names to vector members
> weight<-c(70, 57, 68, 82)

> names(weight)

NULL

> names(weight)<-c("Mary", "Kelly", "Elena",
"George")

> names(weight)

[1] "Mary" "Kelly" "Elena" "George"

> weight

Mary Kelly Elena George

70 57 68 82

Dimitris FouskakisIntroduction to Basic Principles of R 44

Numerical Vectors

 Missing Values

> x3<-c(1,2,3,NA,9)

> x3

[1] 1 2 3 NA 9

> is.na(x3)

[1] FALSE FALSE FALSE TRUE FALSE

Dimitris FouskakisIntroduction to Basic Principles of R 45

Numerical Vectors
 Colon Operator

◼ Using the syntax a:b you can generate a sequence of numbers from a
to b with step 1 (or -1)
> x<-1:10
> x
[1] 1 2 3 4 5 6 7 8 9 10
> x<--4:10
> x
[1] -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
> x<-6:1
> x
[1] 6 5 4 3 2 1
> x<-3.3:10.3
> x
[1] 3.3 4.3 5.3 6.3 7.3 8.3 9.3 10.3

◼ If (b-a) is not an integer, then R will stop before b
> x<-3.3:6.9
> x
[1] 3.3 4.3 5.3 6.3

Dimitris FouskakisIntroduction to Basic Principles of R 46

Numerical Vectors
 If you want to use a different step then you should use the function seq(). You

should define the first (from) & last (to) numbers of the sequence, the step,
the length and the name of another vector (along) in order the generated
sequence to have the same length as the specified vector. From all the above
arguments you need to specify only 3; if the user specifies only 2 then by
default R take the parameter by = 1.

> seq(from=1,to=9, by=2)

[1] 1 3 5 7 9

> seq(from=1,to=9, length=3)

[1] 1 5 9

> seq(to=9, length=3)

[1] 7 8 9

> seq(from=1,by=2,length=10)

[1] 1 3 5 7 9 11 13 15 17 19

> y<-1:10

> seq(from=1,by=2,along=y)

[1] 1 3 5 7 9 11 13 15 17 19
 If the ratio of the difference between the last and first number over the step is

not an integer number then R will stop the sequence before the last term.

> seq(from=1,to=10,by=2)

[1] 1 3 5 7 9

Dimitris FouskakisIntroduction to Basic Principles of R 47

Numerical Vectors

 Replicate values or vectors. With the function rep() you can
replicate a value or a vector as many times as you want. The
main arguments of the function are: (a) the value or the vector
you wish to replicate and (b) the number of times to repeat the
value or the whole vector (times) or the number of times to
repeat each element of the vector (each).

> rep(2,5)
[1] 2 2 2 2 2
> x<-c(1,2,3)
> rep(x,5)
[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
> rep(x,each=5)
[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Dimitris FouskakisIntroduction to Basic Principles of R 48

Numerical Vectors

 Arithmetic Operators & Vectors. You can use the
numeric operators between numerical vectors (they
should be of the same length), or between scalars and
vectors. Also the mathematical functions can be used in
numerical vectors.

> x<-c(1,2,3)
> x*3
[1] 3 6 9
> x^2
[1] 1 4 9
> y<-c(4,5,6)
> y/x
[1] 4.0 2.5 2.0

Dimitris FouskakisIntroduction to Basic Principles of R 49

Numerical Vectors

 By using [] you can easily choose specific elements of a
vector. For example if you wish to extract the first
element of the vector x you use the syntax x[1].

> x<-seq(from=1,to=9,by=2)
> x
[1] 1 3 5 7 9
> x[2]
[1] 3
> x[2:4]
[1] 3 5 7
> x[c(1,3)]
[1] 1 5
> x[-c(1,3)]
[1] 3 7 9

Dimitris FouskakisIntroduction to Basic Principles of R 50

Character Vectors

> x<-c(“Statistics”, “Mathematics”)

> x

[1] “Statistics" “Mathematics"

Dimitris FouskakisIntroduction to Basic Principles of R 51

Functions for Character Vectors

 character()
> character(length=2)
[1] “” “”

 as.character()
> x<-1:10
> x
[1] 1 2 3 4 5 6 7 8 9 10
> as.character(x)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

 as.numeric()
> x<-c("-0.1","2.7","B")
> as.numeric(x)
[1] -0.1 2.7 NA
Warning message:
NAs introduced by coercion

Dimitris FouskakisIntroduction to Basic Principles of R 52

Functions for Character Vectors
 is.character()

> y<-as.character(x)
[1] "1" "2" "3" "4" "5" "6"

"7" "8" "9" "10"
> is.character(y)
[1] TRUE
> x<-c("-0.1","2.7","B")
> x
[1] "-0.1" "2.7" "B"
> is.character(x)
[1] TRUE
> x<-as.numeric(x)
Warning message:
NAs introduced by coercion
> x
[1] -0.1 2.7 NA
> is.character(x)
[1] FALSE

 noquote()

> y<-as.character(x)

[1] "1" "2" "3" "4" "5"
"6" "7" "8" "9" "10"

> noquote(y)

[1] 1 2 3 4 5 6 7 8 9
10

 nchar()

> y<-as.character(x)

[1] "1" "2" "3" "4" "5"
"6" "7" "8" "9" "10"

> nchar(y)

[1] 1 1 1 1 1 1 1 1 1 2

Dimitris FouskakisIntroduction to Basic Principles of R 53

Functions for Character Vectors

 paste()
> x
[1] 1 2 3 4 5 6 7 8 9 10
> paste(x)
[1] "1" "2" "3" "4" "5" "6" "7" "8"

"9" "10"
> paste(`Mathematical',`Statistics')
[1] "Mathematical Statistics"
> paste(`3',`5',`8', sep="+")
[1] "3+5+8"
> paste(paste(3,5, sep=` + '), 8, sep=`

= ')
[1] "3 + 5 = 8"
> paste(`Chapter',2, sep=" ")
[1] "Chapter 2"
> paste("Today is", date())
[1] "Today is Mon Jun 03 20:42:41 2013“
> a<-c(`Kwstas', `Maria')
> b<-c(`Papadopoulos', `Kyriakou')

> paste(a,b)
[1] "Kwstas Papadopoulos" "Maria Kyriakou"
> paste(b,a, sep=`, ')
[1] "Papadopoulos, Kwstas" "Kyriakou, Maria"
> paste("Chapter", 1:2, sep=" ")
[1] "Chapter 1" "Chapter 2"
> a<-c(`Kwstas', `Maria')
> b<-c(`Papadopoulos', `Kyriakou', `Anagnostou')
> paste(a,b)
[1] "Kwstas Papadopoulos" "Maria Kyriakou"

"Kwstas Anagnostou"
> a<-c(`Kwstas', `Maria')
> paste(a, collapse=",")
[1] "Kwstas,Maria"
> paste(1:10, collapse=`+')
[1] "1+2+3+4+5+6+7+8+9+10"
> b<-c(`Papadopoulos', `Kyriakou', `Anagnostou')
> paste(a, b, collapse=", ")
[1] "Kwstas Papadopoulos, Maria Kyriakou, Kwstas
Anagnostou"

Dimitris FouskakisIntroduction to Basic Principles of R 54

Functions for Character Vectors

 strsplit()
> x<-c("Statistics", "Mathematics")
> strsplit(x,split="a")
[[1]]
[1] "St" "tistics"
[[2]]
[1] "M" "them" "tics"
> strsplit(x, split='')
[[1]]
[1] "S" "t" "a" "t" "i" "s" "t" "i" "c" "s"
[[2]]
[1] "M" "a" "t" "h" "e" "m" "a" "t" "i" "c"

"s"
> strsplit(x, split="th")
[[1]]
[1] "Statistics"
[[2]]
[1] "Ma" "ematics"

 substr()
> substr("abcdef",2,4)
[1] "bcd"
> x<-c("Statistics", "Mathematics")
> substr(x,2,4)
[1] "tat" "ath"

 grep()
> countries<-c("Greece", "United States",
"United Kingdom", "Italy",
"France", "United Arab Emirates")
> grep("United", countries)
[1] 2 3 6
> grep("United", countries, value=TRUE)
[1] "United States" "United Kingdom"
"United Arab Emirates“
> data[grep("United", data$country),]

country gdp income continent
23 United Arab Emirates 21000 24200 AS
42 United Kingdom 28300 29400 EU
82 United States 35200 31200 NA

Dimitris FouskakisIntroduction to Basic Principles of R 55

Functions for Character Vectors

 sub() & gsub()
> values<-c("1,700", "2,300")
> as.numeric(values)
[1] NA NA
Warning message:
NAs introduced by coercion
> as.numeric(gsub(",","",values))
[1] 1700 2300
> as.numeric(sub(",","",values))
[1] 1700 2300
> sub(",","",values)
[1] "1700" "2300"
> gsub(",","",values)
[1] "1700" "2300"
> values<-c("1,000,000", "2,000,000")
> sub(",","",values)
[1] "1000,000" "2000,000"
> gsub(",","",values)
[1] "1000000" "2000000"

 toupper () & tolower()
> x
[1] "Statistics" "Mathematics"
> tolower(x)
[1] "statistics" "mathematics"
> toupper(x)
[1] "STATISTICS" "MATHEMATICS"

Dimitris FouskakisIntroduction to Basic Principles of R 56

Logical Vectors

> logical(3)

[1] FALSE FALSE FALSE

> as.logical(c(0:10))

[1] FALSE TRUE TRUE TRUE TRUE TRUE
TRUE TRUE TRUE TRUE TRUE

Dimitris FouskakisIntroduction to Basic Principles of R 57

Factors

 Categorical Variables:
> gender<-c('Male', 'Female', 'Male', 'Male', 'Female')
> gender
[1] "Male" "Female" "Male" "Male" "Female"
> factor(gender)
[1] Male Female Male Male Female
Levels: Female Male
> levels(factor(gender))
[1] "Female" "Male"

 Ordinal Variables:
> opinion<-c('Low', 'Low', 'High', 'High', 'High', 'Medium')
> ordered(opinion, levels=c('Low', 'Medium', 'High'))
[1] Low Low High High High Medium
Levels: Low < Medium < High

Dimitris FouskakisIntroduction to Basic Principles of R 58

Matrices

> x<-1:10
> X<-matrix(x, ncol=2)
> X

[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
> X<-matrix(x, nrow=5)

> X
[,1] [,2]

[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
> X<-matrix(x, nrow=5, byrow=T)
> X

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
[5,] 9 10

Dimitris FouskakisIntroduction to Basic Principles of R 59

Matrices

 Dimension
> dim(X)
[1] 5 2

 Specific elements
> X[3,2]
[1] 6

 Specific rows or columns

> X[3,]
[1] 5 6
> X[,2]
[1] 2 4 6 8 10

Dimitris FouskakisIntroduction to Basic Principles of R 60

Matrices

 Create Matrices by combining vectors (cbind & rbind).
> x1<-1:5
> x2<-6:10
> cbind(x1,x2)

x1 x2
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
> rbind(x1,x2)

[,1] [,2] [,3] [,4] [,5]
x1 1 2 3 4 5
x2 6 7 8 9 10

Dimitris FouskakisIntroduction to Basic Principles of R 61

Matrices

 Diagonal Matrices
> diag(1:5)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0

[2,] 0 2 0 0 0

[3,] 0 0 3 0 0

[4,] 0 0 0 4 0

[5,] 0 0 0 0 5

Dimitris FouskakisIntroduction to Basic Principles of R 62

Matrices

 Identical Matrix
> diag(5)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0

[2,] 0 1 0 0 0

[3,] 0 0 1 0 0

[4,] 0 0 0 1 0

[5,] 0 0 0 0 1

Dimitris FouskakisIntroduction to Basic Principles of R 63

Matrices

 Arithmetic Operators & Matrices.
You can use the numeric operators
between matrices (be careful with the
dimensions) or between vectors &
matrices (be careful with the
dimensions) or between scalars &
matrices. Also the mathematical
functions can be used in matrices.

