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Model Selection

 What is Model Selection?
⚫ Evaluation of performance of scientific scenarios.

⚫ Selection of the “best”.

“Best”’ Model?
⚫ The “best” performed model is totally subjective.

 It may not be possible to find a single model capturing the
preferences of all relevant stakeholders in the visited
problem.

⚫ Different procedures (or scientists) support different 
scientific theories.

All Models are wrong, but some are useful: George,  
E.P. Box

 Main Principles: Goodness of fit vs. 
Parsimony.
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Multiple Linear Regression

Let us assume that p+1 quantitative variables are available.

 Υ: is the response or dependent variable.

 Χ1, Χ2, ... Χp: explanatory or independent variables or 
covariates.

Let us assume a multiple linear regression model:

 Y=β0+β1 Χ1 + β2 Χ2 + ... + βp Xp +ε, ε~Ν( 0, σ2 )

or equivalently 

 Y~Ν(μ , σ2 ), Ε(Y)=μ= β0+β1 Χ1 + β2 Χ2 + ... + βp Xp

Model expression when fitted to data:

 Υi, Xi pairs of values for i=1,2, … , n  

⚫ Yi= β0+β1 Χi1 + β2 Χi2 + ... + βp Xip +εi, εi~Ν( 0, σ2 )

⚫ Yi ~Ν( μi, σ
2 ), μi= β0+β1 Χi1 + β2 Χi2 + ... + βp Xip
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Multiple Linear Regression

 Ordinal Least Square (OLS) method for 
estimating the model coefficients β0, 
β1,…,βp.

where β = (β0,β1,…,βp)
T and 

Χi =(1,Χi1,…,Xip), i = 1,…,n.

n
2

i

i 1

minimize w.r.t.  :   SS (y )
=

= − iβ βΧ
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Variable Selection Problem

 Problem: Selection of covariates.

 Variable Selection Problem is a
Model Selection Problem; we
compare models with the same
“structure” but with different
covariates.
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Variable Selection Problem

 The set of all possible models under consideration can
be represented by a vector of binary indicators γ =
(γ1, . . . , γp) ∈ {0, 1}p, denoting which explanatory

variables are present in the linear predictor.

 The γj, j=1,…,p, takes the value 1 if variable j is
included in the model and 0 otherwise.

 Therefore the model with only the constant term can
be represented by (0,…,0), the model with all the
explanatory variables by (1,….1) and the model with
only X1 and Xp (for example) by (1,0,0,…,0,0,1).

 The number of all available models (size of model
space) is 2p. This can be enormous for even moderate
values of p; for example for p = 50 we have
1.1259e+15 available models!
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 Stepwise procedure: Adding and removing
explanatory variables based on a criterion.

 Backward procedure: Removing variables according
to a criterion (usually starting from the full model).

 Forward procedure: Adding covariates based on a
criterion (usually starting from the null/constant
model).

 Full enumeration: For low number of covariates, we
evaluate AIC or BIC for all models (2p) and select
the optimal one.

Variable Selection 
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Criteria for variable selection:

1. Significance tests

2. AIC

3. BIC

4. Bayesian procedures – Bayes factors (e.g. BAS 
package)

5. Deviance information criterion (DIC in WinBUGS)

Other methods:

1. Ridge regression

2. Lasso and shrinkage methods

3. Bayesian variable selection and model search 
algorithms

Variable Selection
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Stepwise procedure 

Step by step procedure of adding and removing covariates:

✓ We start from a given model and in every step we check
which variable to include (select the one with the min AIC,
min BIC, min p-value).

✓ After the addition of the best variable, we check in all
included if they should be removed.

✓ Each time we select the move according to the minimum or
maximum value of a criterion (e.g. min AIC, BIC or p-
value).

✓ We stop when no other move/improvement can be
achieved.

✓ Usual starting models: the null/constant (with no
covariates) or the full (with all covariates of the dataset).

9

Stepwise Procedures



Backward procedure

Step by step removal of insignificant 
covariates:
✓ We start from the full model and in every step

we check which variable must be excluded
(once at a time).

✓ We select the move/model which minimizes a
criterion (min AIC or BIC, max p-value).

✓ We stop when no other covariates can be
removed.

✓ Excluded covariates that may be significant at a
step cannot be re-included in the model.
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Forward procedure

Step by step addition of covariates:
✓ We start from the null model and in every step

we check which covariates must be added in the
model (once at a time).

✓ We select to move/add the covariate with the
min AIC, min BIC or min p-value.

✓ We stop when we cannot add any other
covariates.

✓ Less computational expensive than the
backward and the stepwise methods since it fits
less models.

