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Markov Chains

A Markov Chain {X (t)} is a sequence of dependent random variables

X (0),X (1),X (2), . . . ,X (t), . . .

such that the probability distribution of X (t) given the past variables
depends only on X (t−1). This conditional probability is called a
transition kernel K . Thus

X (t+1)|X (0),X (1),X (2), . . . ,X (t) ∼ K (x (t), x (t+1)),

with x (i) denoting the observed value of X (i).

For example, in a simple random walk

X (t+1) = X (t) + ϵt , ϵt ∼ N(0, 1)

the kernel K (x (t), x (t+1)) is the pdf of N(x (t+1)|µ = x (t), σ2 = 1).

The State Space X of a Markov chain, is the set of values that each
X (t) can take. The state space can be discrete or continuous; here
we will assume is continuous.

The index t take values in the Index Set T (usually time) which can
also be either discrete or continuous. Here we will assume is discrete.
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Markov Chains - Properties

A Markov Chain is called (ϕ - ) Irreducible if the sequence {X (t)} has
positive probability of eventually reaching any region A of the state space
(with ϕ(A) > 0), no matter the starting value X (0) is.

The pdf f (y), y ∈ X , is called stationary probability distribution of a
Markov Chain {X (t)} if X (t) ∼ f , then X (t+1) ∼ f . Formally∫

X
K(x , y)f (x) = f (y)

A Markov Chain is called reversible with respect to a pdf f on X , if the
detailed balance equation holds:

f (x)K(x , y) = f (y)K(y , x), x , y ∈ X

If a Markov Chain is reversible with respect to f then f is a stationary
distribution for the chain.

A Markov Chain with stationary distribution f is called aperiodic if there
do not exist d ≥ 2 and disjoint subsets X1,X2, . . . ,Xd ⊆ X , with
K(x ,Xi+1) = 1, for all x ∈ Xi (1 ≤ i ≤ d − 1), and K(x ,X1) = 1 for all
x ∈ Xd , such that f (X1) > 0 (and hence f (Xi ) > 0 for all i). (Otherwise
the chain is periodic with period d and periodic composition
X1,X2, . . . ,Xd).
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Markov Chains - Properties (cont’d)

A Markov Chain with stationary distribution f is called Harris
recurrent if for all B ⊆ X , with f (B) > 0, and all x ∈ X , the chain
will eventually reach B from x with probability 1.

Let A ⊆ X (A measurable set). Then for n ∈ N, we define
K n(x ,A), x ∈ X , for the n-step transition law, as

K n(x ,A) = P[X (n) ∈ A|X (0) = x ].

We call limn→∞K n(x , ·) the limiting distribution of the chain.

Let {X (t)} be Markov Chain, with stationary distribution f . If the
Markov chain is f - irreducible, then f is the unique stationary
distribution of the Markov Chain. If additionally the chain is
aperiodic, the limiting distribution of the chain converges to f ,
for almost every x ∈ X . If additionally the chain is Harris recurrent,
the limiting distribution of the chain converges to f , for all x ∈ X .
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Markov Chains - Properties (cont’d)

As a consequence of the last result we have the Ergodic Theorem.
Ergodicity has major consequences from a simulation point of view.
In particular, the Ergodic Theorem says that for integrable functions
h, we have

1

T

T∑
t=1

h
(
X (t)

)
→ Ef [h(X )],

which means the Strong Law of Large Numbers that lies at the
basis of Monte Carlo methods can also be applied in Markov Chains.
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Markov Chain Monte Carlo

The working principle of Markov Chain Monte Carlo (MCMC)
methods is the following. Given a target density f , we build a
Markov Kernel K , with a unique stationary distribution f . We
generate a Markov Chain {X (t)} then, using this kernel, so that the
limiting distribution of {X (t)} is f and integrals can be
approximated according to the Ergodic Theorem.

Will see two methods for constructing such a kernel K , that is
associated with an arbitrary (target) density f .

1 Metropolis-Hastings Algorithm
2 Gibbs Sampling
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Metropolis-Hastings Algorithm

The Metropolis-Hastings (M-H) Algorithm associated with the
objective (target) density f and the conditional density q (proposal)
produces a Markov chain {X (t)} through the following transition kernel:

To avoid numeric overflow problems, it is highly recommended to
use the log-scale.

We start the algorithm with an initial value x (0) ∈ X .

