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Jackknife-General information

Method developed around 1950 as a method to eliminate the bias of
estimators. The method leads to standard errors for the estimators
that can be easily computed.
Let X ∼ F (µF , σ

2
F ) (F : cdf, µF = E(X ), σ2

F = V(X )). Then, if we
want to estimate
µF → X̄

.∼
CLT

N (µF , σ
2
F/n) ⇒ se(X̄ ) = σF/

√
n (σ2

F → S2
F unbiased

sample variance). But what happens with computing the standard
errors of more complex estimators (e.g. median)?

Thus Jackknife ↗ estimator with small bias

↘ easy computation of s.e.
Let X1,X2, . . .Xn be a random sample from f (x ; θ) and
θ̂ = T (X1, . . .Xn). We denote by θ̂(i) = T (X1, . . .Xi−1,Xi+1 . . .Xn)
(i.e. removing observation i).
Idea: removing observations from the original sample and estimating
again the parameter of interest, we can get information about the
stability and variability of our estimator. That is, if we remove each
time one observation and examine how much the values of our
estimator change, we have an image of the variance of our estimator.
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Jackknife estimator

The Jackknife estimator θ̂J of the parameter θ is:

θ̂J = nθ̂ − (n − 1)¯̂θ(·) , where ¯̂θ(·) =
1

n

n∑
i=1

θ̂(i)

θ̂J → we repeat the estimation of the parameter n times where each time
our sample is the original by omitting one observation.

From the definition, we observe that we simply correct θ̂ using the
estimators from the samples with one observation out each time.

Alternatively, θ̂J can be computed with the help of pseudovalues
pi = nθ̂ − (n − 1)θ̂(i) as follows:

θ̂J =
1

n

n∑
i=1

pi
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Jackknife - Example 1

Observations x1, x2, . . . x6 corresponding to the waiting time of a bus (in
mins)

Estimator after removing i obs. Pseudovalues

Observations Sample mean Sample median Sample mean Sample median

4 6 6 4 3
3 6.2 6 3 3
7 5.4 5 7 8
6 5.6 5 6 8
5 5.8 6 5 3
9 5 5 9 8

34 34 33 34 33

where the last row depicts the sum.
The last column has only two values!
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Jackknife - Example 1 (cont’d)

First of all x̄ = 5.666, median = 5.5.

Further, ̂̄xJ = 6× 5.666− 5× 1
6 × 34 = 5.666 and

m̂edianJ = 6× 5.5− 5× 1
6 × 33 = 5.5

pseudovalues
e.g. p1 = 6× 5.666− 5× 6 = 4 (for the mean for example)
Thus again we get ̂̄xJ =

1

6
× 34 = 5.666

m̂edianJ =
33

6
= 5.5

We see that the Jackknife estimators coincide with the estimators
we had. Is this always the case?
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Different Jackknife estimators - Mean

A. Mean

Let θ̂ = X̄ and let us compute θ̂J with the help of pseudovalues:

pi = nθ̂ − (n − 1)θ̂(i) = nθ̂ −����(n − 1)

∑n
j=1 Xj − Xi

���n − 1

= nθ̂ − (nθ̂ − Xi ) = Xi

Thus θ̂J = 1
n

∑n
i=1 Xi = θ̂ → in other words for the mean value there is

no reason to use the Jackknife method.

In a similar way, it can be shown that for every estimator of the form
θ̂ = 1

n

∑n
i=1 h(Xi ) the Jackknife estimator coincides with the simple

estimator.
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Different Jackknife estimators - Median

B. Median
i) Sample size n (even)

Without loss of generality, let X1,X2, . . .Xn be the random sample sorted
in increasing order. Then,

θ̂(i) =

{
Xn/2 i ≥ n/2 + 1 (n/2 such observations)
Xn/2+1 i < n/2 + 1 (n/2 such observations)

Thus,

¯̂θ(·) =
1

n

n

2

(
Xn/2 + Xn/2+1

)
=

Xn/2 + Xn/2+1

2
= θ̂ (: sample median)

Consequently, θ̂J = nθ̂ − (n − 1)¯̂θ(·) = θ̂, i.e. COINCIDE

ii) Sample size n (odd)

Let again the observations be in increasing order. Then,

2θ̂(i) =


X(n+1)/2 + X(n+1)/2+1 i < (n + 1)/2 ((n − 1)/2 such observations)
X(n+1)/2+1 + X(n+1)/2−1 i = (n + 1)/2 (1 such observation)
X(n+1)/2 + X(n+1)/2−1 i > (n + 1)/2 ((n − 1)/2 such observations)
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Different Jackknife estimators - Median (cont’d)

Thus,

¯̂θ(·) =
1

n

[n − 1

2

1

2

(
X(n+1)/2 + X(n+1)/2+1

)
+

1

2

(
X(n+1)/2+1 + X(n+1)/2−1

)
+

n − 1

2

1

2

(
X(n+1)/2 + X(n+1)/2−1

) ]
So,

θ̂J = nθ̂ − (n − 1)¯̂θ(·)

