Variable Selection

$\Delta \eta \mu \grave{т \rho \eta \varsigma ~ Ф о и \sigma к а ́ к п \varsigma, ~}$ KaӨŋүๆтウ่я, ГЕМФЕ, Е.М.П.

Model Selection

- What is Model Selection?
- Evaluation of performance of scientific scenarios.
- Selection of the "best".
"Best"' Model?
- The "best" performed model is totally subjective.
- It may not be possible to find a single model capturing the preferences of all relevant stakeholders in the visited problem.
- Different procedures (or scientists) support different scientific theories.
All Models are wrong, but some are useful: George, E.P. Box
- Main Principles: Goodness of fit vs. Parsimony.

Multiple Linear Regression

Let us assume that $\mathrm{p}+1$ quantitative variables are available.

- Y : is the response or dependent variable.
- $X_{1}, X_{2}, \ldots X_{p}$: explanatory or independent variables or covariates.
Let us assume a multiple linear regression model:
- $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{p} X_{p}+\varepsilon, \quad \varepsilon \sim N\left(0, \sigma^{2}\right)$
or equivalently
- $Y \sim N\left(\mu, \sigma^{2}\right), E(Y)=\mu=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{p} X_{p}$

Model expression when fitted to data:

- Y_{i}, X_{i} pairs of values for $i=1,2, \ldots, n$
- $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{p} X_{i p}+\varepsilon_{i}, \varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$
- $Y_{i} \sim N\left(\mu_{i}, \sigma^{2}\right), \mu_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{p} X_{i p}$

Multiple Linear Regression

Ordinal Least Square (OLS) method for estimating the model coefficients β_{0}, $\beta_{1}, \ldots, \beta_{\mathrm{p}}$.
minimize w.r.t. $\boldsymbol{\beta}: S S=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{y}_{\mathrm{i}}-\boldsymbol{\beta} \mathbf{X}_{\mathrm{i}}\right)^{2}$
where $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{\top}$ and
$\mathbf{X}_{\mathbf{i}}=\left(1, X_{i 1}, \ldots, X_{i p}\right), i=1, \ldots, n$.

Variable Selection Problem

- Problem: Selection of covariates.
- Variable Selection Problem is a Model Selection Problem; we compare models with the same "structure" but with different covariates.

Variable Selection Problem

- The set of all possible models under consideration can be represented by a vector of binary indicators $\mathbf{Y}=$ $\left(Y_{1}, \ldots, Y_{p}\right) \in\{0,1\}^{p}$, denoting which explanatory variables are present in the linear predictor.
- The $Y_{j}, j=1, \ldots, p$, takes the value 1 if variable j is included in the model and 0 otherwise.
- Therefore the model with only the constant term can be represented by $(0, \ldots, 0)$, the model with all the explanatory variables by $(1, \ldots .1)$ and the model with only X_{1} and X_{p} (for example) by ($1,0,0, \ldots, 0,0,1$).
- The number of all available models (size of model space) is 2^{p}. This can be enormous for even moderate values of p; for example for $p=50$ we have $1.1259 \mathrm{e}+15$ available models!

Variable Selection

Stepwise procedure: Adding and removing explanatory variables based on a criterion.

- Backward procedure: Removing variables according to a criterion (usually starting from the full model).
- Forward procedure: Adding covariates based on a criterion (usually starting from the null/constant model).
- Full enumeration: For low number of covariates, we evaluate AIC or BIC for all models (2^{p}) and select the optimal one.

Variable Selection

fiteria for variable selection:

1. Significance tests
2. AIC
3. BIC
4. Bayesian procedures - Bayes factors (e.g. BAS package)
5. Deviance information criterion (DIC in WinBUGS)

Other methods:

1. Ridge regression
2. Lasso and shrinkage methods
3. Bayesian variable selection and model search algorithms

Stepwise Procedures

epwise procedure

Step by step procedure of adding and removing covariates:
We start from a given model and in every step we check which variable to include (select the one with the min AIC, min BIC, min p-value).
After the addition of the best variable, we check in all included if they should be removed.
\checkmark Each time we select the move according to the minimum or maximum value of a criterion (e.g. min AIC, BIC or pvalue).
We stop when no other move/improvement can be achieved.
\checkmark Usual starting models: the null/constant (with no covariates) or the full (with all covariates of the dataset).

Stepwise Procedures

ackward procedure

Step by step removal of insignificant

covariates:

We start from the full model and in every step we check which variable must be excluded (once at a time).
We select the move/model which minimizes a criterion (min AIC or BIC, max p-value).
\checkmark We stop when no other covariates can be removed.
\checkmark Excluded covariates that may be significant at a step cannot be re-included in the model.

Stepwise Procedures

brward procedure

Step by step addition of covariates:
We start from the null model and in every step we check which covariates must be added in the model (once at a time).
We select to move/add the covariate with the min AIC, min BIC or min p-value.
\checkmark We stop when we cannot add any other covariates.
\checkmark Less computational expensive than the backward and the stepwise methods since it fits less models.

Stepwise Procedures

Best is step-wise because of double checking.
Select as starting model the full for moderate $p<n$.
When p is large or $p>n$, then select as starting model the constant.
\checkmark All stepwise methods usually select sub-optimal models.
\checkmark Different procedures may end-up to different models.
\checkmark If X (design matrix) is (nearly) orthogonal, then variable selection is easier $=>$ variable selection procedures will select the optimal model.
\checkmark If there are collinear covariates, then variable selection is more difficult => variable selection procedures may end-up to different good but sub-optimal models.
For $\mathrm{p}<15$ perform full enumeration using the leaps or the BAS packages.
\checkmark For large p or $p>n$, use lasso to remove all really bad covariates and continue in the reduced space.

Stepwise Procedures

advantages of stepwise procedures (1)
The final model is not guaranteed to be optimal in any specified sense since in every step we add or remove a covariate [and we may trap in a locally maximum model space area].
The procedure yields to a single final model, although in practice there are often several equally good models [use instead some "good models" and (Bayesian) model averaging].
\checkmark It doesn't take into account a researcher's knowledge about the predictors.
The p-values used should not be treated too literally. There is so much multiple testing occurring that its validity is dubious.
The removal of less significant predictors tends to increase the significance of the remaining predictors. This effect leads one to overstate the importance of the remaining predictors.

Stepwise Procedures

advantages of stepwise procedures (2)
The final model is not guaranteed to be optimal in any specified sense. Variables that are dropped can still be correlated with the response. It would be wrong to say that these variables are unrelated to the response, it's just that they provide no additional explanatory effect beyond those variables already included in the model.
Stepwise variable selection tends to pick models that are smaller than desirable for prediction purposes. To give a simple example, consider the simple regression with just one predictor variable. Suppose that the slope for this predictor is not quite statistically significant. We might not have enough evidence to say that it is related to Y but still might be better to use it for predictive purpose.
Therefore, for prediction purposes out-of-sample measures may be useful.

Variable Selection with R

unctions for variable selection (default functions):
step: Stepwise methods using AIC (default) or BIC.
add1, drop1: Computes all the single terms in the scope argument that can be added to or dropped from the model, fit those models and compute a table of the changes in fit.
\checkmark extractAIC, AIC: Computes the (generalized) AIC.
\checkmark logLik, deviance: Computes the log-likelihood and the deviance measures.
\checkmark update(formula): updates model formulae. This typically involves adding or dropping terms, but updates can be more general.

MASS library

\checkmark stepAIC: similar to step.
\checkmark addterm: similar to add1.
\checkmark dropterm: similar to drop1.

Variable Selection with R

unctions for variable selection (functions in other packages):

Leaps library

leaps: exhaustive search for the best subsets of the variables, using an efficient branch-and-bound algorithm.
regsubsets: Model selection by exhaustive search, forward or backward stepwise, or sequential replacement (more options than leaps).
v plot.regsubsets: Plots a table of models showing which variables are in each model. The models are ordered by the specified model selection statistic.
summary.regsubsets: Table of models plotted using plot.regsubsets.

