
Stochastic
Optimisation Methods

1

Aim

We are seeking the maximum (or minimum) of f(x), x ∈ X ,
with respect to x, where x is either a number or a vector.
The set X consist of N elements, for a finite positive integer
N .

E.g. Consider a multiple linear regression problem with p po-
tential predictor variables. A fundamental step in regression
is selection of a suitable model. Given a dependent variable
Y and a set of candidate predictors x1, . . . , xp, we must find
the best model of the form Y = b0 +

∑s
j=1 bijxij + ϵ, where

{i1, . . . , is} is a subset of {1, . . . , p}. The goal could be the
minimisation of the Akaike information criterion (AIC), where
AIC = Nlog{RSS/N}+2{s+2}, where N is the sample size,
s the number of predictors in the model and RSS the residual
sum of squares.

We can also use an indicator γj, taking the value 1 if variable
j is included in the model and 0 otherwise, and thus in this
case we would like to minimise AIC over X = {0,1}p.

In order to solve problem like the one described above we
use Stochastic (or Combinatorial) Optimisation Techniques,
which also sometimes are called heuristics. The two primary
features of such techniques are (a) iterative improvement of
a current candidate solution and (b) limitation of the search
to a local neighborhood at any particular iteration.

2

Local Search

• Begin;

• Choose a random configuration xstart;

• Set x := xstart;

• Repeat:

• Generate a new configuration x′ from the

neighbourhood of x;

• If f(x′) ≥ f(x) then x := x′;

• Until f(x′) ≤ f(x) for all x′ from the neigh-

bourhood of x;

• End.

3

The disadvantages of local search algorithms can

be formulated as follows:

• By definition, local search algorithms terminate

in a local maximum and there is generally no in-

formation as to the amount by which this local

maximum deviates from a global maximum;

• The obtained local maximum depends on the

initial configuration, for the choice of which

generally no guidelines are available; and

• In general, it is not possible to give an upper

bound for the computation time.

To avoid some of the above mentioned disadvan-

tages, one might think of a number of alternative

approaches:

• Execution of the algorithm for a large number

of initial configurations, say M , at the cost of

an increase in computation time; for M → ∞,

such an algorithm finds a global maximum with

4

probability 1, if only for the fact that a global

maximum is encountered as an initial configu-

ration with probability 1 as M → ∞;

• Use of information gained from previous runs

of the algorithm to improve the choice of an

initial configuration for the next run;

• Introduction of a more complex generation mech-

anism, in order to be able to “jump out” of the

local maxima corresponding to the simple gen-

eration mechanism. To choose the more com-

plex generation mechanism properly requires de-

tailed knowledge of the problem itself; and

• Acceptance of moves which correspond to a

decrease in the objective function in a limited

way.

Tabu Search

Tabu search (TS) is a “higher level” heuristic

procedure for solving large optimisation problems,

proposed by Glover (1989).

TS has three phases: preliminary search, inten-

sification, and diversification.

During preliminary search TS is similar to some

other optimisation methods in that, whatever point

x in the input space you are currently at, you eval-

uate the criterion function at all the neighbours

N of x and find the new point x′ that is best in N ,

but TS differs from many other methods in that

you move to x′ even if it is worse than x.

Repeating this idea creates the possibility of end-

lessly cycling back and forth between x and x′; to

avoid this TS uses the idea of a tabu list of for-

bidden moves, so that (e.g.) once the move x → x′

has been made the reverse move x′ → x is forbidden

for at least the next s moves.

5

One potential problem with the tabu list is that

it may forbid certain relevant or interesting

moves, for example those that lead to a better

x than the best one found so far.

Consequently, an aspiration criterion is introduced

to allow moves that would otherwise be tabu to be

chosen anyway, if they are judged to be worthwhile.

In the second (intensification) part of the search,

you (a) start with the best solution found so far

(which is always stored throughout the entire al-

gorithm), (b) clear the tabu list, and (c) proceed

as in the preliminary search for a specified number

of moves. (This step can be restarted randomly a given

number of times.)

Finally, in the diversification phase, you again clear

the tabu list, and set the s most frequent moves

of the run so far to be tabu.

Then you choose a random x to move to and pro-

ceed as in the preliminary search phase for a

specified number of iterations.