= nX(n+1)/2 − (n − 1)
1

n

[n − 1

2

1

2

(
X(n+1)/2 + X(n+1)/2+1

)
+

1

2

(
X(n+1)/2+1 + X(n+1)/2−1

)
+

n − 1

2

1

2

(
X(n+1)/2 + X(n+1)/2−1

) ]
= nX(n+1)/2 − (n − 1)

1

n

[n − 1

4

(
X(n+1)/2 + X(n+1)/2+1

)
+

1

2

(
X(n+1)/2+1 + X(n+1)/2−1

)
+

n − 1

4

(
X(n+1)/2 + X(n+1)/2−1

) ]
= nX(n+1)/2 −

n − 1

n

[(n − 1

4
+

1

2

)
X(n+1)/2+1 +

(
n − 1

4
+

n − 1

4

)
X(n+1)/2

+

(
n − 1

4
+

1

2

)
X(n+1)/2−1

]
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Different Jackknife estimators - Median (cont’d)
(cont’d)

= nX(n+1)/2 −
n − 1

n

[(n − 1

4
+

1

2

)(
X(n+1)/2+1 + X(n+1)/2−1

)
+

(
n − 1

4
+

n − 1

4

)
X(n+1)/2

]
= nX(n+1)/2 −

n − 1

n

[(n + 1

4

)(
X n+1

2 +1 + X n+1
2 −1

)
+

(
n − 1

2

)
X(n+1)/2

]
= nX(n+1)/2 −

(n − 1)(n + 1)

4n

(
X n+1

2 +1 + X n+1
2 −1

)
− (n − 1)2

2n
X(n+1)/2

=

[
n − (n − 1)2

2n

]
X(n+1)/2 −

(n − 1)(n + 1)

4n

(
X n+1

2 +1 + X n+1
2 −1

)
̸= X n+1

2

e.g. if n = 15 (ordered observations)

θ̂J = 8.47x8 − 3.73(x9 + x7), θ̂ = x8
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Different Jackknife estimators - Variance

C. Variance

Consider the biased sample variance

θ̂ = S2 =
1

n

n∑
i=1

(Xi − X̄ )2 =
1

n

n∑
i=1

(X 2
i − 2Xi X̄ + X̄ 2)

=
1

n

[
n∑

i=1

X 2
i − 2X̄

n∑
i=1

Xi + nX̄ 2

] ∑n
i=1 Xi=nX̄
=

=
1

n

[
n∑

i=1

X 2
i − nX̄ 2

]
=

1

n

[
n∑

i=1

X 2
i − n

(∑n
i=1 Xi

n

)2
]

=
1

n2

[
n

n∑
i=1

X 2
i −

(
n∑

i=1

Xi

)2]
=

(n − 1)
∑n

i=1 X
2
i −

∑n
i=1

∑n
j=1
j ̸=i

XiXj

n2

⇒ nθ̂ =

(n − 1)
∑n

i=1 X
2
i −

∑n
i=1

∑n
j=1
j ̸=i

XiXj

n
Omitting observation i it can be shown in a similar way that

(n − 1)θ̂(i) =

(n − 2)
n∑

j=1,j ̸=i

X 2
j −

n∑
k=1,k ̸=i

n∑
j=1,j ̸=k,i

XkXj

 /(n − 1)
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Different Jackknife estimators - Variance (cont’d)

Thus,

(n − 1)¯̂θ(·) =
n − 1

n

n∑
i=1

θ̂(i)

=
1

n

n∑
i=1

[
(n − 2)

∑n
j=1,j ̸=i X

2
j −

∑n
k=1,k ̸=i

∑n
j=1,j ̸=k,i XkXj

n − 1

]

But in the sum of squares, each term appears (n − 1) times, while in the
product (n − 2) times. Thus,

(n − 1)¯̂θ(·) =
1

n

(n − 2)
n∑

i=1

X 2
i − n − 2

n − 1

n∑
i=1

n∑
j=1,j ̸=i

XiXj
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Different Jackknife estimators - Variance (cont’d)

Therefore,

θ̂J = nθ̂ − (n − 1)¯̂θ(·) =
(n − 1)

n

n∑
i=1

X 2
i − 1

n

n∑
i=1

n∑
j=1,j ̸=i

XiXj

− 1

n

(n − 2)
n∑

i=1

X 2
i − n − 2

n − 1

n∑
i=1

n∑
j=1,j ̸=i

XiXj


=

(
n − 1

n
− n − 2

n

) n∑
i=1

X 2
i −

(
1

n
− n − 2

n(n − 1)

) n∑
i=1

n∑
j=1,j ̸=i

XiXj

=
1

n

n∑
i=1

X 2
i − 1

n(n − 1)

n∑
i=1

n∑
j=1,j ̸=i

XiXj

=
(n − 1)

∑n
i=1 X

2
i −

∑n
i=1

∑n
j=1,j ̸=i XiXj

n(n − 1)
=

∑n
i=1 X

2
i − nX̄ 2

n − 1

=

∑n
i=1(Xi − X̄ )2

n − 1
, i.e. the unbiased variance estimator
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Jackknife - Example 2

X1,X2, . . .Xn ∼ Bernoulli(p) and we would like to estimate θ = p2.