BAS library

bas.Im: for $\mathrm{p} \leq 15$ fits all models and compares them using AIC/BIC. and Bayesian measures. For larger spaces it uses adaptive sampling.
\checkmark image.bma: Creates an image of the models selected using BAS.
\checkmark plot.bma: Plot Diagnostics for an blm object.

Example 1

xample 1: A simulated dataset for variable selection illustration
$\mathrm{n}=100$ data points.

- $p=15$ covariates.
- Data in simex62 (a data frame in R).

$$
\begin{aligned}
X_{j} \sim & N(0,1) \text { for } j=2, \ldots, 15 \\
X_{1}= & N\left(5+X_{2}+2.1 X_{3}-2.8 X_{4}-3.6 X_{5}+0.3 X_{6}, 1\right) \\
Y \sim & 2-2.2 X_{1}-0.4 X_{2}+1.2 X_{3}-0.6 X_{4}-1.9 X_{5} \\
& \quad-0.2 X_{6}+0.6 X_{10}+N(0,1)
\end{aligned}
$$

Example 1

Stepwise (from full)

 mfull<-Im(y~.,data=simex62) step(mfull, direction='both')

Backward

mfull<-Im(y~.,data=simex62)
step(mfull, direction='back')
Step: AIC=7.13
$\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4+\mathrm{X} 5+\mathrm{X} 6+\mathrm{X} 10$
Step: AIC $=7.13$
$\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4+\mathrm{X} 5+\mathrm{X} 6+\mathrm{X} 10$

Example 1

Forward

Example 1

Stepwise from null

$$
\begin{gathered}
\text { mfull<-Im(y~.,data=simex62) } \\
\text { mnull<-Im(y }(1, \text { data }=\text { simex62 }) \\
\text { step(mnull, } \\
\text { scope=list(lower=mnull, } \\
\text { upper=mfull), } \\
\text { direction=both') }
\end{gathered}
$$

Step: $\mathrm{AIC}=7.13$
$\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 4+\mathrm{X} 10+\mathrm{X} 6+\mathrm{X} 3+\mathrm{X} 5$

	Df Sum of Sq	RSS	AIC	
<none>			91.51	7.133
+ X8	1	1.62	89.90	7.348
+ X7	1	0.99	90.52	8.044
- X4	1	2.80	94.31	8.142
+ X12	1	0.32	91.19	8.781
+ X15	1	0.22	91.30	8.893
+ X14	1	0.11	91.40	9.012
- X6	1	3.67	95.18	9.062
+ X9	1	0.05	91.46	9.078
+ X13	1	0.02	91.49	9.110
+ X11	1	0.00	91.51	9.133
- X2	1	14.39	105.91	19.739
- X5	1	19.91	111.43	24.820
- X3	1	22.98	114.50	27.536
- X10	1	26.31	117.82	30.399
- X1	1	443.72	535.23	181.753

Example 1

Model selected by AIC

summary(step(mfull, direction='both'))

Coefficients：

```
            Estimate Std. Error t value Pr(>|t|)
```

（Intercept）	1.8175	0.5283	3.440	0.000875	t＊
X1	-2.1662	0.1026	-21.120	$<2 \mathrm{e}-16$	t＊
X2	-0.5048	0.1327	-3.804	0.000256	t＊
X3	1.1666	0.2427	4.806	$5.96 \mathrm{e}-06$	＊＊
X4	-0.5514	0.3289	-1.676	0.097044	．
X5	-1.7604	0.3935	-4.474	$2.19 \mathrm{e}-05$	＊t
X6	-0.2107	0.1097	-1.920	0.057960	．
X10	0.5524	0.1074	5.142	$1.52 \mathrm{e}-06$	t＊

Signif. codes: 0 'オᄎォ' 0.001 'オᄎ' 0.01 'ォ' 0.05 '.' 0.1 ' ' 1

Residual standard error： 0.9974 on 92 degrees of freedom Multiple R－squared：0．9883，Adjusted R－squared： 0.9875 F－statistic： 1114 on 7 and 92 DF，p－value：＜2．2e－16

Example 1

Model selected by BIC

summary(step(mfull, direction='both',k=log(100)))

Coefficients:

	Estimate	Std. Error	t	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	1.0045	0.2116	4.747	$7.47 \mathrm{e}-06$	
X1	-2.0051	0.0362	-55.390	< 2e-16	
X 2	-0.6354	0.1085	-5.859	$7.00 \mathrm{e}-08$	
X3	0.8033	0.1104	7.277	$1.06 \mathrm{e}-10$	大夫*
X5	-1.1665	0.1728	-6.750	1.25e-09	***
X6	-0.2549	0.1076	-2.370	0.0198	*
X10	0.5677	0.1081	5.253	$9.46 \mathrm{e}-07$	***

Residual standard error: 1.007 on 93 degrees of freedom
Multiple R-squared: 0.988, Adjusted R-squared: 0.9872
F-statistic: 1275 on 6 and 93 DF, p-value: $<2.2 e-16$

Example 1

Manual forward using F-tests and add1 function

 add1(mnull, scope=mfull, test='F') add1(update(mnull,~.+X1),scope= mfull, test='F') add1(update(mnull,~.+X1+X10),scope= mfull, test='F') add1(update(mnull,~.+X1+X10+X2),scope=mfull, test='F') add1(update(mnull,~. $+\mathrm{X} 1+\mathrm{X} 10+\mathrm{X} 2+\mathrm{X} 3$),scope= mfull, test='F') add1(update(mnull,~. $+X 1+X 10+X 2+X 3+X 5$),scope $=$ mfull, test='F') add1(update(mnull,~. $+X 1+X 10+X 2+X 3+X 5+X 6)$, scope=mfull, test='F')> addl(mnull, scope=mfull, test=' F^{\prime}) Single term additions

Model:
$y \sim 1$
$y \sim 1$ <none> <nor
X1

F value	$\operatorname{Pr}(>F)$	
2619.3063	< $2.2 \mathrm{e}-16$	*
5.5407	0.020575	*
9.0723	0.003302	**
34.0865	6.850e-08	*
67.9566	$7.645 \mathrm{e}-13$	*
1.0718	0.303080	
0.6317	0.428645	
1.2299	0.270132	
0.1050	0.746647	
0.1299	0.719329	
0.6971	0.405778	
0.6956	0.406291	
2.9651	0.088232	
1.7517	0.188747	
0.0491	0.825026	

$>$ add1 (update (mnull, $\sim .+\mathrm{X} 1+\mathrm{X} 10+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 5+\mathrm{X} 6$), scope=mfull, test=' F^{\prime}) Single term additions

Model:

	Df Sum of Sq		RSS	AIC	F value	$\operatorname{Pr}(>\mathrm{F})$
<none>			94.311	8.1424		
X4	1	2.79568	91.515	7.1332	2.8105	0.09704
X7	1	0.54355	93.767	9.5643	0.5333	0.46707
X8	1	0.92854	93.382	9.1529	0.9148	0.34135
X9	1	0.01691	94.294	10.1244	0.0165	0.89808
X11	1	0.00041	94.310	10.1419	0.0004	0.98400
X12	1	0.19585	94.115	9.9345	0.1914	0.66274
X13	1	0.00508	94.306	10.1370	0.0050	0.94401
X14	1	0.02482	94.286	10.1160	0.0242	0.87667
X15	1	0.28497	94.026	9.8397	0.2788	0.59874