6

Some implementation issues of TS

• Neighbourhood sizes and candidate lists

1) Moves: E.g in regression (1 bit flip vs. 2 bit

swap) 2 Neighbourhood sizes: dynamic vs. static

• Tabu list size

if its value is too small, cycling may occur, while if

its value value is too large, appealing moves may

be forbidden, leading to the exploration of lower

quality solutions and producing a larger number of

iterations to find the solution desired. Empirically,

tabu list sizes that provide good results often grow

with the size of the problem.

Rules for determine s, the tabu list size, are clas-

sified as static or dynamic. Static rules choose a

value for s that remains fixed throughout the run;

dynamic rules allow the value of s to vary. The

values of 7 and
√
p (where p is the dimension of

the problem) often used.

7

Simulated Annealing

Simulated annealing (SA) was proposed by Kirk-
patrick et al (1983) as a technique for discrete op-
timisation dates back to the early 1980s. It was
heralded with much enthusiasm as it appeared to
be both simple to implement and widely applicable,
and as a result of articles in popular scientific jour-
nals researchers from a wide variety of disciplines
experimented with it in the solution of their own
problems.

The ideas that form the basis of SA were first pub-
lished by Metropolis et al (1953) in an algorithm to
simulate the cooling of material in a heat bath—
a process known as annealing. If solid material is
heated past its melting point and then cooled back
into a solid state, the structural properties of the
cooled solid depend on the rate of cooling. The
annealing process can be simulated by regarding
the material as a system of particles. Essentially,
the Metropolis algorithm simulates the change in
energy of the system when subjected to a cool-
ing process, until it converges to a steady “frozen”
state. Thirty years later Kirkpatrick et al (1983)
suggested that this type of simulation could be
used to solve optimisation problems.

8

The algorithm is as follows:

• Choose a random initial configuration xstart.

Set x = xstart;

• Set the initial temperature T0;

• Repeat:

• Choose at random a neighboring configuration

x′;

• If f(x′) > f(x) then set x = x′;

• else set x = x′ with probability

exp

{
f(x′)− f(x)

T

}
.

• let T decrease according to some schedule;

• Until the final temperature Tf is reached.

9

Some Implementation Issues of SA

• Neighbourhood sizes and candidate lists

1) Moves: E.g in regression (1 bit flip vs. 2 bit

swap)

2 Neighbourhood sizes: dynamic vs. static

• Upper and lower limits for T

Usually T0 = 1 and Tf = 0.1

• Temperature Schedule

Family Temperature Ti

Straight
T0−Tf
M−1 (i− 1) + Tf

Geometric Tf

(
T0
Tf

) i−1
M−1

Reciprocal
T0 Tf(M−1)

(T0M−Tf)+(Tf−T0)i

Logarithmic
T0Tf [log(M+1)−log 2]

T0 log(M+1)−Tf log 2+(Tf−T0) log(i+1)

where M is the total number of iterations.

10

Some Implementation Issues of SA

The four temperature schedules in the previous Table, with
T0 = 1.0, Tf = 0.1, and with a total number of iterations

M = 1,000.

11

Genetic Algorithms

A method first proposed by Holland (1975), based

on ideas from Biology.

All living organisms consist of cells, and each cell

contains the same set of one or more strings of

DNA called chromosomes. The chromosomes

are also be divided into genes, functional blocks

of DNA, each of which encodes a particular pro-

tein. For instance, you can think that a gene can

represent the eye colour of the organism. Then

the different settings that this eye colour can take

(e.g., brown, blue, etc.), are called alleles. The

position of each gene on the chromosome is called

the locus. The organisms may have multiple chro-

mosomes in each cell. The complete collection of

genetic material is called the organism’s genome.

Two individuals that have identical genomes are

said to have the same genotype. The genotype

gives rise, under fetal and later development, to

the organism’s phenotype–its physical and men-

tal characteristics. In order now to produce a new

off-spring, a crossover operation occurs. In each

parent, genes are exchanged between each pair of

12

chromosomes to form a gamete (a single chro-

mosome), and then gametes from the two parents

pair up to create a full set of chromosomes. Off-

spring also are subject to the mutation operator, in

which single nucleotides (elementary bits of DNA)

are changed from parent to off-spring. The fitness

of the organism, finally, is defined as the probabil-

ity that the organism will live to reproduce, or as a

function of the number of off-spring the organism

has.