11

Stepwise Procedures



✓ Best is step-wise because of double checking.

✓ Select as starting model the full for moderate p<n.

✓ When p is large or p>n, then select as starting model the
constant.

✓ All stepwise methods usually select sub-optimal models.

✓ Different procedures may end-up to different models.

✓ If X (design matrix) is (nearly) orthogonal, then variable selection
is easier => variable selection procedures will select the optimal
model.

✓ If there are collinear covariates, then variable selection is more
difficult => variable selection procedures may end-up to different
good but sub-optimal models.

✓ For p<15 perform full enumeration using the leaps or the BAS
packages.

✓ For large p or p>n, use lasso to remove all really bad covariates
and continue in the reduced space.

Stepwise Procedures
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Disadvantages of stepwise procedures (1)

✓ The final model is not guaranteed to be optimal in any specified
sense since in every step we add or remove a covariate [and we
may trap in a locally maximum model space area].

✓ The procedure yields to a single final model, although in practice
there are often several equally good models [use instead some
“good models” and (Bayesian) model averaging].

✓ It doesn’t take into account a researcher’s knowledge about the
predictors.

✓ The p-values used should not be treated too literally. There is so
much multiple testing occurring that its validity is dubious.

✓ The removal of less significant predictors tends to increase the
significance of the remaining predictors. This effect leads one to
overstate the importance of the remaining predictors.

Stepwise Procedures
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Disadvantages of stepwise procedures (2)

✓ The final model is not guaranteed to be optimal in any specified
sense. Variables that are dropped can still be correlated with the
response. It would be wrong to say that these variables are
unrelated to the response, it’s just that they provide no additional
explanatory effect beyond those variables already included in the
model.

✓ Stepwise variable selection tends to pick models that are smaller
than desirable for prediction purposes. To give a simple example,
consider the simple regression with just one predictor variable.
Suppose that the slope for this predictor is not quite statistically
significant. We might not have enough evidence to say that it is
related to Y but still might be better to use it for predictive
purpose.

✓ Therefore, for prediction purposes out-of-sample measures may be
useful.

Stepwise Procedures
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R functions for variable selection (default functions):

✓ step: Stepwise methods using AIC (default) or BIC.

✓ add1, drop1: Computes all the single terms in the scope argument 
that can be added to or dropped from the model, fit those models 
and compute a table of the changes in fit. 

✓ extractAIC, AIC: Computes the (generalized) AIC.

✓ logLik , deviance: Computes the log-likelihood and the deviance 
measures.

✓ update(formula): updates model formulae. This typically involves 
adding or dropping terms, but updates can be more general. 

MASS library

✓ stepAIC: similar to step.

✓ addterm:  similar to add1.

✓ dropterm: similar to drop1.

Variable Selection with R
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R functions for variable selection (functions in other packages):

Leaps library

✓ leaps: exhaustive search for the best subsets of the variables, using
an efficient branch-and-bound algorithm.

✓ regsubsets: Model selection by exhaustive search, forward or
backward stepwise, or sequential replacement (more options than
leaps).

✓ plot.regsubsets: Plots a table of models showing which variables are
in each model. The models are ordered by the specified model
selection statistic.

✓ summary.regsubsets: Table of models plotted using plot.regsubsets.

BAS library

✓ bas.lm: for p15 fits all models and compares them using AIC/BIC.
and Bayesian measures. For larger spaces it uses adaptive sampling.

✓ image.bma: Creates an image of the models selected using BAS.

✓ plot.bma: Plot Diagnostics for an blm object.

Variable Selection with R
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Example 1: A simulated dataset for variable selection
illustration

 n=100 data points.

 p=15 covariates.

 Data in simex62 (a data frame in R).

Example 1
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Stepwise (from full) Backward

Example 1

mfull<-lm(y~.,data=simex62)

step(mfull, direction=‘both’)

mfull<-lm(y~.,data=simex62)

step(mfull, direction=‘back’)
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Forward 

Example 1

mfull<-lm(y~.,data=simex62)

mnull<-lm(y~1,data=simex62)

step(mnull, scope=list(lower=mnull,upper=mfull), 
direction='forward')
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Stepwise from null  

Example 1

mfull<-lm(y~.,data=simex62)

mnull<-lm(y~1,data=simex62)

step(mnull, 
scope=list(lower=mnull,

upper=mfull), 
direction=both')
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 Model selected by AIC

Example 1

summary( step( mfull, direction='both‘ ) )
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 Model selected by BIC

Example 1

summary( step( mfull, direction='both',k=log(100) ) )
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 Manual forward using F-tests and add1 function 

