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Thomas Bayes (Encyclopedia Britannica)

Born 1702, London, England.

Died April 17, 1761, Tunbridge Wells, Kent.

English Nonconformist theologian and mathematician who was

the first to use probability inductively and who established a

mathematical basis for probability inference (a means of

calculating, from the frequency with which an event has occurred

in prior trials, the probability that it will occur in future trials).

Bayes set down his findings on probability in “Essay Towards

Solving a Problem in the Doctrine of Chances” (1763), published

posthumously in the Philosophical Transactions of the Royal So-

ciety.
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Fundamental Ideas

Bayesian statistical analysis is based on the premise that all

uncertainty should be modeled with probability and that

statistical inferences should be logical conclusions based on

the laws of probability.
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Fundamental Ideas

Bayesian statistical analysis is based on the premise that all

uncertainty should be modeled with probability and that

statistical inferences should be logical conclusions based on

the laws of probability.

This typically involves the explicit use of subjective

information provided by the scientist, since initial

uncertainty about unknown parameters must be modeled

from a priori expert opinions. Bayesian methodology is

consistent with the goals of science.
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Fundamental Ideas (cont.)

For large amounts of data, scientists with different subjective

prior beliefs will ultimately agree after (separately)

incorporating the data with their “prior" information.
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Fundamental Ideas (cont.)
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On the other hand, “insufficient" data can result in

(continued) discrepancies of opinion about the relevant

scientific questions.
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Fundamental Ideas (cont.)

For large amounts of data, scientists with different subjective

prior beliefs will ultimately agree after (separately)

incorporating the data with their “prior" information.

On the other hand, “insufficient" data can result in

(continued) discrepancies of opinion about the relevant

scientific questions.

We believe that the best statistical analysis of data involves a

collaborative effort between subject matter scientists and

statisticians, and that it is both appropriate and necessary to

incorporate the scientist’s expertise into making decisions

related to the data.
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Simple Probability Calculations

For two events A and B the conditional probability of A

given B is defined as

P (A|B) =
P (A ∩ B)

P (B)
=

P (B|A)P (A)

P (B)
.
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Simple Probability Calculations

For two events A and B the conditional probability of A

given B is defined as

P (A|B) =
P (A ∩ B)

P (B)
=

P (B|A)P (A)

P (B)
.

The simplest version of Bayes Theorem is that

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
.
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Example: Drug Screening

Let D indicate a drug user and C indicate someone who is

clean of drugs. Let + indicate that someone tests positive on

a drug test, and − indicates testing negative.
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Example: Drug Screening

Let D indicate a drug user and C indicate someone who is

clean of drugs. Let + indicate that someone tests positive on

a drug test, and − indicates testing negative.

The overall prevalence of a drug use in the population is,

say, P (D) = 0.01. Therefore P (C) = 0.99.

The sensitivity of the drug test is P (+|D) = 0.98.

The specificity of the drug test is P (−|C) = 0.95.

P (D|+) =
P (+|D)P (D)

P (+|D)P (D) + P (+|C)P (C)
= 0.165
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Bayesian Statistics and Probabilities

Fundamentally, the field of statistics is about using

probability models to analyze data.
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Bayesian Statistics and Probabilities

Fundamentally, the field of statistics is about using

probability models to analyze data.

There are two major philosophical positions about the use of

probability models.

One is that probabilities are determined by the outside

world.

The other is that probabilities exist in peoples’ heads.

Historically, probability theory was developed to explain

games of chance.
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Bayesian Statistics and Probabilities (cont.)

The notion of probability as a belief is more subtle. For example, suppose

I flip a coin.
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I flip a coin.

Prior to flipping the coin, the physical mechanism involved suggests

probabilities of 0.5 for each of the outcomes heads and tails.

But now I have flipped the coin, looked at the result, but not told you the

outcome.

As long as you believe I am not cheating, you would naturally continue to

describe the probabilities for heads and tails as 0.5.

M.Sc. Applied Mathematics, NTUA, 2014 – p.9/104



Bayesian Statistics and Probabilities (cont.)

The notion of probability as a belief is more subtle. For example, suppose

I flip a coin.

Prior to flipping the coin, the physical mechanism involved suggests

probabilities of 0.5 for each of the outcomes heads and tails.

But now I have flipped the coin, looked at the result, but not told you the

outcome.

As long as you believe I am not cheating, you would naturally continue to

describe the probabilities for heads and tails as 0.5.

But this probability is no longer the probability associated with the

physical mechanism involved, because you and I have different

probabilities.

M.Sc. Applied Mathematics, NTUA, 2014 – p.9/104



Bayesian Statistics and Probabilities (cont.)

The notion of probability as a belief is more subtle. For example, suppose

I flip a coin.

Prior to flipping the coin, the physical mechanism involved suggests

probabilities of 0.5 for each of the outcomes heads and tails.

But now I have flipped the coin, looked at the result, but not told you the

outcome.

As long as you believe I am not cheating, you would naturally continue to

describe the probabilities for heads and tails as 0.5.

But this probability is no longer the probability associated with the

physical mechanism involved, because you and I have different

probabilities.

I know whether the coin is heads or tails, and your probability is simply

describing your personal state of knowledge.
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Bayesian Statistics and Probabilities (cont.)

Bayesian statistics starts by using (prior) probabilities to

describe your current state of knowledge.
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Bayesian Statistics and Probabilities (cont.)

Bayesian statistics starts by using (prior) probabilities to

describe your current state of knowledge.

It then incorporates information through the collection of

data, and

Results in new (posterior) probabilities to describe your state

of knowledge after combining the prior probabilities with

the data.
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Bayesian Statistics and Probabilities (cont.)

Bayesian statistics starts by using (prior) probabilities to

describe your current state of knowledge.

It then incorporates information through the collection of

data, and

Results in new (posterior) probabilities to describe your state

of knowledge after combining the prior probabilities with

the data.

In Bayesian statistics, all uncertainty and all information are

incorporated through the use of probability distributions, and

all conclusions obey the laws of probability theory.
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Data and Parameter(s)

In statistics a data set is becoming available via a random

mechanism.
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Data and Parameter(s)

In statistics a data set is becoming available via a random

mechanism.

A model (law) f(x|θ) is used to describe the data generation

procedure. The model is either available with the design

(e.g. a Binomial experiment with known number of trials,

where x|θ ∼ Bin(n, θ)), or we need to elicit it from the data

(e.g. strength required to brake a steel cord) and thus we

need some assurance (testing) of whether we made the

appropriate choice.
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Data and Parameter(s)

The model comes along with a (univariate or multivariate)

set of parameters that fully describe the random mechanism

which produces the data. For example:
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Data and Parameter(s)

The model comes along with a (univariate or multivariate)

set of parameters that fully describe the random mechanism

which produces the data. For example:

x|θ ∼ Bin(n, θ)

x|θ ∼ N(θ1, θ2)

x|θ ∼ Np(θ,Σ)

Usually we are interested in either drawing inference

(point/interval estimates, hypothesis testing) for the

unknown parameter θ (θ) and/or provide predictions for

future observable(s).
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Likelihood

Unless otherwise specified we assume that the data

constitute a random sample, i.e. they are independent and

identically distributed (iid) observations (given the

parameter).
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constitute a random sample, i.e. they are independent and

identically distributed (iid) observations (given the

parameter).

Then the joint distribution of the data x = (x1, x2, . . . , xn) is

given by:

f(x|θ) =
n
∏

i=1

f(xi|θ) = L(θ)

which is known as likelihood.
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Likelihood

Unless otherwise specified we assume that the data

constitute a random sample, i.e. they are independent and

identically distributed (iid) observations (given the

parameter).

Then the joint distribution of the data x = (x1, x2, . . . , xn) is

given by:

f(x|θ) =
n
∏

i=1

f(xi|θ) = L(θ)

which is known as likelihood.

The likelihood is a function of the parameter θ and is

considered to capture all the information that is available in

the data.
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Sampling Density vs. Likelihood

In statistics, we eventually get to see the data, say d = dobs,

and want to draw inferences (conclusions) about θ.
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Sampling Density vs. Likelihood

In statistics, we eventually get to see the data, say d = dobs,

and want to draw inferences (conclusions) about θ.

Thus, we are interested in the values of θ that are most likely

to have generated dobs. Such information comes from

f(dobs|θ) but with dobs fixed and θ allowed to vary. This new

way of thinking about d and θ determines the likelihood

function.

On the other hand in the sampling density f(d|θ), θ is fixed

and d is the variable.

The likelihood function and the sampling density are

different concepts based on the same quantity.
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Example: Drugs on the job

Suppose we are interested in assessing the proportion of U.S.

transportation industry workers who use drugs on the job.
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Example: Drugs on the job

Suppose we are interested in assessing the proportion of U.S.

transportation industry workers who use drugs on the job.