To check the condition in step 2, we draw U ∼ U(0, 1). If
U ≤ ρ(x (t),Yt) we accept the move, otherwise we stay where we are.
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Metropolis-Hastings Algorithm (cont’d)

The distribution q is called proposal. The probability ρ(x , y) is
called acceptance probability. It is to be distinguished from the
acceptance rate, which is the average of the acceptance probability
over iterations:

ρ̄ = lim
T→∞

1

T

T∑
t=0

ρ(X (t),Yt) =

∫
X
ρ(x , y)f (x)q(y |x)dydx ,

where T denotes the total number of iterations.
The produced chain from M-H is reversible with respect to f
(satisfies the detailed balance equation), for any choice of q!
Therefore f is a stationary distribution.
If the proposed move is rejected, then the algorithm stays at the
current state for another iteration. This produces an aperiodic
chain.
By using the Ergodic Theorem, we can estimate any expected value,
w.r.t. f , by producing a Markov Chain {X (t)} with the M-H
algorithm. In words, we can start at essentially any x , run the chain
for a long time, and the final draw has a distribution that is
approximately f . The “long time” is called the burn-in.
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Metropolis-Hastings Algorithm (cont’d)

The performance (convergence) of the algorithm will strongly
depend on the choice of q. Furthermore in some cases (e.g.
independent M-H; see later) specific choices of q may result to
chains that are not irreducible.
Quite often q is chosen in such a way that: (a): looks like a
somewhat overdispersed version of f ; (b): Eq[Yt |x (t)] = x (t) and
therefore when you do make a move, there will be an approximate
left-right balance, so to speak, in the direction you move away from
current x (t), which will encourage a faster exploration of the state
space.
An interesting property of the M-H algorithm is that it depends to f
only via ratios. Therefore we do not need to know normalizing
constants and equivalently we can work with f ′ ∝ f . This makes
the algorithm ideal for simulating values from the posterior
distribution in Bayesian Statistics.
Usually, we represent the produced sequence {x (t)} by a trace plot.
In this plot we can see if the sequence has converged. If all values
are within a zone without strong periodicities and (especially)
tendencies, then we can assume convergence.
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Metropolis-Hastings Algorithm (cont’d)

If the proposal has been chosen in such way that most moves are
rejected (i.e. small ρ̄), then the algorithm will converge slow (1st
plot next slide).

If the proposal has been chosen in such way that most moves are
accepted (i.e. large ρ̄), then the algorithm usually moves in a very
small area (around the mode of f ) and therefore again fails to
explore the whole state space fast (3rd plot next slide).

Choose q in such a way so ρ̄ ≈ 0.45 (2nd plot next slide).

As we said before usually we select q to be “close” to f , with mean
value equal to the current value of the chain x (t). Then we select
(tune) the variance of q, so that ρ̄ ≈ 0.45. For special cases of M-H
algorithm (see next slides) this value is different.
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Metropolis-Hastings Algorithm (cont’d)
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Metropolis-Hastings Algorithm (cont’d)

In addition, we can create an ergodic mean plot. With this plot,
we see how the average value in our chain changes as we move on.
For the Ergodic Theorem to hold this average should converge
eventually. The plot can help us also to chose the burn-in period.
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Metropolis-Hastings Algorithm (cont’d)

Finally, an autocorrelation plot can reveal the order (lag) of high
autocorrelations in our chain. In cases where we have high order
autocorrelations the chain “learns” with a slow rate, and therefore
we should run the algorithm for a larger number of iterations (using
possibly thinning - for example keeping every 5th value).
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Metropolis-Hastings Algorithm (cont’d)

Suppose that we run our chain for T iterations and the burn-in
period (including the initial value) is B + 1 (B << T ). Then, if our
aim is to estimate θ = Ef [h(X )], we can use the MCMC esimator,
according to the Ergodic Theorem:

θ̂ =
1

T − B − 1

T∑
t=B+2

h(x (t))

We can use the batch mean method to estimate the Monte Carlo
Error of our estimator. That is, we divide the chain (after the
burn-in period) into k groups of approximately equal size (ν) and for
each group we find θ̂. The s.d. of the estimated values, produced in
each batch, can be used as an estimate of the Monte Carlo Error (k
and ν should be large enough). This error should be small (e.g.
0.001); if it is not we need to run the chain for a larger number of
iterations.