Example 1

add1(mnull, scope=mfull, test='F')

add1(update(mnull,~.+X1),scope=mfull, test='F')

add1(update(mnull,~.+X1+X10),scope=mfull, test='F')

add1(update(mnull,~.+X1+X10+X2),scope=mfull, test='F')

add1(update(mnull,~.+X1+X10+X2+X3),scope=mfull, test='F')

add1(update(mnull,~.+X1+X10+X2+X3+X5),scope=mfull, test='F')

add1(update(mnull,~.+X1+X10+X2+X3+X5+X6),scope=mfull, test='F')
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 Manual forward using F-tests and add1 function 

Example 1

summary(update(mnull,~.+X1+X10+X2+X3+X5+X6))
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 Manual backward using F-tests and drop1 function 

 Selects the same model as BIC and forward with F-
tests.

Example 1

drop1(mfull, test='F')

drop1(update(mfull,~.-X9), test='F')

drop1(update(mfull,~.-X9-X11), test='F')

drop1(update(mfull,~.-X9-X11-X15), test='F')

drop1(update(mfull,~.-X9-X11-X15-X13), test='F')

drop1(update(mfull,~.-X9-X11-X15-X13-X14), test='F')

drop1(update(mfull,~.-X9-X11-X15-X13-X14-X12), test='F')

drop1(update(mfull,~.-X9-X11-X15-X13-X14-X12-X7), test='F')

drop1(update(mfull,~.-X9-X11-X15-X13-X14-X12-X7-X8), test='F')

drop1(update(mfull,~.-X9-X11-X15-X13-X14-X12-X7-X8-X4), test='F')

summary(update(mfull,~.-X9-X11-X15-X13-X14-X12-X7-X8-X4))
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 Several measures 

Example 1
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 Leaps: selects the best model in every dimension 
according to BIC 

Example 1
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plot(regsubsets(y~.,data=simex62, nvmax=15, nbest=1))
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 Leaps: selects the 10 best models in every 
dimension according to BIC 

Example 1
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 BAS: Full enumeration of the model space using BIC.

 Inclusion probability=> rescaled weight measure for including 
each term.

 Postprobs => posterior probability of each model.

Example 1
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 BAS: Posterior inclusion probabilities under BIC

Example 1

plot(bas.results)
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 BAS: Posterior model probabilities of best 20 and included 

vars using BIC

Example 1
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image(bas.results)
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 BAS: Full enumeration of the model space using AIC

 Inclusion probability => all are higher than BIC

 Postprobs => quite small – AIC cannot separate between 
models

Example 1

32



 BAS: Posterior inclusion probabilities using AIC

Example 1

plot(bas.results)
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 BAS: Posterior model probabilities of best 20 and included 

vars using AIC

Example 1

image(bas.results)
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Multi-collinearity: is the (statistically) high
linear relationship between one explanatory
with (some of) the rest of the explanatories.

Collinearity: Is the perfect (deterministic)
linear relationship between one explanatory
with (some of) the rest of the explanatories.

 In the bibliography the two terms are
frequently used inter-changeably.

Multi-Collinearity
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Side effects

When one X is a perfect linear combination of the rest 
 the OLS estimates (or the MLEs) do not exist. 

When one X is multi-collinear to the rest: 

⚫ High standard errors of coefficients.

⚫ Instability of estimators.

⚫ Significant effects will appear as non-significant.

⚫ Deterioration of the effects (even opposite signs 
of effects).

⚫ Effects between multi-collinear variables will be 
inseparable and therefore we will not be able to 
estimate them.

Multi-Collinearity
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Why multi-collinearity is a problem? 

Logical explanation

 When 2 covariates are highly related => 
they carry similar information (since when 
we know the value of the one we can 
precisely predict the value of the other). 

 Therefore, such variables are not adding any 
further information about the effect on Y 
when we add them sequentially. 

 Similar is the case when a covariate is a 
linear function of more than one. 

Multi-Collinearity
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Why multi-collinearity is a problem?

Explanation using interpretation of the parameters

Let us assume the regression model 

Υ= β0+β1 Χ1 + β2 Χ2 +ε

If Χ2 = a+b X1 (perfect linear relationship)

we cannot use the usual interpretation since changing Χ1 has a 

result changes also in Χ2.

Moreover 

Υ= β0+β1 Χ1 + β2 (a+bΧ1) +ε

= (β0 +a β2) + (β1 +β2 b)Χ1 +ε

Which is the correct effect of Χ1?

Multi-Collinearity
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Why multi-collinearity is a problem?

Mathematical explanation

 is the vector of the OLS estimators (or 
MLEs)  of dimension (p+1)x1.