The MLE of p is R/n, where R =
∑n

i=1 Xi → θ̂ = (R/n)2

E[θ̂] = E
[
(R/n)2

]
=

1

n2
E[R2] .

But R ∼ Bin(n, p) ↗ E[R] = np

↘ V[R] = np(1− p)

Thus, E[R2] = V[R] + (E[R])2 = np(1− p) + n2p2.

Consequently, E[θ̂] = p(1− p)/n + p2 ̸= p2: i.e. biased

Let us now find the Jackknife estimator:

θ̂(i) =

(
R − Xi

n − 1

)2

=
R2 − 2RXi + Xi

2

(n − 1)2
, and

¯̂θ(·) =
1

n

n∑
i=1

R2 − 2RXi + Xi
2

(n − 1)2
=

nR2 − 2R
∑n

i=1 Xi +
∑n

i=1 Xi
2

n(n − 1)2

Since Xi = 0 or 1 → R =
∑n

i=1 Xi =
∑n

i=1 Xi
2, so

¯̂θ(·) =
(
nR2 − 2R2 + R

)
/n(n − 1)2
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Jackknife - Example 2 (cont’d)

Thus,

θ̂J = nθ̂ − (n − 1)¯̂θ(·) = n

(
R

n

)2

− (n − 1)
nR2 − 2R2 + R

n(n − 1)2

=
R2

n
− nR2 − 2R2 + R

n(n − 1)
=

(n − 1)R2 − nR2 + 2R2 − R

n(n − 1)

=
R2 − R

n(n − 1)
=

R(R − 1)

n(n − 1)
.

So,

E[θ̂J ] = E
[
R(R − 1)

n(n − 1)

]
=

1

n(n − 1)
E[R2 − R] =

1

n(n − 1)

[
E[R2]− E[R]

]
=

np(1− p) + n2p2 − np

n(n − 1)
=

n2p2 − np2

n(n − 1)
=

n(n − 1)p2

n(n − 1)
= p2

i.e. unbiased
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Standard errors and bias of Jackknife estimators

θ̂J =
1

n

n∑
i=1

pi , pi = nθ̂ − (n − 1)θ̂(i)

Thus,

V[θ̂J ] =

(
n∑

i=1

V[pi ]

)
/n2 = V[p1]/n

since pi are independent → uncorrelated (since Xi are independent) and all

have the same variance (e.g. θ̂ =
∑n

i=1 Xi

n
, θ̂(i) =

∑n
j=1,j ̸=i Xj

n−1
, V(θ̂(i)) =

σ2
f

n−1
)

An unbiased estimator of the variance of the pseudovalues is S2
p =

∑n
i=1(pi−p̄)2

n−1
,

thus

S2
θ̂J

=

∑n
i=1(pi − p̄)2

n(n − 1)
=

1

n(n − 1)

n∑
i=1

nθ̂ − (n − 1)θ̂(i) −
1

n

n∑
j=1

(
nθ̂ − (n − 1)θ̂(j)

)2

=
1

n(n − 1)

n∑
i=1

��nθ̂ − (n − 1)θ̂(i) −��nθ̂ +
n − 1

n

n∑
j=1

θ̂(j)

2 ∑n
j=1 θ̂(j)/n=

¯̂θ(·)
=

=
1

n(n − 1)

n∑
i=1

(
(n − 1)¯̂θ(·) − (n − 1)θ̂(i)

)2
=

n − 1

n

n∑
i=1

(
θ̂(i) −

¯̂θ(·)

)2
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Standard errors and bias of Jackknife estimators
(cont’d)

→ i.e. is the variance of the values of the estimator once removing one
observation multiplied by n − 1.
Thus,

seθ̂J =

√√√√n − 1

n

n∑
i=1

(
θ̂(i) − ¯̂θ(·)

)2
Since as we saw in several examples θ̂J = θ̂, we could estimate seθ̂ from
seθ̂J . Having computed the standard deviation, we could construct
approximate confidence intervals(

θ̂J ± tn−1,α/2seθ̂J

)
Finally, we could estimate the Bias[θ̂] = E[θ̂]− θ of θ̂:

B̂ias[θ̂] = (n − 1)(¯̂θ(·) − θ̂)

Notice then that

θ̂J = nθ̂ − (n − 1)¯̂θ(·) = θ̂ − B̂ias[θ̂]
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Jackknife - Conclusions

Jackknife estimators reduce bias compared to the simple estimators
and we can easily compute their standard errors.

If θ̂ = 1
n

∑n
i=1 h(Xi ) then θ̂J = θ̂, so we can get an estimate of the

standard error simply by computing seθ̂J .