To check the convergence of our algorithm we can also produce
multiple chains (starting from different initial values) and see if the
estimated values of the quantity of interest agree.
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The Independent Metropolis-Hastings Algorithm

Suppose that q(y |x) = g(y), i.e. q is independent of the present
state of the chain. Then we have the Independent
Metropolis-Hastings Algorithm.

This method then appears as a straightforward generalization of the
Rejection sampling. In such cases g should have the same (or larger)
support with f (if not the chain is not f− irreducible).

Choose g in such a way that ρ̄ is large (e.g. 0.9).

Even though the proposed values y are generated independently, the
final accepted moves are not (since they depend on ρ, which
depends on the current state of the chain).

The M-H sample will involve repeated occurrences of the same value
since rejection of the proposed (in contrast with the Rejection
sampling). Finally you do not need to find the upper bound M
(envelope) as in Rejection sampling.
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The Random Walk Metropolis-Hastings Algorithm

Idea: Local exploration of the neighborhood of the current value of
the Markov chain.
Simulate Yt according to

Yt = X (t) + ϵt ,

where ϵt is a r.v. with distribution g , symmetric around zero and
independent of X (t). For example if ϵt ∼ U(−δ, δ) then
Yt |X (t) ∼ U(X (t) − δ,X (t) + δ), while if ϵt ∼ N(0, τ 2) then
Yt |X (t) ∼ N(X (t), τ 2). This is called Random Walk
Metropolis-Hastings Algorithm.
Because of symmetry q(y |x) = q(x |y). Therefore in the M-H
algorithm the acceptance ratio becomes

ρ(x , y) = min{1, f (y)/f (x)}

The Markov chain associated with q is a random walk, but due to
the additional M-H acceptance step, the produced Markov chain is
not.
The algorithm will always accept moves that lead to a higher density
function f , but sometimes will move “downhills”.
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The Random Walk Metropolis-Hastings Algorithm
(cont’d)

Choose the variance of q such that ρ̄ ≈ 0.25. In general small values
of the variance of q, will result in high acceptance rates but slow
convergence since the algorithm will need a large number of
iterations to explore the state space. In this case, large
autocorrelations will appear in the output analysis. On the other
hand, high values of the variance of q will result in low acceptance
rates. As a consequence, for a large number of iterations the
algorithm will stick with the same values, again resulting in poor
exploration of the state space and a highly autocorrelated sample.
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Gibbs Sampling

What if we want to sample from a joint pdf fX of a random vector
X = (X1,X2, . . . ,Xp)? We can use the (Multistage) Gibbs
Sampling.

We start the algorithm with an initial value:

x(0) = (x
(0)
1 , x

(0)
2 , . . . , x

(0)
p ) ∈ X .
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Gibbs Sampling (cont’d)

The densities f1, f2, . . . , fp are called full conditionals and are the
only densities used for simulation. Thus, even in high-dimensional
problems, all of the simulations are univariate!

To find a full conditional fi we merely need to pick all of the terms
in the joint pdf fX that involve xi . Then you need to find the
normalizing constant to convert it to a pdf.

If you cannot simulate directly from a full conditional fi , Adaptive
Rejection Sampling can be used, or Metropolis-Hastings algorithm
(Metropolis within Gibbs).
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Gibbs Sampling (cont’d)

Gibbs Sampler can be seen as a special case of Single Component
Metropolis-Hastings. In Single Component M-H the vector x is
divided into the univariate subvectors (components) (x1, x2, . . . , xp)
that are updated sequentially using Metropolis-Hastings steps with
target distribution the full conditionals.

Therefore at iteration (t + 1) we first update X1, using a M-H
algorithm with target f1, a proposal q1 and the current values

(x
(t)
1 , x

(t)
2 , . . . , x

(t)
p ). On the second stage we update X2, using a

M-H algorithm with target f2, a proposal q2 and the current values

(x
(t+1)
1 , x

(t)
2 , . . . , x

(t)
p ). We continue like this, until, finally in the last

stage we update Xp, using a M-H algorithm with target fp, a

proposal qp and the current values (x
(t+1)
1 , x

(t+1)
2 , . . . , x

(t)
p ). If in the

place of q1, q2, . . . , qp, in each stage, we put the full conditionals
f1, f2, . . . , fp (and therefore in the j stage the proposal for Xj

depends only on the current values of all the other components but
not on the current value of Xj) then the acceptance ratios are all
equal to 1 (in each M-H algorithm) and we have the Gibbs Sampler.
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