In GA the term chromosome typically refers to a

candidate solution to a problem, and is most often

is simply a binary 0–1 string. The genes are either

single bits or short blocks of adjacent bits that en-

code a particular element of the candidate solution.

The allele is either 0 or 1. The crossover opera-

tion is simply an exchange of sections of the two

parents’ chromosomes, while mutation is a random

modification of the chromosome which can be done

by flipping the bit at a randomly chosen locus.

The algorithm is as follows:

• Randomly generate an even number n of models for the
initial population (using fair coin–tossing) and compute their
fitness

• Select n models for the next population with replacement
from the initial population, with probability proportional to
the fitness of every model.

• Consider the models of the previous population in pairs and
perform the crossover operation with probability pc: Take
every pair and if crossover occurs, generate an integer k from
U(1, l − 1), where l is the number of variables, and the last
(l−k) elements of each model are exchanged to create 2 new
models.

• Consider the previous population and perform the mutation
operation for each variable of each model with probability pm:
If mutation occurs then flip the value of the variable from 0
to 1 or vice versa.

• Store best result and continue the algorithm for a specified
number of iterations.

13

Some Implementation Issues of SA

• Population size

If too small we are not exploring the space enough,

if too big there is a big computational cost. If our

problem is binary usually p ≤ n ≤ 2p, otherwise

usually 2p ≤ n ≤ 20p, where p is the dimension of

our problem.

• Crossover probability

Usually depends on n (population size); if n small

(around 30) we use a large value of around 0.9.

For populations of size around 50 we use a value

around 0.5 and finally for large populations of size

around 80 we use a value of 0.3.

• Mutation probability

Usually a small value, like 0.1 is used.

• Fitness function

Usually the fitness is the function g that we want

to optimise or a monotone increasing function of

14

your objective function g. Also some researchers
prefer their fitness function to take values in the
interval [0,1], and therefore one solution would be
to use

f(X) =
g(X)−min[g(X)]

max[g(X)]−min[g(X)]
,

where max[g(X)] and min[g(X)] are (at least rough
estimators of) the maximum and minimum values
of g, respectively.

• Crossover Operator

So far we have seen the simple crossover opera-
tor. where we randomly choose a single position
and we exchange the elements of the two parents.
Many researchers have claimed big improvements
with the use of multi-point crossovers. Consider
the simplest case of two–point crossover and sup-
pose we have the following strings:

0 1 1 0 1 1 0 0
1 0 0 0 0 1 1 0

If the chosen positions are the third and the seventh
then we can produce the following offspring:

0 1 0 0 0 1 0 0

1 0 1 0 1 1 1 0

by taking the first two and the last two elements
from the one parent and the rest from the other
each time.

The operator that has received the most attention
in recent years is the uniform crossover. Suppose
we have the following strings:

1 0 0 0 1 0 1 0

0 1 0 1 0 0 1 1

Then for each position randomly (with probability
usually 0.5) pick each bit from either of the two
parent strings. If you want to produce two offspring
you can do the above twice. So for example we can
produce the following offspring:

0 0 0 1 0 0 1 0

1 1 0 0 1 0 1 1

In the first offspring, we have chosen the second,
third, sixth, seventh, and eighth element from the
first parent, and the rest from the second, and
in the second offspring we have chosen the first,
third, fourth, fifth, sixth and seventh bit from the
first parent, and the rest from the second.

A modified version of the uniform crossover is the
version that the CHC Adaptive Search Algorithm

(Eshelman, 1991) uses, which I will call highly uni-

form crossover. This version crosses over half (or
the nearest integer to 1

2) of the non-matching al-
leles, where the bits to be exchanged are chosen
at random without replacement. So for example if
we have again the following parents,

1 0 0 0 1 0 1 0

0 1 0 1 0 0 1 1

we can see that the non-matching alleles are the
first, second, fourth, fifth, and eighth, which are
five in total. So we are going to cross three of
them randomly, (say) the first, second and fourth,
and so the producing children are going to be

0 1 0 1 1 0 1 0

1 0 0 0 0 0 1 1

With this operator we always guarantee that the
offspring are the maximum Hamming distance from
their two parents.