Dimitris FouskakisIntroduction to Basic Principles of R 64

Matrices

Operator Description

%*% Multiplication of Matrices

t() Transpose of a Matrix

solve() Inverse of a Matrix

Dimitris FouskakisIntroduction to Basic Principles of R 65

Matrices

> x<-matrix(c(1,2,3,4,5,6), ncol=2)
> x

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
> dim(x)
[1] 3 2
> y<-matrix(c(0,1,1,1), ncol=2)
> y

[,1] [,2]
[1,] 0 1
[2,] 1 1

> x%*%y
[,1] [,2]

[1,] 4 5
[2,] 5 7
[3,] 6 9
> t(x)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
> solve(y)

[,1] [,2]
[1,] -1 1
[2,] 1 0

Dimitris FouskakisIntroduction to Basic Principles of R 66

Matrices

 The function apply().
> x<-matrix(c(1,2,3,4,5,6), ncol=2)

> x

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

> apply(x,1,sum)

[1] 5 7 9

> apply(x,2,sum)

[1] 6 15

Compute row sum.

Compute column sum.

Dimitris FouskakisIntroduction to Basic Principles of R 67

Function apply()

> str(apply)

function (X, MARGIN, FUN, ...)

X is an array

MARGIN is an integer vector indicating
which margins should be “retained”.

FUN is a function to be applied

... is for other arguments to be passed
to FUN

Dimitris FouskakisIntroduction to Basic Principles of R 68

Function apply()

> x <- matrix(rnorm(200), 20, 10)
> apply(x, 2, mean)
[1] 0.04868268 0.35743615 -0.09104379
[4] -0.05381370 -0.16552070 -0.18192493
[7] 0.10285727 0.36519270 0.14898850
[10] 0.26767260
> apply(x, 1, sum)
[1] -1.94843314 2.60601195 1.51772391
[4] -2.80386816 3.73728682 -1.69371360
[7] 0.02359932 3.91874808 -2.39902859
[10] 0.48685925 -1.77576824 -3.34016277
[13] 4.04101009 0.46515429 1.83687755
[16] 4.36744690 2.21993789 2.60983764
[19] -1.48607630 3.58709251

simulates from standard

normal (more later)

Dimitris FouskakisIntroduction to Basic Principles of R 69

col/row sums & means

 For sums and means of matrix
dimensions, we have some shortcuts.

 rowSums (x) = apply(x, 1, sum)

 rowMeans (x) = apply(x, 1, mean)

 colSums (x) = apply(x, 2, sum)

 colMeans (x) = apply(x, 2, mean)

 The shortcut functions are much
faster, but you won’t notice unless
you’re using a large matrix.

Dimitris FouskakisIntroduction to Basic Principles of R 70

Function apply()

 Quantiles of the rows of a matrix.
> x <- matrix(rnorm(200), 20, 10)
> apply(x, 1, quantile, probs = c(0.25, 0.75))

[,1] [,2] [,3] [,4]
25% -0.3304284 -0.99812467 -0.9186279 -0.49711686
75% 0.9258157 0.07065724 0.3050407 -0.06585436

[,5] [,6] [,7] [,8]
25% -0.05999553 -0.6588380 -0.653250 0.01749997
75% 0.52928743 0.3727449 1.255089 0.72318419

[,9] [,10] [,11] [,12]
25% -1.2467955 -0.8378429 -1.0488430 -0.7054902
75% 0.3352377 0.7297176 0.3113434 0.4581150

[,13] [,14] [,15] [,16]
25% -0.1895108 -0.5729407 -0.5968578 -0.9517069
75% 0.5326299 0.5064267 0.4933852 0.8868922

[,17] [,18] [,19] [,20]
25% -0.2502935 -0.7488003 -0.7190923 -0.638243
……………………………………………………………………………………..

Dimitris FouskakisIntroduction to Basic Principles of R 71

Arrays

 Arrays are matrices with 3 or more
dimensions. To create them we use
the function array(). The dimension of
the array is given by the parameter
dim. For example if dim=c(2,3,4), we
will have a 3 dimensional array of
dimension 2×3×4.

Dimitris FouskakisIntroduction to Basic Principles of R 72

Arrays

> X<-
array(c(1:12,36:48),dim=c(
2,3,4))

> X
, , 1

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2

[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

, , 3

[,1] [,2] [,3]
[1,] 36 38 40
[2,] 37 39 41

, , 4

[,1] [,2] [,3]
[1,] 42 44 46
[2,] 43 45 47

Dimitris FouskakisIntroduction to Basic Principles of R 73

Function apply()

 Average matrix in an array
> a <- array(rnorm(2 * 2 * 10), c(2, 2, 10))

> apply(a, c(1, 2), mean)

[,1] [,2]

[1,] -0.2353245 -0.03980211

[2,] -0.3339748 0.04364908

> rowMeans(a, dims = 2)

[,1] [,2]

[1,] -0.2353245 -0.03980211

[2,] -0.3339748 0.04364908

Dimitris FouskakisIntroduction to Basic Principles of R 74

Data Frames

 Data frames are used for storing data
tables. It is a list of vectors (not
necessary of the same type) of equal
length. In a data frame usually we
store the observations we have from
a sample.

 To create a data frame we use the
function data.frame().

Dimitris FouskakisIntroduction to Basic Principles of R 75

Data Frames
> Gender<-c('Male', 'Male', 'Male', 'Female')
> Gender<-factor(Gender)
> Gender
[1] Male Male Male Female
Levels: Female Male
> Smoking<-c(T, T, F, F)
> Smoking<-factor(Smoking)
> Choresterol<-c(200, 220, 180, 172)
> Choresterol
[1] 200 220 180 172
> sample<-data.frame(Gender, Smoking, Choresterol)
> sample
Gender Smoking Choresterol

1 Male TRUE 200
2 Male TRUE 220
3 Male FALSE 180
4 Female FALSE 172

Dimitris FouskakisIntroduction to Basic Principles of R 76

Data Frames

 With the function as.data.frame() you
can convert an R object into a data
frame. With the parameter
row.names () you can define names
for the rows (observations) of the
data frame. With the function
names() you can give names into the
columns (variables) of the data
frame.

Dimitris FouskakisIntroduction to Basic Principles of R 77

Data Frames
> x<-matrix(c(1,1,200,1,1,220, 1,0,180,0,0,172),

ncol=3, byrow=T)
> x

[,1] [,2] [,3]
[1,] 1 1 200
[2,] 1 1 220
[3,] 1 0 180
[4,] 0 0 172
> x<-as.data.frame(x)
> x

V1 V2 V3
1 1 1 200
2 1 1 220
3 1 0 180
4 0 0 172
> names(x)
[1] "V1" "V2" "V3"
> names(x)<-c('Gender', 'Smoking', 'Choresterol')
> x

Gender Smoking Choresterol
1 1 1 200
2 1 1 220
3 1 0 180
4 0 0 172

> x<-data.frame(x, row.names=c('obs1',
'obs2', 'obs3', 'obs4'))

> x
Gender Smoking Choresterol

obs1 1 1 200
obs2 1 1 220
obs3 1 0 180
obs4 0 0 172

Dimitris FouskakisIntroduction to Basic Principles of R 78

Data Frames
 Similar functions used for

matrices can be also used here.

> x
Gender Smoking
Choresterol

obs1 1 1 200
obs2 1 1 220
obs3 1 0 180
obs4 0 0 172
> dim(x)
[1] 4 3
> x[1,]

Gender Smoking
Choresterol

obs1 1 1 200

> x[1,2]
[1] 1
> x$Gender
[1] 1 1 1 0
> rbind(1,x)

Gender Smoking Choresterol
1 1 1 1
obs1 1 1 200
obs2 1 1 220
obs3 1 0 180
obs4 0 0 172
> cbind(1,x)

1 Gender Smoking Choresterol
obs1 1 1 1 200
obs2 1 1 1 220
obs3 1 1 0 180
obs4 1 0 0 172

Dimitris FouskakisIntroduction to Basic Principles of R 79

Lists

 Lists are vectors with elements not
necessarily of the same type or
length. To create a list you can use
the function list() giving as a main
parameter the objects (members)
you wish to be contained in your list,
together with their names.

Dimitris FouskakisIntroduction to Basic Principles of R 80

Lists
> Gender<-c('Male', 'Male', 'Male',

'Female')
> Gender<-factor(Gender)
> Gender
[1] Male Male Male Female
Levels: Female Male
> x<-1:10
> x
[1] 1 2 3 4 5 6 7 8 9 10
> sample
Gender Smoking Choresterol

1 Male TRUE 200
2 Male TRUE 220
3 Male FALSE 180
4 Female FALSE 172
> y<-list(my_sample=sample, x=x,

the_gender=Gender)

> y
$my_sample
Gender Smoking Choresterol

1 Male TRUE 200
2 Male TRUE 220
3 Male FALSE 180
4 Female FALSE 172

$x
[1] 1 2 3 4 5 6 7 8 9 10

$the_gender
[1] Male Male Male Female
Levels: Female Male

Dimitris FouskakisIntroduction to Basic Principles of R 81

Lists

 With the symbol $ or [[]], we can
see a member of the list.