Example 1

Manual forward using F-tests and add1 function

summary(update(mnull,~.+X1+X10+X2+X3+X5+X6))

```
summary (update (mnull,~.+X1+X10+X2+X3+X5+X6))
Call:
lm(formula = y ~ X1 + X10 + X2 + X3 + X5 + X6, data = simex62)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
2870 & -0.6335 & 0.0119 & 0.5946 & 3.0284
\end{tabular}
Coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Estimate & Std. & t & ) & \\
\hline (Intercept) & 1.0045 & 0.2116 & 4.747 & \(7.47 e-06\) & \\
\hline X1 & -2.0051 & 0.0362 & -55.390 & \(<2 \mathrm{e}-16\) & \\
\hline X10 & 0.5677 & 0.1081 & 5.253 & \(9.46 \mathrm{e}-07\) & \\
\hline x 2 & -0.6354 & 0.1085 & -5.859 & \(7.00 \mathrm{e}-08\) & \\
\hline X3 & 0.8033 & 0.1104 & 7.277 & \(1.06 \mathrm{e}-10\) & \\
\hline X5 & -1.1665 & 0.1728 & -6.750 & \(1.25 \mathrm{e}-09\) & \\
\hline X6 & -0.2549 & 0.1076 & -2.37 & 0.0198 & \\
\hline
\end{tabular}
Signif. codes: 0 \\star\star*' 0.001 \**' 0.01 `\star' 0.05 `.' 0.1 ' ' 1
Residual standard error: 1.007 on 93 degrees of freedom
Multiple R-squared: 0.988, Adjusted R-squared: 0.9872
F-statistic: }1275\mathrm{ on }6\mathrm{ and 93 DF, p-value: < 2.2e-16
```


Example 1

Manual backward using F-tests and drop1 function

drop1(mfull, test='F')
drop1(update(mfull,~.-X9), test='F')
drop1(update(mfull,~.-X9-X11), test='F')
drop1(update(mfull,~.-X9-X11-X15), test='F')
drop1(update(mfull,~.-X9-X11-X15-X13), test='F')
drop1(update(mfull,~.-X9-X11-X15-X13-X14), test='F')
drop1(update(mfull,~.-X9-X11-X15-X13-X14-X12), test='F') drop1(update(mfull,~.-X9-X11-X15-X13-X14-X12-X7), test='F') drop1(update(mfull,~.-X9-X11-X15-X13-X14-X12-X7-X8), test='F') drop1 (update(mfull,~.-X9-X11-X15-X13-X14-X12-X7-X8-X4), test='F') summary(update(mfull,~.-X9-X11-X15-X13-X14-X12-X7-X8-X4))

- Selects the same model as BIC and forward with Ftests.

Example 1

Several measures

```
> n<-100
> p<-15
> logLik(mfull)
'log Lik.' -135.8452 (df=17)
> -2*logLik(mfull)+2* (p+2)
'log Lik.' 305.6904 (df=17)
> AIC (mfull)
[1] 305.6904
> extractAIC (mnull) -extractAIC (mfull)
[1] -15.0000 418.4002
> AIC (mnull) -AIC (mfull)
[1] 418.4002
> extractAIC (mfull)
[1] 16.00000 19.90274
> n*log( summary(mfull)$s^2* (n-p-1) /n )+2*(p+1)
[1] 19.90274
> extractAIC(mnull)
[1] 1.0000 438.3029
> n* log( summary(mnull)$s^2* (n-1)/n ) +2*1
[1] 438.3029
```


Example 1

Leaps: selects the best model in every dimension according to BIC
plot(regsubsets(y~.,data=simex62, nvmax=15, nbest=1))

Example 1

Leaps: selects the 10 best models in every dimension according to BIC
plot(regsubsets(y~.,data=simex62, nvmax=15, nbest=10))

Example 1

BAS: Full enumeration of the model space using BIC. Inclusion probability=> rescaled weight measure for including each term.

- Postprobs => posterior probability of each model.

```
> bas.results<-bas.lm(y~., data=simex62, prior='BIC')
For m=0, Initialize Tree with initial Model
> bas.results
Call:
bas.lm(formula = y ~ ., data = simex62, prior = "BIC")
Marginal Posterior Inclusion Probabilities:
```


Example 1

BAS: Posterior inclusion probabilities under BIC
plot(bas.results)

Inclusion Probabilities

Example 1

BAS: Posterior model probabilities of best 20 and included vars using BIC
image(bas.results)

Example 1

BAS: Full enumeration of the model space using AIC Inclusion probability => all are higher than BIC Postprobs => quite small - AIC cannot separate between models

```
> bas.results<-bas.lm(y~., data=simex62, prior='AIC')
For m=0, Initialize Tree with initial Model
> bas.results
Call:
bas.lm(formula = y ~ ., data = simex62, prior = "AIC")
```


Example 1

BAS: Posterior inclusion probabilities using AIC

plot(bas.results)

Example 1

BAS: Posterior model probabilities of best 20 and included vars using AIC
image(bas.results)

Multi-Collinearity

Multi-collinearity: is the (statistically) high linear relationship between one explanatory with (some of) the rest of the explanatories.
Collinearity: Is the perfect (deterministic) linear relationship between one explanatory with (some of) the rest of the explanatories.

- In the bibliography the two terms are frequently used inter-changeably.

Multi-Collinearity

de effects
When one X is a perfect linear combination of the rest \Leftrightarrow the OLS estimates (or the MLEs) do not exist.
When one X is multi-collinear to the rest:

- High standard errors of coefficients.
- Instability of estimators.
- Significant effects will appear as non-significant.
- Deterioration of the effects (even opposite signs of effects).
- Effects between multi-collinear variables will be inseparable and therefore we will not be able to estimate them.

Multi-Collinearity

hy multi-collinearity is a problem? ogical explanation
When 2 covariates are highly related => they carry similar information (since when we know the value of the one we can precisely predict the value of the other).

- Therefore, such variables are not adding any further information about the effect on Y when we add them sequentially.
- Similar is the case when a covariate is a linear function of more than one.

Multi-Collinearity

hy multi-collinearity is a problem?

Explanation using interpretation of the parameters
Let us assume the regression model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon
$$

If $X_{2}=a+b X_{1}$ (perfect linear relationship)
we cannot use the usual interpretation since changing X_{1} has a result changes also in X_{2}.
Moreover

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{2}\left(a+b X_{1}\right)+\varepsilon \\
& =\left(\beta_{0}+a \beta_{2}\right)+\left(\beta_{1}+\beta_{2} b\right) X_{1}+\varepsilon
\end{aligned}
$$

Which is the correct effect of X_{1} ?

Multi-Collinearity

hy multi-collinearity is a problem?

Mathematical explanation

$$
\widehat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- $\widehat{\beta}=\left(\widehat{\widehat{\beta}}_{0}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)^{T}$ is the vector of the OLS estimators (or MLEs) of dimension ($\mathrm{p}+1$) x 1 .
- \mathbf{X} is the data or design matrix of dimension $n \times(p+1)$. The first column refers to the constant term with all elements equal to one (1). Each of the rest columns refer to the data of each variable.
$\circ \mathbf{y}$ is a vector of dimension $n \times 1$ with the values of the response variable.

Multi-Collinearity

hy multi-collinearity is a problem?

Mathematical explanation

$$
\widehat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- Problem: If a variable (i.e. a column of the data matrix \mathbf{X}) is a linear combination of the rest the inverse $\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$ does not exist.
- In practice: Rarely we will observe a perfect linear relationship. If a covariate is highly associated with the rest (i.e. we regress between them and we end up with a very high value of R^{2}) then we have unstable estimates and high standard errors.

Multi-Collinearity

Diagnostics checks for multi-collinearity

O Pearson correlations (for identifying pairwise comparisons).
O R^{2} for all the regressions between the covariates.
O Variance inflation factors [$\left.=1 /\left(1-R^{2}\right)\right]$.
O Checking the eigenvalues of $X^{\top} X$ and the conditional indexes.

Multi-Collinearity

iagnostics checks for multi-collinearity

Pearson correlations [They show high linear association between two covariates but it will fail when more variables are involved in the linear combination e.g. for $\left.X_{1}=X_{2}+X_{3}+X_{4}\right]$.
2. Variance inflation factors
$\checkmark \quad \mathrm{VIF}_{\mathrm{j}}=\left(1-\mathrm{R}_{\mathrm{j}}{ }^{2}\right)^{-1}$.
$R_{j}{ }^{2}$ is the coefficient of determination obtained when we fit the regression model with response the covariate X_{j} and covariates the rest of Xs .
$\checkmark \quad$ If $\mathrm{VIF}_{\mathrm{j}}>10 \quad\left[\mathrm{R}_{\mathrm{j}}{ }^{2}>0.90\right]$ then we have a potential collinearity problem.