 Χ is the data or design matrix of dimension n×(p+1). 
The first column refers to the constant term with all 
elements equal to one (1). Each of the rest columns refer 
to the data of each variable. 

 y is a vector of dimension n×1 with the values of the 
response variable.

Multi-Collinearity
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Why multi-collinearity is a problem?

Mathematical explanation

 Problem: If a variable (i.e. a column of the data matrix
Χ) is a linear combination of the rest the inverse (ΧTΧ)-1

does not exist.

 In practice: Rarely we will observe a perfect linear
relationship. If a covariate is highly associated with the
rest (i.e. we regress between them and we end up with a
very high value of R2) then we have unstable estimates
and high standard errors.

Multi-Collinearity
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Diagnostics checks for multi-collinearity

 Pearson correlations (for identifying pairwise
comparisons).

 R2 for all the regressions between the covariates.

 Variance inflation factors [ =1/(1-R2) ].

 Checking the eigenvalues of ΧTΧ and the
conditional indexes.

Multi-Collinearity
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Diagnostics checks for multi-collinearity
1. Pearson correlations [They show high linear

association between two covariates but it will fail when
more variables are involved in the linear combination
e.g. for X1=X2+X3+X4].

2. Variance inflation factors

✓ VIFj = (1-Rj
2)-1.

✓ Rj
2 is the coefficient of determination obtained when

we fit the regression model with response the
covariate Χj and covariates the rest of Xs.

✓ If VIFj >10 [Rj
2>0.90] then we have a potential

collinearity problem.

Multi-Collinearity
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Variance inflation factors

VIFs are is also given by the diagonal of 
the inverse correlation matrix!

VIF Interpretation: The square root of the variance inflation
factor tells you how much larger the standard error is,
compared with what it would be if that variable were
uncorrelated with the other predictor variables in the model.

Multi-Collinearity
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Variance inflation factors in R: “vif” in “car”

Multi-Collinearity
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Condition indexes 

✓ Calculate the eigenvalues of ΧTΧ.

✓ Eigenvalues close to zero indicate a problem.

✓ Condition Index 

= Square root of ΜΑΧ(eigenvalues)/ 

eigenvalues.

✓ If CIj>30  Serious collinearity problem.

✓ If CIj>15  possible collinearity problem.

✓ For small eigenvalues, high values of

eigenvectors indicate variables that participate

in linear combinations.

Multi-Collinearity
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Condition indexes using “colldiag” in “perturb” package

Multi-Collinearity
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Variance-decomposition proportions

o Is the proportion of Var(βj) explained by the
corresponding component.

o If a large condition index is associated with two or
more variables with large variance decomposition
proportions, these variables may be causing
collinearity problems. Belsley et al suggest that
a large proportion is 50 percent or more.

Reference: D. Belsley, E. Kuh, and R. Welsch 
(1980). Regression Diagnostics. Wiley. 

2004=> 2nd edition

Multi-Collinearity
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Variance-decomposition proportions 
using “colldiag” in “perturb” package

Multi-Collinearity
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How to deal with the collinearity problem
1. Careful design of the experiment

✓ Not random X but based on experimental design.
✓ The aim is to achieve a nearly orthogonal X (or at least far

away from being ill conditioned).
✓ Difficult to be implemented (and expensive).

2. Removal of one of the collinear variables
✓ Identify the biggest VIF and remove the corresponding

covariate.
✓ We try to have a model with CI<15 (or at least CI<30).

3. Use of orthogonal transformations (Principal
Components) of Χ.
✓ The interpretation of the model is difficult.

Note: In most cases the Stepwise methods will solve the
problem by removing one of the collinear covariates.

6Multi-Collinearity
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Ridge Regression is a technique 

 for analyzing multiple regression data that suffer
from multicollinearity.

 It shrinks coefficients towards zero (esp. not
important ones).

 It is not a variable selection method but it can
simplify variable selection.

 It lead to other more efficient shrinkage methods
that perform full shrinkage to zero and indirectly
variable selection (e.g. LASSO).

 It can be implemented to fit even models on large p

– small n datasets.

Ridge Regression
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Ridge Regression 

When multi-collinearity occurs

=> least squares estimates are unbiased

=> but their variances are large so they
may be far from the true value.

By adding a degree of bias to the regression
estimates, ridge regression reduces the
standard errors.

It is hoped that the net effect will be to give
estimates that are more reliable.

Ridge Regression
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Ridge Regression 

We start by standardizing all covariates. 

Hence X => Z (matrix of standardized 
covariates)

Ridge Regression
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When including an intercept term in the regression, we leave this coefficient 

unpenalized. If we centered the columns of X then β0 = mean(y).