Let θ denote this proportion and assume that a random

sample of n workers is to be taken while they are actually on

the job.

Each individual will be tested for drugs.

Let yi be a one if the ith individual tests positive and zero

otherwise.

θ is the probability that someone in the population would

have tested positive for drugs
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Example: Drugs on the job (cont.)

We have (independently) y1, . . . , yn|θ ∼ Bernoulli(θ).
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Assume that a random sample of n workers is to be taken while they are

actually on the job.
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Example: Drugs on the job (cont.)

We have (independently) y1, . . . , yn|θ ∼ Bernoulli(θ).
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Example: Drugs on the job (cont.)

We have (independently) y1, . . . , yn|θ ∼ Bernoulli(θ).

Assume that a random sample of n workers is to be taken while they are

actually on the job.

Each individual will be tested for drugs.

Let yi be a one if the ith individual tests positive and a zero otherwise.

M.Sc. Applied Mathematics, NTUA, 2014 – p.16/104



Example: Drugs on the job (cont.)

We have (independently) y1, . . . , yn|θ ∼ Bernoulli(θ).
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actually on the job.
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Example: Drugs on the job (cont.)

We have (independently) y1, . . . , yn|θ ∼ Bernoulli(θ).

Assume that a random sample of n workers is to be taken while they are

actually on the job.

Each individual will be tested for drugs.

Let yi be a one if the ith individual tests positive and a zero otherwise.

θ is the probability that someone in the population would have tested

positive for drugs

Because the yis are iid, the (sampling) density of y = (y1, . . . , yn)T is

f(y|θ) =
n
∏

i=1

θyi(1 − θ)1−yi
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Example: Drugs on the job (cont.)

Suppose that 10 workers were sampled and that two of them tested

positive for drug use. The likelihood is then

L(θ|y) ∝ θ2(1 − θ)8.
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Example: Drugs on the job (cont.)

Suppose that 10 workers were sampled and that two of them tested

positive for drug use. The likelihood is then

L(θ|y) ∝ θ2(1 − θ)8.

Both θ = 0 or 1 are impossible, since they exclude the possibility of

seeing drug tests that are both positive and negative.
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Suppose that 10 workers were sampled and that two of them tested

positive for drug use. The likelihood is then

L(θ|y) ∝ θ2(1 − θ)8.

Both θ = 0 or 1 are impossible, since they exclude the possibility of

seeing drug tests that are both positive and negative.

Values of θ above 0.5 are particularly unlikely to have generated these

data.
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Example: Drugs on the job (cont.)

Suppose that 10 workers were sampled and that two of them tested

positive for drug use. The likelihood is then

L(θ|y) ∝ θ2(1 − θ)8.

Both θ = 0 or 1 are impossible, since they exclude the possibility of

seeing drug tests that are both positive and negative.

Values of θ above 0.5 are particularly unlikely to have generated these

data.

In fact, the most likely value is the sample proportion, 0.20 = 2/10.
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Example: Drugs on the job (cont.)

Suppose that 10 workers were sampled and that two of them tested

positive for drug use. The likelihood is then

L(θ|y) ∝ θ2(1 − θ)8.

Both θ = 0 or 1 are impossible, since they exclude the possibility of

seeing drug tests that are both positive and negative.

Values of θ above 0.5 are particularly unlikely to have generated these

data.

In fact, the most likely value is the sample proportion, 0.20 = 2/10.

The value that maximizes the likelihood is called the maximum

likelihood estimate (MLE).
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Example: Drugs on the job (cont.)
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Treating the unknown parameter θ

There are three main schools in statistics on how one should

deal with the parameter θ:
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Treating the unknown parameter θ

There are three main schools in statistics on how one should

deal with the parameter θ:

(1) Likelihood

(2) Frequentist

(3) Bayesian

All the above share the idea of the likelihood function,

f(x|θ), that is available from the data, but they differ

drastically on the way they handle the unknown parameter θ.
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Likelihood School

All the information regarding the parameter should come

exclusively from the likelihood function.
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Likelihood School

All the information regarding the parameter should come

exclusively from the likelihood function.

The philosophy of this school is based on the likelihood

principle, where if two experiments produce analogous

likelihoods then the inference regarding the unknown

parameter should be identical.
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Likelihood School

Likelihood Principle:

If the data from two experiments are x, y and for the

respective likelihoods f(x|θ), f(y|θ) it holds:

f(x|θ) ∝ k(x,y)f(y|θ)

then the inference regarding θ should be identical in both

experiments.
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Likelihood School

Likelihood Principle:

If the data from two experiments are x, y and for the

respective likelihoods f(x|θ), f(y|θ) it holds:

f(x|θ) ∝ k(x,y)f(y|θ)

then the inference regarding θ should be identical in both

experiments.

Fiducial Inference:

Within this school R. A. Fisher developed the idea of

transforming the likelihood to a distribution function

(naively, think of f(x|θ)/
∫

f(x|θ)dθ = L(θ)/
∫

L(θ)dθ).
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Frequentist School

Within this school the parameter θ is considered to be a

fixed unknown constant.
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Inference regarding θ becomes available thanks to long term

frequency properties. Precisely, we consider (infinite)

repeated sampling, for fixed value of θ.
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Frequentist School

Within this school the parameter θ is considered to be a

fixed unknown constant.

Inference regarding θ becomes available thanks to long term

frequency properties. Precisely, we consider (infinite)

repeated sampling, for fixed value of θ.

While point estimation seems to be well aligned in this

school, the assumption of a fixed parameter value can cause

great difficulty in the interpretation of interval estimates

(confidence intervals) and/or hypotheses testing.
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Frequentist School

Typical example is the confidence interval, where the

confidence level is quite often misinterpreted as the

probability that the parameter belongs to the interval.
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Frequentist School

Typical example is the confidence interval, where the

confidence level is quite often misinterpreted as the

probability that the parameter belongs to the interval.

The parameter is constant, the interval is the random

quantity.
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Frequentist School

The frequentist’s approach can violate the likelihood

principle.
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Frequentist School

The frequentist’s approach can violate the likelihood

principle.

Example (Lindley and Phillips (1976)):

Suppose we are interested in testing θ, the unknown

probability of heads for possibly biased coin. Suppose,

H0 : θ = 1/2 versus H1 : θ > 1/2. An experiment is

conducted and 9 heads and 3 tails are observed. This

information is not sufficient to fully specify the model

f(x|θ). Specifically:
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Frequentist School

Scenario 1: Number of flips, n = 12 is predetermined. Then

number of heads x is B(n, θ), with likelihood:

L1(θ) =
(

n
x

)

θx(1 − θ)n−x =
(

12
9

)

θ9(1 − θ)3

M.Sc. Applied Mathematics, NTUA, 2014 – p.25/104



Frequentist School

Scenario 1: Number of flips, n = 12 is predetermined. Then

number of heads x is B(n, θ), with likelihood:

L1(θ) =
(

n
x

)

θx(1 − θ)n−x =
(

12
9

)

θ9(1 − θ)3

Scenario 2: Number of tails (successes) r = 3 is

predetermined, i.e, the flipping is continued until 3 tails are

observed. Then, x=number of heads (failures) until 3 tails

appear is NB(3, 1 − θ) with likelihood:

L2(θ) =
(

r+x−1
r−1

)

(1 − θ)rθx =
(

11
2

)

θ9(1 − θ)3
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Frequentist School

Scenario 1: Number of flips, n = 12 is predetermined. Then

number of heads x is B(n, θ), with likelihood:

L1(θ) =
(

n
x

)

θx(1 − θ)n−x =
(

12
9

)

θ9(1 − θ)3

Scenario 2: Number of tails (successes) r = 3 is

predetermined, i.e, the flipping is continued until 3 tails are

observed. Then, x=number of heads (failures) until 3 tails

appear is NB(3, 1 − θ) with likelihood:

L2(θ) =
(

r+x−1
r−1

)

(1 − θ)rθx =
(

11
2

)

θ9(1 − θ)3

Since L1(θ) ∝ L2(θ), based on the likelihood principle the

two scenarios ought to give identical inference regarding θ.
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Frequentist School

However, for a frequentist, the p-value of the test is:
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Frequentist School

However, for a frequentist, the p-value of the test is:

Scenario 1:

P (X ≥ 9|H0) =
∑12

x=9

(

12
x

)

(0.5)x(1 − 0.5)12−x = 0.073
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Frequentist School

However, for a frequentist, the p-value of the test is:

Scenario 1:

P (X ≥ 9|H0) =
∑12

x=9

(

12
x

)

(0.5)x(1 − 0.5)12−x = 0.073

Scenario 2:

P (X ≥ 9|H0) =
∑∞

x=9

(

3+x−1
2

)

(1 − 0.5)x(0.5)3 = 0.0327
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Frequentist School

However, for a frequentist, the p-value of the test is:

Scenario 1:

P (X ≥ 9|H0) =
∑12

x=9

(

12
x

)

(0.5)x(1 − 0.5)12−x = 0.073

Scenario 2:

P (X ≥ 9|H0) =
∑∞

x=9

(

3+x−1
2

)

(1 − 0.5)x(0.5)3 = 0.0327

and if we consider α = 0.05 under the first scenario we fail

to reject, while in the second we reject the H0.
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Bayesian School

In this school the parameter θ is considered to be a random

variable. Given that θ is unknown, the most natural thing to

do is to consider probability theory in quantifying what is

unknown to us.
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Bayesian School

In this school the parameter θ is considered to be a random

variable. Given that θ is unknown, the most natural thing to

do is to consider probability theory in quantifying what is

unknown to us.