> y$x

[1] 1 2 3 4 5 6 7 8 9 10

> y[[3]]

[1] Male Male Male Female

Levels: Female Male

> y$x[1:3]

[1] 1 2 3

Dimitris FouskakisIntroduction to Basic Principles of R 82

Reading Data

 There are a few principal functions
reading data into R.
◼ read.table, read.csv, for reading

tabular data

◼ readLines, for reading lines of a text file

◼ source, for reading in R code files
(inverse of dump)

◼ dget, for reading in R code files (inverse
of dput)

◼ load, for reading in saved workspaces

Dimitris FouskakisIntroduction to Basic Principles of R 83

Reading & Writing Data

 There are analogous functions for
writing data to files

◼ write.table

◼ writeLines

◼ dump

◼ dput

◼ save

Dimitris FouskakisIntroduction to Basic Principles of R 84

The function read.table()

 The read.table function is one of the most commonly
used functions for reading data. It has a few important
arguments:
◼ file: the name of a file, or a connection
◼ header: logical indicating if the file has a header line
◼ sep: a string indicating how the columns are separated
◼ colClasses: a character vector indicating the class of

each column in the dataset
◼ nrows: the number of rows in the dataset
◼ comment.char: a character string indicating the

comment character
◼ skip: the number of lines to skip from the beginning
◼ stringsAsFactors: should character variables be coded as

factors?

Dimitris FouskakisIntroduction to Basic Principles of R 85

Reading & Writing Data
> Gender<-c("Male", "Male", "Male",

"Female")
> write(Gender,file="g.txt", ncol=4)
> x
[1] 1 2 3 4 5 6 7 8 9 10
> write(x,file="x.txt", ncol=length(x))
> Smoking

[1] TRUE TRUE FALSE FALSE
> write(Smoking, file="smoking.txt",

ncol=4)
> X

[,1] [,2]
[1,] 1 7
[2,] 2 8
[3,] 3 9
[4,] 4 10
[5,] 5 11
[6,] 6 12

> write(t(X), "X.txt", ncol=2)
> sample

Gender Smoking Cholesterol
1 Male TRUE 200
2 Male TRUE 220
3 Male FALSE 180
4 Female FALSE 172
> write.table(sample, file="sample.txt")
> x<-scan("x.txt")
Read 10 items
> x
[1] 1 2 3 4 5 6 7 8 9 10
> X<-matrix(scan("XX.txt"), ncol=2, byrow=T)
Read 12 items
> X

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
[5,] 9 10
[6,] 11 12

Dimitris FouskakisIntroduction to Basic Principles of R 86

Reading & Writing Data
> zz<-read.table("sample.txt",

header=T)
> zz

Gender Smoking Cholesterol
1 Male TRUE 200
2 Male TRUE 220
3 Male FALSE 180
4 Female FALSE 172
> zz<-read.table("sample.txt",

header=T)
> zz

Gender Smoking Cholesterol
1 Male TRUE 200
2 Male TRUE 220
3 Male FALSE 180
4 Female FALSE 172

> sapply(zz,mode)
Gender Smoking Cholesterol

"numeric" "logical" "numeric"
> zz<-read.table("sample.txt",

header=T, stringsAsFactors =
FALSE)

> zz
Gender Smoking Cholesterol

1 Male TRUE 200
2 Male TRUE 220
3 Male FALSE 180
4 Female FALSE 172
> sapply(zz,mode)

Gender Smoking Cholesterol
"character" "logical" "numeric"

Dimitris FouskakisIntroduction to Basic Principles of R 87

The function read.table()

 For small to moderately sized datasets, you can
usually call read.table without specifying any other
arguments

data <- read.table("foo.txt")

R will automatically

▪ skip lines that begin with a #

▪ figure out how many rows there are (and how much
memory needs to be allocated)

▪ figure what type of variable is in each column of the
table

 Telling R all these things directly makes R run faster
and more efficiently.

 read.csv is identical to read.table except that the
default separator is a comma.

Dimitris FouskakisIntroduction to Basic Principles of R 88

The function read.table()

 With much larger datasets, doing the
following things will make your life easier
and will prevent R from choking.

◼ Read the help page for read.table, which
contains many hints.

◼ Make a rough calculation of the memory
required to store your dataset. If the dataset is
larger than the amount of RAM on your
computer, you can probably stop right here.

◼ Set comment.char = "" if there are no
commented lines in your file.

Dimitris FouskakisIntroduction to Basic Principles of R 89

The function read.table()

◼ Use the colClasses argument. Specifying this option
instead of using the default can make read.table run
MUCH faster, often twice as fast. In order to use this
option, you have to know the class of each column in
your data frame. If all of the columns are “numeric”,
for example, then you can just set colClasses =
"numeric". A quick an dirty way to figure out the
classes of each column is the following:

initial <- read.table("datatable.txt", nrows = 100)

classes <- sapply(initial, class)

tabAll <- read.table("datatable.txt", colClasses =
classes)

◼ Set nrows. This doesn’t make R run faster but it
helps with memory usage. A mild overestimate is
okay.

Dimitris FouskakisIntroduction to Basic Principles of R 90

Textual Format

 dumping and dputing are useful because the
resulting textual format is edit-able, and in the case of
corruption, potentially recoverable.

 Unlike writing out a table or csv file, dump and dput
preserve the metadata (sacrificing some readability),
so that another user doesn’t have to specify it all over
again.

 Textual formats can work much better with version
control programs like subversion or git which can only
track changes meaningfully in text files.

 Textual formats can be longer-lived; if there is
corruption somewhere in the file, it can be easier to
fix the problem.

 Textual formats adhere to the “Unix philosophy”.
 Downside: The format is not very space-efficient.

Dimitris FouskakisIntroduction to Basic Principles of R 91

dput() & dget()

 Another way to pass data around is by deparsing the
R object with dput and reading it back in using dget.

> y <- data.frame(a = 1, b = "a")
> dput(y)
structure(list(a = 1,
b = structure(1L, .Label = "a",
class = "factor")),
.Names = c("a", "b"), row.names = c(NA, -1L),
class = "data.frame")
> dput(y, file = "y.R")
> new.y <- dget("y.R")
> new.y

a b
1 1 a

Dimitris FouskakisIntroduction to Basic Principles of R 92

dump()

 Multiple objects can be deparsed using the
dump function and read back in using
source.

> x <- "foo"
> y <- data.frame(a = 1, b = "a")
> dump(c("x", "y"), file = "data.R")
> rm(x, y)
> source("data.R")
> y
a b
1 1 a
> x
[1] "foo"

Dimitris FouskakisIntroduction to Basic Principles of R 93

Package “foreign”

SPSS read.spss()

S read.S()

STATA read.dta()

SAS read.xport()

Epi Info read.epiinfo()

Minitab read.mtb()

Octave read.octave()

Dimitris FouskakisIntroduction to Basic Principles of R 94

Example: From Excel to R

 Suppose the first row contains variable names and we have data
for 6 columns (variables). One of the variables is “value” where
the comma is used as a thousand separator. Missing values are
denoted by “:”.

 Convert data.xls to data.csv

◼ Menu File, Save As… and choose csv as type.

◼ Open data.csv with WordPad and replace all “;” with “,”.

 Run R from the same directory where data.csv is.

 Type in R

> data<-read.table(file="data.csv",header=TRUE,sep=",",

colClasses = c(rep("character",6)),na.strings=c(":"))

> data$value<-sub(",","",area$value)

> class(area$value)<-"numeric"

Dimitris FouskakisIntroduction to Basic Principles of R 95

Example. From R to Excel

> write.csv(data, file="data.csv")

 Convert data.csv to data.xls

◼ Open file and with the mouse choose first
column

◼ From menu Data choose Text to Columns…..

◼ Click on “Delimited”, and in the next window
choose “Comma” as a delimiter.

◼ In the next window click on Finish and from the
menu File save the file (Save As…) as .xls.

Dimitris FouskakisIntroduction to Basic Principles of R 96

Functions in R

> x

[1] 46 104 94 114 35 70 120 29 19 135
200 222 89 100 55 214 15 81 118 193

> range<-function(x){

y<-max(x)-min(x)

return(y)

}

> range(x)

[1] 207

Dimitris FouskakisIntroduction to Basic Principles of R 97

Functions in R

> calc<-function(a,b=2){

y<-a^b

return(y)

}

> calc(4)

[1] 16

> calc(4,3)

[1] 64

b=2 default value.

α=4, b=3

Dimitris FouskakisIntroduction to Basic Principles of R 98

Functions in R

Syntax Description

if (A) B Check if A is satisfied. If yes perform Β

if (A) B1 else B2 Check if A is satisfied. If yes perform Β1 else B2

ifelse(A, B1, B2) Same as previous

break Stops current loop

next Stops current loop and starts next iteration

return(A) Terminates a function and return A

while(A) B repetitive execution of B is to be carried out till it meets the

constraint condition (not A)

repeat A Same as while

for(index in A) B Performs B as long as index belongs to A

Dimitris FouskakisIntroduction to Basic Principles of R 99

if else statement in R

if(A)

{

A1

} else

{

A2

}

> x<-0.10

> if(x<=0.05)

{

h<-x^2

} else

{

h<-0.25

}

2x , x 0.05
h(x)

0.25 , x 0.05

=

Dimitris FouskakisIntroduction to Basic Principles of R 100

if else statement in R

if(A)

{

B1

} else if(C)

{

B2

} else

{

B3

}

> x<-0.10

> if(x<=0.05)

{

h<-x^2

} else if(x>0.25 & x<=1)

{

h<-0.25

} else

{

h<-1

}

2x , x 0.05

h(x) 0.25, 0.05 x 1

1, x 1

=

Dimitris FouskakisIntroduction to Basic Principles of R 101

for loop

for(index in A) B

> x<-c(3,6,2,7)

> n<-length(x)

> proda<-1

> summ<-0

> for(i in 1:n)

{

summ<-summ+x[i]

proda<-proda*x[i]

}

Dimitris FouskakisIntroduction to Basic Principles of R 102

for loop

> A<-
matrix(1:1000^2,ncol=1000,
nrow=1000)

> summ<-0

> for(i in 1:1000)

{

for(j in 1:1000)

{

summ<-summ+A[i,j]

}

}

> system.time({summ<-0; for(i in
1:1000){for(j in 1:1000){summ<-
summ+A[i,j]}}})

user system elapsed

1.94 0.00 1.96

>system.time({sum(as.numeric(apply(A,
1,sum)))})

user system elapsed

0.05 0.00 0.36

User cpu time System cpu time
Real elapsed time

Dimitris FouskakisIntroduction to Basic Principles of R 103

while & repeat

while(A) B

Suppose we wish to apply Newton-Raphson

method in order to find the solution of the

equation 3 2f (x) x 2x 7 0= + − =

n
n 1 n

n

f (x)
x x

f '(x)
+ = −

2f '(x) 3x 4x= +

repeat(B; if(A) break)

Dimitris FouskakisIntroduction to Basic Principles of R 104

while & repeat

> x<-1

> tolerance<-0.000001

> f<-x^3+2*x^2-7

> f.prime<-3*x^2+4*x

> while(abs(f)>tolerance)

