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1. Density Estimation

Q (population) — X (characteristic, r.v.) ~ f(x;0) =?
X = (Xq, X3 ... X,) random sample — 0

To estimate 8, we often need to make an assumption about the
population distribution (or else about the model) . How easy is to make
an assumption?

@ If X is discrete and its description agrees with a Bernoulli, Binomial
or Negative Binomial experiment.

@ If our aim is to use a sample statistic T(X) which is a linear
combination of >_7_, X; then for large n, independently of the choice
of f, T follows approximately normal distribution because of the
Central Limit Theorem:

ZX,- ~ N(np, no?),
i=1

where /1 is the population mean and o2 the population variance.
In other cases? (X1, X...X,) — f, i.e. estimation of f.
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2. Stochastic Simulation

Any information we would like to know about a distribution, we can find
it by simulating a large sample of values from it.

Simulation — reproduction of processes
~ | mimicking the behavior of a model

Using a computer — (X1, X2... X,) ~ f(x;0)

n
_ . ¢
TR X = 21771 !
"X — X)?
s o s Sl X)

P[X > 1] — relative frequency
shape f — e.g. histogram

Strong Law of Large Numbers — Consistent estimators
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3. Resampling Methods

Q JackKnife

@ Bootstrap

© Cross-Validation

Precision of estimators? Bias of estimators ?

X <~ N(p,0%/n) from CLT
Median?

Bootstrap

— Resampling methods = { Jackknife
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4. Model Selection

How "good"” is our model? If we have two models, which one to choose?
Answer: use Cross-Validation.

Idea: Split data into a modelling and a validation sub-sample. Fit
competing models into the modelling sub-sample and then compare their
predictive accuracy into the modelling sub-sample.
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5. Expectation - Maximization Algorithm

Q (population) — X (characteristic, r.v.) ~ f(x; 8)
X = (X1, Xz2...X,) random sample — ]

To estimate 8, we often maximizing the Likelihood Function. Can we
always do this analytically (using derivatives)?

No! For example if we have the gamma distribution with both
parameters unknown.

Solution:
@ Use a Numerical Analysis Algorithm, e.g. Newton Raphson.

@ Use a Statistical Method, that takes into account the statistical
model — Expectation-Maximization (EM).

Dimitris Fouskakis Introduction



6. Stochastic Optimization

In Statistics we often come up against maximization/minimization
problems. For example in order to find the maximum likelihood estimator
(MLE) — function maximization — there are functions that cannot
be maximized analytically.

eg. g(x)= 'f_%_)’: — no analytical solution

Apart from MLE problems, statisticians come up with many other
optimization problems:

i. Bayesian Decision Theory — cost minimization

ii. Solving non-linear least squares problems

iii. Choosing an appropriate model (e.g. variable selection)
The problem is always the same: maximizing (or minimizing) a real
function g w.r.t a p-dimensional vector x.
e.g. MLE g — log(L), L : likelihood function and x — 6 = (61, ...6,):
parameter vector

3 0g(6)  0g(9)
0:g'(0)=0 «<— =(0,...0
g(9) ( 06, ' 00, (© )

It might not be possible to find an analytical solution.

linear equations — SIMPLEX. Non-linear equations?
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6. Stochastic Optimization (cont'd)

For smooth, non-linear, differentiable functions: numerical solution (e.g.
bisection method, Newton-Raphson method, secant method,
Gauss-Newton method)

Consider now that we would like to maximize

(@), 6= (01,...60,) € © (O :discrete with N elements)
[Combinatorial optimization (stochastic) — heuristic techniques (gradual
improvement & local neighborhood)]

Every 8 € © is a candidate solution. Let f,, be the maximum and
M ={6 € 0:f(0) = fnax} (might contain more than one elements).

If N is large and there are several local maxima, finding the elements of
M is hard (e.g. travelling salesman problem).

In general, p - objects combined in a large number (N) and every choice
is a possible solution, e.g. travelling salesman problem N = p!
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6. Stochastic Optimization (cont'd)

Q Genetic Algorithm
@ Simulated Annealing
© Tabu Search

Necessity of using heuristic methods
It is not possible to use algorithms which is certain they are going to find

the global maximum but in non-practical time. In contrast, we are
working with algorithms which is possible to find global/local or nearby
maxima in specific time, i.e. heuristics:

i. gradual improvement
ii. local neighborhood
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7. Variable selection in linear regression

Y =by+bXi+...+bXp+e, e~N(0.0%)

parsimony

. . . 2
Given a sample of size n, which of Xi,... X, to use? { goodness of fit

(7 variable included)
(7 variable not included)

1
Models:  v=(y1,---7), vi= { 0
The space of all possible models:
M : 2Pelements

If pis large then the number of models is huge.
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7. Variable selection in linear regression (cont.)

o AIC, BIC minimization
e If p> n? — shrinkage methods (e.g. Ridge, Lasso)

Minimization of AIC or BIC: model simplicity vs predictive accuracy
R .
AIC = nInﬁ +2(54+2)=-2Inf(y|0)+ 2k,
n

n: sample size, RSS: residual sum of squares, S: # of parameters

BIC = -2Inf(y|@)+klnn
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