Penalized sum of squares

Using non-linear programming, the above 
constrained optimization problem is equivalent 
minimizing the following penalized version of 
the (residual) sum of squares (RSS)

Ridge Regression
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Ridge Regression 

Ridge Regression

54

The ellipses correspond to the
contours of RSS: the inner ellipse has
smaller RSS, and RSS is minimized at
OLS estimates. For p = 2 the
constraint in Ridge corresponds to a
circle:

We are trying to minimize the ellipse
size and circle simultaneously in the
ridge regression. The ridge estimate
is given by the point at which the
ellipse and the circle touch.

2 2

1 2 t + 

OLS Estimate

Ridge Estimate



• There is a trade-off between the penalty term and RSS.

• Maybe a large β would give you a better RSS but then it will

push the penalty term higher.
• This is why you might actually prefer smaller β's with worse

RSS. From an optimization perspective, the penalty term
is equivalent to a constraint on the β's. The function is still
the RSS but now you constrain the norm of the βj 's to be smaller

than some constant t.

• There is a correspondence between λ and t. The larger the λ is,
the more you prefer the βj's close to zero. In the extreme
case when λ=0, then you would simply be doing a normal
linear regression. And the other extreme as λ approaches
infinity, you set all the β's to zero.

55

Ridge Regression



The ridge solution

Minimizing the penalized RSS, provides us the 
ridge solution in closed form given by

which usually has better prediction error than MLEs or OLS 
estimators. 

For λ>0, a solution exists even if the original XTX is not 
invertible giving us solutions in cases with

⚫ co-linear regressors

⚫ p>n 

Ridge Regression
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The data augmentation interpretation of 
the ridge sol. 

Is like considering p additional data points with zero values for 
the response and X=diag(λ1/2) as the data matrix for the 
additional explanatories  since the penalized residual sum of 
squares can be written as

Ridge Regression
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The ridge estimators are biased since

where 

Ridge Regression
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Which means that 
the ridge 

estimators are 
biased for any λ>0



Main Problem: The selection of λ
 For each λ, we have a solution of coefficients.

 These are indexed in a single line-plot.

 Hence, the λ’s trace out a path of solutions (a path for 
each coefficient depicted by one line for each covariate).

 λ is the shrinkage parameter.

 λ controls the size of the coefficients.

 λ controls the amount of regularization.

 As λ = 0, we obtain the least squares solutions.

 As λ ↑ ∞, we have βridge= 0 (intercept-only model).

Ridge Regression
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An example using lm.ridge in MASS 
package

Ridge Regression
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λ=0 if no value is specified => provides the 
OLS estimators and model

The above provides the ridge estimators using 
standardized covariates.

The intercept is not included here; since we have centered 
the covariates it is equal to mean(y).

Here, λ=0 so these are the usual OLS for standardized 
covariates.



An example using lm.ridge in MASS 
package

Ridge Regression
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We use coef(ridge1) to obtain the coefficients for the 
original data.

Here, λ=0 so these are the usual OLS for the original data



An example using lm.ridge in MASS 
package

Ridge Regression
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Coef : The coefficients are in a matrix of dimension p x 
length(lambda).

Each column corresponds to a set of ridge solution for a 
single value of lambda.

Each row corresponds to the path of a covariate.



An example using lm.ridge in MASS 
package
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✓ scales: square root of the (biased) variance of X used for the 
standardization. 

✓ Inter: whether the intercept was included in the model (1=yes, 
0=no).

✓ lambda: values of λ used. 
✓ ym, xm: means of y and Xs respectively. 

✓ GCV: Generalized cross validation (vector, one for each fitted 
model).

✓ kHKB: k solution according to Hoerl , Kannard a & Baldwin (1975, 
Comm.Stats).

✓ kLW: k solution according to Lawless & Wang  (1976, Comm.Stats).



The regularization plot

Ridge Regression
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ridge2 <- lm.ridge( y~.,data=simex62, lambda=seq(0,500, length.out=1500 ) )

plot(ridge2)

legend('bottomright', legend=paste('X',1:15, sep=''), ncol=3, col=1:15, lty=1:15, 
cex=0.8)



The effective degrees of freedom

In OLS regression:

Hence the hat matrix is defined as 

and the number of estimated parameters is given by 
the rank of the hat matrix (and of the trace 
because H is idempotent) i.e. 

p’ = rank(H) = trace(H)

so p’ are the number of degrees of freedom used by 
the model to estimate the parameters

Ridge Regression
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The effective degrees of freedom

In ridge regression:

Hence the hat matrix is defined as 

In analogy to OLS, the number of effectively estimated 
parameters (effective degrees of freedom)  is given by the 
rank of the hat matrix  i.e.

where dj
2 are the eigenvalues of matrix XTX 

Ridge Regression
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The regularization plot using the effective 
degrees of freedom

Ridge Regression
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The regularization plot using the effective 
degrees of freedom: The R-code

Ridge Regression
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l<-seq(0,10000, length.out=10000 )

ridge2 <- lm.ridge( y~.,data=simex62, lambda=l )

n0<-length(l)

df <- numeric(n0)

p<-15

for (i in 1:n0){

Z <- scale( simex62[,-1] )

A <- solve( t(Z)%*%Z + l[i]*diag(p) )

B <- Z %*% A %*% t(Z)

df[i] <- sum( diag( B ) )

}

plot(df, ridge2$coef[1,], ylim=range(ridge2$coef))

plot(df, ridge2$coef[1,], ylim=range(ridge2$coef), type='l')

for (j in 2:15) lines(df, ridge2$coef[j,], col=j)



The regularization plots using the 
“genridge” library

Ridge Regression
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The regularization plots using the 
“genridge” library

The R-code

Ridge Regression
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l<-seq(0,1000, length.out=100 )

library(genridge)

r1<-ridge(y~.,data=simex62, lambda=l)

par(mfrow=c(1,2),cex=0.7)

traceplot(r1)

traceplot(r1, X='df')



Tuning λ

⚫ We monitor all values by indexing each solution 
is indexed vs. λ (more on this later).

⚫ We use the effective degrees of freedom. 

⚫ We use AIC and/or BIC to select λ and 
covariates.

⚫ We use k-fold cross-validation to tune λ by 
selecting the value with the minimum (out-of-
sample) prediction error.

Ridge Regression
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Selection of λ using AIC, BIC and effective 

dfs

Select λ which minimize the AIC or BIC

Where df is the effective degrees of freedom

Ridge Regression
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Plots of AIC and BIC

Ridge Regression
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Ridge Regression
#----------------------------------------------------------------------------------
#----------------------------------------------------------------------------------
#--Computation of BIC and AIC
#----------------------------------------------------------------------------------
n<-nrow(simex62)
l<-seq(0,0.05, length.out=100 )
ridge2 <- lm.ridge( y~.,data=simex62, lambda=l )
n0<-length(l)
df <- numeric(n0)
AIC <- numeric(n0)
BIC <- numeric(n0)
p<-15
y<-scale(simex62$y, scale=F)
for (i in 1:n0){

Z <- scale( simex62[,-1] )
A <- solve( t(Z)%*%Z + l[i]*diag(p) )
B <- Z %*% A %*% t(Z)
yhat<-B%*%y
RSS <- sum( (y-yhat)^2 )
df[i] <- sum( diag( B ) )
AIC[i]<-n*log(RSS)+df[i]*2
BIC[i]<-n*log(RSS)+df[i]*log(n)

}
par(mfrow=c(1,2))
plot(l,AIC, type='l', xlab='lambda', ylab='AIC', main='AIC vs. lambda')
plot(l,BIC, type='l', xlab='lambda', ylab='BIC', main='BIC vs. lambda')

ridge2$lambda[ AIC==min(AIC) ]
ridge2$lambda[ BIC==min(BIC) ]



How to select λ

λ=kΗΚΒ

Cure & De Iorio (2012) use a slightly different 
criterion based on the r-first principal 
components; this is also used in R package 
“ridge”  (function “linearRidge”)

Ridge Regression
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How to select λ

Lawless & Wang (1976, Comm.Stats) 
proposed a slightly modified estimator of 
λ=kLW given by 

Ridge Regression
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How to select λ

The criteria in R are slightly modified

Ridge Regression
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How to select λ using cross-validation

 Split the data into two fractions: 

⚫ Training sample => used for estimation 

⚫ Test sample => used for testing the predictive 
ability of the model

Problems: 

 Not a lot of data.

 How to split them? (different splits provide 
different solutions)

 What size shall we use for training and 
testing? 

Ridge Regression
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How to select λ using K-fold cross-
validation

 Split the data to K parts (called folds) 

 Fit the data to K-1 folds

 Test the data to the remaining fold

 Repeat this for all possible test folds 

 Report average prediction error 

 USUALLY 10-fold CV or 5-Fold

 Also the n-fold CV => leave-one-out CV – CV(1)

Ridge Regression
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Mean Square error for Tk fold of size nk

iTk : denotes the indexes of all data that lie in Tk fold

: stands for the predicted value of yi using the 
data of all folds except the k-th. 