Multi-Collinearity

ariance inflation factors

$$
\begin{aligned}
\widehat{\operatorname{Var}}(\widehat{\beta}) & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \widehat{\sigma}^{2} \\
\widehat{\operatorname{Var}}\left(\widehat{\beta}_{j}\right) & =\frac{\widehat{\sigma}^{2}}{(n-1) S_{X_{j}}^{2}} \times \frac{1}{1-R_{j}^{2}}
\end{aligned}
$$

VIFs are is also given by the diagonal of the inverse correlation matrix!
VIF Interpretation: The square root of the variance inflation factor tells you how much larger the standard error is, compared with what it would be if that variable were uncorrelated with the other predictor variables in the model.

Multi-Collinearity

riance inflation factors in R: "vif" in "car"

> mfull <- lm(y^{\sim}., data=simex62)
> library (car)
> vif (mfull)

X 1	X 2	X 3	X 4	X 5
26.867911	1.805197	8.020655	9.248794	15.968249
X 6	$\mathrm{X7}$	X 8	$\mathrm{X9}$	X 10
1.362825	1.269663	1.374827	1.273672	1.131881
$\mathrm{X11}$	$\mathrm{X12}$	$\mathrm{X13}$	$\mathrm{X14}$	$\mathrm{X15}$

$\begin{array}{lllll}1.194926 & 1.262806 & 1.226341 & 1.142731 & 1.250340\end{array}$

X1	X 2	X3	X4	X5	X6	X7	X8	X9	X10	X11
26.9	1.8	8.0	9.2	16.0	L. 4	1.3	1.4	1.3	1.1	1.2
X12	X13	X14	X15							
1.3	1.2	1.1	1.3							

Multi-Collinearity

ondition indexes

Calculate the eigenvalues of $\mathbf{X}^{\top} \mathbf{X}$.
Eigenvalues close to zero indicate a problem.
Condition Index
= Square root of MAX(eigenvalues)/
eigenvalues.
\checkmark If $\mathrm{CI}_{\mathrm{j}}>30 \Leftrightarrow$ Serious collinearity problem.
\checkmark If $\mathrm{CI}_{\mathrm{j}}>15 \Leftrightarrow$ possible collinearity problem.
\checkmark For small eigenvalues, high values of eigenvectors indicate variables that participate in linear combinations.

Multi-Collinearity

ndition indexes using "colldiag" in "perturb" package

```
> X<-mode\perp.matrıx(mIu\perp\perp)
> v<-sqrt(eigen(t(X) %%%%X) $value)
> max(v)/v
\begin{tabular}{lllllll}
{\([1]\)} & 1.000000 & 5.124575 & 5.451744 & 5.687871 & 5.886674 & 6.131369
\end{tabular}
    [7] 6.351875 6.465027 7.286807 7.321037 8.030066 8.499335
[13] 8.902555 10.304457 11.10905 54.203670
> colldiag(mfull, scale=F) $cond
        cond.index
1.000000
2 5.124575
3 5.451744
4 5.687871
5 5.886674
6 6.131369
7 6.351875
8 6.465027
9 7.286807
10 7.321037
11 8.030066
12 8.499335
13 8.902555
14 10.304457
15 11.109056
16 54.203670
```


Multi-Collinearity

Variance-decomposition proportions

o Is the proportion of $\operatorname{Var}\left(\beta_{\mathrm{j}}\right)$ explained by the corresponding component.
o If a large condition index is associated with two or more variables with large variance decomposition proportions, these variables may be causing collinearity problems. Belsley et al suggest that a large proportion is 50 percent or more.

Reference: D. Belsley, E. Kuh, and R. Welsch (1980). Regression Diagnostics. Wiley.
$2004=>2^{\text {nd }}$ edition

Multi-Collinearity

Variance-decomposition proportions using "colldiag" in "perturb" package

	intercept	X1	X2	X3	X4	X5	X6	X7	x8	X9	X10	X11	X12	X13	X14	x15
[1,]	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
[2,]	0.00	0.00	0.01	0.03	0.00	0.00	0.03	0.04	0.02	0.02	0.00	0.00	0.12	0.00	0.01	0.05
[3,]	0.00	0.00	0.00	0.02	0.00	0.00	0.01	0.03	0.02	0.11	0.00	0.02	0.13	0.03	0.00	0.00
[4,]	0.00	0.00	0.11	0.01	0.00	0.00	0.04	0.07	0.01	0.01	0.07	0.00	0.02	0.00	0.04	0.03
[5,]	0.00	0.00	0.01	0.00	0.00	0.00	0.09	0.10	0.06	0.02	0.03	0.02	0.13	0.00	0.04	0.04
[6,]	0.00	0.00	0.03	0.00	0.00	0.01	0.01	0.04	0.13	0.04	0.07	0.06	0.06	0.02	0.00	0.01
[7,]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.10	0.06	0.00	0.02	0.04	0.02	0.05	0.15
[8,]	0.00	0.00	0.13	0.01	0.00	0.00	0.05	0.01	0.01	0.03	0.12	0.13	0.01	0.00	0.04	0.03
[9,]	0.00	0.00	0.03	0.02	0.03	0.01	0.02	0.02	0.10	0.07	0.01	0.02	0.00	0.08	0.03	0.05
[10,]	0.00	0.00	0.01	0.00	0.00	0.00	0.09	0.06	0.01	0.11	0.07	0.00	0.00	0.00	0.48	0.00
[11,]	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.06	0.00	0.07	0.24	0.23	0.12	0.02	0.10	0.05
[12,]	0.00	0.00	0.13	0.00	0.00	0.01	0.18	0.12	0.00	0.03	0.21	0.01	0.08	0.01	0.01	0.20
[13,]	0.00	0.00	0.06	0.03	0.01	0.00	0.09	0.03	0.04	0.01	0.11	0.00	0.00	0.50	0.01	0.08
[14,]	0.00	0.00	0.00	0.00	0.03	0.00	0.15	0.08	0.02	0.13	0.03	0.48	0.14	0.12	0.03	0.20
[15,]							0.18	0.26	0.41	0.28	0.03	0.01	0.15	0.19	0.12	0.07
$[16$,	0.98	0.97	0.38	0.88	0.89	0.95	. 07	0.00	0.06	0.01	0.02	0.00	0.01	0.01	0.03	0.02

${ }^{\text {M Multi-Collinearity }}$

ow to deal with the collinearity problem

 Careful design of the experimentNot random X but based on experimental design.
The aim is to achieve a nearly orthogonal X (or at least far away from being ill conditioned).
Difficult to be implemented (and expensive).
2. Removal of one of the collinear variables

Identify the biggest VIF and remove the corresponding covariate.
We try to have a model with $\mathrm{CI}<15$ (or at least $\mathrm{CI}<30$).
3. Use of orthogonal transformations (Principal Components) of X.

The interpretation of the model is difficult.
Note: In most cases the Stepwise methods will solve the problem by removing one of the collinear covariates.

Ridge Regression

idge Regression is a technique

for analyzing multiple regression data that suffer from multicollinearity.

- It shrinks coefficients towards zero (esp. not important ones).
- It is not a variable selection method but it can simplify variable selection.
- It lead to other more efficient shrinkage methods that perform full shrinkage to zero and indirectly variable selection (e.g. LASSO).
- It can be implemented to fit even models on large p
- small n datasets.

Ridge Regression

idge Regression

When multi-collinearity occurs
=> least squares estimates are unbiased
=> but their variances are large so they may be far from the true value.
By adding a degree of bias to the regression estimates, ridge regression reduces the standard errors.
It is hoped that the net effect will be to give estimates that are more reliable.