We will quantify our (subjective) opinion regarding θ

(before looking the data) with a prior distribution: p(θ).
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Bayesian School

In this school the parameter θ is considered to be a random

variable. Given that θ is unknown, the most natural thing to

do is to consider probability theory in quantifying what is

unknown to us.

We will quantify our (subjective) opinion regarding θ

(before looking the data) with a prior distribution: p(θ).

Then Bayes theorem will do the magic updating the prior

distribution to posterior, under the light of the data.
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Bayesian School

The Bayesian approach consists of the following steps:
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Bayesian School

The Bayesian approach consists of the following steps:

(a) Define the likelihood: f(x|θ)
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Bayesian School

The Bayesian approach consists of the following steps:

(a) Define the likelihood: f(x|θ)

(b) Define the prior distribution: p(θ)
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Bayesian School

The Bayesian approach consists of the following steps:

(a) Define the likelihood: f(x|θ)

(b) Define the prior distribution: p(θ)

(c) Compute the posterior distribution: p(θ|x)
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Bayesian School

The Bayesian approach consists of the following steps:

(a) Define the likelihood: f(x|θ)

(b) Define the prior distribution: p(θ)

(c) Compute the posterior distribution: p(θ|x)

(d) Decision Making: Draw inference regarding θ − do

predictions
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Bayesian School

The Bayesian approach consists of the following steps:

(a) Define the likelihood: f(x|θ)

(b) Define the prior distribution: p(θ)

(c) Compute the posterior distribution: p(θ|x)

(d) Decision Making: Draw inference regarding θ − do

predictions

We have already discussed (a) and we will proceed with (c),

(b) and conclude with (d).
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Computing the posterior

The Bayes theorem for events is given by:

P (A|B) =
P (A ∩ B)

P (B)
=

P (B|A)P (A)

P (B)
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Computing the posterior

The Bayes theorem for events is given by:

P (A|B) =
P (A ∩ B)

P (B)
=

P (B|A)P (A)

P (B)

while for density functions it becomes:

p(θ|x) =
f(x, θ)

f(x)
=

f(x|θ)p(θ)
∫

f(x|θ)p(θ)dθ
∝ f(x|θ)p(θ)
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Computing the posterior

The Bayes theorem for events is given by:

P (A|B) =
P (A ∩ B)

P (B)
=

P (B|A)P (A)

P (B)

while for density functions it becomes:

p(θ|x) =
f(x, θ)

f(x)
=

f(x|θ)p(θ)
∫

f(x|θ)p(θ)dθ
∝ f(x|θ)p(θ)

The denominator f(x) is the marginal distribution of the

observed data, i.e. it is a single number (known as

normalizing constant) that is responsible for making p(θ|x)

to become a density.
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Computing the (multivariate) posterior

Moving from univariate to multivariate we obtain:
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Computing the (multivariate) posterior

Moving from univariate to multivariate we obtain:

p(θ|x) =
f(x,θ)

f(x)
=

f(x|θ)p(θ)
∫

· · ·
∫

f(x|θ)p(θ)dθ
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Computing the (multivariate) posterior

Moving from univariate to multivariate we obtain:

p(θ|x) =
f(x,θ)

f(x)
=

f(x|θ)p(θ)
∫

· · ·
∫

f(x|θ)p(θ)dθ

The normalizing constant was the main reason for the

underdevelopment of the Bayesian approach and its limited

use in science for decades (if not centuries). However, the

MCMC revolution, started in mid 90’s, overcame this

technical issue (providing a sample from the posterior)

making widely available the Bayesian school of statistical

analysis in all fields of science.
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Bayesian Inference

it is often convenient to summarize the posterior information

into objects like the posterior median, say m(d), where

m(d) satisfies

1

2
=

∫ m(d)

−∞

p(θ|d)dθ
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Bayesian Inference

it is often convenient to summarize the posterior information

into objects like the posterior median, say m(d), where

m(d) satisfies

1

2
=

∫ m(d)

−∞

p(θ|d)dθ

or the posterior mean

E(θ|d) =

∫

θp(θ|d)dθ

M.Sc. Applied Mathematics, NTUA, 2014 – p.31/104



Bayesian Inference (cont.)

Other quantities of potential interest are the posterior

variance

V (θ|d) =

∫

[θ − E(θ|d)]2 p(θ|d)dθ
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Bayesian Inference (cont.)

Other quantities of potential interest are the posterior

variance

V (θ|d) =

∫

[θ − E(θ|d)]2 p(θ|d)dθ

the posterior standard deviation
√

V (θ|d)
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Bayesian Inference (cont.)

Other quantities of potential interest are the posterior

variance

V (θ|d) =

∫

[θ − E(θ|d)]2 p(θ|d)dθ

the posterior standard deviation
√

V (θ|d)

and, say, the 95% probability intervals [a(d), b(d)] where

a(d) and b(d) satisfy

0.95 =

∫ b(d)

a(d)

p(θ|d)dθ
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Prior distribution

This is the key element of the Bayesian approach.
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Prior distribution

This is the key element of the Bayesian approach.

Subjective Bayesian approach: The parameter of interest

takes eventually a single number, which is used in the

likelihood to provide the data. Since we do not know this

value, we use a random mechanism (the prior p(θ)) to

describe the uncertainty about this parameter value. Thus,

we simply use probability theory to model the uncertainty.
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Prior distribution

This is the key element of the Bayesian approach.

Subjective Bayesian approach: The parameter of interest

takes eventually a single number, which is used in the

likelihood to provide the data. Since we do not know this

value, we use a random mechanism (the prior p(θ)) to

describe the uncertainty about this parameter value. Thus,

we simply use probability theory to model the uncertainty.

The prior should reflect our personal (subjective) opinion

regarding the parameter, before we look at the data. The

only think we need to be careful about, is to be coherent,

which will happen if we will obey the probability laws (see

de Finetti, DeGroot, Hartigan etc.)
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Prior distribution

Main issues regarding prior distributions:
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Prior distribution

Main issues regarding prior distributions:

• Posterior lives in the range defined by the prior.
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Prior distribution

Main issues regarding prior distributions:

• Posterior lives in the range defined by the prior.

• The more data we get the less the effect of the prior in

determining the posterior distribution (unless extreme

choices, like point mass priors are made.)
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Prior distribution

Main issues regarding prior distributions:

• Posterior lives in the range defined by the prior.

• The more data we get the less the effect of the prior in

determining the posterior distribution (unless extreme

choices, like point mass priors are made.)

• Different priors applied on the same data will lead to

different posteriors.
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Prior distribution

Main issues regarding prior distributions:

• Posterior lives in the range defined by the prior.

• The more data we get the less the effect of the prior in

determining the posterior distribution (unless extreme

choices, like point mass priors are made.)

• Different priors applied on the same data will lead to

different posteriors.

The last bullet, raised (and keeps raising) the major criticism

from non-Bayesians (see for example Efron (1986), “Why

isn’t everyone a Bayesian”). However, Bayesians love the

opportunity to be subjective. Lets see an example:
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Prior distribution - Example 1

We have two different binomial experiments.
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Prior distribution - Example 1

We have two different binomial experiments.

Setup 1: We ask from a sommelier (wine expert) to taste 10

glasses of wine and decide whether each glass is Merlot or

Cabernet Sauvignon.
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Prior distribution - Example 1

We have two different binomial experiments.

Setup 1: We ask from a sommelier (wine expert) to taste 10

glasses of wine and decide whether each glass is Merlot or

Cabernet Sauvignon.

Setup 2: We ask from a drank man to guess the sequence of

H and T in 10 tosses of a fair coin.
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Prior distribution - Example 1

We have two different binomial experiments.

Setup 1: We ask from a sommelier (wine expert) to taste 10

glasses of wine and decide whether each glass is Merlot or

Cabernet Sauvignon.