Select λ with the minimum AMSE or ARMSE  

Ridge Regression

80
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Mean Square error for CV(1) & GCV

The generalized CV is approximately equal to 
the MSE obtained using CV(1), but much 
easier to compute

Ridge Regression
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GCV in R

Ridge Regression
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ridge2 <- lm.ridge( y~.,data=simex62, 
lambda=seq(0,0.05, length.out=1000 ) )

plot(ridge2$lambda, ridge2$GCV, type='l')

82



K-fold CV using “ridge.cv” in “parcor”

Ridge Regression

library(parcor); y<-simex62$y; x<-model.matrix(mfull)

ridge.cv(as.matrix(x[,-1]),y, plot.it=T, 
lambda=seq(0.001,0.25,length.out=10000), k=5)
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variability on the selection 

of k-folds and the 
corresponding λ but all of 

them are quite small 

83



Summary of proposed λ

Ridge Regression
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The least absolute shrinkage and 
selection operator

Although ridge regression is not directly used 
in practice, it generated a whole new area of 
research by considering different penalties.

The most popular approach is the LASSO 
based on the l1 penalization.

Tibshirani, R. (1996). Regression shrinkage and selection 
via the lasso. Journal of the Royal Statistical Society 
Series B, 58(1), 267–288. 

⚫ Web of Science: 5063 citations [8/12/2014]

⚫ Scholar google: 11720 citations [8/12/2014]

LASSO
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The least absolute shrinkage and 
selection operator

Although ridge regression is not directly used in 
practice, it generated a whole new area of research 
by considering different penalties

The most popular approach is the LASSO based on the 
l1 penalization. 

LASSO
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The least absolute shrinkage and 
selection operator

LASSO

87

LASSO RIDGE 



LASSO
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The ellipses correspond to the
contours of RSS: the inner ellipse has
smaller RSS, and RSS is minimized at
OLS estimates. For p = 2 the
constraint in LASSO corresponds to a
diamond:

We are trying to minimize the ellipse
size and circle simultaneously in the
ridge regression. The ridge estimate
is given by the point at which the
ellipse and the circle touch.

1 2 t +  

OLS Estimate

LASSO Estimate

As p increases, the multidimensional diamond has an increasing number of
corners, and so it is highly likely that some coefficients will be set equal to
zero. Hence, the lasso performs shrinkage and (effectively) variable
selection.



LASSO
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Lasso and ridge regression both put penalties on β. More
generally, penalties of the form

qp

jj 1
t

=
  

may be considered, for q≥0. Ridge regression and the Lasso
correspond to q=2 and q=1, respectively. When Xj is weakly
related with Y, the lasso pulls βj to zero faster than ridge
regression.

• Elastic Net combines the two ideas; you're looking to find
the β that minimizes:

p p
2

1 j 2 j

j 1 j 1

( Z ) ( Z )

= =

− − +  +  y β y β



Tuning λ or t

 Again, we have a tuning parameter λ that
controls the amount of regularization.

 One-to-one correspondence with the
threshold t implemented on the l1 .

 If we set t equal to

then we obtain no shrinkage and hence the
OLS are returned.

 We have a path of solutions indexed by λ or 
t or by the shrinkage factor 

LASSO
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LASSO
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• In regression, you're looking to find the β that minimizes:

• In LASSO, you're looking to find the β that minimizes:

• So when λ = 0 there is no penalization and you have the OLS solution; this is 

• As the penalization parameter λ increases,                

is pulled towards zero, with the less important parameters pulled to zero earlier.

• Therefore the shrinkage factor s presents the ratio of the sum of the absolute current 
estimate over the sum of the absolute OLS estimates and takes values in [0,1]; when 
is equal to 1 there is no penalization and we have the OLS solution and when is equal 
to 0 all the βjs are equal to zero. 

( Z ) ( Z )− −y β y β

p

j

j 1

( Z ) ( Z )

=

− − + y β y β

p

j 1
j 1

max max
=

 = β
p

j

j 1=





Lasso performs also variable selection 

 Large enough λ (or small enough t or s) will 
set some coefficients exactly equal to 0!

 So the LASSO will perform variable selection 
for us!

 Nevertheless, solutions proposed also by k-
fold CV (we will discuss this later on) suggest 
that LASSO suggests over-fitted models.

LASSO
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Lasso performs also variable selection 

Screening

SUGGESTION: 

change name to least angle shrinkage and screening 
operator! 

See for details in 

Bullman and Mandozi, 2013, Comp. Stats

Bühlmann, P. and van de Geer, S. (2011). Statistics 
for High-Dimensional Data: Methods, Theory and 
Applications. Springer.

