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Example: Gamma distribution

X1,... Xy~ I(a,B), ie. f(x)= ﬂ(“ x—Le—hx

Ban
F(e)" i
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L(Oé,ﬁ) =

(e, B) = nalog 5 — nlog I'(« —|—(o¢—1)2|ogx, BZX,,

ie. (307 logxi, Y11 x;) is a sufficient statistic for (o, B).

° 8/(60%/3) = "ﬂa—z:’ xi=0=f=

I, B) = nalog @ — nlog I'(@) + (v — 1) 7 log x; — 2 3701 x;
8/59%5) —nlogx + nloga+ n— nflog I'(a)]" + 7, logx; — n ,
since Y7, x;/X=n

Newton-Raphson (1 dimension):

)'<

new _ old _ >i—1logxi — nlog X + nlog o — n¥(a')
n/afld — p@’(qeld)
where ¥(a) := [log I'(«)]’: digamma function and ¥3(a) := ¥'(a):
trigamma function.
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Example: Gamma distribution (cont’d)

Alternatively,

I(e, B) = nalog B — nlog I'(a) 4+ (o — 1) Y7 log xi — B> 1 Xi-
al(a,p) 18 _ s

i1 Xi =0

—8/%‘2/3) =nlog 8 — n¥(a) + 27:1 logx; =0

Newton-Raphson (2 dimensions):

—n3(a a
A= [ ,,3( ) [f,a] (Hessian matrix)
B T
new old E’f_ log x; + nlo ﬁold _ nW(aOld)
[O‘ ] {0‘ ] -1 i=1 108 Xi g
- new | — old | — A nald n
g = 1 b S x
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Example: Gamma distribution (cont’d)

X ~ I'(a, ), E[X] = a/B, E[log X] =? We have

L) _ [ e
= X“ e PXdx
B 0

erivative w.r.t. o I ¢ — Bl r >
derivativg w.r.t. (a)B B log BI'(x) _ / log x X~ La=Bxx
0

(B)?

F/(a)ﬂa_ﬂoqo B %) -

I(a) & _/ B a-1,-px
= = log x x* e PXdx

3 o 0 T(a)
I"(a)
= E[log X] = (@) —log 3,
where 1;((5)) = [log I'(«)]’": digamma function.
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Missing data examples

@ Some variables for certain observations might have not been
observed /measured.

o Censored observations, e.g. survival analysis
The value of a r.v. representing the survival time is larger than a
certain value but we do not know its exact value.

@ Truncated observations (e.g. truncated Poisson)
Some specific values cannot be observed and thus appear with zero
frequency.
o Grouped data
Questionnaires — grouping of continuous r.v.'s
e.g. age, income, etc. — confidential data
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Missing data examples (cont'd)

@ Mixtures, e.g. mixed effects models
e.g.
X ~ P(\)

A~ I'(3, b) } — Negative Binomial

where A is a r.v. that we have not observed.

e Convolutions: X =Y + Z,
where X is observed while Y and Z are not observed.

@ Random sums: Y = X; +...+ Xy,
where N is arv. (e.g. N~ P())), Y is observed, X; and N are not
observed.
e.g. actuarial science — amount of compensation paid by an
insurance company

@ Hidden Markov Models

Time series — the value at each time point depends on an
unobservable state.
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Expectation—maximization (EM) algorithm

@ Dempster at al. 1977

@ Application: datasets with missing values (see previous slides)
IDEA:
Y =(X,Z),
where Y: complete data, X: observed data and Z: latent data

Aim: maxg L(0; X), i.e. the likelihood of the parameter 0, given the
observed data X. This maximization has difficulties. We augment the
data, to make the problem simpler!

E-step: Estimate Z from X and current 6
M-step: maxg L(6;X,Z) (using current Z)
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EM algorithm in detail

We begin with 0 In iteration r

Q8,0 = / log L(6; X, Z)(Z|6"), X)dZ = Ezx g0 [log L(6; X, Z)]
z

E-step: Compute 0(0,0('))

— expected value of the log likelihood of @ for the complete data w.r.t.
the conditional distribution of Z|X, 8", i.e. the log likelihood of @ for the
complete data Y with the conditional expectations of Z (given the actual
data X and the current value 8\ of the parameter) in the place of Z

M-step: maxg Q(6,6(")
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EM - Termination criteria

Jr+1) ()

— | <
D) < tolerance,

where /(7): log likelihood of the complete data after iteration r.

o
6 =(61,...0,)

max (‘H(H'l Qm

) < tolerance (j=1,2,...p)

or

2
Z ( (r+1) .r ) < tolerance

Jj=1
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Y =(X,Z) = (Yobs: Ymis)

f(yl0) = f(Yobs|®f (YmislYobs: €)
1(6;y) = 1(6;Y5ps) + 108 F(YmisYobs, @) =
I(o;yobs) = /(e;y)_logf(Ymis|yObsae) (*)