Setup 2: We ask from a drank man to guess the sequence of

H and T in 10 tosses of a fair coin.

In both cases we have a B(10, θ) with unknown the

probability of success (θ).
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Prior distribution - Example 1

We have two different binomial experiments.

Setup 1: We ask from a sommelier (wine expert) to taste 10

glasses of wine and decide whether each glass is Merlot or

Cabernet Sauvignon.

Setup 2: We ask from a drank man to guess the sequence of

H and T in 10 tosses of a fair coin.

In both cases we have a B(10, θ) with unknown the

probability of success (θ).

The data become available and we have 10 successes in both

setups, i.e. based on the frequentist MLE θ̂ = 1 in both

cases.
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Prior distribution - Example 1

But is this really what we believe?
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Prior distribution - Example 1

But is this really what we believe?

Before looking in the data, if you were to bet money to the

higher probability of success, would you put your money to

setup 1 or 2? or did you think that the probabilities were

equal?
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Prior distribution - Example 1

But is this really what we believe?

Before looking in the data, if you were to bet money to the

higher probability of success, would you put your money to

setup 1 or 2? or did you think that the probabilities were

equal?

For the sommelier we expect to have the probability of

success close to 1, while for the drunk man we would expect

his success rate to be close to 1/2.

M.Sc. Applied Mathematics, NTUA, 2014 – p.36/104



Prior distribution - Example 1

But is this really what we believe?

Before looking in the data, if you were to bet money to the

higher probability of success, would you put your money to

setup 1 or 2? or did you think that the probabilities were

equal?

For the sommelier we expect to have the probability of

success close to 1, while for the drunk man we would expect

his success rate to be close to 1/2.

Adopting the appropriate prior distribution for each setup

would lead to different posteriors, in contrast to the

frequentist based methods that yield identical results.
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Prior distribution − Example 2

At the end of the semester you will have a final exam on this

course.
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Prior distribution − Example 2

At the end of the semester you will have a final exam on this

course.

Please write down, what is the probability that you will pass

the exam.
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Prior distribution − Example 2

At the end of the semester you will have a final exam on this

course.

Please write down, what is the probability that you will pass

the exam.

Lets look in the future now: you will either pass or fail the

exam. Thus the frequentist MLE point estimate of the

probability of success will be either 1 (if you pass) or 0 (if

you fail).
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Prior distribution − Example 2

At the end of the semester you will have a final exam on this

course.

Please write down, what is the probability that you will pass

the exam.

Lets look in the future now: you will either pass or fail the

exam. Thus the frequentist MLE point estimate of the

probability of success will be either 1 (if you pass) or 0 (if

you fail).

If you wrote down any number in (0,1) then you are a

Bayesian! (consciously or unconsciously).
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Prior distribution − Elicitation

The prior distribution should reflect our personal beliefs for

the unknown parameter, before the data becomes available.
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Prior distribution − Elicitation

The prior distribution should reflect our personal beliefs for

the unknown parameter, before the data becomes available.

If we do not know anything about θ, expert’s opinion or

historic data can be used, but not the current data.
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Prior distribution − Elicitation

The prior distribution should reflect our personal beliefs for

the unknown parameter, before the data becomes available.

If we do not know anything about θ, expert’s opinion or

historic data can be used, but not the current data.

The elicitation of a prior consists of the following two steps:
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Prior distribution − Elicitation

The prior distribution should reflect our personal beliefs for

the unknown parameter, before the data becomes available.

If we do not know anything about θ, expert’s opinion or

historic data can be used, but not the current data.

The elicitation of a prior consists of the following two steps:

• Recognize the function form which best expresses our

uncertainty regarding θ (i.e. modes, symmetry etc.)
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Prior distribution − Elicitation

The prior distribution should reflect our personal beliefs for

the unknown parameter, before the data becomes available.

If we do not know anything about θ, expert’s opinion or

historic data can be used, but not the current data.

The elicitation of a prior consists of the following two steps:

• Recognize the function form which best expresses our

uncertainty regarding θ (i.e. modes, symmetry etc.)

• Decide on the parameters of the prior distribution, that most

closely match our beliefs.
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Prior distribution − Subjective vs Objective

There exist setups where we have good knowledge about θ

(like an industrial statistician that supervises a production

line). In such cases the subjective Bayesian approach is

highly preferable since it offers a well defined framework to

incorporate this (subjective) prior opinion.
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Prior distribution − Subjective vs Objective

There exist setups where we have good knowledge about θ

(like an industrial statistician that supervises a production

line). In such cases the subjective Bayesian approach is

highly preferable since it offers a well defined framework to

incorporate this (subjective) prior opinion.

But what about cases where no information whatsoever

about θ is available?
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Prior distribution − Subjective vs Objective

There exist setups where we have good knowledge about θ

(like an industrial statistician that supervises a production

line). In such cases the subjective Bayesian approach is

highly preferable since it offers a well defined framework to

incorporate this (subjective) prior opinion.

But what about cases where no information whatsoever

about θ is available?

Then one could follow an objective Bayesian approach.
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Prior distribution − Conjugate analysis

A family of priors is called conjugate when the posterior is a

member of the same family as the prior.
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Prior distribution − Conjugate analysis

A family of priors is called conjugate when the posterior is a

member of the same family as the prior.

Example:

f(x|θ) ∼ B(n, θ) and for the parameter θ we assume:

p(θ) ∼ Beta(α, β)
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Prior distribution − Conjugate analysis

A family of priors is called conjugate when the posterior is a

member of the same family as the prior.

Example:

f(x|θ) ∼ B(n, θ) and for the parameter θ we assume:

p(θ) ∼ Beta(α, β)

Then:

p(θ|x) ∝ f(x|θ)p(θ) ∝ [θx(1 − θ)n−x]
[

θα−1(1 − θ)β−1
]

= θα+x−1(1 − θ)n+β−x−1
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Prior distribution − Conjugate analysis

A family of priors is called conjugate when the posterior is a

member of the same family as the prior.

Example:

f(x|θ) ∼ B(n, θ) and for the parameter θ we assume:

p(θ) ∼ Beta(α, β)

Then:

p(θ|x) ∝ f(x|θ)p(θ) ∝ [θx(1 − θ)n−x]
[

θα−1(1 − θ)β−1
]

= θα+x−1(1 − θ)n+β−x−1

Thus, p(θ|x) ∼ Beta(α + x, β + n − x)
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Prior distribution − Conjugate analysis

With a conjugate prior there is no need for the evaluation of

the normalizing constant (i.e. no need to calculate the

integral in the denominator).
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Prior distribution − Conjugate analysis

With a conjugate prior there is no need for the evaluation of

the normalizing constant (i.e. no need to calculate the

integral in the denominator).

To guess for a conjugate prior it is helpful to look at the

likelihood as a function of θ.
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Prior distribution − Conjugate analysis

With a conjugate prior there is no need for the evaluation of

the normalizing constant (i.e. no need to calculate the

integral in the denominator).

To guess for a conjugate prior it is helpful to look at the

likelihood as a function of θ.

Existence theorem:

When the likelihood is a member of the exponential family a

conjugate prior exists.
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Prior distribution − Non-informative (Objec-
tive)

A prior that does not favor one value of θ over another.

M.Sc. Applied Mathematics, NTUA, 2014 – p.42/104



Prior distribution − Non-informative (Objec-
tive)

A prior that does not favor one value of θ over another.

For compact parameter spaces the above is achieved by a

“flat” prior, i.e. uniform over the parameter space.
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Prior distribution − Non-informative (Objec-
tive)

A prior that does not favor one value of θ over another.

For compact parameter spaces the above is achieved by a

“flat” prior, i.e. uniform over the parameter space.

For non-compact parameter spaces (like θ ∈ (−∞,+∞))

then the flat prior (p(θ) ∝ c) is not a distribution. However,

it is still legitimate to be used iff:
∫

f(x|θ)dθ = K < ∞.

