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Example: Gamma distribution

X1, . . .Xn ∼ Γ (α, β), i.e. f (x) = βα

Γ (α)x
α−1e−βx

L(α, β) =
βαn

Γ (α)n

n∏
i=1

xi
α−1e−β

∑n
i=1 xi

l(α, β) = nα log β − n logΓ (α) + (α− 1)
n∑

i=1

log xi − β

n∑
i=1

xi ,

i.e.
(∑n

i=1 log xi ,
∑n

i=1 xi
)
is a sufficient statistic for (α, β).

∂l(α,β)
∂β = nα

β −
∑n

i=1 xi = 0 ⇒ β̂ = α
x̄

l(α, β̂) = nα log α
x̄ − n logΓ (α) + (α− 1)

∑n
i=1 log xi −

α
x̄

∑n
i=1 xi

∂l(α,β̂)
∂α = −n log x̄ + n logα+ n − n[logΓ (α)]′ +

∑n
i=1 log xi − n ,

since
∑n

i=1 xi/x̄ = n
Newton-Raphson (1 dimension):

αnew = αold −
∑n

i=1 log xi − n log x̄ + n logαold − nΨ(αold)

n/αold − nΨ ′(αold)

where Ψ(α) := [logΓ (α)]′: digamma function and Ψ3(α) := Ψ ′(α):
trigamma function.
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Example: Gamma distribution (cont’d)

Alternatively,
l(α, β) = nα log β − n logΓ (α) + (α− 1)

∑n
i=1 log xi − β

∑n
i=1 xi .

∂l(α,β)
∂β = nα

β −
∑n

i=1 xi = 0

∂l(α,β)
∂α = n log β − nΨ(α) +

∑n
i=1 log xi = 0

Newton-Raphson (2 dimensions):

A =

[−nΨ3(α)
n
β

n
β − nα

β2

]
(Hessian matrix)

→
[
αnew

βnew

]
=

[
αold

βold

]
− A−1

[∑n
i=1 log xi + n log βold − nΨ(αold)

nαold

βold −
∑n

i=1 xi

]
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Example: Gamma distribution (cont’d)

X ∼ Γ (α, β), E[X ] = α/β, E[logX ] =? We have

Γ (α)

βα
=

∫ ∞

0

xα−1e−βxdx

derivative w.r.t. α⇒ Γ ′(α)βα − βα log βΓ (α)

(βα)2
=

∫ ∞

0

log x xα−1e−βxdx

⇒
Γ ′(α)
Γ (α) β

α − βα log β

βα
=

∫ ∞

0

log x
βα

Γ (α)
xα−1e−βxdx

⇒ E[logX ] =
Γ ′(α)

Γ (α)
− log β ,

where Γ ′(α)
Γ (α) = [logΓ (α)]′: digamma function.
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Missing data examples

Some variables for certain observations might have not been
observed/measured.

Censored observations, e.g. survival analysis
The value of a r.v. representing the survival time is larger than a
certain value but we do not know its exact value.

Truncated observations (e.g. truncated Poisson)
Some specific values cannot be observed and thus appear with zero
frequency.

Grouped data
Questionnaires → grouping of continuous r.v.’s
e.g. age, income, etc. → confidential data
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Missing data examples (cont’d)

Mixtures, e.g. mixed effects models
e.g.

X ∼ P(λ)
λ ∼ Γ (a, b)

}
→ Negative Binomial

where λ is a r.v. that we have not observed.

Convolutions: X = Y + Z ,
where X is observed while Y and Z are not observed.

Random sums: Y = X1 + . . .+ XN ,
where N is a r.v. (e.g. N ∼ P(λ)), Y is observed, Xi and N are not
observed.
e.g. actuarial science → amount of compensation paid by an
insurance company

Hidden Markov Models
Time series → the value at each time point depends on an
unobservable state.
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Expectation–maximization (EM) algorithm

Dempster at al. 1977

Application: datasets with missing values (see previous slides)

IDEA:
Y = (X,Z),

where Y: complete data, X: observed data and Z: latent data

Aim: maxθ L(θ;X), i.e. the likelihood of the parameter θ, given the
observed data X. This maximization has difficulties. We augment the
data, to make the problem simpler!

E-step: Estimate Z from X and current θ

M-step: maxθ L(θ;X,Z) (using current Z)
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EM algorithm in detail

We begin with θ(0). In iteration r

Q(θ,θ(r)) =

∫
Z

log L(θ;X,Z)f (Z|θ(r),X)dZ ≡ EZ|X,θ(r) [log L(θ;X,Z)]

E-step: Compute Q(θ,θ(r))

→ expected value of the log likelihood of θ for the complete data w.r.t.
the conditional distribution of Z|X,θ(r), i.e. the log likelihood of θ for the
complete data Y with the conditional expectations of Z (given the actual

data X and the current value θ(r) of the parameter) in the place of Z

M-step: maxθ Q(θ,θ(r))
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EM - Termination criteria

1 ∣∣∣∣ l (r+1) − l (r)

l (r+1)

∣∣∣∣ ≤ tolerance ,

where l (r): log likelihood of the complete data after iteration r .

2

θ = (θ1, . . . θp)

max
j

(∣∣∣θ(r+1)
j − θ

(r)
j

∣∣∣) ≤ tolerance (j = 1, 2, . . . p)

or
p∑

j=1

(
θ
(r+1)
j − θ

(r)
j

)2

≤ tolerance
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EM theory

Y = (X,Z) ≡ (Yobs,Ymis)

f (y|θ) = f (yobs|θ)f (ymis|yobs,θ)
log⇒

l(θ; y) = l(θ; yobs) + log f (ymis|yobs,θ) ⇒
l(θ; yobs) = l(θ; y)− log f (ymis|yobs,θ) (∗)

We would like to estimate θ by maximizing l(θ; yobs).