{

x<-x-f/f.prime

f<-x^3+2*x^2-7

f.prime<-3*x^2+4*x

}

> x<-1

> tolerance<-0.000001

> f<-x^3+2*x^2-7

> f.prime<-3*x^2+4*x

> repeat

{

x<-x-f/f.prime

f<-x^3+2*x^2-7

f.prime<-3*x^2+4*x

if(abs(f) <= tolerance) break

}

Dimitris FouskakisIntroduction to Basic Principles of R 105

Functions in R
 Example: Suppose we wish to create our own function to calculate

x! where x is a natural number
fact1<-function(x){
y<-floor(x)
if (y!=x | x<0)
print("Your number is not natural")
else
{
f<-1
if (x<2) return(f)
for (i in 2:x) {
f<-f*i
}
return(f)
}
}

> fact1(3)

[1] 6

> fact1(1)

[1] 1

> fact1(0)

[1] 1

> fact1(4)

[1] 24

> fact1(2.3)

[1] "Your number is not natural"

Dimitris FouskakisIntroduction to Basic Principles of R 106

Functions in R
fact2<-function(x){

y<-floor(x)
if (y!=x | x<0)
print("Your number is not natural")
else
{
f<-1
t<-x
while(t>1){
f<-f*t
t<-t-1
}
return(f)
}
}

> fact2(3)

[1] 6

> fact2(1)

[1] 1

> fact2(0)

[1] 1

> fact2(4)

[1] 24

> fact2(2.3)

[1] "Your number is not natural"

Dimitris FouskakisIntroduction to Basic Principles of R 107

Functions in R
fact3<-function(x){

y<-floor(x)
if (y!=x | x<0)
print("Your number is not natural")

else
{
f<-1
t<-x
repeat{
if (t<2) break
f<-f*t
t<-t-1
}

return(f)
}
}

> fact3(3)

[1] 6

> fact3(1)

[1] 1

> fact3(0)

[1] 1

> fact3(4)

[1] 24

> fact3(2.3)

[1] "Your number is not natural"

Dimitris FouskakisIntroduction to Basic Principles of R 108

Functions in R

 Loops in R could be time consuming.
Therefore the following loop

for(i in 1:length(y)) {if(y[i]<0} y[i]<-0}

could be replaced by

y[y<0]<-0

Dimitris FouskakisIntroduction to Basic Principles of R 109

Functions in R

 Additionally we could use the cumprod() function of R, that
calculates the cumulative product, i.e.

> cumprod(c(1,2,4))
[1] 1 2 8

 Thus we could use the following function instead

fact4<-function(x){
y<-floor(x)
if (y!=x|x<0)
print("Your number is not natural")

else
{
return(max(cumprod(1:x)))
}
}

> fact4(3)

[1] 6

> fact4(1)

[1] 1

> fact4(0)

[1] 1

> fact4(4)

[1] 24

> fact4(2.3)

[1] "Your number is not natural"

Dimitris FouskakisIntroduction to Basic Principles of R 110

Functions in R
 Finally we could use the gamma() function, since for natural

numbers we have x!=Γ(x+1) or of course the ready function
factorial().

> gamma(4)
[1] 6
> gamma(2)
[1] 1
> gamma(1)
[1] 1
> factorial(3)
[1] 6
> factorial(1)
[1] 1
> factorial(0)
[1] 1

 Please note that the above functions give answers not necessarily
for natural numbers.

Dimitris FouskakisIntroduction to Basic Principles of R 111

Functions in R

 Overflow Problems:

> factorial(200)/(factorial(100)*factorial(100))

[1] NaN

Warning message:

In factorial(200) : value out of range in 'gammafn'

100

200

Dimitris FouskakisIntroduction to Basic Principles of R 112

Functions in R

We have

Thus in R

or even better

200 101 ... 200

100 1 ... 100

=

> prod(101:200)/prod(1:100)

[1] 9.054851e+58

> x<-1:100

> y<-101:200

> z<-y/x

> prod(z)

[1] 9.054851e+58

581005.9

Dimitris FouskakisIntroduction to Basic Principles of R 113

Functions in R

 Another way to avoid overflow problems is by

using logs.

n

i 1

200 200
exp log exp log(200!) 2log(100!)

100 100

But

 log(n!) log(i)
=

= = −

=

> exp(sum(log(1:200))-2*sum(log(1:100)))

[1] 9.054851e+58

Dimitris FouskakisIntroduction to Basic Principles of R 114

Loop Functions

 Writing for & while loops is useful when
programming but not particularly easy
when working interactively on the
command line. There are some functions
which implement looping to make life
easier.

 lapply: Loop over a list and evaluate a function on
each element.

 sapply: Same as lapply but try to simplify the
result.

 apply: Apply a function over the margins of an
array.

 tapply: Apply a function over subsets of a vector.
 mapply: Multivariate version of lapply.

Dimitris FouskakisIntroduction to Basic Principles of R 115

lapply()

 lapply takes three arguments: a list X, a function (or
the name of a function) FUN, and other arguments via
its ... argument. If X is not a list, it will be coerced to
a list using as.list.

> lapply

function (X, FUN, ...)

{

FUN <- match.fun(FUN)

if (!is.vector(X) || is.object(X))

X <- as.list(X)

.Internal(lapply(X, FUN))

}

The actual looping is done internally in C code.

Dimitris FouskakisIntroduction to Basic Principles of R 116

lapply()

 lapply always returns a list,
regardless of the class of the input.

> x <- list(a = 1:5, b = rnorm(10))

> lapply(x, mean)

$a

[1] 3

$b

[1] 0.0296824

Dimitris FouskakisIntroduction to Basic Principles of R 117

lapply()

> x <- list(a = 1:4, b = rnorm(10), c = rnorm(20, 1),

d = rnorm(100, 5))

> lapply(x, mean)

$a

[1] 2.5

$b

[1] 0.06082667

$c

[1] 1.467083

$d

[1] 5.074749

Dimitris FouskakisIntroduction to Basic Principles of R 118

sapply()

 sapply will try to simplify the result of
lapply if possible.

 If the result is a list where every element is
length 1, then a vector is returned.

 If the result is a list where every element is
a vector of the same length (> 1), a matrix
is returned.

 If it can’t figure things out, a list is
returned.

Dimitris FouskakisIntroduction to Basic Principles of R 119

sapply()

> x <- list(a = 1:4, b = rnorm(10), c = rnorm(20, 1),

d = rnorm(100, 5))

> lapply(x, mean)

$a

[1] 2.5

$b

[1] 0.06082667

$c

[1] 1.467083

$d

[1] 5.074749

Dimitris FouskakisIntroduction to Basic Principles of R 120

sapply()

> sapply(x, mean)

a b c d

2.50000000 0.06082667 1.46708277
5.07474950

> mean(x)

[1] NA

Warning message:

In mean.default(x) : argument is not numeric
or logical: returning NA

Dimitris FouskakisIntroduction to Basic Principles of R 121

tapply()

 tapply is used to apply a function over
subsets of a vector.

> str(tapply)

function (X, INDEX, FUN = NULL, ..., simplify =
TRUE)

 X is a vector.

 INDEX is a factor or a list of factors (or else
they are coerced to factors).

 FUN is a function to be applied.

 ... contains other arguments to be passed FUN.

 simplify, should we simplify the result?

Dimitris FouskakisIntroduction to Basic Principles of R 122

tapply()

 Take group means.
> x <- c(rnorm(10), runif(10), rnorm(10, 1))

> f <- gl(3, 10)

> f

[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3

[24] 3 3 3 3 3 3 3

Levels: 1 2 3

> tapply(x, f, mean)

1 2 3

0.1144464 0.5163468 1.2463678

Generate factors by specifying the
pattern of their levels.

simulates from uniform

in (0,1) (more later)

Dimitris FouskakisIntroduction to Basic Principles of R 123

tapply()

 Take group means without
simplification.

> tapply(x, f, mean, simplify = FALSE)

$‘1‘

[1] 0.1144464

$‘2‘

[1] 0.5163468

$‘3‘

[1] 1.246368

Dimitris FouskakisIntroduction to Basic Principles of R 124

tapply()

 Find group ranges.
> tapply(x, f, range)

$‘1‘

[1] -1.097309 2.694970

$‘2‘

[1] 0.09479023 0.79107293

$‘3‘

[1] 0.4717443 2.5887025

Dimitris FouskakisIntroduction to Basic Principles of R 125

split()

 split takes a vector or other objects
and splits it into groups determined
by a factor or list of factors.

> str(split)

function (x, f, drop = FALSE, ...)

◼ x is a vector (or list) or data frame.

◼ f is a factor (or coerced to one) or a list of
factors.

◼ drop indicates whether empty factors levels
should be dropped.

Dimitris FouskakisIntroduction to Basic Principles of R 126

split()

> x <- c(rnorm(10), runif(10), rnorm(10, 1))
> f <- gl(3, 10)
> split(x, f)
$‘1‘
[1] -0.8493038 -0.5699717 -0.8385255 -0.8842019
[5] 0.2849881 0.9383361 -1.0973089 2.6949703
[9] 1.5976789 -0.1321970
$‘2‘
[1] 0.09479023 0.79107293 0.45857419 0.74849293
[5] 0.34936491 0.35842084 0.78541705 0.57732081
[9] 0.46817559 0.53183823
$‘3‘
[1] 0.6795651 0.9293171 1.0318103 0.4717443
…………………………………………………………………………………

Dimitris FouskakisIntroduction to Basic Principles of R 127

split()

 A common idiom is split followed by
an lapply.
> lapply(split(x, f), mean)

$‘1‘

[1] 0.1144464

$‘2‘

[1] 0.5163468

$‘3‘

[1] 1.246368

Dimitris FouskakisIntroduction to Basic Principles of R 128

Splitting a Data Frame

> library(datasets)

> head(airquality)

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

Dimitris FouskakisIntroduction to Basic Principles of R 129

Splitting a Data Frame

> s <- split(airquality, airquality$Month)
> lapply(s, function(x) colMeans(x[, c("Ozone", "Solar.R",

"Wind")]))
$‘5‘
Ozone Solar.R Wind
NA NA 11.62258
$‘6‘
Ozone Solar.R Wind
NA 190.16667 10.26667
$‘7‘
Ozone Solar.R Wind
NA 216.483871 8.941935
…………………………………………………….