These priors are called “improper” priors and they lead to

proper posteriors since:

p(θ|x) =
f(x|θ)p(θ)

∫

f(x|θ)p(θ)dθ
=

f(x|θ)c
∫

f(x|θ)cdθ
=

f(x|θ)
∫

f(x|θ)dθ

(remember the Fiducial inference).
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Prior distribution − Non-informative (Objec-
tive)

Example:

f(x|θ) ∼ B(n, θ) and for the parameter θ we assume:

p(θ) ∼ U(0, 1)
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Prior distribution − Non-informative (Objec-
tive)

Example:

f(x|θ) ∼ B(n, θ) and for the parameter θ we assume:

p(θ) ∼ U(0, 1)

Then:

p(θ|x) ∝ f(x|θ)p(θ) ∝ [θx(1 − θ)n−x] 1

= θ(x+1)−1(1 − θ)(2−x)−1
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Prior distribution − Non-informative (Objec-
tive)

Example:

f(x|θ) ∼ B(n, θ) and for the parameter θ we assume:

p(θ) ∼ U(0, 1)

Then:

p(θ|x) ∝ f(x|θ)p(θ) ∝ [θx(1 − θ)n−x] 1

= θ(x+1)−1(1 − θ)(2−x)−1

Thus, p(θ|x) ∼ Beta(x + 1, 2 − x)
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Prior distribution − Non-informative (Objec-
tive)

Example:

f(x|θ) ∼ B(n, θ) and for the parameter θ we assume:

p(θ) ∼ U(0, 1)

Then:

p(θ|x) ∝ f(x|θ)p(θ) ∝ [θx(1 − θ)n−x] 1

= θ(x+1)−1(1 − θ)(2−x)−1

Thus, p(θ|x) ∼ Beta(x + 1, 2 − x)

Remember that U(0, 1) ≡ Beta(1, 1) which we showed

earlier to be conjugate for the Binomial likelihood.
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Prior distribution − Non-informative (Objec-
tive)

Example:

f(x|θ) ∼ B(n, θ) and for the parameter θ we assume:

p(θ) ∼ U(0, 1)

Then:

p(θ|x) ∝ f(x|θ)p(θ) ∝ [θx(1 − θ)n−x] 1

= θ(x+1)−1(1 − θ)(2−x)−1

Thus, p(θ|x) ∼ Beta(x + 1, 2 − x)

Remember that U(0, 1) ≡ Beta(1, 1) which we showed

earlier to be conjugate for the Binomial likelihood.

In general with flat priors we do not get posteriors in closed

forms and use of MCMC techniques is inevitable.
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Prior distribution − Jeffreys prior

It is the prior, which is invariant under 1-1 transformations.

It is given as:

p0(θ) ∝ [I(θ)]1/2

where I(θ) is the expected Fisher information i.e.:

I(θ) = EX|θ

[

(

∂

∂θ
logf(X|θ)

)2
]

= −EX|θ

[

∂2

∂θ2
logf(X|θ)

]

Jeffreys prior is not necessarily a flat prior.
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Prior distribution − Jeffreys prior

It is the prior, which is invariant under 1-1 transformations.

It is given as:

p0(θ) ∝ [I(θ)]1/2

where I(θ) is the expected Fisher information i.e.:

I(θ) = EX|θ

[

(

∂

∂θ
logf(X|θ)

)2
]

= −EX|θ

[

∂2

∂θ2
logf(X|θ)

]

Jeffreys prior is not necessarily a flat prior.

As we mentioned earlier we should not take into account the

data in determining the prior. Jeffreys prior is consistent

with this principle, since it makes use of the form of the

likelihood and not of the actual data.
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Prior distribution − Jeffreys prior

Example: Jeffreys prior when f(x|θ) ∼ B(n, θ).
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Prior distribution − Jeffreys prior

Example: Jeffreys prior when f(x|θ) ∼ B(n, θ).

logL(θ) = log

(

n

x

)

+ xlogθ + (n − x)log(1 − θ)

∂logL(θ)

∂θ
=

x

θ
−

n − x

1 − θ

∂2logL(θ)

∂θ2
= −

x

θ2
−

n − x

(1 − θ)2

EX|θ

[

∂2logL(θ)

∂θ2

]

= −
nθ

θ2
−

n − nθ

(1 − θ)2
= −

n

θ(1 − θ)

p0(θ) ∝ θ−1/2(1 − θ)−1/2 ≡ Beta(1/2, 1/2)
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Prior distribution − Vague (low information)

In some cases we try to make the support of the prior

distribution to be vague by “flatten” it out. This can be done

by “exploding” the variance, which will make the prior

almost flat (from a practical perspective) for the range of

values we are concerned with.
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Prior distribution − Mixture

When we need to model different a-priori opinions, we

might end up with a multimodal prior distribution. In such

cases we can use a mixture of prior distributions:
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Prior distribution − Mixture

When we need to model different a-priori opinions, we

might end up with a multimodal prior distribution. In such

cases we can use a mixture of prior distributions:

p(θ) =
k
∑

i=1

pi(θ)
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Prior distribution − Mixture

When we need to model different a-priori opinions, we

might end up with a multimodal prior distribution. In such

cases we can use a mixture of prior distributions:

p(θ) =
k
∑

i=1

pi(θ)

Then the posterior distribution will be a mixture with the

same number of components as the prior.
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Hyperpriors − Hierarchical Modeling

The prior distribution will have its own parameter values: η,

i.e. p(θ|η). Thus far we assumed that η were known exactly.
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Hyperpriors − Hierarchical Modeling

The prior distribution will have its own parameter values: η,

i.e. p(θ|η). Thus far we assumed that η were known exactly.

If η are unknown, then the natural thing to do, within the

Bayesian framework, is to assign a prior on them h(η), i.e. a

second level prior or hyperprior. Then:

p(θ|x) =
f(x, θ)

∫

f(x, θ)dθ
=

∫

f(x, θ,η)dη
∫ ∫

f(x, θ,η)dθdη

=

∫

f(x|θ)p(θ|η)h(η)dη
∫ ∫

f(x|θ)p(θ|η)h(η)dηdθ
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Hyperpriors − Hierarchical Modeling

The prior distribution will have its own parameter values: η,

i.e. p(θ|η). Thus far we assumed that η were known exactly.

If η are unknown, then the natural thing to do, within the

Bayesian framework, is to assign a prior on them h(η), i.e. a

second level prior or hyperprior. Then:

p(θ|x) =
f(x, θ)

∫

f(x, θ)dθ
=

∫

f(x, θ,η)dη
∫ ∫

f(x, θ,η)dθdη

=

∫

f(x|θ)p(θ|η)h(η)dη
∫ ∫

f(x|θ)p(θ|η)h(η)dηdθ

This build up hierarchy can continue to a 3rd, 4th, etc level,

leading to hierarchical models.
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Sequential updating

In the Bayesian analysis we can work sequentially (i.e.

update from prior to posterior as each data becomes

available) or not (i.e. first collect all the data and the obtain

the posterior).
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Sequential updating

In the Bayesian analysis we can work sequentially (i.e.

update from prior to posterior as each data becomes

available) or not (i.e. first collect all the data and the obtain

the posterior).

The posterior distributions obtained working either

sequentially or not will be identical as long as the data are

conditionally independent, i.e.:

f(x1, x2|θ) = f(x1|θ)f(x2|θ)
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Sequential updating

p(θ|x1, x2) ∝ f(x1, x2|θ)p(θ) = f(x1|θ)f(x2|θ)p(θ)

∝ f(x2|θ)p(θ|x1)
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Sequential updating

p(θ|x1, x2) ∝ f(x1, x2|θ)p(θ) = f(x1|θ)f(x2|θ)p(θ)

∝ f(x2|θ)p(θ|x1)

In some settings the sequential analysis is very helpful since

it can provide inference for θ in an online fashion and not

once the data collection is completed.
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Sensitivity Analysis

At the end of our analysis it is wise to check how robust

(sensitive) our results are to the particular choice of the prior

we made.
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Sensitivity Analysis

At the end of our analysis it is wise to check how robust

(sensitive) our results are to the particular choice of the prior

we made.

So it is proposed to repeat the analysis with a vague,

noninformative, etc, priors and observe the effect these

changes have to the obtained results.
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Example: Drugs on the job (cont.)

Suppose that (i) a researcher has estimated that 10% of transportation

workers use drugs on the job, and (ii) the researcher is 95% sure that the

actual proportion was no larger than 25%. Therefore our best guess is

θ ≈ 0.1 and P (θ < 0.25) = 0.95.
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Example: Drugs on the job (cont.)

Suppose that (i) a researcher has estimated that 10% of transportation

workers use drugs on the job, and (ii) the researcher is 95% sure that the

actual proportion was no larger than 25%. Therefore our best guess is

θ ≈ 0.1 and P (θ < 0.25) = 0.95.

We assume the prior is a member of some parametric family of

distributions and to use the information to identify an appropriate

member of the family.
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Example: Drugs on the job (cont.)

Suppose that (i) a researcher has estimated that 10% of transportation

workers use drugs on the job, and (ii) the researcher is 95% sure that the

actual proportion was no larger than 25%. Therefore our best guess is

θ ≈ 0.1 and P (θ < 0.25) = 0.95.

We assume the prior is a member of some parametric family of

distributions and to use the information to identify an appropriate

member of the family.

For example, suppose we consider the family of Beta(a, b) distributions

for θ
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Example: Drugs on the job (cont.)