Ridge Regression

idge Regression

We start by standardizing all covariates. Hence $X=>Z$ (matrix of standardized covariates)

$$
\operatorname{minimize} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\beta}^{\top} \mathbf{z}_{i}\right)^{2} \text { s.t. } \sum_{j=1}^{p} \beta_{j}^{2} \leq t
$$

$\Leftrightarrow \operatorname{minimize}(y-\mathbf{Z} \beta)^{\top}(y-\mathbf{Z} \beta)$ s.t. $\sum_{j=1}^{p} \beta_{j}^{2} \leq t$
When including an intercept term in the regression, we leave this coefficient unpenalized. If we centered the columns of X then $\beta_{0}=$ mean(y).

Ridge Regression

enalized sum of squares

Using non-linear programming, the above constrained optimization problem is equivalent minimizing the following penalized version of the (residual) sum of squares (RSS)

$$
\begin{aligned}
\operatorname{PRSS}(\boldsymbol{\beta})_{\ell_{2}} & =\sum_{i=1}^{n}\left(y_{i}-\mathbf{z}_{i}^{\top} \boldsymbol{\beta}\right)^{2}+\lambda \sum_{j=1}^{p} \beta_{j}^{2} \\
& =(\mathbf{y}-\mathbf{Z} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{Z} \boldsymbol{\beta})+\lambda\|\boldsymbol{\beta}\|_{2}^{2}
\end{aligned}
$$

Ridge Regression

idge Regression

The ellipses correspond to the contours of RSS: the inner ellipse has smaller RSS, and RSS is minimized at OLS estimates. For $\mathrm{p}=2$ the constraint in Ridge corresponds to a circle:

$$
\beta_{1}^{2}+\beta_{2}^{2} \leq \mathrm{t}
$$

We are trying to minimize the ellipse size and circle simultaneously in the ridge regression. The ridge estimate is given by the point at which the ellipse and the circle touch.

Ridge Estimate

Ridge Regression

- There is a trade-off between the penalty term and RSS.
- Maybe a large 6 would give you a better RSS but then it will push the penalty term higher.
- This is why you might actually prefer smaller 6's with worse RSS. From an optimization perspective, the penalty term is equivalent to a constraint on the 6 's. The function is still the RSS but now you constrain the norm of the b_{j} 's to be smaller than some constant t.
- There is a correspondence between λ and t. The larger the λ is, the more you prefer the 6_{j} 's close to zero. In the extreme case when $\lambda=0$, then you would simply be doing a normal linear regression. And the other extreme as λ approaches infinity, you set all the 8 's to zero.

Ridge Regression

he ridge solution

Minimizing the penalized RSS, provides us the ridge solution in closed form given by

$$
\hat{\beta}_{\lambda}^{\text {ridge }}=\left(\mathbf{Z}^{\top} \mathbf{Z}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{Z}^{\top} \mathbf{y}
$$

which usually has better prediction error than MLEs or OLS estimators.
For $\lambda>0$, a solution exists even if the original $X^{\top} X$ is not invertible giving us solutions in cases with

- co-linear regressors
- $p>n$

Ridge Regression

he data augmentation interpretation of the ridge sol.

$$
\hat{\beta}_{\lambda}^{\text {ridge }}=\left(\mathbf{Z}^{\top} \mathbf{Z}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{Z}^{\top} \mathbf{y}
$$

Is like considering p additional data points with zero values for the response and $X=\operatorname{diag}\left(\lambda^{1 / 2}\right)$ as the data matrix for the additional explanatories since the penalized residual sum of squares can be written as

$$
\begin{aligned}
\operatorname{PRSS}(\boldsymbol{\beta})_{\ell_{2}} & =\sum_{i=1}^{n}\left(y_{i}-\mathbf{z}_{i}^{\top} \boldsymbol{\beta}\right)^{2}+\lambda \sum_{j=1}^{p} \beta_{j}^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-\mathbf{z}_{i}^{\top} \boldsymbol{\beta}\right)^{2}+\sum_{j=1}^{p}\left(0-\sqrt{\lambda} \beta_{j}\right)^{2}
\end{aligned}
$$

Ridge Regression

The ridge estimators are biased since

$$
\hat{\boldsymbol{\beta}}_{\lambda}^{\text {ridge }}=\left(\mathbf{I}_{p}+\lambda \mathbf{R}^{-1}\right) \hat{\boldsymbol{\beta}}^{\text {ls }}
$$

where $\quad \mathbf{R}=\mathbf{Z}^{\top} \mathbf{Z}$

$$
\left.\begin{array}{ccc}
\mathbb{E}\left(\hat{\boldsymbol{\beta}}_{\lambda}^{\text {ridge }}\right) & = & \mathbb{E}\left\{\left(\mathbf{I}_{p}+\lambda \mathbf{R}^{-1}\right) \hat{\boldsymbol{\beta}}^{\text {ls }}\right\} \\
= & \left(\mathbf{I}_{p}+\lambda \mathbf{R}^{-1}\right) \boldsymbol{\beta}
\end{array}\right] \begin{gathered}
(\text { if } \lambda \neq 0) \\
\neq
\end{gathered} \boldsymbol{\beta} . \quad \begin{aligned}
& \text { Which means that } \\
& \text { the ridge } \\
& \text { estimators are } \\
& \text { biased for any } \lambda>0
\end{aligned}
$$

Ridge Regression

ain Problem: The selection of $\boldsymbol{\lambda}$

For each λ, we have a solution of coefficients.
These are indexed in a single line-plot.

- Hence, the λ^{\prime} s trace out a path of solutions (a path for each coefficient depicted by one line for each covariate).
- λ is the shrinkage parameter.
- λ controls the size of the coefficients.
- λ controls the amount of regularization.
- As $\lambda=0$, we obtain the least squares solutions.
\circ As $\lambda \uparrow \infty$, we have $\beta^{\text {ridge }}=0$ (intercept-only model).

Ridge Regression

n example using Im.ridge in MASS

package $\lambda=0$ if no value is specified $=>$ provides the
> ridge1 <- lm.ridge($\mathrm{y}^{\sim} .$, data=simex62)
ridge1\$coef

X1	X 2	X3	X4	X5
-10.678119176	-0.483937934	1.368944834	-0.610336100	-1.842312223
X6	X7	X8	X9	X10
-0.146090230	-0.050276093	0.139990980	-0.006823618	0.501533721
X11	X12	X13	X14	X15
-0.011910288	0.070926782	-0.038102733	-0.043846311	0.035371795

The above provides the ridge estimators using standardized covariates.
The intercept is not included here; since we have centered the covariates it is equal to mean(y).
Here, $\boldsymbol{\lambda}=\mathbf{0}$ so these are the usual OLS for standardized covariates.

Ridge Regression

h example using Im.ridge in MASS package

```
> mfull <- lm(y~.,data=simex62)
> ridge1 <- lm.ridge( y~.,data=simex62 )
> rbind( coef(mfull), coef(ridge1) ) # same original coefficients
    (Intercept) X1 X2 X3 X4
    X6
    [1,] 2.033451 -2.205672 -0.4876811 1.247476 -0.685589 -1.933265 -0.1517073
    [2,] 
    [1,] -0.04967198 0.1419875 -0.006928123 0.5310626 -0.01329459 0.06461573
    [2,] -0.04967198 0.1419875 -0.006928123 0.5310626 -0.01329459 0.06461573
    [1,] -0.04491102 -0.0461431 0.03623824
    [2,] -0.04491102 -0.0461431 0.03623824
```

We use coef(ridge1) to obtain the coefficients for the original data.
Here, $\boldsymbol{\lambda = 0}$ so these are the usual OLS for the original data

Ridge Regression

n example using Im.ridge in MASS package

```
> ridge2 <- lm.ridge( y~.,data=simex62, lambda=seq(0,5000, length.out=10000 )
> names(ridge2)
[1] "coef" "scales" "Inter" "lambda" "ym" "xm" "GCV" "kHKB"
[9] "kLW"
> dim(ridge2$coef)
[1] 15 10000
```

Coef: The coefficients are in a matrix of dimension $\mathbf{p} x$ length(lambda).
Each column corresponds to a set of ridge solution for a single value of lambda.
Each row corresponds to the path of a covariate.