Dimitris FouskakisIntroduction to Basic Principles of R 130

Splitting a Data Frame

> sapply(s, function(x) colMeans(x[, c("Ozone", "Solar.R",
"Wind")]))

5 6 7 8 9
Ozone NA NA NA NA NA
Solar.R NA 190.16667 216.483871 NA 167.4333
Wind 11.62258 10.26667 8.941935 8.793548 10.1800

> sapply(s, function(x) colMeans(x[, c("Ozone", "Solar.R",
"Wind")],

na.rm = TRUE))
5 6 7 8 9
Ozone 23.61538 29.44444 59.115385 59.961538 31.44828
Solar.R 181.29630 190.16667 216.483871 171.857143 167.43333
Wind 11.62258 10.26667 8.941935 8.793548 10.18000

Dimitris FouskakisIntroduction to Basic Principles of R 131

Splitting on more that one level

> x <- rnorm(10)

> f1 <- gl(2, 5)

> f2 <- gl(5, 2)

> f1

[1] 1 1 1 1 1 2 2 2 2 2

Levels: 1 2

> f2

[1] 1 1 2 2 3 3 4 4 5 5

Levels: 1 2 3 4 5

> interaction(f1, f2)

[1] 1.1 1.1 1.2 1.2 1.3 2.3 2.4 2.4 2.5 2.5

10 Levels: 1.1 2.1 1.2 2.2 1.3 2.3 1.4 2.4 1.5 2.5

1 1 1 1 1 2 2 2 2 2

1 1 2 2 3 3 4 4 5 5

Empty levels

Dimitris FouskakisIntroduction to Basic Principles of R 132

Splitting on more that one level

 Interactions can create empty levels.
> str(split(x, list(f1, f2)))
List of 10
$ 1.1: num [1:2] -0.378 0.445
$ 2.1: num(0)
$ 1.2: num [1:2] 1.4066 0.0166
$ 2.2: num(0)
$ 1.3: num -0.355
$ 2.3: num 0.315
$ 1.4: num(0)
$ 2.4: num [1:2] -0.907 0.723
$ 1.5: num(0)
$ 2.5: num [1:2] 0.732 0.360

Dimitris FouskakisIntroduction to Basic Principles of R 133

Splitting on more that one level

 Empty levels can be dropped.
> str(split(x, list(f1, f2), drop = TRUE))

List of 6

$ 1.1: num [1:2] -0.378 0.445

$ 1.2: num [1:2] 1.4066 0.0166

$ 1.3: num -0.355

$ 2.3: num 0.315

$ 2.4: num [1:2] -0.907 0.723

$ 2.5: num [1:2] 0.732 0.360

Dimitris FouskakisIntroduction to Basic Principles of R 134

mapply()

 mapply is a multivariate apply of sorts
which applies a function in parallel over a
set of arguments.
> str(mapply)

function (FUN, ..., MoreArgs = NULL, SIMPLIFY =
TRUE, USE.NAMES = TRUE)

 FUN is a function to apply

 ... contains arguments to apply over

 MoreArgs is a list of other arguments to FUN.

 SIMPLIFY indicates whether the result should be
simplified

Dimitris FouskakisIntroduction to Basic Principles of R 135

mapply()

The following is tedious to type
> list(rep(1, 4), rep(2, 3), rep(3, 2), rep(4, 1))

Instead we can do
> mapply(rep, 1:4, 4:1)
[[1]]
[1] 1 1 1 1
[[2]]
[1] 2 2 2
[[3]]
[1] 3 3
[[4]]
[1] 4

Dimitris FouskakisIntroduction to Basic Principles of R 136

Vectorizing a Function

> noise <- function(n, mean, sd) {
+ rnorm(n, mean, sd)
+ }
> noise(5, 1, 2)
[1] 2.4831198 2.4790100 0.4855190 -

1.2117759
[5] -0.2743532
> noise(1:5, 1:5, 2)
[1] -4.2128648 -0.3989266 4.2507057

1.1572738
[5] 3.7413584

Dimitris FouskakisIntroduction to Basic Principles of R 137

Vectorizing a Function

> mapply(noise, 1:5, 1:5, 2)
[[1]]
[1] 1.037658
[[2]]
[1] 0.7113482 2.7555797
[[3]]
[1] 2.769527 1.643568 4.597882
[[4]]
[1] 4.476741 5.658653 3.962813 1.204284
[[5]]
[1] 4.797123 6.314616 4.969892 6.530432 6.723254
The above is the same as:
> list(noise(1, 1, 2), noise(2, 2, 2), noise(3, 3, 2), noise(4, 4,

2), noise(5, 5, 2))

Dimitris FouskakisIntroduction to Basic Principles of R 138

Numerical Measures – Quantitative
Variables

Function Description

mean(x) Sample Mean

min(x) Minimum

max(x) Maximum

median(x) Median

var(x) Variance

sd(x) Standard Deviation

quantile(x,p) Returns the p percentile. Για p=0.25 και p=0.75 we get the 1ο

and 3ο quartile. Read the help in R for the different quantile
algorithms (argument “types”)

Dimitris FouskakisIntroduction to Basic Principles of R 139

Graphical Methods – Quantitative
Variables

 Histogram:

◼ hist(x)

◼ hist(x, nclass=10)

◼ hist(x, breaks=seq(from=0,to=240,by=30))

◼ hist(x, probability=T)

 Boxplot:
◼ boxplot(x)
◼ boxplot(x,y, names=c(“X”, “Y”))

Dimitris FouskakisIntroduction to Basic Principles of R 140

Graphical Methods – Quantitative
Variables

X Y

5
0

1
0

0
1

5
0

2
0

0

Histogram of x

x

D
e

n
s
it
y

0 50 100 150 200 250

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

Dimitris FouskakisIntroduction to Basic Principles of R 141

Descriptive Measures - Categorical
Variables

C C B M M

C M M F C

F B B M M

C C C M C

car=C,

metro=Μ,

bus=Β

walk=F

males

females

Dimitris FouskakisIntroduction to Basic Principles of R 142

Descriptive Measures - Categorical
Variables

> Transportation<-c("C", "C", "B", "M", "M", "C", "M", "M", "F", "C",
"F", "B", "B", "M", "M", "C", "C", "C", "M", "C")

> Transportation<-factor(Transportation)
> Gender<-c(rep("M",10), rep("F", 10))
> Gender
[1] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "F" "F" "F" "F" "F" "F"

"F" "F" "F" "F"
> Gender<-factor(Gender)
> table(Transportation)
A
B C F M
3 8 2 7
> prop.table(table(Transportation))
A

B C F M
0.15 0.40 0.10 0.35

Dimitris FouskakisIntroduction to Basic Principles of R 143

Descriptive Measures - Categorical
Variables

> mytable<-
table(Transportation,Gender)

> mytable
Gender

Transportation F M
B 2 1
C 4 4
F 1 1
M 3 4

> margin.table(mytable, 1)
Trasportation
B C F M
3 8 2 7
> margin.table(mytable, 2)
Gender
F M
10 10

> prop.table(mytable)

Gender

Transportation F M

B 0.10 0.05

C 0.20 0.20

F 0.05 0.05

M 0.15 0.20

> prop.table(mytable, 1)

Gender

Transportation F M

B 0.6666667 0.3333333

C 0.5000000 0.5000000

F 0.5000000 0.5000000

M 0.4285714 0.5714286

> prop.table(mytable, 2)

Gender

Transportation F M

B 0.2 0.1

C 0.4 0.4

F 0.1 0.1

M 0.3 0.4

frequencies for transportation

frequencies for gender

relative frequencies
for each cell

relative frequencies rows

relative frequency columns

Dimitris FouskakisIntroduction to Basic Principles of R 144

Descriptive Measures - Categorical
Variables

 Barplot
> AA<-table(A)

> AA

A

B C F M

3 8 2 7

> barplot(AA)

 Piechart

> pie(AA)

B C F M

0
2

4
6

8
B

C

F

M

Dimitris FouskakisIntroduction to Basic Principles of R 145

Stacked Barplots

> freq_table<-table(Transportation,Gender)
> barplot(freq_table, xlim=c(0,3),

xlab="Gender",
legend=levels(Transportation), col=1:4)

> freq_table<-table(Gender, Transportation)
> barplot(freq_table, width=0.85, xlim=c(0,5),

xlab="Transportation",
legend=levels(Gender), col=1:2)

Dimitris FouskakisIntroduction to Basic Principles of R 146

Stacked Barplots

F M

M

F

C

B

Gender

0
2

4
6

8
1

0

B C F M

M

F

Transportation

0
2

4
6

8

Dimitris FouskakisIntroduction to Basic Principles of R 147

Grouped Barplot

> freq_table<-table(Transportation,Gender)

> barplot(prop.table(freq_table,1), width=0.25,
xlim=c(0,3), ylim=c(0,0.7), xlab="Gender",
legend=levels(Transportation), beside=T, col=1:4)

> freq_table<-table(Gender, Transportation)

> barplot(prop.table(freq_table,1), width=0.25,
xlim=c(0,3.6), xlab="Transportation",
legend=levels(Gender), beside=T, col=1:2)

Dimitris FouskakisIntroduction to Basic Principles of R 148

Grouped Barplot

F M

B

C

F

M

Gender

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

B C F M

F

M

Transportation

0
.0

0
.1

0
.2

0
.3

0
.4

Dimitris FouskakisIntroduction to Basic Principles of R 149

Distributions in R

 Probability distribution functions
usually have four functions associated
with them.

 The functions are prefixed with a:

◼ d for density.

◼ r for random number generation.

◼ p for cumulative distribution.

◼ q for quantile function.

Dimitris FouskakisIntroduction to Basic Principles of R 150

Distributions in R

command distribution command distribution

beta Beta hyper Hypergeometric

norm Normal unif Uniform

pois Poisson cauchy Cauchy

nbinom Neg. Binomial weibull Weibull

gamma Gamma chisq X2

t Student exp Exponential

binom Binomial geom Geometric

f Snedecor mvnorm Multivariate Normal

Dimitris FouskakisIntroduction to Basic Principles of R 151

Distributions in R

 Examples:
> pnorm(3,2,2)
[1] 0.6914625

> qgamma(0.3,1,1)
[1] 0.3566749

> dt(2,3)
[1] 0.06750966

> runif(5,-2,2)
[1] 1.3448055 -0.4691324 1.2517269 1.5576504 0.9563447

Generates 5 uniform in (-2,2) variates.

Calculates the value of the pdf of the Student
distribution with 3 df at x = 2.

Calculates the value of the cumulative distribution
function of the Normal distribution with mean
2 and SD (NOT VARIANCE) 2 at x = 3.

Finds the 0.3 percentile of the Gamma
distribution with parameters 1 and 1.

Dimitris FouskakisIntroduction to Basic Principles of R 152

Distributions in R

 Arguments of the previous functions could be
vectors.

 Default Values in the Parameters: The
command rnorm(50) generates 50 normal
variates with μ = 0 and σ = 1.

> dexp(1:5,2)
[1] 2.706706e-01 3.663128e-02 4.957504e-03 6.709253e-04

9.079986e-05

Calculates the value of the pdf of the exponential distribution with
parameter 2 for x = 1, 2, 3, 4, 5.