Suppose that (i) a researcher has estimated that 10% of transportation

workers use drugs on the job, and (ii) the researcher is 95% sure that the

actual proportion was no larger than 25%. Therefore our best guess is

θ ≈ 0.1 and P (θ < 0.25) = 0.95.

We assume the prior is a member of some parametric family of

distributions and to use the information to identify an appropriate

member of the family.

For example, suppose we consider the family of Beta(a, b) distributions

for θ

We identify the estimate of 10% with the mode

m =
a − 1

a + b − 2
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Example: Drugs on the job (cont.)

So we set

0.10 =
a − 1

a + b − 2
⇒ a =

1 + 0.1b

0.9
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Example: Drugs on the job (cont.)

So we set

0.10 =
a − 1

a + b − 2
⇒ a =

1 + 0.1b

0.9

Using Chun-lung Su’s Betabuster, we can search through possible b

values until we find a distribution Beta(a, b) for which

P (θ < 0.25) = 0.95
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Example: Drugs on the job (cont.)

So we set

0.10 =
a − 1

a + b − 2
⇒ a =

1 + 0.1b

0.9

Using Chun-lung Su’s Betabuster, we can search through possible b

values until we find a distribution Beta(a, b) for which

P (θ < 0.25) = 0.95

The Beta(a = 3.4, b = 23) distribution actually satisfies the constraints

given above for the transportation industry problem
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Example: Drugs on the job (cont.)

Suppose n = 100 workers were tested and that 15 tested positive for drug

use. Let y be the number who tested positive. Therefore we have

y|θ ∼ Bin(n, θ).
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Example: Drugs on the job (cont.)

Suppose n = 100 workers were tested and that 15 tested positive for drug

use. Let y be the number who tested positive. Therefore we have

y|θ ∼ Bin(n, θ).

The posterior is θ|y ∼ Beta(y + a = 18.4, n − y + b = 108)
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Example: Drugs on the job (cont.)

Suppose n = 100 workers were tested and that 15 tested positive for drug

use. Let y be the number who tested positive. Therefore we have

y|θ ∼ Bin(n, θ).

The posterior is θ|y ∼ Beta(y + a = 18.4, n − y + b = 108)

The prior mode is

0.098 ≈
a − 1

a + b − 2
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Example: Drugs on the job (cont.)

Suppose n = 100 workers were tested and that 15 tested positive for drug

use. Let y be the number who tested positive. Therefore we have

y|θ ∼ Bin(n, θ).

The posterior is θ|y ∼ Beta(y + a = 18.4, n − y + b = 108)

The prior mode is

0.098 ≈
a − 1

a + b − 2

The posterior mode is

0.14 ≈
y + a − 1

n + a + b − 2
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Example: Drugs on the job (cont.)
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Example: Drugs on the job (cont.)

We also consider the situation with n = 500 and y = 75
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Example: Drugs on the job (cont.)

We also consider the situation with n = 500 and y = 75

The posterior is now

θ|y ∼ Beta(y + a = 78.4, n − y + b = 448)
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Example: Drugs on the job (cont.)

We also consider the situation with n = 500 and y = 75

The posterior is now

θ|y ∼ Beta(y + a = 78.4, n − y + b = 448)

Notice how the posterior is getting more concentrated
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Example: Drugs on the job (cont.)
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Example: Drugs on the job (cont.)

These data could have arisen as the original sample of size

100, which resulted in then Beta(18.4, 108) posterior.
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Example: Drugs on the job (cont.)

These data could have arisen as the original sample of size

100, which resulted in then Beta(18.4, 108) posterior.

Then, if an additional 400 observations were taken with 60

positive outcomes, we could have used the Beta(18.4, 108)

as our prior, which would have been combined with the

current data to obtain the Beta(78.4, 448) posterior.

M.Sc. Applied Mathematics, NTUA, 2014 – p.58/104



Example: Drugs on the job (cont.)

These data could have arisen as the original sample of size

100, which resulted in then Beta(18.4, 108) posterior.

Then, if an additional 400 observations were taken with 60

positive outcomes, we could have used the Beta(18.4, 108)

as our prior, which would have been combined with the

current data to obtain the Beta(78.4, 448) posterior.

Bayesian methods thus handle sequential sampling in a

straightforward way.
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Example 1 (Carlin and Louis)

We give to 16 customers of a fast food chain to taste two

patties (one is expensive and the other is cheap) in a random

order. The experiment is double blind, i.e. neither the

customer nor the chef/server knows which is the expensive

patty. We had 13 out of the 16 customers to be able to tell

the difference (i.e. they preferred the more expensive patty).
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Example 1 (Carlin and Louis)

We give to 16 customers of a fast food chain to taste two

patties (one is expensive and the other is cheap) in a random

order. The experiment is double blind, i.e. neither the

customer nor the chef/server knows which is the expensive

patty. We had 13 out of the 16 customers to be able to tell

the difference (i.e. they preferred the more expensive patty).

Assuming that the probability (θ) of being able to

discriminate the expensive patty is constant, then we had

X=13, where:

X|θ ∼ B(16, θ)
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Example 1 (Carlin and Louis)

Our goal is to determine whether θ = 1/2 or not, i.e.

whether the customers guess or they can actually tell the

difference.
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Example 1 (Carlin and Louis)

Our goal is to determine whether θ = 1/2 or not, i.e.

whether the customers guess or they can actually tell the

difference.

We will make use of three different prior distributions:
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Example 1 (Carlin and Louis)

Our goal is to determine whether θ = 1/2 or not, i.e.

whether the customers guess or they can actually tell the

difference.

We will make use of three different prior distributions:

• θ ∼ Beta(1/2, 1/2), which is the Jeffreys prior
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Example 1 (Carlin and Louis)

Our goal is to determine whether θ = 1/2 or not, i.e.

whether the customers guess or they can actually tell the

difference.

We will make use of three different prior distributions:

• θ ∼ Beta(1/2, 1/2), which is the Jeffreys prior

• θ ∼ Beta(1, 1) ≡ U(0, 1), which is the noninformative prior
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Example 1 (Carlin and Louis)

Our goal is to determine whether θ = 1/2 or not, i.e.

whether the customers guess or they can actually tell the

difference.

We will make use of three different prior distributions:

• θ ∼ Beta(1/2, 1/2), which is the Jeffreys prior

• θ ∼ Beta(1, 1) ≡ U(0, 1), which is the noninformative prior

• θ ∼ Beta(2, 2), which is a skeptical prior, putting the prior

mass around 1/2
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Example 1 (Carlin and Louis)

Plot of the three prior distributions:
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Example 1 (Carlin and Louis)

Plot of the three prior distributions:
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Example 1 (Carlin and Louis)

Plot of the three prior distributions:
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Example 1 (Carlin and Louis)

As we showed earlier the posterior distribution under this

conjugate setup will be given as:

p(θ|x) ∼ Beta(α + x, β + n − x)
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Example 1 (Carlin and Louis)

As we showed earlier the posterior distribution under this

conjugate setup will be given as:

p(θ|x) ∼ Beta(α + x, β + n − x)

Thus the respective posteriors of the three prior choices will

be:
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Example 1 (Carlin and Louis)

As we showed earlier the posterior distribution under this

conjugate setup will be given as:

p(θ|x) ∼ Beta(α + x, β + n − x)

Thus the respective posteriors of the three prior choices will

be:

• p(θ|x) ∼ Beta(13.5, 3.5), for the Jeffreys prior
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Example 1 (Carlin and Louis)

As we showed earlier the posterior distribution under this

conjugate setup will be given as:

p(θ|x) ∼ Beta(α + x, β + n − x)

Thus the respective posteriors of the three prior choices will

be:

• p(θ|x) ∼ Beta(13.5, 3.5), for the Jeffreys prior

• p(θ|x) ∼ Beta(14, 4), for the noninformative prior
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Example 1 (Carlin and Louis)

As we showed earlier the posterior distribution under this

conjugate setup will be given as:

p(θ|x) ∼ Beta(α + x, β + n − x)

Thus the respective posteriors of the three prior choices will

be:

• p(θ|x) ∼ Beta(13.5, 3.5), for the Jeffreys prior

• p(θ|x) ∼ Beta(14, 4), for the noninformative prior

• p(θ|x) ∼ Beta(15, 5), for the skeptical prior
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Example 1 (Carlin and Louis)

Plot of the three posterior distributions:

M.Sc. Applied Mathematics, NTUA, 2014 – p.63/104



Example 1 (Carlin and Louis)

Plot of the three posterior distributions:
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Example 1 (Carlin and Louis)

Plot of the three posterior distributions:
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Example 2: Normal/Normal model

Assume that xi|θ
iid
∼ N(θ, σ2) for i = 1, 2, . . . , n with σ2

being known. Then we have: x|θ ∼ N (θ, σ2/n)
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Example 2: Normal/Normal model