• Elitist Strategy

Compare the parents with the offspring, and in-
stead of copying the offspring directly to the new
population, copy the two best among the four to
the new population.

No binary Problems

E.g. traveling salesman problem with p=9.

A) Mutation

Randomly exchange two alleles in the chromosome.

From a parent chromosome ’752631948’ create

offspring ’572631948’ by exchanging the first two

alleles.

B) Crossover

Problem:

From two parents chromosomes ’752631948’ and

’912386754’ and a crossover point between the

second and the third loci, standard crossover would

produce offspring ’752386754’ and ’912631948’;

that are both invalid.

• Order Crossover

A random collection of loci is chosen, e.g. 4, 6,

7. In the first parent these loci have alleles 6, 1

15

and 9 respectively. We find these alleles in the sec-

ond parent (’**238*754’) and we rearrange them

in the same order that they are appearing in the

first parent, creating like that the first offscpring

(’612389754’). We reverse the roles of the two

parents and now the alleles of the 4th, 6th and 7th

position are 3, 6 and 7 respectively. Again we find

these alleles in the first parent (’*52**1948’) and

we rearrange them in the same order that they are

appearing in the second parent, creating like that

the second offscpring (’352671948’).

• Edge - Recombination Crossover

The previous operation has the undesirable ten-

dency to destroy links between loci (cities in the

traveling salesman problem) in the parents tours,

and therefore they are behaving like mutation oper-

ations. The Edge - Recombination Crossover has

been proposed to produce offspring (one only) that

contain only links presents in at least one parent.

1) We first construct an edge table that stores

all the links that lead into and out of each city

in either parent (parent1 = ’752631948’ and par-

ent2=’912386754’. Note that the number of links

into and out of each city in either parent will be at

least two and no more than four. Also recall that

a tour returns to its starting city, so for example

the first parent justifies listing 7 as link from 8.

2) To begin creating an offspring, we choose be-

tween the initial cities of the 2 parents the one with

the fewer links. If they have the same number of

links then choose randomly. In our example the

choice is 9 and the offspring is ’9********’

3) From the links of 9 we choose the one with the

fewer links. In our case 1 and 4 have exactly 3

links so randomly we choose 4. The offspring is

now ’94*******’.

4) Continue like above.

The final offspring is ’945786312’.

Step1 Step2 Step3
City Links City Links City Links
1 3, 9, 2 1 3, 2 1 3, 2
2 5, 6, 1, 3 2 5, 6, 1, 3 2 5, 6, 1, 3
3 6, 1, 2, 8 3 6, 1, 2, 8 3 6, 1, 2, 8
4 9, 8, 5 4 8, 5 4 Used
5 7, 2, 4 5 7, 2, 4, 5 7, 2
6 2, 3, 8, 7 6 2, 3, 8, 7 6 2, 3, 8, 7
7 8, 5, 6 7 8, 5, 6 7 8, 5, 6
8 4, 7, 3, 6 8 4, 7, 3, 6 8 7, 3, 6
9 1, 4 9 Used 9 Used
’9********’ ’94*******’ ’945******’

16

CHC Adaptive Search Algorithm

The CHC adaptive search algorithm was developed
by Eshelman (1991). CHC stands for cross - gen-
erational elitist selection, heterogeneous recombi-
nation and cataclysmic mutation. This algorithm
uses a modified version of uniform crossover, called
HUX, where exactly half of the different bits of the
two parents are swapped. Then if our population
size is n, we draw the best n unique individuals from
the parent and offspring populations to create the
next generation. HUX is the only operator used by
CHC adaptive search; there is no mutation.

In CHC adaptive search two parents are allowed to
mate only if they are a certain Hamming distance
(say d) away from each other. This form of “in-
cest prevention” is designed to promote diversity.
Usually we start with d = p

4, where p is the length
of the string. If the new population is exactly the
same as the previous one, we decrease d and we re-
run the algorithm. When d becomes negative the
result is the divergence procedure in which we re-
place the current population with n copies of the
best member of the previous population, and for
all but one member of the current population we
flip r × p bits at random where r is the divergence
rate (for instance the compromise value 0.5). We
replace d by d = r(1−r)p and restart the algorithm.

17