Dimitris FouskakisIntroduction to Basic Principles of R 153

Distributions in R

 If Χ~Student(10) then the P(X≤2) is
equal to

while the P(X>2) is equal to

> pt(2,10)
[1] 0.963306

> pt(2,10, lower.tail=FALSE)
[1] 0.03669402

Dimitris FouskakisIntroduction to Basic Principles of R 154

Distributions in R

 All functions (except the ones that
are prefixed with r) could be in log
(natural logarithm) scale

> pnorm(3,2,2)
[1] 0.6914625
> pnorm(3,2,2, log=T)
[1] -0.3689464
> dt(2,3)
[1] 0.06750966
> dt(2,3, log=T)
[1] -2.695485

Dimitris FouskakisIntroduction to Basic Principles of R 155

Distributions in R

 Working with the Normal distributions
requires using these four functions:
◼ dnorm(x, mean = 0, sd = 1, log = FALSE).

◼ pnorm(q, mean = 0, sd = 1, lower.tail = TRUE,
log.p = FALSE).

◼ qnorm(p, mean = 0, sd = 1, lower.tail = TRUE,
log.p = FALSE).

◼ rnorm(n, mean = 0, sd = 1).

 If Φ is the cumulative distribution function
for a standard Normal distribution, then
pnorm(q) = Φ(q) and qnorm(p) = Φ-1(p).

Dimitris FouskakisIntroduction to Basic Principles of R 156

Distributions in R

 Plot a pdf or pmf:

> x<-seq(0,10, 0.01)
> plot(x, dgamma(x,1,1), type='l')

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

d
g

a
m

m
a

(x
,
1

,
1

)
Gamma distribution with
parameters (1,1)

Dimitris FouskakisIntroduction to Basic Principles of R 157

Distributions in R

> n<-6

> p<-0.1

> x<-0:6

> pr<-dbinom(x,n,p)

>plot(x,pr,type="h",xlim=c(0,6),
ylim=c(0,1),
col="blue",ylab="p")

>points(x,pr,pch=20,col="dark
red")

Binomial distribution with
n=6 και p=0.1

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

p

Dimitris FouskakisIntroduction to Basic Principles of R 158

Simulations

 Generating random Normal variates
> x <- rnorm(10)
> x
[1] 1.38380206 0.48772671 0.53403109 0.66721944
[5] 0.01585029 0.37945986 1.31096736 0.55330472
[9] 1.22090852 0.45236742
> x <- rnorm(10, 20, 2)
> x
[1] 23.38812 20.16846 21.87999 20.73813 19.59020
[6] 18.73439 18.31721 22.51748 20.36966 21.04371
> summary(x)
Min. 1st Qu. Median Mean 3rd Qu. Max.
18.32 19.73 20.55 20.67 21.67 23.39

Dimitris FouskakisIntroduction to Basic Principles of R 159

set.seed

 Setting the random number seed with set.seed
ensures reproducibility
> set.seed(1)
> rnorm(5)
[1] -0.6264538 0.1836433 -0.8356286 1.5952808
[5] 0.3295078
> rnorm(5)
[1] -0.8204684 0.4874291 0.7383247 0.5757814
[5] -0.3053884
> set.seed(1)
> rnorm(5)
[1] -0.6264538 0.1836433 -0.8356286 1.5952808
[5] 0.3295078

Dimitris FouskakisIntroduction to Basic Principles of R 160

Simulations

 Generating Poisson data
> rpois(10, 1)
[1] 3 1 0 1 0 0 1 0 1 1
> rpois(10, 2)
[1] 6 2 2 1 3 2 2 1 1 2
> rpois(10, 20)
[1] 20 11 21 20 20 21 17 15 24 20
> ppois(2, 2) ## Cumulative distribution
[1] 0.6766764 ## Pr(x <= 2)
> ppois(4, 2)
[1] 0.947347 ## Pr(x <= 4)
> ppois(6, 2)
[1] 0.9954662 ## Pr(x <= 6)

Dimitris FouskakisIntroduction to Basic Principles of R 161

Simulate from a Linear Model

 Suppose we want to simulate 100 values
from the following linear model y = β0 +
β1x + ε, where ε ~ N(0; 22). Assume X ~
N(0; 12), β0 = 0.5 and β1 = 2.

> x <- rnorm(100)

> e <- rnorm(100, 0, 2)

> y <- 0.5 + 2 * x + e

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-6.4080 -1.5400 0.6789 0.6893 2.9300 6.5050

> plot(x, y)

Dimitris FouskakisIntroduction to Basic Principles of R 162

Simulate from a Linear Model

Dimitris FouskakisIntroduction to Basic Principles of R 163

Simulate from a Linear Model

 What if X is binary?
> x <- rbinom(100, 1, 0.5)

> e <- rnorm(100, 0, 2)

> y <- 0.5 + 2 * x + e

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.4940 -0.1409 1.5770 1.4320 2.8400
6.9410

> plot(x, y)

Dimitris FouskakisIntroduction to Basic Principles of R 164

Simulate from a Linear Model

Dimitris FouskakisIntroduction to Basic Principles of R 165

Simulate from a Poisson Model

 Suppose we want to simulate 100 values
from a Poisson model where Y ~
Poisson(μ), log(μ) = β0 + β1x. Assume X ~
N(0; 12) and β0 = 0.5 and β1 = 0:3.

> set.seed(1)
> x <- rnorm(100)
> log.mu <- 0.5 + 0.3 * x
> y <- rpois(100, exp(log.mu))
> summary(y)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 1.00 1.00 1.55 2.00 6.00
> plot(x, y)

Dimitris FouskakisIntroduction to Basic Principles of R 166

Simulate from a Poisson Model

Dimitris FouskakisIntroduction to Basic Principles of R 167

Sampling

 The sample function draws randomly from a specified
set of (scalar) objects allowing you to sample from
arbitrary distributions.

> sample(1:10, 4)
[1] 3 4 5 7
> sample(1:10, 4)
[1] 3 9 8 5
> sample(letters, 5)
[1] "q" "b" "e" "x" "p"
> sample(1:10) ## permutation
[1] 4 7 10 6 9 2 8 3 1 5
> sample(1:10)
[1] 2 3 4 1 9 5 10 8 6 7
> sample(1:10, replace = TRUE) ## Sample w/replacement
[1] 2 9 7 8 2 8 5 9 7 8
> sample(1:5, replace = TRUE, prob=c(0.3, 0.3, 0.4, 0,0)) ## Sample

w/replacement and pre-specified probabilities
[1] 3 1 2 2 1

Dimitris FouskakisΠροσομοίωση 168

Weak Law of Large Numbers

 If Χ1,...,Χn are idependent and
identical distributed Random
Variables with finite mean μ, then

 Application: Let Χi~Bernoulli(p). Then
μ=P(Xi=1)=p, and therefore

X p by probability as n .→ →

n1

i1
X n X by probability as n .−= → →

Dimitris FouskakisΠροσομοίωση 169

Weak Law of Large Numbers

 p=0.2, n=500:

> x<-rbinom(500,1,0.2)

> xbar<-cumsum(x)/(1:500)

> plot(xbar)

> abline(h=0.2)

Dimitris FouskakisΠροσομοίωση 170

Weak Law of Large Numbers

0 100 200 300 400 500

0
.2

0
.4

0
.6

0
.8

1
.0

Index

x
b

a
r

Dimitris FouskakisΠροσομοίωση 171

Weak Law of Large Numbers

 Repeat 4 times:

> par(mfrow=c(2,2))

> for(i in 1:4)

{

x<-rbinom(500,1,0.2)

xbar<-cumsum(x)/(1:500)

plot(xbar)

abline(h=0.2)

}

Dimitris FouskakisΠροσομοίωση 172

Weak Law of Large Numbers

0 100 200 300 400 500

0.
2

0.
4

0.
6

0.
8

1.
0

Index

xb
ar

0 100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Index

xb
ar

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

Index

xb
ar

0 100 200 300 400 500

0.
2

0.
4

0.
6

0.
8

1.
0

Index

xb
ar

Dimitris FouskakisΠροσομοίωση 173

Weak Law of Large Numbers

 Example of the Cauchy distribution (the mean is
not finite).

> par(mfrow=c(2,2))

> for(i in 1:4)

{

x<-rcauchy(500)

xbar<-cumsum(x)/(1:500)

plot(xbar)

}

Dimitris FouskakisΠροσομοίωση 174

Weak Law of Large Numbers

0 100 200 300 400 500

0
1

2
3

Index

xb
ar

0 100 200 300 400 500

-6
-4

-2
0

2

Index

xb
ar

0 100 200 300 400 500

-5
0

5
10

15

Index

xb
ar

0 100 200 300 400 500

0
20

00
40

00
60

00

Index

xb
ar

Dimitris FouskakisΠροσομοίωση 175

Central Limit Theorem

 Let Χ1,...,Χn be independent and
identical distributed Random Variables

with finite mean μ and variance σ2. Then

 Equivalently

n

i1
n

X n
S Z N(0,1) by law as n .

n

−
= → →

2Y N(, / n) by law as n .→ →

Dimitris FouskakisΠροσομοίωση 176

Central Limit Theorem

 Example: Let n = 150 from Poisson with λ=2 (then

λ=μ=σ2=2).

> poisson.clt<-function(k,n,l)

{

Sn<-rep(NA,k)

for(i in 1:k)

{

x<-rpois(n,l)

Sn[i]<-(sum(x)-n*l)/(sqrt(n*l))

}

return(Sn)

}

Dimitris FouskakisΠροσομοίωση 177

Central Limit Theorem

 We use k=300 replications.

> run<-poisson.clt(300,150,2)

> par(mfrow=c(1,2))

> hist(run)

> qqnorm(run)

> qqline(run)

Dimitris FouskakisΠροσομοίωση 178

Central Limit Theorem

Histogram of run

run

Fr
eq

ue
nc

y

-4 -2 0 2 4

0
20

40
60

80
10

0

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

Normal Q-Q Plot

Theoretical Quantiles

Sa
mp

le
Qu

an
tile

s

Dimitris FouskakisIntroduction to Basic Principles of R 179

Plotting

 The plotting and graphics engine in R is encapsulated in a
few base and recommend packages:

◼ graphics: contains plotting functions for the “base”
graphing systems, including plot, hist, boxplot and
many others.

◼ lattice: contains code for producing Trellis graphics,
which are independent of the “base” graphics
system; includes functions like xyplot, bwplot,
levelplot.

◼ grid: implements a different graphing system
independent of the “base” system; the lattice
package builds on top of grid; we seldom call
functions from the grid package directly.

◼ grDevices: contains all the code implementing the
various graphics devices, including X11, PDF,
PostScript, PNG, etc.