Assume that xi|θ
iid
∼ N(θ, σ2) for i = 1, 2, . . . , n with σ2

being known. Then we have: x|θ ∼ N (θ, σ2/n)

The conjugate prior is: p(θ) ∼ N (µ, τ 2)
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Example 2: Normal/Normal model

Assume that xi|θ
iid
∼ N(θ, σ2) for i = 1, 2, . . . , n with σ2

being known. Then we have: x|θ ∼ N (θ, σ2/n)

The conjugate prior is: p(θ) ∼ N (µ, τ 2)

Then the posterior distribution is given by:

p(θ|x) ∼ N

(

σ2

n
µ + τ 2x

σ2

n
+ τ 2

,
σ2

n
τ 2

σ2

n
+ τ 2

)
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Example 2: Normal/Normal model

Assume that xi|θ
iid
∼ N(θ, σ2) for i = 1, 2, . . . , n with σ2

being known. Then we have: x|θ ∼ N (θ, σ2/n)

The conjugate prior is: p(θ) ∼ N (µ, τ 2)

Then the posterior distribution is given by:

p(θ|x) ∼ N

(

σ2

n
µ + τ 2x

σ2

n
+ τ 2

,
σ2

n
τ 2

σ2

n
+ τ 2

)

If we will define:

Kn =
σ2

n
σ2

n
+ τ 2

where 0 ≤ Kn ≤ 1 we have:
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Example 2: Normal/Normal model

E[θ|x] = Knµ + (1 − Kn)x

M.Sc. Applied Mathematics, NTUA, 2014 – p.65/104



Example 2: Normal/Normal model

E[θ|x] = Knµ + (1 − Kn)x

V [θ|x] = Knτ
2 = (1 − Kn)σ2/n
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Example 2: Normal/Normal model

E[θ|x] = Knµ + (1 − Kn)x

V [θ|x] = Knτ
2 = (1 − Kn)σ2/n

• E[θ|x] is a convex combination of the prior mean and the

current data with the weight depending on the variance terms
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Example 2: Normal/Normal model

E[θ|x] = Knµ + (1 − Kn)x

V [θ|x] = Knτ
2 = (1 − Kn)σ2/n

• E[θ|x] is a convex combination of the prior mean and the

current data with the weight depending on the variance terms

• V [θ|x] ≤ min{τ 2, σ2/n}
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Example 2: Normal/Normal model

E[θ|x] = Knµ + (1 − Kn)x

V [θ|x] = Knτ
2 = (1 − Kn)σ2/n

• E[θ|x] is a convex combination of the prior mean and the

current data with the weight depending on the variance terms

• V [θ|x] ≤ min{τ 2, σ2/n}

• As n ↑ the posterior converges to a point mass at x (the

MLE)

M.Sc. Applied Mathematics, NTUA, 2014 – p.65/104



Example 2: Normal/Normal model

E[θ|x] = Knµ + (1 − Kn)x

V [θ|x] = Knτ
2 = (1 − Kn)σ2/n

• E[θ|x] is a convex combination of the prior mean and the

current data with the weight depending on the variance terms

• V [θ|x] ≤ min{τ 2, σ2/n}

• As n ↑ the posterior converges to a point mass at x (the

MLE)

• As τ 2 ↑ then the posterior converges to the N(x, σ2/n)
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Example 2: Normal/Normal model

E[θ|x] = Knµ + (1 − Kn)x

V [θ|x] = Knτ
2 = (1 − Kn)σ2/n

• E[θ|x] is a convex combination of the prior mean and the

current data with the weight depending on the variance terms

• V [θ|x] ≤ min{τ 2, σ2/n}

• As n ↑ the posterior converges to a point mass at x (the

MLE)

• As τ 2 ↑ then the posterior converges to the N(x, σ2/n)

• As τ 2 ↓ then the posterior converges a point mass at µ (the

prior mean)
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Example 2: Normal/Normal model

Lets look on some graphical illustrations regarding the effect

of the sample size n and the variance of the prior

distribution, τ 2. Specifically, lets assume that x = 4 and:

M.Sc. Applied Mathematics, NTUA, 2014 – p.66/104



Example 2: Normal/Normal model

Lets look on some graphical illustrations regarding the effect

of the sample size n and the variance of the prior

distribution, τ 2. Specifically, lets assume that x = 4 and:
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Example 2: Normal/Normal model

Lets look on some graphical illustrations regarding the effect

of the sample size n and the variance of the prior

distribution, τ 2. Specifically, lets assume that x = 4 and:

• n = 1, 10, 100 with p(θ) ∼ N(0, 1)

• n = 1 with p(θ) ∼ N (0, 102)
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Example 2: Normal/Normal model

Lets look on some graphical illustrations regarding the effect

of the sample size n and the variance of the prior

distribution, τ 2. Specifically, lets assume that x = 4 and:

• n = 1, 10, 100 with p(θ) ∼ N(0, 1)

• n = 1 with p(θ) ∼ N (0, 102)

• n = 1, 10, 100 with p(θ) ∼ N (0, 0.12)
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Example 2: Normal/Normal model

Plot of the N(0, 1) prior distribution:

M.Sc. Applied Mathematics, NTUA, 2014 – p.67/104



Example 2: Normal/Normal model

Plot of the N(0, 1) prior distribution:
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Example 2: Normal/Normal model

Plot of the N(0, 1) prior distribution:
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1 with p(θ) ∼ N(0, 1):
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1 with p(θ) ∼ N(0, 1):
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1, 10 with p(θ) ∼ N(0, 1):
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1, 10 with p(θ) ∼ N(0, 1):
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1, 10, 100 with p(θ) ∼ N(0, 1):
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1, 10, 100 with p(θ) ∼ N(0, 1):
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Example 2: Normal/Normal model

Plot of the N (0, 102) prior distribution:
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Example 2: Normal/Normal model

Plot of the N (0, 102) prior distribution:
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1 with p(θ) ∼ N (0, 102):
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Plot of p(θ|x), when n = 1 with p(θ) ∼ N (0, 102):
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1 with p(θ) ∼ N (0, 102):
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Example 2: Normal/Normal model

Plot of the N (0, 0.12) prior distribution:
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Example 2: Normal/Normal model

Plot of the N (0, 0.12) prior distribution:
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Example 2: Normal/Normal model

Plot of the N (0, 0.12) prior distribution:
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1 with p(θ) ∼ N (0, 0.12):
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Plot of p(θ|x), when n = 1 with p(θ) ∼ N (0, 0.12):
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1 with p(θ) ∼ N (0, 0.12):
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1, 10 with p(θ) ∼ N (0, 0.12):
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Plot of p(θ|x), when n = 1, 10 with p(θ) ∼ N (0, 0.12):
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1, 10 with p(θ) ∼ N (0, 0.12):
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1, 10, 100 with p(θ)N (0, 0.12):
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1, 10, 100 with p(θ)N (0, 0.12):
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Example 2: Normal/Normal model

Plot of p(θ|x), when n = 1, 10, 100 with p(θ)N (0, 0.12):
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Inference regarding θ

For a Bayesian, the posterior distribution is a complete

description of the unknown parameter θ. Thus for a

Bayesian the posterior distribution is the inference.
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For a Bayesian, the posterior distribution is a complete

description of the unknown parameter θ. Thus for a

Bayesian the posterior distribution is the inference.

However, most people (especially non statisticians) are

accustomed to the usual form of frequentist inference

procedures, like point/interval estimates and hypothesis

testing for θ.
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Inference regarding θ

For a Bayesian, the posterior distribution is a complete

description of the unknown parameter θ. Thus for a

Bayesian the posterior distribution is the inference.

However, most people (especially non statisticians) are

accustomed to the usual form of frequentist inference

procedures, like point/interval estimates and hypothesis

testing for θ.

In what follows we will provide, with the help of decision

theory, the most representative ways of summarizing the

posterior distribution to the well known frequentist’s forms

of inference.
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Decision Theory: Basic definitions

• Θ = parameter space, all possible values of θ
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Decision Theory: Basic definitions

• Θ = parameter space, all possible values of θ

• A = action space, all possible values a for estimating θ

• L(θ, a) : Θ ×A → ℜ, loss occurred (profit if negative)

when we take action a ∈ A and the the true state is θ ∈ Θ.
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• A = action space, all possible values a for estimating θ

• L(θ, a) : Θ ×A → ℜ, loss occurred (profit if negative)

when we take action a ∈ A and the the true state is θ ∈ Θ.

• The triplet (Θ,A, L(θ, a)) along with the data x from the

likelihood f(x|θ) constitute a statistical decision problem.
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• A = action space, all possible values a for estimating θ

• L(θ, a) : Θ ×A → ℜ, loss occurred (profit if negative)

when we take action a ∈ A and the the true state is θ ∈ Θ.