Ridge Regression

n example using Im.ridge in MASS package

> ridge2 <- lm.ridge ($\mathrm{y} \sim$., data=simex62, lambda=seq (0,5000 , length.out=10000))
> names (ridge2)
[1] "coef" "scales" "Inter" "lambda" "ym" "xm" "GCV" "kHKB"
[9] "kLW"

Ridge Regression

he regularization plot

ridge2 <-Im.ridge($\mathrm{y} \sim$.,data=simex62, lambda=seq(0,500 , length.out=1500)) plot(ridge2)
legend('bottomright', legend=paste('X',1:15, sep='), ncol=3, col=1:15, |ty=1:15, cex=0.8)

Ridge Regression

he effective degrees of freedom

In OLS regression:

$$
\widehat{\mathbf{y}}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}=\mathbf{H y}
$$

Hence the hat matrix is defined as $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}$ and the number of estimated parameters is given by the rank of the hat matrix (and of the trace because H is idempotent) i.e.

$$
p^{\prime}=\operatorname{rank}(\mathbf{H})=\operatorname{trace}(\mathbf{H})
$$

so p^{\prime} are the number of degrees of freedom used by the model to estimate the parameters

Ridge Regression

he effective degrees of freedom

In ridge regression:

$$
\widehat{y}^{\text {ridge }}=\mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{Z}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{Z}^{T} \mathbf{y}=\mathbf{H}^{\text {ridge }} \mathbf{y}
$$

Hence the hat matrix is defined as $\mathbf{H}^{\text {ridge }}=\mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{Z}+\lambda \mathbf{I}_{p}\right)^{-1} \mathbf{Z}^{T}$ In analogy to OLS, the number of effectively estimated parameters (effective degrees of freedom) is given by the rank of the hat matrix i.e.

$$
d f_{\lambda}=\operatorname{rank}\left(\mathbf{H}^{\text {ridge }}\right)=\sum_{j=1}^{p} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda}
$$

where d_{j}^{2} are the eigenvalues of matrix $\mathrm{X}^{\top} \mathrm{X}$

Ridge Regression

he regularization plot using the effective degrees of freedom

Ridge Regression

he regularization plot using the effective degrees of freedom: The R-code

> I<-seq(0,10000, length.out=10000)
ridge2 <-Im.ridge($\mathrm{y} \sim$.,data=simex62, lambda=1)
n0<-length(I)
df <- numeric(n0) $\mathrm{p}<-15$
for (i in 1:n0)\{
Z <- scale(simex62[,-1])

$$
A<- \text { solve(} t(Z) \% * \% Z+I[i] * \operatorname{diag}(p))
$$

$$
B<-Z \% * \% A \% * \% t(Z)
$$

$$
\operatorname{df}[i]<-\operatorname{sum}(\operatorname{diag}(B))
$$

$$
\}
$$

plot(df, ridge2\$coef[1,], ylim=range(ridge2\$coef))
plot(df, ridge2\$coef[1,], ylim=range(ridge2\$coef), type='l') for (j in 2:15) lines(df, ridge2\$coef[jı], col=j)

Ridge Regression

he regularization plots using the "genridge" library

Ridge Regression

he regularization plots using the "genridge" library

The R-code

$$
\begin{gathered}
\text { I<-seq(} 0,1000, \text { length.out }=100) \\
\text { library(genridge) } \\
\text { r1<-ridge }(y \sim ., \text { data }=\text { simex62, lambda }=\mathrm{l}) \\
\operatorname{par}(\mathrm{mfrow}=\mathrm{c}(1,2), \mathrm{cex}=0.7) \\
\text { traceplot }(\mathrm{r} 1) \\
\text { traceplot }\left(\mathrm{r} 1, \mathrm{X}=\mathrm{hf}^{\prime}\right)
\end{gathered}
$$

Ridge Regression

Uning $\boldsymbol{\lambda}$

We monitor all values by indexing each solution is indexed vs. λ (more on this later).

- We use the effective degrees of freedom.
- We use AIC and/or BIC to select λ and covariates.
- We use k-fold cross-validation to tune λ by selecting the value with the minimum (out-ofsample) prediction error.

Ridge Regression

election of $\boldsymbol{\lambda}$ using AIC, BIC and effective dfs

Select λ which minimize the AIC or BIC

$$
\begin{aligned}
& \mathrm{AIC}=n \log (\mathrm{RSS})+2 d f \\
& \mathrm{BIC}=n \log (\mathrm{RSS})+d f \log (n)
\end{aligned}
$$

Where df is the effective degrees of freedom

Ridge Regression

lots of AIC and BIC

AIC vs. lambda

lambda
BIC vs. lambda

Ridge Regression

```
#------------------------------------------------------------------------------
#--Computation of BIC and AIC
#
n<-nrow(simex62)
l<-seq(0,0.05, length.out=100 )
ridge2 <- Im.ridge( y~.,data=simex62, lambda=I )
n0<-length(I)
df <- numeric(n0)
AIC <- numeric(n0)
BIC <- numeric(n0)
p<-15
y<-scale(simex62$y, scale=F)
for (i in 1:n0){
    Z <- scale( simex62[,-1] )
    A <- solve( t(Z)%*%Z + I[i]*diag(p) )
    B <- Z %*% A %** % t(Z)
    yhat<-B%*%y
    RSS <- sum((y-yhat)^2 )
    df[i] <- sum( diag( B ) )
    AIC[i]<-n*log(RSS)+df[i]*2
    BIC[i]<-n*}\operatorname{log}(RSS)+df[i]*\operatorname{log}(n
}
par(mfrow=c(1,2))
plot(I,AIC, type='I', xlab='lambda', ylab='AIC', main='AIC vs. lambda')
plot(I,BIC, type='l', xlab='lambda', ylab='BIC', main='BIC vs. lambda')
ridge2$lambda[AIC==min(AIC) ]
ridge2$lambda[ BIC==min(BIC) ]
```


Ridge Regression

ow to select $\boldsymbol{\lambda}$

$\lambda=k_{H K B}$ Proposed by Hoerl, Kennard \& Baldwin (1975):

$$
k_{\mathrm{HKB}}=\frac{p \hat{\sigma}^{2}}{\hat{\beta}^{\prime} \hat{\beta}}
$$

$\hat{\sigma}^{2}, \hat{\beta}$ estimated from ordinary least squares (OLS).
Cure \& De Iorio (2012) use a slightly different criterion based on the r-first principal components; this is also used in R package "ridge" (function "linearRidge")

Ridge Regression

ow to select $\boldsymbol{\lambda}$

Lawless \& Wang (1976, Comm.Stats)
proposed a slightly modified estimator of $\lambda=k_{L W}$ given by

$$
k_{L W}=\frac{p \widehat{\sigma}^{2}}{\widehat{\beta}^{T}\left(\mathbf{X}^{T} \mathbf{X}\right) \widehat{\beta}}=\frac{p \widehat{\sigma}^{2}}{\widehat{\mathbf{y}}^{T} \widehat{\mathbf{y}}}
$$

Ridge Regression

ow to select $\boldsymbol{\lambda}$

The criteria in R are slightly modified

```
> zsimex62 <- as.data.frame( scale(simex62) )
> zsimex62$y <- scale( simex62$y, scale=F )
> zfmod <- lm( y~., data=zsimex62 )
>
> n<-100
> p<-15
>
> ridge1$kH
[1] 0.1140814
> (p-2) *summary(zfmod)$s^2/sum( zfmod$coef^2 )
[1] 0.1129406
>
> ridge1$kLW
[1] 0.1766921
> (p-2)*n*summary(zfmod)$s^2/sum( zfmod$fit^2 )
[1] 0.1766921
```


Ridge Regression

ow to select $\boldsymbol{\lambda}$ using cross-validation

Split the data into two fractions:
Training sample $=>$ used for estimation

- Test sample $=>$ used for testing the predictive ability of the model
Problems:
- Not a lot of data.
- How to split them? (different splits provide different solutions)
- What size shall we use for training and testing?