Dimitris FouskakisIntroduction to Basic Principles of R 180

Base Graphics

 Base graphics are used most commonly and
are a very powerful system for creating 2-D
graphics.
◼ Calling plot(x, y) or hist(x) will launch a graphics

device (if one is not already open) and draw the
plot on the device.

◼ If the arguments to plot are not of some special
class, then the default method for plot is called;
this function has many arguments, letting you
set the title, x axis lable, y axis label, etc.

◼ The base graphics system has many parameters
that can set and tweaked; these parameters are
documented in ?par; it wouldn’t hurt to
memorize this help page!

Dimitris FouskakisIntroduction to Basic Principles of R 181

Main Parameters of a Graph

 main: Title of the graph.

 sub: Subtitle of the graph.

 xlab & ylab: Titles of the axes.

 xlim & ylim: Range of the axes.

Dimitris FouskakisIntroduction to Basic Principles of R 182

Base Graphics Parameters

 The par function is used to specify global graphics parameters
that affect all plots in an R session. These parameters can
often be overridden as arguments to specific plotting functions.
◼ pch: the plotting symbol (default is open circle).
◼ lty: the line type (default is solid line), can be dashed, dotted,

etc.
◼ lwd: the line width, specified as an integer multiple.
◼ col: the plotting color, specified as a number, string, or hex

code; the colors function gives you a vector of colors by name.
◼ las: the orientation of the axis labels on the plot.
◼ bg: the background color.
◼ mar: the margin size.
◼ oma: the outer margin size (default is 0 for all sides).
◼ mfrow: number of plots per row, column (plots are filled row-

wise).
◼ mfcol: number of plots per row, column (plots are filled

column-wise).

Dimitris FouskakisIntroduction to Basic Principles of R 183

Base Graphics Parameters

 Some default
values:

> par("lty")

[1] "solid"

> par("lwd")

[1] 1

> par("col")

[1] "black"

> par("pch")

[1] 1

> par("bg")

[1] "transparent"

> par("mar")

[1] 5.1 4.1 4.1 2.1

> par("oma")

[1] 0 0 0 0

> par("mfrow")

[1] 1 1

> par("mfcol")

[1] 1 1

Dimitris FouskakisIntroduction to Basic Principles of R 184

Some Important Base Plotting
Functions

 plot: make a scatterplot, or other type of plot
depending on the class of the object being plotted.

 lines: add lines to a plot, given a vector x values and
a corresponding vector of y values (or a 2-column
matrix); this function just connects the dots.

 points: add points to a plot.

 text: add text labels to a plot using specified x, y
coordinates.

 title: add annotations to x, y axis labels, title,
subtitle, outer margin.

 mtext: add arbitrary text to the margins (inner or
outer) of the plot.

 axis: adding axis ticks/labels.

Dimitris FouskakisIntroduction to Basic Principles of R 185

Text & Symbol Size

 cex: number indicating the amount by which
plotting text and symbols should be scaled
relative to the default. 1=default, 1.5 is 50%
larger, 0.5 is 50% smaller, etc.

 cex.axis: magnification of axis annotation
relative to cex.

 cex.lab: magnification of x and y labels
relative to cex.

 cex.main: magnification of titles relative to
cex.

 cex.sub: magnification of subtitles relative to
cex.

Dimitris FouskakisIntroduction to Basic Principles of R 186

Axes

 You can create custom axes using the axis() function.
> axis(side, at=, labels=, pos=, lty=, col=, las=, tck=, ...)

◼ side: an integer indicating the side of the graph to draw the
axis (1=bottom, 2=left, 3=top, 4=right).

◼ at: a numeric vector indicating where tic marks should be
drawn.

◼ labels: a character vector of labels to be placed at the
tickmarks (if NULL, the at values will be used).

◼ pos: the coordinate at which the axis line is to be drawn.
(i.e., the value on the other axis where it crosses).

◼ lty: line type.
◼ col: the line and tick mark color.
◼ las: labels are parallel (=0) or perpendicular(=2) to axis.
◼ tck: length of tick mark as fraction of plotting region (negative

number is outside graph, positive number is inside, 0
suppresses ticks, 1 creates gridlines) default is -0.01.

Dimitris FouskakisIntroduction to Basic Principles of R 187

Axes

 The option axes=FALSE suppresses
both x and y axes.

 xaxt="n" and yaxt="n" suppress
the x and y axis respectively.

 xlab=“” and ylab=“” suppress the
titles of the two axes.

Dimitris FouskakisIntroduction to Basic Principles of R 188

Legend

 Add a legend with the legend() function.
> legend(location, title, legend, ...)

◼ location: There are several ways to indicate the location of the
legend. You can give a x,y coordinate for the upper left hand
corner of the legend. You can use locator(1), in which case you
use the mouse to indicate the location of the legend. You can also
use the keywords "bottom", "bottomleft", "left", "topleft", "top",
"topright", "right", "bottomright", or "center". If you use a
keyword, you may want to use inset= to specify an amount to
move the legend into the graph (as fraction of plot region).

◼ title: A character string for the legend title (optional).
◼ legend: A character vector with the labels.
◼ ...Other options. If the legend labels colored lines,

specify col= and a vector of colors. If the legend labels point
symbols, specify pch= and a vector of point symbols. If the
legend labels line width or line style, use lwd= or lty= and a
vector of widths or styles. To create colored boxes for the legend
(common in bar, box, or pie charts), use fill= and a vector of
colors.

Dimitris FouskakisIntroduction to Basic Principles of R 189

Fonts

 font: Integer specifying font to use for text. 1=plain,
2=bold, 3=italic, 4=bold italic, 5=symbol.

 font.axis: font for axis annotation.
 font.lab: font for x and y labels.
 font.main: font for titles.
 font.sub: font for subtitles.
 ps: font point size (roughly 1/72 inch)

text size=ps*cex.
 family: font family for drawing text. Standard values are

"serif", "sans", "mono", "symbol". Mapping is device
dependent. In windows, mono is mapped to "TT Courier
New", serif is mapped to"TT Times New Roman", sans is
mapped to "TT Arial", mono is mapped to "TT Courier New",
and symbol is mapped to "TT Symbol" (TT=True Type). You
can add your own mappings.

Dimitris FouskakisIntroduction to Basic Principles of R 190

Margins & Graph Size

 mar: numerical vector indicating
margin size c(bottom, left, top, right)
in lines. default = c(5, 4, 4, 2) + 0.1.

 mai: numerical vector indicating
margin size c(bottom, left, top, right)
in inches.

 pin: plot dimensions (width, height)
in inches.

Dimitris FouskakisIntroduction to Basic Principles of R 191

Saving Graphs

 You can save the graph in a variety of formats from
the menu

File -> Save As.

 You can also save the graph via code using one of the
following functions.

◼ pdf("mygraph.pdf"): pdf file.

◼ win.metafile("mygraph.wmf"): windows metafile.

◼ png("mygraph.png"): pngfile.

◼ jpeg("mygraph.jpg"): jpeg file.

◼ bmp("mygraph.bmp"): bmp file.

◼ postscript("mygraph.ps"): postscript file.

Dimitris FouskakisIntroduction to Basic Principles of R 192

Useful Graphics Devices

 The list of devices is found in ?Devices;
there are also devices created by users on
CRAN

◼ pdf: useful for line-type graphics, vector format,
resizes well, usually portable

◼ postscript: older format, also vector format
and resizes well, usually portable,can be used to
create encapsulated postscript files, Windows
systems often don’t have a postscript viewer.

◼ xfig: good of you use Unix and want to edit a
plot by hand.

Dimitris FouskakisIntroduction to Basic Principles of R 193

Plot

0 20 40 60 80 100

-3
-2

-1
0

1
2

Index

x
> plot(x)

Dimitris FouskakisIntroduction to Basic Principles of R 194

Different plotting symbols

0 20 40 60 80 100

-3
-2

-1
0

1
2

Index

x

> plot(x, pch=11)

Dimitris FouskakisIntroduction to Basic Principles of R 195

Different plotting symbols

> plot(x, pch=‘A’)

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A
A

A

A

A
A

A

A

A

A

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

A

A

A

A
A
AA

A

A

A

A

AA

A

A

A

A

A
A

A

A

A

A

A

A

A
A

A

A

AA

A

A

A

A

A
A

A

A

A

A

A

A

A

AA
A

A

A

A

A

A

A
A

0 20 40 60 80 100

-3
-2

-1
0

1
2

Index

x

Dimitris FouskakisIntroduction to Basic Principles of R 196

Different plotting symbols

> plot(x, pch=c('A', 'B'))
A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B
A

B

A

B
A

B

A

B

A

B

A

BA

B

A

B

A

B

A

B

A

B

A

B

AB

A

B

A

B

A

B
A
BA

B

A

B

A

BA

B

A

B

A

B
A

B

A

B

A

B

A

B
A

B

A

BA

B

A

B

A

B
A

B

A

B

A

B

A

B

AB
A

B

A

B

A

B

A
B

0 20 40 60 80 100

-3
-2

-1
0

1
2

Index

x

Dimitris FouskakisIntroduction to Basic Principles of R 197

Colors

> colors()
[1] "white" "aliceblue" "antiquewhite"
[4] "antiquewhite1" "antiquewhite2" "antiquewhite3"
[7] "antiquewhite4" "aquamarine" "aquamarine1"

[10] "aquamarine2" "aquamarine3" "aquamarine4"
[13] "azure" "azure1" "azure2"
[16] "azure3" "azure4" "beige"
[19] "bisque" "bisque1" "bisque2"
[22] "bisque3" "bisque4" "black"

..

..

..