However, if the form of θ̂ is not a linear function of the data (e.g.
median or max) then the Jackknife method is not satisfactory. E.g.
in the 1st example, observe that the pseudovalues take only two
values and thus seθ̂J is rather smaller than expected. It can be
shown that as n → ∞ seθ̂J is not consistent, i.e. it does not
converge to the real se. In those cases, it is better to use a
generalization of the method called delete-d-Jackknife where we
remove not 1 but more observations each time.

Jackknife is a Non-parametric method → NO ASSUMPTION
ABOUT THE POPULATION
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Bootstrap method

Resampling methods:

if we know the population distribution then Monte-Carlo
methodology (parametric Bootstrap)
if not Jackknife (sample out of the sample) → issues because the
different samples we get are very similar to each other so this does
not work well for statistical functions which are not smooth like the
median

Bootstrap (Efron, 1979)

IDEA: we do not know the distribution of our population so cannot
work with Monte-Carlo → estimate it with the empirical
distribution of our data → gives probability 1/n to each
observation of the sample and 0 else:

value x1 x2 . . . xn else
prob 1

n
1
n

. . . 1
n

0

}
→ F̂n(x)

F̂n(x) =
#observ ≤ x

n
=

∑n
i=1 1{xi≤x}

n

How do we sample from F̂n(x)?

Dimitris Fouskakis Resampling Methods: Jackknife-Bootstrap 18 / 53



Bootstrap method (cont’d)

To get a sample, of size n, from F̂n(x), we perform sampling with replacement
(if some value appears more than once, e.g. 2, then we have n − 1 different
values and one value with probability 2/n. This is not a problem since it is
equivalent with choosing each of the n observations with probability 1/n).

→ Bootstrap sample:

it might contain some value(s) more than once (according to their
appearance in the original sample)
some value(s) might not be present

If we take B such samples then all the observations will appear with the
frequency assumed by the empirical distribution and thus there is no problem.

Thus, the basic idea of the method is that we perform sampling with
replacement from the existing/original sample and thus make the assumption
that the empirical distribution is a good approximation of the population
distribution. When this is not the case (e.g. small n, multivariate problems, etc.)
the bootstrap method does not work well.

Applications of the method =


s.e. estimation
bias
hypothesis testing
confidence intervals
approximating distributions
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Empirical distribution

Let X1, . . . ,Xn be a random sample of size n. Then the empirical
distribution function is

F̂n(x) =
number of elements in the sample ≤ x

n

Dimitris Fouskakis Resampling Methods: Jackknife-Bootstrap 20 / 53



Parametric bootstrap illustration

Known Population with mean µ and SD σ. Create simple random samples (with
simulation).

population


x1
x2
...
xN



simple random sample

↗


x1
x2
...
xn

 → mean x̄ and SD s

imaginary samples→ x∗1 =


x∗11
x∗12
...

x∗1n

 → X̄∗
1 →


X̄∗
1

X̄∗
2
...

X̄∗
B


...

imaginary samples

↘ x∗B =


x∗B1
x∗B2
...

x∗Bn

 → X̄∗
B

E[X̄ ] = µ, se(X̄ ) = s/
√
n

In the parametric bootstrap, put the estimators (e.g. MLE) in the place of the
unknown parameters.
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Non-parametric bootstrap illustration
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Non-parametric bootstrap illustration (cont’d)

Sample


x1
x2
...
xn

 IID
=

with replacement

↗ x∗1 =


x∗11
x∗12
...

x∗1n

→ θ̂∗1

→
... →


θ̂∗1
θ̂∗2
...

θ̂∗B

 = θ̂
∗

↘ x∗B =


x∗B1

x∗B2
...

x∗Bn

→ θ̂∗B

¯̂θ∗ ≡ 1
B

∑B
i=1 θ̂

∗
i → E[θ̂]√

1

B − 1

∑B
i=1

(
θ̂∗i −

¯̂
θ∗
)2

→ se(θ̂)
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Bootstrap algorithm

1) Simulate a sample x∗ of size n from F̂n

2) Compute θ̂∗ for the above sample

3) Repeat the previous two steps B times

θ̂
∗
= (θ̂∗1 , θ̂

∗
2 , . . . θ̂

∗
B)

Then θ̂
∗
is a sample from the unknown distribution of θ̂, so we learn any

information we want with Monte-Carlo techniques.

Example: data x = (x1, . . . xn). We use the sample median θ̂ to estimate
the true median θ. se(θ̂) =?

* Create x∗1 : a sample of size n; sampling with replacement from x.

* Compute the sample median θ̂∗1 for x∗1

* Repeat the previous two steps B times → θ̂
∗
= (θ̂∗1 , θ̂

∗
2 , . . . θ̂

∗
B)

* The sample standard deviation of the θ̂∗i (i = 1, . . . ,B) values can

be used to estimate se(θ̂).