Ridge Regression

ow to select $\boldsymbol{\lambda}$ using K-fold crossvalidation

- Split the data to K parts (called folds)

- Fit the data to K-1 folds
- Test the data to the remaining fold
- Repeat this for all possible test folds
- Report average prediction error
- USUALLY 10-fold CV or 5-Fold
- Also the n-fold CV => leave-one-out CV - CV(1)

Ridge Regression

Mean Square error for $\boldsymbol{T}_{\boldsymbol{k}}$ fold of size $\boldsymbol{n}_{\boldsymbol{k}}$

$$
M S E\left(T_{k}\right)=\frac{1}{n_{k}} \sum_{i \in T_{k}}\left(y_{i}-\widehat{y}_{i,-k}\right)^{2}
$$

$i \in T_{k}$: denotes the indexes of all data that lie in T_{k} fold $\widehat{y}_{i,-k}$: stands for the predicted value of y_{i} using the data of all folds except the k-th.
Select λ with the minimum AMSE or ARMSE

$$
A M S E=\overline{M S E}=\frac{1}{K} \sum_{k=1}^{K} M S E\left(T_{k}\right) \quad A R M S E=\overline{R M S E}=\frac{1}{K} \sqrt{\sum_{k=1}^{K} M S E\left(T_{k}\right)}
$$

Ridge Regression

ean Square error for CV(1) \& GCV

$$
M S E_{C V(1)}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i,-i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{y_{i}-\widehat{y_{i}}}{1-h_{i}}\right)^{2}
$$

The generalized CV is approximately equal to the MSE obtained using CV(1), but much easier to compute

$$
M S E_{C V(1)} \approx G C V=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{y_{i}-\widehat{y}_{i}}{1-\frac{\operatorname{Tr}(H)}{n}}\right)^{2}
$$

Ridge Regression

CV in R

ridge2 <- Im.ridge($y \sim$.,data=simex62,
lambda $=\operatorname{seq}(0,0.05$, length.out=1000))
plot(ridge2\$lambda, ridge2\$GCV, type='I')

Ridge Regression

fold CV using "ridge.cv" in "parcor"

library(parcor); $\mathrm{y}<-$ simex62\$y; $\mathrm{x}<-$ model.matrix(mfull) ridge.cv(as.matrix(x[,-1]), y, plot.it=T, lambda $=\operatorname{seq}(0.001,0.25$, length.out $=10000), k=5)$

Ridge Regression

ummary of proposed $\boldsymbol{\lambda}$

```
    lambdas <- numeric()
> lambda[1] <- ridge2$lambda[ AIC==min(AIC) ]
> lambda[2] <- ridge2$lambda[ BIC==min(BIC) ]
> lambda[3] <- ridge2$lambda[ ridge2$GCV==min(ridge2$GCV) ]
> lambda[4] <- ridge2$kHKB
> lambda[5] <- ridge2$kLW
>
> names(lambda)<-c('AIC', 'BIC', 'GCV', 'kHKB', 'kLW')
> lambda
    AIC BIC GCV kHKB kLW
0.01464646 0.03434343 0.01717172 0.11408143 0.17669206
```


LASSO

he least absolute shrinkage and selection operator

Although ridge regression is not directly used in practice, it generated a whole new area of research by considering different penalties.
The most popular approach is the LASSO based on the l_{1} penalization.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B, 58(1), 267-288.

- Web of Science: 5063 citations [8/12/2014]
- Scholar google: 11720 citations [8/12/2014]

LASSO

he least absolute shrinkage and selection operator

Although ridge regression is not directly used in practice, it generated a whole new area of research by considering different penalties
The most popular approach is the LASSO based on the ℓ_{1} penalization.

$$
\begin{aligned}
& \text { minimize }(\mathbf{y}-\mathbf{Z} \beta)^{\top}(\mathbf{y}-\mathbf{Z} \boldsymbol{\beta}) \text { s.t. } \sum_{i=1}^{p}\left|\beta_{j}\right| \leq t \\
\Leftrightarrow & \left.\operatorname{minimize}\{\mathbf{y}-\mathbf{Z} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{Z} \boldsymbol{\beta})+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|\right\}
\end{aligned}
$$

LASSO

he least absolute shrinkage and selection operator

LASSO

LASSO

The ellipses correspond to the contours of RSS: the inner ellipse has smaller RSS, and RSS is minimized at OLS estimates. For $\mathrm{p}=2$ the constraint in LASSO corresponds to a diamond:

$$
\left|\beta_{1}\right|+\left|\beta_{2}\right| \leq \mathrm{t}
$$

We are trying to minimize the ellipse size and circle simultaneously in the ridge regression. The ridge estimate is given by the point at which the ellipse and the circle touch.

LASSO Estimate

As p increases, the multidimensional diamond has an increasing number of corners, and so it is highly likely that some coefficients will be set equal to zero. Hence, the lasso performs shrinkage and (effectively) variable selection.

LASSO

Lasso and ridge regression both put penalties on β. More generally, penalties of the form

$$
\lambda \sum_{\mathrm{j}=1}^{\mathrm{p}}\left|\beta_{\mathrm{j}}\right|^{\mathrm{q}} \leq \mathrm{t}
$$

may be considered, for $\mathrm{q} \geq 0$. Ridge regression and the Lasso correspond to $\mathrm{q}=2$ and $\mathrm{q}=1$, respectively. When X_{j} is weakly related with Y, the lasso pulls β_{j} to zero faster than ridge regression.

- Elastic Net combines the two ideas; you're looking to find the $\boldsymbol{\beta}$ that minimizes:

$$
(\mathbf{y}-\mathrm{Z} \boldsymbol{\beta})^{\mathrm{T}}(\mathbf{y}-\mathrm{Z} \boldsymbol{\beta})+\lambda_{1} \sum_{\mathrm{j}=1}^{\mathrm{p}}\left|\beta_{\mathrm{j}}\right|+\lambda_{2} \sum_{\mathrm{j}=1}^{\mathrm{p}}\left|\beta_{\mathrm{j}}\right|^{2}
$$

LASSO

uning $\boldsymbol{\lambda}$ or t

Again, we have a tuning parameter λ that controls the amount of regularization.

- One-to-one correspondence with the threshold t implemented on the ℓ_{1}.
- If we set t equal to

$$
\mathrm{t}_{0}=\sum_{\mathrm{j}=1}^{\mathrm{p}=}\left|\hat{\beta}_{\mathrm{j}}\right|=\max \sum_{\mathrm{j}=1}^{\mathrm{p}}\left|\boldsymbol{\beta}_{\mathrm{j}}\right|=\max |\boldsymbol{\beta}|_{1}
$$

then we obtain no shrinkage and hence the OLS are returned.

- We have a path of solutions indexed by λ or t or by the shrinkage factor $\mathrm{s}=|\boldsymbol{\beta}|_{1} / \max |\boldsymbol{\beta}|_{1}$.

LASSO

In regression, you're looking to find the $\boldsymbol{\beta}$ that minimizes:

$$
(\mathbf{y}-Z \boldsymbol{\beta})^{\mathrm{T}}(\mathbf{y}-Z \boldsymbol{\beta})
$$

- In LASSO, you're looking to find the $\boldsymbol{\beta}$ that minimizes:

$$
(\mathbf{y}-\mathbf{Z} \boldsymbol{\beta})^{\mathrm{T}}(\mathbf{y}-\mathbf{Z} \boldsymbol{\beta})+\lambda \sum_{\mathrm{j}=1}^{\mathrm{p}}\left|\beta_{\mathrm{j}}\right|
$$

- So when $\lambda=0$ there is no penalization and you have the OLS solution; this is

$$
\max \sum_{\mathrm{j}=1}^{\mathrm{p}}\left|\beta_{\mathrm{j}}\right|=\max _{\mathrm{p}}|\boldsymbol{\beta}|_{1}
$$

- As the penalization parameter λ increases, $\sum_{j=1}^{p}\left|\beta_{j}\right|$ is pulled towards zero, with the less important parameters pulled to zero earlier.
- Therefore the shrinkage factor s presents the ratio of the sum of the absolute current estimate over the sum of the absolute OLS estimates and takes values in [0,1]; when is equal to 1 there is no penalization and we have the OLS solution and when is equal to 0 all the $\beta_{\mathrm{j}} \mathrm{s}$ are equal to zero.