We would like to estimate 8 by maximizing /(6; y,ps)-
The expected value of (*) w.r.t. Y is|Yopss 6" is:

Y 9(’)[/(0;)'obs)] :/ (0 Y)f(Ym|s|yObsv )dym|s

Ymis!Yobs’

/ log f(Ymis|Yobs: 0)f (Ymis!Yobs B(r))dymis

We denote by Q(6, G(r)) the first term of the right-hand side and by
H(o, 0(')) the second term, while the expectation on the left-hand side is
equal to /(0;ygps) (constant w.rt. Y ic).

Thus, 161 2: yops) — 16 yops) = | Q(612,6) — @01, 6))] -

_ H(g(”rl)’g(f)) _ H(g(’)’g(f))
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EM theory (cont'd)

We need to show that the above is > 0 (thus the log likelihood of € for
the observed data is increased in two consecutive iterations). However, in

the M-step we maximize @, so the first term on the right-hand side is
> 0.

It suffices thus to show that: H(8 Y, 8y — H(6",0(0) <0
But, H(6" V. 6 ,)) H(6" o) =

Ymis!Yobs®" [lng< m'S|Y°bS’0(r+1))] B

- Y mis!Yobs " [Ing( m|s|Yobs70(r))} =

T
_ m|s|Yobs’0(rJr )>
Ymis!Yobs " mis|Yobs’ 0(,)> ]
Jensen m|s|Yobs7 0(r+1))
< log Ey =0
log concave misYobs®” | ¢ < sl Yobs: 0(r))
— =1
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EM - Example

n = 197 animals divided in 4 categories based on a theoretical model
about the genetic linkage. The data for the 4 categories are:
X = (X17 X2, X3, X4) = (125, 18, 20, 34)

with theoretical cell probabilities

y )= 1 61-61-0619

™ = \T1,T2,T3,T4) = 2 47 4 ? 4 74

MLE for w? — MLE for 67
The theoretical model is a polynomial distribution with probabilities 7,
thus the likelihood for the observations x is:

1+9 10N 1 -0\ Q “
> 272 4 4 4
o (24 0)1(1—g)yetepe
and its logarithm

o xi log(2 4+ 0) + (x2 + x3) log(1 — 0) + x4 log 0

(maximization — 2nd degree polynomial with solutions 0.62 v* and
—0.55 x
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EM - Example (cont'd)

Y= (Yo, y1,¥2,¥3,¥a); i = x (i=2,3,4) and yo+y1 =x
Y Mult (3,8, 150,150 9)
The likelihood for the complete data is:

L(e; y) < (1 _ 9)yz+y39y4+y1

log L(6;y) = 1(6;y) o (y2+y3)log(l —6) + (y1 + ya) log 6

0I0:y) _ ity yetys
00 0 1-6
o 0= Y1t ys (y1 : unknown)
Yi+y2tys+ya
Note that Y3|0, X ~ Bin (125, ol = %)

Thus, E-step

Q0,01) = Ey,jg0.x [log L(6; Y)] =
constant -+ ]EY1|0(,)7X[(y2 +y3)log(1 —0) + (Y1 + ya)log 8] =
constant + (y2+ y3)log(l — 0) + (E[Y1] + ya) log 0, E[Y1] = 1250(") /(6(") + 2)
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EM - Example (cont'd)

M-step
pr+D) _ E[Yi] + ya _
E[Yi]+y2 +y3 + ya ;%,5?:2 +y2 +y3+ya
Application
00 =0.4 —

(0.4,0.5906643,0.6218892, 0.6216642, 0.6267342,
0.6268099, 0.626820, 0.6268213, 0.6268215)

|9(r+1 r)| <10~ 6
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@ Stochastic EM (SEM)
In the E-step instead of computing the expected value, simply draw
a value from the conditional distribution of the missing data
Z|X, 0" (using simulation or MCMC)
(-) The likelihood does not increase at every step but behaves well in
general.
() Since the likelihood does not increase at every step, it might skip
the local maximum.

@ Monte Carlo EM (MCEM)
In the E-step, it estimates the expected value through Monte Carlo
integration. That is it draws several values (e.g. M) from the
conditional distribution of the missing data Z|X, 0") and estimates
the expected value from the sample mean.
To increase the likelihood at every step choose large M.
To avoid local maxima, begin with a small M and increase it
gradually.

@ Generalized EM (GEM)
When the maximization at the M-step is hard just compute a value
which increases the likelihood.
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