Bootstrap in R: bootstrap or boot package
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Bootstrap hypothesis testing

Example
Consider the following n = 10 observations

−0.89,−0.97, 0.05, 0.155, 0.279, 0.775, 1.0016, 1.23, 1.89, 1.96
We would like to test H0 : µ = 1 vs H1 : µ ̸= 1.
(Note: we have no information about the population distribution.
Further, the sample being small, we cannot apply CLT.)
We choose as test statistic T = |X̄ − 1| which will be close to 0 if H0 is
true, while large values suggest deviations from H0. We do not know the
exact distribution of T → bootstrap

x̄ = 0.598 → T = 0.402

IDEA: create samples under H0

Problem: H0 : µ = 1 while in our data x̄ = 0.598
Solution: Add 0.402 to each observation

Simulate B bootstrap samples (e.g. 99) from the empirical
distribution shifted by 0.402 so that H0 is satisfied
Compute T for each obtained sample
p̂value = m+1

B+1 , m : # samples with T > 0.402
Equivalently, we could construct a CI for µ (using bootstrap, we will see
how in the next slides) and check if it contains the value of 1.
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Bootstrap estimates of standard errors and bias

X1, . . .Xn random sample and θ̂ = T (X1, . . .Xn). se(θ̂) =?, Bias(θ̂)=?

Create B bootstrap samples

For each bootstrap sample i : (X ∗
1 ,X

∗
2 . . .X ∗

n ) compute the value

θ̂∗i = T (X ∗
1 , . . .X

∗
n ). Then obtain the following estimates for bias

and se of θ̂:

se(θ̂) =

√
1

B − 1

∑B
i=1

(
θ̂∗i −

¯̂θ∗
)2

, ¯̂θ∗ =
1

B

∑B
i=1 θ̂

∗
i

Bias(θ̂) = ¯̂θ∗ − θ̂ (the first term is an estimate of E[θ̂] and the
second term is an estimate of θ)

Jackknife-Bootstrap comparison
n repetitions for Jackknife
B repetitions for Bootstrap → computational cost but works when
Jackknife fails.
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Bootstrap confidence intervals

Suppose we have a random sample X1, . . .Xn from a population. Let
θ̂ = T (X1, . . .Xn) be a point estimate of an unknown population
parameter θ.

We wish to create a (symmetric) 100(1− α)% confidence interval
(CI) for θ.

In many cases, the general form of a confidence interval is(
θ̂ −M × se(θ̂), θ̂ +M × se(θ̂)

)
,

where the multiplier M depends on our level of confidence and is
coming from the sampling distribution g of the point estimate.

g =?, M =?, se(θ̂) =?

If n is large, θ = µ (i.e. the population mean) and
θ̂ = T (X1, . . .Xn) = X̄ , we can apply the Central Limit Theorem
(CLT) and work with percentiles of N(0, 1) or tn−1 in the place of
M. Furthermore ŝe(θ̂) = S/

√
n, with S being the sample s.d. of the

data.

In other cases?
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Bootstrap confidence intervals (cont’d)

A) Classical bootstrap CIs

θ̂ ± zα/2se(θ̂) or θ̂ ± tn−1,α/2se(θ̂),

where se(θ̂) is the estimated standard error of θ̂ using bootstrap.
Assumption: distribution of θ̂ normal. Issues when n is small or θ̂ not
linear statistic.
B) Bootstrap t-CIs

Instead of using the percentiles of the normal distribution, we could use
the percentiles of the distribution of θ̂ = T (X1, . . .Xn) that we can
estimate using bootstrap. Find the requested α-percentile D(α) from:

{#values z(θ̂∗i ) ≤ D(α)}/B = α

where z(θ̂∗i ) =
θ̂∗
i −θ̂

se(θ̂∗
i )
, i.e. we standardize the bootstrap values

θ̂∗i , ∀i = 1, . . . = B, and se(θ̂∗i ) is the standard deviation of the i

bootstrap sample. We might need bootstrap (or Jackknife) to find se(θ̂∗i )
(unless we have θ = µ → se → s/

√
n, i.e. double bootstrap which

increases the computational cost).
Note: B needs to be very large.
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Bootstrap confidence intervals (cont’d)

C) Bootstrap CIs based on percentile points

θ̂
∗
= (θ̂∗1 , θ̂

∗
2 , . . . θ̂

∗
B)

We sort the values θ̂∗i in increasing order

We find the α/2 , 1− α/2 percentile points of these values

The method is accurate only if the distribution of θ̂ is symmetric.

D) BCa CIs

Let B = 2000 and α = 0.1 then C) gives us the following 90%-CI:(
θ̂∗(0.05), θ̂∗(0.95)

)
≡ (θ̂lower, θ̂upper)

↓ ↓
100th 1900th in order points

As we said, these CIs work better when the distribution of θ̂ is symmetric.
Also what if θ̂ is a biased estimator of θ?
BCa → Bias Correction and acceleration

BCa: (θ̂lower, θ̂upper) =
(
θ̂∗(α1), θ̂∗(α2)

)
,

(BCa works again with percentiles of the bootstrap distribution)
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Bootstrap confidence intervals (cont’d)

where

α1 = Φ

(
ẑ0 +

ẑ0 + z (α/2)

1− α̂(ẑ0 + z (α/2))

)
α2 = Φ

(
ẑ0 +

ẑ0 + z (1−α/2)

1− α̂(ẑ0 + z (1−α/2))

)
where z (β) is the β -percentile point of the standard normal distribution
(e.g. z (0.95) = 1.645) and Φ(·) is the cdf of the standard normal (e.g.
Φ(1.645) = 0.95). In other words, it holds that Φ−1(α) = z (α).