LASSO

asso performs also variable selection

Large enough λ (or small enough t or s) will set some coefficients exactly equal to 0!

- So the LASSO will perform variable selection for us!
- Nevertheless, solutions proposed also by kfold CV (we will discuss this later on) suggest that LASSO suggests over-fitted models.

LASSO

asso performs also variable selection Screening

SUGGESTION:

change name to least angle shrinkage and screening operator!
See for details in
oBullman and Mandozi, 2013, Comp. Stats
oBühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer.
Still extremely useful when p is large (even $p \gg n$)
$=>$ it will clear all irrelevant variables very fast.

LASSO

pmputing the lasso solution

Lasso solution has no closed form (unlike ridge regression).
Original implementation: involves quadratic programming techniques from convex optimization. More popular implementation: the least-angle regression (LARS) by Efron, Hastie \& Tibshirani (2004). Annals of Stats. [Citations WOS: 1913; Scopus: 2319; Scholar: 4544 on 8/12/2014]

- lars package in R implements the LASSO.
- LARS computes the LASSO path efficiently.
- Other alternatives are also available.

LASSO

mplemention of LASSO

Steps:

1. Run Lasso for a variety of values.
2. Plot the regularization paths.
3. Implement k-fold regularization.
4. Estimate the coefficients using λ with minimum CV-MSE.

LASSO

mplementing LASSO using the "lars" package

Steps 1: Run Lasso for a variety of values

```
> library(lars)
> X<-model.matrix(mfull) [,-1]
> lasso1 <- lars( X, simex62$y )
> lasso1
Call:
lars(x = X, y = simex62$y)
R-squared: 0.989
Sequence of LASSO moves:
\begin{tabular}{lrrrrrrrrrrrrrrrrr} 
& X1 & X2 & X4 & X10 & X6 & X15 & X3 & X5 & X8 & X12 & X7 & X9 & X4 & X13 & X4 & X14 & X11 \\
Var & 1 & 2 & 4 & 10 & 6 & 15 & 3 & 5 & 8 & 12 & 7 & 9 & -4 & 13 & 4 & 14 & 11 \\
Step & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17
\end{tabular}
```

Sequence of actions - variables added or excluded in each value of $\boldsymbol{\lambda}$

LASSO

mplementing LASSO using the "lars" package

Steps 2: Plot the regularization paths

LASSO

mplementing LASSO using the "lars" package

Steps 2: Plot the regularization paths

> plot(lasso1, breaks="FALSE")

LASSO

mplementing LASSO using the "lars" package

Steps 2: Plot the regularization paths

> plot(Iasso1, breaks="FALSE", xlim=c(0.5, 1.0), ylim=c(-20,15))

LASSO

nplementing LASSO using the "lars" package

Steps 3-4: Implement 10-fold CV and select s

```
> res.cv <- cv.lars( X, simex62$y ) # default model='fraction'
> lambda<-res.cv$index
> cv <-res.cv$cv
> mincv.s <- lambda[cv==min(cv)]
> coef( lasso1, s=mincv.s, mode='fraction' )
\begin{tabular}{|c|c|c|c|c|}
\hline X1 & X2 & X3 & X4 & X5 \\
\hline -1.981141891 & -0.647421308 & 0.731101103 & 0.000000000 & -1.064833575 \\
\hline X6 & X7 & X8 & X9 & X10 \\
\hline -0.214042018 & -0.028820012 & 0.070394537 & -0.004542092 & 0.540497599 \\
\hline X11 & X12 & X13 & X14 & X15 \\
\hline 0.000000000 & 0.030101516 & -0.001087987 & 0.000000000 & 0.049345451 \\
\hline
\end{tabular}
```

```
> mincv.s
```

[1] 0.8080808

LASSO

mplementing LASSO using the "lars" package

Steps 3-4: Implement 10-fold CV and select s

LASSO

mplementing LASSO using the "lars" package

Steps 3-4: Select λ (or s) using Mallows Cp

LASSO

mplementing LASSO using the "lars" package

Steps 3-4: Select λ (or saso s) using Mallows Cp

plot(lasso1, xvar='n', plottype='Cp')
plot(lasso1, xvar='n', plottype='Cp', ylim=c(12,20), xlim=c(0.7,1))

LASSO

mplementing LASSO using the "lars" package

Steps 3-4: Select λ (or s) using Mallows Cp

```
> # finding the s corresponding to the optimal Cp
> blasso <- coef(lasso1, s=which.min(rescpsCp), mode="step")
> bols <- coef(mfull) [-1]
> # use std coef
> zblasso <- coef(lassol, s=which.min(rescpsCp), mode="step") * apply(X,2,sd)
> zbols <- coef(mfull)[-1] * apply(X,2,sd)
> s <- sum( abs( zblasso ) )/sum( abs( zbols ) )
> s
[11 0.8070412
```


LASSO

mplementing LASSO using the "glmnet" package

- Glmnet package is more friendly
- Wider selection of functions
- Directly suggests min lambda and lambda with equivalent CV-MSE but supporting more parsimonious models
- Better plots
- Can be implemented for normal models

LASSO

mplementing LASSO using the "glmnet"
 package library(glmnet)
 lasso2 $=\operatorname{glmnet}(X$, simex62\$y $)$
 plot(lasso2, label=T)

LASSO

mplementing LASSO using the "glmnet"
 package plot(lasso2, xvar='lambda', label=T)
 12

LASSO

mplementing LASSO using the "glmnet"

LASSO

mplementing LASSO using the "glmnet"

```
    blasso3<- coef(lasso3, s = "lambda.min")
    blasso3
16 x 1 sparse Matrix of class "dgCMatrix"
    1
    (Intercept) 0.868534480
X1 -1.978492963
X2 -0.648047223
X3 0.725104150
X4 - - 053018513
x5 -1.053018513
X6 -0.213750082
X7 -0.027791640
X8 0.068381266
X9 -0.004655329
X10 0.539495160
X11 .
X12 0.029192426
X13
X14 -
X15 0.049742166
> zblasso <- blasso3[-1] * apply(X,2,sd)
    > zbols <- coef(mfull)[-1] * apply(X,2,sd)
    > s <- sum( abs( zblasso ) )/sum( abs( zbols ) )
> s
    [1] 0.8058524
                        S=0.805
```

Coefficients for lambda min

With the minimum CV-MSE

These coefficients are the effects
for original (unstandardized)
variables

We multiply with the sds in order
to obtain the effects for the standardized variables

```
    s
```


LASSO

mplementing LASSO using the "glmnet"

```
> blasso3<- coef(lasso3) # blasso3<- coef(lasso3, s = "lambda.1se")
    blasso3
16 x 1 sparse Matrix of class "dgCMatrix"
    1
(Intercept) -0.596370022
X1 -1.686700461
X2 -0.774738777
X3 0.009628299
X4 0.750225831
X5
X6 -0.223093864
X7
X8
X9
X10 0.457502129
X11
X12
X13
X14
X15 0.028836594
> zblasso <- blasso3[-1] * apply(X,2,sd)
> zbols <- coef(mfull)[-1] * apply(X,2,sd)
> s <- sum( abs( zblasso ) )/sum( abs( zbols ) )
> s
```

[1] $0.6418527 \quad \mathbf{S}=\mathbf{0 . 6 4}$