The expected value of (*) w.r.t. Ymis|Yobs,θ
(r) is:

EYmis|Yobs,θ
(r) [l(θ; yobs)] =

∫
l(θ; y)f (ymis|yobs,θ

(r))dymis −

−
∫

log f (ymis|yobs,θ)f (ymis|yobs,θ
(r))dymis

We denote by Q(θ,θ(r)) the first term of the right-hand side and by

H(θ,θ(r)) the second term, while the expectation on the left-hand side is
equal to l(θ; yobs) (constant w.r.t. Ymis).

Thus, l(θ(r+1); yobs)− l(θ(r); yobs) =
[
Q(θ(r+1),θ(r))− Q(θ(r),θ(r))

]
−

−
[
H(θ(r+1),θ(r))− H(θ(r),θ(r))

]
Dimitris Fouskakis Expectation-Maximization Algorithm 10 / 15



EM theory (cont’d)

We need to show that the above is ≥ 0 (thus the log likelihood of θ for
the observed data is increased in two consecutive iterations). However, in
the M-step we maximize Q, so the first term on the right-hand side is
≥ 0.

It suffices thus to show that: H(θ(r+1),θ(r))− H(θ(r),θ(r)) ≤ 0.

But, H(θ(r+1),θ(r))− H(θ(r),θ(r)) =

EYmis|Yobs,θ
(r)

[
log f

(
Ymis|Yobs,θ

(r+1)
)]

−

− EYmis|Yobs,θ
(r)

[
log f

(
Ymis|Yobs,θ

(r)
)]

=

= EYmis|Yobs,θ
(r)

log f
(
Ymis|Yobs,θ

(r+1)
)

f
(
Ymis|Yobs,θ

(r)
)


Jensen
≤

log concave
logEYmis|Yobs,θ

(r)

 f
(
Ymis|Yobs,θ

(r+1)
)

f
(
Ymis|Yobs,θ

(r)
)

 = 0

↪→ = 1
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EM - Example

n = 197 animals divided in 4 categories based on a theoretical model
about the genetic linkage. The data for the 4 categories are:

x = (x1, x2, x3, x4) = (125, 18, 20, 34)

with theoretical cell probabilities

π = (π1, π2, π3, π4) =

(
1

2
+

θ

4
,
1− θ

4
,
1− θ

4
,
θ

4

)
MLE for π? → MLE for θ?
The theoretical model is a polynomial distribution with probabilities π,
thus the likelihood for the observations x is:

∝
(
1

2
+

θ

4

)x1 (1− θ

4

)x2 (1− θ

4

)x3 (θ

4

)x4

∝ (2 + θ)x1(1− θ)x2+x3θx4

and its logarithm

∝ x1 log(2 + θ) + (x2 + x3) log(1− θ) + x4 log θ

(maximization → 2nd degree polynomial with solutions 0.62 ✓ and
−0.55 ×)

Dimitris Fouskakis Expectation-Maximization Algorithm 12 / 15



EM - Example (cont’d)

y = (y0, y1, y2, y3, y4), yi = xi (i = 2, 3, 4) and y0 + y1 = x1

Y ∼ Mult
(
1
2 ,

θ
4 ,

1−θ
4 , 1−θ

4 , θ
4

)
The likelihood for the complete data is:

L(θ; y) ∝ (1− θ)y2+y3θy4+y1

log L(θ; y) ≡ l(θ; y) ∝ (y2 + y3) log(1− θ) + (y1 + y4) log θ

∂l(θ; y)

∂θ
=

y1 + y4
θ

− y2 + y3
1− θ

= 0

→ θ̂ =
y1 + y4

y1 + y2 + y3 + y4
(y1 : unknown)

Note that Y1|θ,X ∼ Bin
(
125, θ/4

θ/4+1/2 = θ
θ+2

)
Thus, E-step

Q(θ, θ(r)) = EY1|θ(r),X [log L(θ;Y)] =

constant + EY1|θ(r),X[(y2 + y3) log(1− θ) + (Y1 + y4) log θ] =

constant + (y2 + y3) log(1− θ) + (E[Y1] + y4) log θ, E[Y1] = 125θ(r)/(θ(r) + 2)
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EM - Example (cont’d)

M-step

θ(r+1) =
E[Y1] + y4

E[Y1] + y2 + y3 + y4
=

125θ(r)

θ(r)+2
+ y4

125θ(r)

θ(r)+2
+ y2 + y3 + y4

Application

θ(0) = 0.4 →

(0.4, 0.5906643, 0.6218892, 0.6216642, 0.6267342,
0.6268099, 0.626820, 0.6268213, 0.6268215)∣∣θ(r+1) − θ(r)

∣∣ ≤ 10−6

Dimitris Fouskakis Expectation-Maximization Algorithm 14 / 15



EM variants

1 Stochastic EM (SEM)
In the E-step instead of computing the expected value, simply draw
a value from the conditional distribution of the missing data
Z|X,θ(r) (using simulation or MCMC)
(-) The likelihood does not increase at every step but behaves well in
general.
(-) Since the likelihood does not increase at every step, it might skip
the local maximum.

2 Monte Carlo EM (MCEM)
In the E-step, it estimates the expected value through Monte Carlo
integration. That is it draws several values (e.g. M) from the

conditional distribution of the missing data Z|X,θ(r) and estimates
the expected value from the sample mean.
To increase the likelihood at every step choose large M.
To avoid local maxima, begin with a small M and increase it
gradually.

3 Generalized EM (GEM)
When the maximization at the M-step is hard just compute a value
which increases the likelihood.
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