ẑ0 and α̂ are two quantities that correct for the bias and the deviation
from the normal distribution respectively.

If ẑ0 = α̂ = 0 → case C) since α1 = α/2 and α2 = 1− α/2.

ẑ0 = Φ−1

(
# θ̂∗i < θ̂

B

)
bias correction

↓
proportion of θ̂∗

i < θ̂

(Note: if half of the θ̂∗i are < θ̂ and the rest half are > θ̂ then
Φ−1(0.5) = 0, so we do not perform any bias correction.)
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Bootstrap confidence intervals (cont’d)

and

α̂ =

∑n
i=1

(
¯̂θ(·) − θ̂(i)

)3
6

[∑n
i=1

(
¯̂θ(·) − θ̂(i)

)2]3/2
where θ̂(i) is the value of θ̂ after omitting observation i (Jackknife

method) and ¯̂
θ(·) =

1
n

∑n
i=1 θ̂(i).

α̂: It measures the asymmetry of the Jackknife pseudovalues.
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Bootstrap vs Jackknife

B ∈ [50, 200] gives good results for se, even for non-smooth
estimators like the median. Larger B values are required for CIs.
Thus, for n < 50 Jackknife which performs n repetitions is faster.

Jackknife uses limited information about θ̂ (by looking only at the n
Jackknife samples) which makes it less effective.

Jackknife is proven to be an approximation of bootstrap.

E.g. Let θ̂ = α+ 1
n

∑n
i=1 a(Xi ) be a linear statistic (for α = 0 and

a(Xi ) = Xi → θ̂ = X̄ ). For such statistics, the standard deviations of

the two methods agree except for a factor of
(
n−1
n

)1/2
used by Jackknife.

Take for instance θ̂ = X̄ . Then,

seJ(θ̂) =

(∑n
i=1(Xi − X̄ )2

n(n − 1)

)1/2

,

seB(θ̂) =

(∑n
i=1(Xi − X̄ )2

n2

)1/2

=

(
n − 1

n

)1/2

seJ(θ̂)

(For large n the 2 se’s are almost the same.)
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Bootstrap vs Jackknife (cont’d)

Will derive analytically here the two standard errors.

Let X ∼ F (cdf) ↗ E[X ] = µF

↘ V[X ] = σ2
F

Let X1,X2, . . .Xn be a random sample from F , then CLT yields

X̄
.∼ N (µF , σ

2
F/n) ⇒ se(X̄ ) =

√
σ2
F/n

If we do not know F , we can use F̂ (plug-in principle)

µF̂ = X̄ and σ2
F̂
=

1

n

n∑
i=1

(Xi − X̄ )2

Thus, seF̂ (X̄ ) =
σF̂√
n
=
(∑n

i=1(Xi−X̄ )2

n2

)1/2
. As B → ∞, ŝeB(X̄ ) = seF̂ (X̄ ).

(most of the times we do not use the plug-in estimator σ2
F̂
for σ2

F but

S2 = 1
n−1

∑
(Xi − X̄ )2 which is unbiased).
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Bootstrap vs Jackknife (cont’d)

For the Jackknife we have for θ̂ = X̄ :

seJ(θ̂) =

√√√√n − 1

n

n∑
i=1

(
θ̂(i) − ¯̂

θ(·)

)2

=

√√√√√n − 1

n

n∑
i=1

 1

n − 1

n∑
j=1,j ̸=i

Xj −
n∑

k=1

1
n−1

∑n
j=1,j ̸=k Xj

n

2

=

√√√√√n − 1

n

n∑
i=1

 1

n − 1

n∑
j=1,j ̸=i

Xj −
1

n(n − 1)

n∑
k=1

n∑
j=1,j ̸=k

Xj

2
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Bootstrap vs Jackknife (cont’d)

But
n∑

k=1

n∑
j=1,j ̸=k

Xj = (n − 1)
n∑

i=1

Xi

and therefore
1

n(n − 1)

n∑
k=1

n∑
j=1,j ̸=k

Xj = X̄

Thus:

seJ(θ̂) =

√√√√√n − 1

n

n∑
i=1

 1

n − 1

n∑
j=1,j ̸=i

Xj − X̄

2

=

√√√√n − 1

n

n∑
i=1

(
θ̂(i) − X̄

)2
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Bootstrap vs Jackknife (cont’d)

But, (
θ̂(i) − X̄

)
=

1

n − 1

n∑
j=1,j ̸=i

Xj −
1

n

n∑
i=1

Xi

=
n∑

j=1,j ̸=i

(
Xj

n − 1
− Xj

n

)
− Xi

n

=
n∑

j=1,j ̸=i

Xj

n(n − 1)
− Xi

n

=

 n∑
j=1,j ̸=i

Xj

n(n − 1)
+

Xi

n(n − 1)