Dimitris FouskakisIntroduction to Basic Principles of R 198

Colors

> plot(1:10, c(5, 4, 3, 2, 1, 2, 3, 4, 3, 2), col=c("red",

"blue", "green", "beige", "goldenrod", "turquoise",

"salmon", "purple", "pink", "seashell"))

2 4 6 8 10

1
2

3
4

5

1:10

c
(5

,
4

,
3

,
2

,
1

,
2

,
3

,
4

,
3

,
2

)

Dimitris FouskakisIntroduction to Basic Principles of R 199

Colors

> palette()

[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow"

[8] "gray"

▪ col = 1 col = "black”

▪ col = 2 col = "red“, etc

Dimitris FouskakisIntroduction to Basic Principles of R 200

Type Arguments

◼ "p": Points

◼ "l": Lines

◼ "b": Both

◼ "c": The lines part alone of "b"

◼ "o": Both “overplotted”

◼ "h": Histogram like (or high-density)
vertical lines

◼ "n": No plotting

Dimitris FouskakisIntroduction to Basic Principles of R 201

Type Argument

> x <- c(1:5); y <- x # create some data
par(pch=22, col="red") # plotting symbol
#and color
par(mfrow=c(2,4)) # all plots on one page
opts = c("p","l","o","b","c","s","S","h")
for(i in 1:length(opts)){
heading = paste("type=",opts[i])
plot(x, y, type="n", main=heading)
lines(x, y, type=opts[i])

}

Dimitris FouskakisIntroduction to Basic Principles of R 202

Type Arguments

Dimitris FouskakisIntroduction to Basic Principles of R 203

Add to a graph
 points(x,y): Add points to an existing graph.
 lines(x,y): Add a line to an existing graph.
 abline(a=2, b=4): Add to the existing graph the line y = 2+4x.
 abline(v=4): Add to the existing graph the line x = 4.
 abline(h=2): Add to the existing graph the line y = 2.
 abline(v=1:4): Add to the existing graph the lines x = 1, x = 2, x

= 3 & x = 4.
 segments(x0, y0, x1,y1): Draw line segments between pairs of

points. (x0, y0): coordinates of points from which to draw & (x1,
y1): coordinates of points to which to draw.

 arrows(x0, y0, x1,y1): Draw arrows between pairs of points.
(x0, y0): coordinates of points from which to draw & (x1, y1):
coordinates of points to which to draw. Additional arguments here
are: (a) length: length of the edges of the arrow head (in inches),
(b) angle: angle from the shaft of the arrow to the edge of the
arrow head, (c) code: integer code, determining kind of arrows to
be drawn.

Dimitris FouskakisIntroduction to Basic Principles of R 204

Line Types

Dimitris FouskakisIntroduction to Basic Principles of R 205

Rectangulars

> plot(c(100, 200), c(300, 450),
type= "n", xlab="", ylab="")

> rect(100, 300, 125, 350)

100 120 140 160 180 200

3
0

0
3

5
0

4
0

0
4

5
0

Dimitris FouskakisIntroduction to Basic Principles of R 206

Polygons

> plot(c(100, 300), c(300, 450),
type= "n", xlab="", ylab="")

> polygon(c(140, 120, 120, 160,
160), c(440, 400, 320, 320,
400))

100 150 200 250 300

3
0

0
3

5
0

4
0

0
4

5
0

Dimitris FouskakisIntroduction to Basic Principles of R 207

Polygons

> plot(c(100, 300), c(300, 450),
type= "n", xlab="", ylab="")

> polygon(c(140, 120, 120, 160,
160, NA, 240, 220, 220, 260,
260),

c(440, 400, 320, 320, 400, NA,
440, 400, 320, 320, 400))

100 150 200 250 300

3
0

0
3

5
0

4
0

0
4

5
0

Dimitris FouskakisIntroduction to Basic Principles of R 208

Curves

> curve(x^3 - 3*x, -2, 2,
ylab="f")

> curve(x^2 - 2, add = TRUE, col
= "blue")

-2 -1 0 1 2

-2
-1

0
1

2

x

f

Dimitris FouskakisIntroduction to Basic Principles of R 209

Text

> plot(c(100, 300), c(300, 450),
type= "n", xlab="", ylab="")

> text(150, 380, "STATISTICS")

100 150 200 250 300

3
0

0
3

5
0

4
0

0
4

5
0

STATISTICS

Dimitris FouskakisIntroduction to Basic Principles of R 210

Text

> plot(c(100, 300), c(300, 450),
type= "n", xlab="", ylab="")

> text(150, 380, "STATISTICS",
srt=30, cex=2, font=4)

rotation in degrees

100 150 200 250 300

3
0

0
3

5
0

4
0

0
4

5
0

STATISTIC
S

Dimitris FouskakisIntroduction to Basic Principles of R 211

Text

> weight<-c(72, 83, 79, 90, 88,
60, 55, 70, 72, 74)

> gender<-rep(c("M", "F"),
each=5)

> plot(weight, type="n")

> text(weight, label=gender)

2 4 6 8 10

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

Index

w
e

ig
h

t

M

M

M

M

M

F

F

F

F

F

Dimitris FouskakisIntroduction to Basic Principles of R 212

Identify Points in a Scatter plot

> plot(x)

> identify(x, n=1)

[1] 53

Dimitris FouskakisIntroduction to Basic Principles of R 213

Identify Points in a Scatter plot

0 20 40 60 80 100

-2
-1

0
1

2

Index

x

+

0 20 40 60 80 100

-2
-1

0
1

2

Index

x

53

Dimitris FouskakisIntroduction to Basic Principles of R 214

Multiple Graphs

 R makes it easy to combine multiple plots
into one overall graph, using the
par() function.

 With the par() function, you can include
the option mfrow=c(nrows, ncols) to
create a matrix of nrows x ncols plots that
are filled in by row.

 mfcol=c(nrows, ncols) fills in the matrix
by columns.

Dimitris FouskakisIntroduction to Basic Principles of R 215

Multiple Graphs

4 figures arranged in 2 rows and 2 columns
> attach(mtcars) # attaches dataset mtcars
> par(mfrow=c(2,2))
> plot(wt,mpg, main="Scatterplot of wt vs. mpg")
> plot(wt,disp, main="Scatterplot of wt vs disp")
> hist(wt, main="Histogram of wt")
> boxplot(wt, main="Boxplot of wt")

Dimitris FouskakisIntroduction to Basic Principles of R 216

Multiple Graphs

2 3 4 5

1
0

1
5

2
0

2
5

3
0

Scatterplot of wt vs. mpg

wt

m
p
g

2 3 4 5

1
0
0

3
0
0

Scatterplot of wt vs disp

wt

d
is

p
Histogram of wt

wt

F
re

q
u
e
n
c
y

2 3 4 5

0
2

4
6

8

2
3

4
5

Boxplot of wt

Dimitris FouskakisIntroduction to Basic Principles of R 217

Graphs in Higher Dimensions

 Install and Download library
ElemStatLearn

 From the Menu or Type:

> install.packages("ElemStatLearn”)

> library (ElemStatLearn)

 Data-set ozone:

> data(ozone)

> pairs(ozone)

Dimitris FouskakisIntroduction to Basic Principles of R 218

Scatterplot Matrices

ozone

0 100 200 300 5 10 15 20

0
5
0

1
0
0

1
5
0

0
1
0
0

2
0
0

3
0
0

radiation

temperature

6
0

7
0

8
0

9
0

0 50 100 150

5
1
0

1
5

2
0

60 70 80 90

wind

Dimitris FouskakisIntroduction to Basic Principles of R 219

Plot columns of matrices

11

1 1 11
1

11111

1

1

1

1
1

11

1
1

1

1

1
1

1

1
11

1
1

11

1

1
1

1

1

1

11
1

1
1

1

1
1

1
1

1

1

1

1

1

1

1

1
11

1

1
1

1

1

1

1
1

1

1

1

1
1

1

1
1

1

1

11

1

11
1

11

1

1
1

1111

1

1 1

11

1

11
1

11
1

1

1 1
1

111

0 50 100 150

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Ozone

V
a

ri
a

b
le

s

2

2

2

2
2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2

2

2
22

2

2

2

2

2
2

2

2

2

2

2

2

2 2

2

2

22

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2
2

2
2

2

2

2
2 2

22

2

2
2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

22

2

2

333
3 333
333
33 3

3
333

3
3 33

3 333
3333 33

33
333 33 3 333

3
33 33 3 33

3
3 33 3 33 3333 3 33 333 33 33 3 333 3 33

3 333 333 3333333
33 333 3

3
3

3
3

3 3
3

3 3 333
3

444 4 444
44444 44 444 44 44 4

444 4444
4

444 444 44 4 4444 44
44 4 444 4 44 4 44 4444 4 44 444 44 44 4 444 4 444

444 444 44
44444 44

444 444 444 4 44 4
4

444

> matplot(ozone$ozone,
ozone, xlab="Ozone",
ylab="Variables")

Dimitris FouskakisIntroduction to Basic Principles of R 220

Perspective Plot

> f <- function(x, y) #the standard bivariate
normal density

{

z<-(1/(2*pi))*exp(-0.5*(x^2+y^2))

}

> y <- seq(-3,3, length=100)

> x <-seq(-3,3, length=100)

> z<-outer(x,y,f) #compute density for all x,
y

> persp(x,y,z)

Dimitris FouskakisIntroduction to Basic Principles of R 221

Perspective Plot

x

y

z

Dimitris FouskakisIntroduction to Basic Principles of R 222

Perspective Plot

> persp(x,y,z, theta=45, phi=30,
expand=0.6, ticktype="detailed", xlab="X",
ylab="Y", zlab="f(x,y)")
◼ theta, Phi: angles defining the viewing

direction. theta gives the azimuthal direction
and phi the colatitude.

◼ expand: a expansion factor applied to
the z coordinates. Often used with 0 < expand <
1 to shrink the plotting box in the z direction.

◼ ticktype: character: "simple" draws just an
arrow parallel to the axis to indicate direction of
increase; "detailed" draws normal ticks as per
2D plots.

Dimitris FouskakisIntroduction to Basic Principles of R 223

Perspective Plots

X

-3

-2

-1

0

1

2

3

Y

-3

-2

-1

0

1

2

3

f(x,y)

0.05

0.10

0.15

Dimitris FouskakisIntroduction to Basic Principles of R 224

Contour Plots

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

> contour(x,y,z)

Dimitris FouskakisIntroduction to Basic Principles of R 225

Color Image

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

x

y

> image(x,y,z)

Dimitris FouskakisIntroduction to Basic Principles of R 226

Mathematical Annotation

 If the text argument to one of the text-
drawing functions (text, mtext & axis)
in R is an expression, the argument is
interpreted as a mathematical expression
and the output will be formatted according
to TeX-like rules. Expressions can also be
used for titles, subtitles and x- and y-axis
labels (but not for axis labels
on persp plots).

 For more info type ?plotmath in R.

Dimitris FouskakisIntroduction to Basic Principles of R 227

Mathematical Annotation

> n<-20

> p<-0.2

> y<-0:20

> pr<-dbinom(y,n,p)

> plot(y,pr,type="h", xlim=c(0,20), ylim=c(0,0.23),
ylab="Probability")

> mu = n * p; sigma = sqrt(n * p * (1 - p))

> curve(dnorm(x, mu, sigma), add=TRUE, lwd=2, lty=2)

> text(13, 0.15, expression(paste(frac(1,
sigma*sqrt(2*pi)), " ", e^{frac(-(y-mu)^2,
2*sigma^2)})), cex = 1.5)

Dimitris FouskakisIntroduction to Basic Principles of R 228

Mathematical Annotation

0 5 10 15 20

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

y

P
ro

b
a

b
il
it
y

1

2
 e

y
2

2
2

Dimitris FouskakisIntroduction to Basic Principles of R 229

Conclusion

