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1. Density Estimation

Ω (population) → X (characteristic, r.v.) ∼ f (x ;θ) =?

X = (X1,X2 . . .Xn) random sample → θ̂

To estimate θ, we often need to make an assumption about the
population distribution (or else about the model) f . How easy is to make
an assumption?

1 If X is discrete and its description agrees with a Bernoulli, Binomial
or Negative Binomial experiment.

2 If our aim is to use a sample statistic T (X) which is a linear
combination of

∑n
i=1 Xi then for large n, independently of the choice

of f , T follows approximately normal distribution because of the
Central Limit Theorem:

n∑
i=1

Xi
.∼ N (nµ, nσ2) ,

where µ is the population mean and σ2 the population variance.
In other cases? (X1,X2 . . .Xn) → f̂ , i.e. estimation of f .
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2. Stochastic Simulation

Any information we would like to know about a distribution, we can find
it by simulating a large sample of values from it.

Simulation =

{
reproduction of processes
mimicking the behavior of a model

Using a computer → (X1,X2 . . .Xn) ∼ f (x ;θ)

µ → X̄ =

∑n
i=1 Xi

n

σ2 → S2 =

∑n
i=1(Xi − X̄ )2

n − 1
P[X > 1] → relative frequency

shape f → e.g. histogram

Strong Law of Large Numbers → Consistent estimators
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3. Resampling Methods

1 JackKnife

2 Bootstrap

3 Cross-Validation

Precision of estimators? Bias of estimators ?

X̄
.∼ N (µ, σ2/n) from CLT

Median?

−→ Resampling methods =

{
Bootstrap
Jackknife
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4. Model Selection

How ”good” is our model? If we have two models, which one to choose?

Answer: use Cross-Validation.

Idea: Split data into a modelling and a validation sub-sample. Fit
competing models into the modelling sub-sample and then compare their
predictive accuracy into the modelling sub-sample.
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5. Expectation - Maximization Algorithm

Ω (population) → X (characteristic, r.v.) ∼ f (x ;θ)

X = (X1,X2 . . .Xn) random sample → θ̂

To estimate θ, we often maximizing the Likelihood Function. Can we
always do this analytically (using derivatives)?

No! For example if we have the gamma distribution with both
parameters unknown.

Solution:

1 Use a Numerical Analysis Algorithm, e.g. Newton Raphson.

2 Use a Statistical Method, that takes into account the statistical
model → Expectation-Maximization (EM).

Dimitris Fouskakis Introduction 6 / 11



6. Stochastic Optimization

In Statistics we often come up against maximization/minimization
problems. For example in order to find the maximum likelihood estimator
(MLE) → function maximization → there are functions that cannot
be maximized analytically.

e.g. g(x) = log x
1+x → no analytical solution

Apart from MLE problems, statisticians come up with many other
optimization problems:
i. Bayesian Decision Theory → cost minimization
ii. Solving non-linear least squares problems
iii. Choosing an appropriate model (e.g. variable selection)

The problem is always the same: maximizing (or minimizing) a real
function g w.r.t a p-dimensional vector x.
e.g. MLE g → log(L), L : likelihood function and x → θ = (θ1, . . . θp):
parameter vector

θ̂ : g ′(θ) = 0 ⇐⇒
(
∂g(θ)

∂θ1
, . . .

∂g(θ)

∂θp

)
= (0, . . . 0)

It might not be possible to find an analytical solution.
linear equations → SIMPLEX. Non-linear equations?
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6. Stochastic Optimization (cont’d)

For smooth, non-linear, differentiable functions: numerical solution (e.g.
bisection method, Newton-Raphson method, secant method,
Gauss-Newton method)

Consider now that we would like to maximize

f (θ), θ = (θ1, . . . θp) ∈ Θ (Θ : discrete with N elements)

[Combinatorial optimization (stochastic) → heuristic techniques (gradual
improvement & local neighborhood)]

Every θ ∈ Θ is a candidate solution. Let fmax be the maximum and
M = {θ ∈ Θ : f (θ) = fmax} (might contain more than one elements).

If N is large and there are several local maxima, finding the elements of
M is hard (e.g. travelling salesman problem).

In general, p - objects combined in a large number (N) and every choice
is a possible solution, e.g. travelling salesman problem N = p!
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6. Stochastic Optimization (cont’d)

1 Genetic Algorithm

2 Simulated Annealing

3 Tabu Search

Necessity of using heuristic methods
It is not possible to use algorithms which is certain they are going to find
the global maximum but in non-practical time. In contrast, we are
working with algorithms which is possible to find global/local or nearby
maxima in specific time, i.e. heuristics:

i. gradual improvement

ii. local neighborhood
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7. Variable selection in linear regression

Y = b0 + b1X1 + . . .+ bpXp + ϵ , ϵ ∼ N (0.σ2)

Given a sample of size n, which of X1, . . .Xp to use?

{
parsimony
goodness of fit

Models : γ = (γ1, . . . γp) , γi =

{
1 (i variable included)
0 (i variable not included)

The space of all possible models:

M : 2pelements

If p is large then the number of models is huge.
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7. Variable selection in linear regression (cont.)

AIC, BIC minimization

If p > n? → shrinkage methods (e.g. Ridge, Lasso)

Minimization of AIC or BIC: model simplicity vs predictive accuracy

AIC = n ln
RSS

n
+ 2(S + 2) = −2 ln f (y |θ̂) + 2k ,

n: sample size, RSS : residual sum of squares, S : # of parameters

BIC = −2 ln f (y |θ̂) + k ln n
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