Still extremely useful when p is large (even p >> n) 
=> it will clear all irrelevant variables very fast. 

LASSO
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Computing the lasso solution

Lasso solution has no closed form (unlike ridge 
regression).

Original implementation: involves quadratic 
programming techniques from convex optimization.

More popular implementation: the least-angle 
regression (LARS) by Efron, Hastie & Tibshirani 
(2004). Annals of Stats. [Citations WOS: 1913; 
Scopus: 2319; Scholar: 4544 on 8/12/2014]

 lars package in R implements the LASSO.

 LARS computes the LASSO path efficiently. 

 Other alternatives are also available.

LASSO
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Implemention of LASSO

Steps:

1. Run Lasso for a variety of values. 

2. Plot the regularization paths.

3. Implement k-fold regularization.

4. Estimate the coefficients using λ with 
minimum CV-MSE.

LASSO
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Implementing LASSO using the “lars” 
package

Steps 1: Run Lasso for a variety of values 

LASSO

96

Sequence of actions – variables added or excluded in 
each value of λ



Implementing LASSO using the “lars” 
package

Steps 2: Plot the regularization paths

LASSO
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Implementing LASSO using the “lars” 
package

Steps 2: Plot the regularization paths

LASSO
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Implementing LASSO using the “lars” 
package

Steps 2: Plot the regularization paths

LASSO

99
0.5 0.6 0.7 0.8 0.9 1.0

-2
0

-1
5

-1
0

-5
0

5
1
0

1
5

|beta|/max|beta|

S
ta

n
d
a
rd

iz
e
d
 C

o
e
ff

ic
ie

n
ts

* *

*
*

* * * * * *
** * * * *

*

* * * * * *
*

* *
*

** * * *
*

*

* *

*
*

* * *
* *

*

** * * *
*

*

* * * * * * *

* *
*

** * * *

*

*

* * * *
* * * * * * ** * * * * *

* * * * * * * * * * ** * * * * ** * * * * * * * * * ** * * * * *
* * * * * * * * * * ** * * * * ** * *

*

* * * * * * ** * * * * *

* * * * * * * * * * ** * * * * ** * * * * * * * * * ** * * * * ** * * * * * * * * * ** * * * * ** * * * * * * * * * ** * * * * ** * * * * * * * * * ** * * * * *

LASSO

5
4

6
8

1
0

3

> plot(lasso1, breaks="FALSE", xlim=c(0.5, 1.0), ylim=c(-20,15))



Implementing LASSO using the “lars” 
package

Steps 3-4: Implement 10-fold CV and select s 

LASSO
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Implementing LASSO using the “lars” 
package

Steps 3-4: Implement 10-fold CV and select s 
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Implementing LASSO using the “lars” 
package

Steps 3-4: Select λ (οr s) using Mallows Cp

 Mallows (1973, Technometrics) Cp, is used to assess the 
fit of a regression model. 

 Is equal to 

 It is equivalent to AIC in normal regression models 

 It is approximately equal to the MSE from the leave-one-
out CV

LASSO
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Implementing LASSO using the “lars” 
package

Steps 3-4: Select λ (οr s) using Mallows Cp 

LASSO
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plot(lasso1, xvar='n', plottype='Cp')
plot(lasso1, xvar='n', plottype='Cp', ylim=c(12,20), xlim=c(0.7,1))



Implementing LASSO using the “lars” 
package

Steps 3-4: Select λ (οr s) using Mallows Cp 
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104



Implementing LASSO using the “glmnet” 
package

 Glmnet package is more friendly

 Wider selection of functions

 Directly suggests min lambda and lambda 
with equivalent CV-MSE but supporting more 
parsimonious models

 Better plots 

 Can be implemented for normal models

LASSO
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Implementing LASSO using the “glmnet” 
package
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library(glmnet)

lasso2 = glmnet(X, simex62$y ) 

plot(lasso2, label=T)



Implementing LASSO using the “glmnet” 
package
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plot(lasso2, xvar='lambda', 
label=T)



Implementing LASSO using the “glmnet” 
package
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Lambda.min= is the one with the minimum 
CV-MSE

Lambda.1se = largest value of lambda such 
that error is within 1 standard error of the 

minimum [more parsimonious ]



Implementing LASSO using the “glmnet” 
package
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Coefficients for lambda min 
With the minimum CV-MSE

These coefficients are the effects 
for original (unstandardized) 

variables 

S=0.805

We multiply with the sds in order 
to obtain the effects for the 

standardized variables



Implementing LASSO using the “glmnet” 
package
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Coefficients for lambda 1se
With distance of 1 se from the 

minimum CV-MSE