−
[

Xi

n(n − 1)
+

Xi

n

]

=
X̄

n − 1
− Xi

n − 1
=

1

n − 1
(X̄ − Xi )

Therefore

seJ(θ̂) =

(∑n
i=1(Xi − X̄ )2

n(n − 1)

)1/2
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Bootstrap vs Jackknife (cont’d)

Thus, for linear statistical functions there is no loss of information
when using Jackknife. On the contrary, for non-linear statistical
functions there is a difference. Jackknife is a linear approximation of
bootstrap, i.e. it agrees with bootstrap (except for the factor(
n−1
n

)1/2
) for a specific linear statistical function approximating θ̂.

Thus, the efficiency of the Jackknife estimator of se depends on how
close to linear is θ̂.

Similarly for the bias, Jackknife is an approximation of bootstrap
with the approximation now based on a quadratic and not a linear
function (e.g. variance).

Finally, we could say that Jackknife is like bootstrap but the
sampling is without replacement and the samples are of size n − 1
instead of n.
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Modifications for Bootstrap

Smoothed Bootstrap

Instead of F̂n use kernel

Iterated Bootstrap

We take the values θ̂∗i and perform Bootstrap on them as well.
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Example where Bootstrap fails

Let X1, . . .Xn ∼ U(0, θ). We know that the MLE θ̂ = max(Xi ) = X(n).
Take θ = 1 and n = 50.
Generating a sample from U(0, 1) (runif(50,0,1)), we found that the
largest value is 0.9832. Next we took 200 bootstrap samples and the
values θ̂∗i , i = 1, . . . 200 are shown below:

The graph we take is rather bad. The reason is that we attempt to
approximate a continuous distribution (uniform) with a discrete
(empirical). Given that θ̂ = max(Xi ) is a function using information from
one observation alone, the largest, the result is not satisfactory.
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Example where Bootstrap fails (cont’d)

The probability that the value 0.9832 is not included in a bootstrap
sample is (1− 1/n)n, we thus expect it to be present in only
1− (1− 1/n)n → 1− e−1 ≈ 0.632 of the samples. In fact, we had it in
124 out of the 200 samples. One solution in these cases is to use
parametric bootstrap (Monte Carlo). That is, instead of generating data
from the empirical distribution we generate from U(0, θ̂):
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Bootstrap: Problems

Problems might appear in Bootstrap when

i) we try to estimate extreme proportion values (to get satisfactory
results, B needs to be very large)

ii) n small ⇒ F̂n is not a good approximation of F . Further, in that
case we cannot take many Bootstrap samples because there is a
chance to produce exactly the same samples.

iii) we try to estimate quantities that do not exist
e.g. X ∼ Cauchy → E[X ] → ∄
Thus, if we try to estimate seX̄ this will fail.
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Bootstrap in linear regression

Consider two r.v.’s Y and X and assume we would like to fit a linear
regression model Y = a+ bX + ϵ, ϵ ∼ N(0, σ2) (what will say can be
easily extended to more than one explanatory variables). Let (yi , xi ),
i = 1, . . . , n, denote the original observed data.

1st idea: we draw n pairs, at random with replacement, from the original
pairs (y1, x1), . . . , (yn, xn), B times in total. For each bootstrap sample j
(j = 1, . . . ,B): (y∗

ji , x
∗
ji ), i = 1, . . . , n, we fit the linear regression model

and we calculate the quantities of interest, e.g. (â∗j , b̂
∗
j ,R

2
j ). Then we

can compute their mean values, their standard error, we can use them to
produce CI’s, or to test hypotheses.

Problem: By using this method, we treat the values of the explanatory
variable as random rather than fixed. We might want to treat them as
fixed (e.g. data derived from an experimental design).
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Bootstrap in linear regression (cont’d)

2nd idea:

we fit the model using the original data (yi , xi ), i = 1, . . . , n, and
find â, b̂.

we compute the residuals ei = yi − â− b̂xi and the fitted values
ŷi = â+ b̂xi , for i = 1, . . . , n.

we do bootstrap to the residuals, i.e. we draw n values, at random
with replacement, from the residuals e1, . . . , en, B times in total. For
each bootstrap sample j (j = 1, . . . ,B): (e∗j1, . . . e

∗
jn), we calculate

the bootstrap response data (y∗
j1 = ŷ1 + e∗j1, . . . , y

∗
jn = ŷn + e∗jn).

For each bootstrap sample j (j = 1, . . . ,B): (y∗
ji , xi ), i = 1, . . . , n,

we fit the linear regression model and we calculate the quantities of
interest, e.g. (â∗j , b̂

∗
j ,R

2
j ). Then we can compute their mean values,

their standard error, we can use them to produce CI’s, or to test
hypotheses.

Both approaches can be used to make inferences even if normality does
not hold. The two methods give similar results. More statistically correct
is the second (assumption of linear regression: the design matrix is
already known).
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Bootstrap in linear regression - Example

Ornithologist: 12 sparrows ↗ age in days : X

↘ length of wings in cm : Y

Y = 0.779 (= â) + 0.266 (= b̂)X (least squares method)

ei = Yi − 0.779− 0.266Xi (normality not required)

Table 1 Wings’ length Age Residuals

Dimitris Fouskakis Resampling Methods: Jackknife-Bootstrap 44 / 53



Bootstrap in linear regression - Example (cont’d)

Table 2

Mean SD 95%CI 95%CI

(columns 3-4: CI with classical method, columns 5-6: CI based on percentiles)
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Bootstrap in linear regression - Example (cont’d)

1) From the scatterplot on the original data (see next slide), there
seems to be a linear relationship between the two variables.

2) For the results to be correct, the residuals need to be normal →
Diagnostic checking
Further homoscedasticity, . . . For Bootstrap no assumption.

3) With classical statistics, even if the assumptions hold true we can
estimate standard errors, and thus generate CIs only for a, b and not
for quantities like F ,R2, σ2,Corr(â, b̂).

4) Bootstrap CIs ↗ classical method

↘ percentile points

For a, b, σ2 and R2 they are almost identical because of normality as
shown in the diagrams (slide #47). For F this is not true though.

5) CI for a does not contain 0 → statistically significant
CI for b does not contain 0 → statistically significant
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Bootstrap in linear regression - Example (cont’d)

Scatterplot between x and y :
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Bootstrap in linear regression - Example (cont’d)

Histograms of bootstrap values of the different quantities:
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Bootstrap in linear regression - Example (cont’d)

We have used B = 1000 (large value in order to get “accurate” CIs)

The covariance between â and b̂ can be estimated from the
covariance of their bootstrap values and is found to be −0.001 while
Corr(â, b̂) = −0.902.

From Table 2, we see that the 2 CI’s for all quantities except for F
are almost identical and this is due to normality. Further, the
bootstrap averages are very close to â, b̂ from the linear regression
with the original data, which means small bias.

Scatterplot for â, b̂ bootstrap values reveals a high dependence
between the estimators.

CI for b does not contain 0 and thus there is a linear relationship
between X and Y .
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Parametric Bootstrap in regression

Let the errors follow any distribution with mean 0, e.g. tν , ν unknown.
We cannot apply linear regression but we can apply parametric Bootstrap
(assume that the homoscedasticity assumption holds). Then:

Fit the model using least squares method (this step is independent
of the errors’ distribution, it only asks for homoscedasticity)

Estimate ν from ei and denote it by ν̂ (using for example a qqplot)

Simulate e∗1 , . . . e
∗
n from tν̂

Compute Y ∗
i = â+ b̂xi + e∗i

Fit the linear model on the (Y ∗
i , xi ) and compute the quantities of

interest

Repeat the last three steps B times
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Bootstrap for dependent data

Basic principle for Bootstrap is that X1, . . .Xn are independent.
Additionally, F̂ is a good estimator of F . None of these is true when Xi

are dependent (e.g. time-series).

Block Bootstrap

To keep in our data some of the dependency they have, instead of
performing sampling with replacement from the observations we perform
it on blocks of observations. If the blocks are well chosen, they keep a lot
of the information which is of interest to us.
Of the n observations we generate b blocks of length l . If bl ̸= n then
one of the blocks might have fewer than l , observations. In this way, we
keep the information for dependency up to order l . We lose information
though at the points where the blocks are split.
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Bootstrap for dependent data (cont’d)

Example: x1, . . . x12 observed dependent data

y1 = (x1, x2, x3), y2 = (x4, x5, x6), y3 = (x7, x8, x9), y4 = (x10, x11, x12)
i.e. b = 4, l = 3
Next, we draw at random with replacement from the yi , i = 1, . . . 4.
Since l = 3 we are not able to represent autocorrelation of order larger
than 2 in our data.

Moving Blocks

We create overlapping blocks, i.e. different blocks contain the same
observation. In the previous example,
y1 = (x1, x2, x3), y2 = (x2, x3, x4), y3 = (x3, x4, x5), . . .
. . . , y11 = (x11, x12, x1), y12 = (x12, x1, x2)
and perform sampling with replacement from the yi , i = 1, . . . 12.
In this way we keep more information.
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Subsampling

Let us denote the observed data by x1, . . . xn

Jackknife removes one observation. This idea, as already mentioned,
can be generalized by removing d observations (delete-d-Jackknife).
In that case, we need to generate all possible samples of size n − d
which are

(
n
d

)
. This number might be huge though. Thus, it suffices

to take random samples out of the
(
n
d

)
.

→ Subsampling: there is a difference between this approach and
Bootstrap. We take the samples from F and not F̂ which is an
advantage. However, the samples are of size n − d instead of n
leading to loss of information. Also, in subsampling the samples are
taken without replacement.
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