• The triplet (Θ,A, L(θ, a)) along with the data x from the

likelihood f(x|θ) constitute a statistical decision problem.

• X = all possible data of the experiment.
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Decision Theory: Basic definitions

• Θ = parameter space, all possible values of θ

• A = action space, all possible values a for estimating θ

• L(θ, a) : Θ ×A → ℜ, loss occurred (profit if negative)

when we take action a ∈ A and the the true state is θ ∈ Θ.

• The triplet (Θ,A, L(θ, a)) along with the data x from the

likelihood f(x|θ) constitute a statistical decision problem.

• X = all possible data of the experiment.

• δ(x) : X → A, decision rule (strategy), which indicates

which action a ∈ A we will pick, when x ∈ X is observed.
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Decision Theory: Basic definitions

• Θ = parameter space, all possible values of θ

• A = action space, all possible values a for estimating θ

• L(θ, a) : Θ ×A → ℜ, loss occurred (profit if negative)

when we take action a ∈ A and the the true state is θ ∈ Θ.

• The triplet (Θ,A, L(θ, a)) along with the data x from the

likelihood f(x|θ) constitute a statistical decision problem.

• X = all possible data of the experiment.

• δ(x) : X → A, decision rule (strategy), which indicates

which action a ∈ A we will pick, when x ∈ X is observed.

• D = set of all available decision rules.
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Decision Theory: Evaluating decision rules

Our goal is to obtain the decision rule (strategy), from the

set D, for which we have the minimum loss.
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Decision Theory: Evaluating decision rules

Our goal is to obtain the decision rule (strategy), from the

set D, for which we have the minimum loss.

But the loss function, L(θ, a), is a random quantity.
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Decision Theory: Evaluating decision rules

Our goal is to obtain the decision rule (strategy), from the

set D, for which we have the minimum loss.

But the loss function, L(θ, a), is a random quantity.

From a Frequentist perspective it is random in x (since we

fixed θ).

M.Sc. Applied Mathematics, NTUA, 2014 – p.79/104



Decision Theory: Evaluating decision rules

Our goal is to obtain the decision rule (strategy), from the

set D, for which we have the minimum loss.

But the loss function, L(θ, a), is a random quantity.

From a Frequentist perspective it is random in x (since we

fixed θ).

From a Bayesian perspective it is random in θ (since we

fixed the data x).
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Decision Theory: Evaluating decision rules

Our goal is to obtain the decision rule (strategy), from the

set D, for which we have the minimum loss.

But the loss function, L(θ, a), is a random quantity.

From a Frequentist perspective it is random in x (since we

fixed θ).

From a Bayesian perspective it is random in θ (since we

fixed the data x).

Thus, each school will evaluate a decision rule differently,

by finding the average loss, with respect to what is random

each time.
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Decision Theory: Frequentist & Posterior Risk

• Frequentist Risk: FR( . , δ(x)) : Θ → ℜ, where:

FR(θ, δ(x)) = EX|θ [L(θ, δ(x))] =

∫

L(θ, δ(x))f(x|θ)dx
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Decision Theory: Frequentist & Posterior Risk

• Frequentist Risk: FR( . , δ(x)) : Θ → ℜ, where:

FR(θ, δ(x)) = EX|θ [L(θ, δ(x))] =

∫

L(θ, δ(x))f(x|θ)dx

• Posterior Risk: PR(θ , δ(.)) : X → ℜ, where:

PR(θ, δ(x)) = Eθ|x [L(θ, δ(x))] =

∫

L(θ, δ(x))p(θ|x)dθ
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Decision Theory: Frequentist & Posterior Risk

• Frequentist Risk: FR( . , δ(x)) : Θ → ℜ, where:

FR(θ, δ(x)) = EX|θ [L(θ, δ(x))] =

∫

L(θ, δ(x))f(x|θ)dx

• Posterior Risk: PR(θ , δ(.)) : X → ℜ, where:

PR(θ, δ(x)) = Eθ|x [L(θ, δ(x))] =

∫

L(θ, δ(x))p(θ|x)dθ

FR assumes θ to be fixed and x random, while PR treats θ as

random and x as fixed. Thus each approach takes out

(averages) the uncertainty from one source only.
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Decision Theory: Bayes risk

For the decision rules to become comparable, it is necessary

to integrate out the remaining source of uncertainty to each

of the FR and PR. This is achieved with the Bayes Risk:

M.Sc. Applied Mathematics, NTUA, 2014 – p.81/104



Decision Theory: Bayes risk

For the decision rules to become comparable, it is necessary

to integrate out the remaining source of uncertainty to each

of the FR and PR. This is achieved with the Bayes Risk:

BR(p(θ), δ(x)) = Eθ [FR(θ, δ(x))] =

∫

FR(θ, δ(x))p(θ)dθ

= EX [PR(θ, δ(x))] =

∫

PR(θ, δ(x))f(x)dx
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Decision Theory: Bayes risk

For the decision rules to become comparable, it is necessary

to integrate out the remaining source of uncertainty to each

of the FR and PR. This is achieved with the Bayes Risk:

BR(p(θ), δ(x)) = Eθ [FR(θ, δ(x))] =

∫

FR(θ, δ(x))p(θ)dθ

= EX [PR(θ, δ(x))] =

∫

PR(θ, δ(x))f(x)dx

Thus the BR summarizes each decision rule with a single

number: the average loss, with respect to random θ and

random x (being irrelevant to which quantity we integrate

out first).
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Decision Theory: Bayes rule

The decision rule which minimizes the Bayes Risk is called

Bayes Rule and is denoted as δp(.). Thus:
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Decision Theory: Bayes rule

The decision rule which minimizes the Bayes Risk is called

Bayes Rule and is denoted as δp(.). Thus:

δp(.) = inf
δ∈D

{BR(p(θ), δ(x))}
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Decision Theory: Bayes rule

The decision rule which minimizes the Bayes Risk is called

Bayes Rule and is denoted as δp(.). Thus:

δp(.) = inf
δ∈D

{BR(p(θ), δ(x))}

The Bayes rule minimizes the expected (under both

uncertainties) loss. It is known as the “rational” player’s

criterion in picking up a decision rule from D.
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Decision Theory: Bayes rule

The decision rule which minimizes the Bayes Risk is called

Bayes Rule and is denoted as δp(.). Thus:

δp(.) = inf
δ∈D

{BR(p(θ), δ(x))}

The Bayes rule minimizes the expected (under both

uncertainties) loss. It is known as the “rational” player’s

criterion in picking up a decision rule from D.

Bayes rule might not exist for a problem (just as the

minimum of function does not always exists).
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Decision Theory: Minimax rule

A more conservative player does not wish to minimize the

expected loss. He/She is interested in putting a bound to the

worst that can happen.

M.Sc. Applied Mathematics, NTUA, 2014 – p.83/104



Decision Theory: Minimax rule

A more conservative player does not wish to minimize the

expected loss. He/She is interested in putting a bound to the

worst that can happen.

This leads to the minimax decision rule δ∗(.) which is

defined as the decision rule for which:

sup
θ∈Θ

{FR(θ, δ∗(.))} = inf
δ∈D

[

sup
θ∈Θ

{FR(θ, δ(.))}

]
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Decision Theory: Minimax rule

A more conservative player does not wish to minimize the

expected loss. He/She is interested in putting a bound to the

worst that can happen.

This leads to the minimax decision rule δ∗(.) which is

defined as the decision rule for which:

sup
θ∈Θ

{FR(θ, δ∗(.))} = inf
δ∈D

[

sup
θ∈Θ

{FR(θ, δ(.))}

]

The minimax rules takes into account the worst that can

happen, ignoring the performance anywhere else. This can

lead in some cases to very poor choices.
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Inference for θ: Point estimation

The goal is to summarize the posterior distribution to a

single summary number.
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and under the appropriate loss function L(θ, a) we search

for the Bayes rule.
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Inference for θ: Point estimation

The goal is to summarize the posterior distribution to a

single summary number.

From a decision theory perspective we assume that A = Θ

and under the appropriate loss function L(θ, a) we search

for the Bayes rule.

E.g.1

If L(θ, a) = (θ − a)2 then δp(x) = E[θ|x]
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Inference for θ: Point estimation

The goal is to summarize the posterior distribution to a

single summary number.

From a decision theory perspective we assume that A = Θ

and under the appropriate loss function L(θ, a) we search

for the Bayes rule.

E.g.1

If L(θ, a) = (θ − a)2 then δp(x) = E[θ|x]

E.g.2

If L(θ, a) = |θ − a| then δp(x) = median{p(θ|x)}
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Inference for θ: Interval estimation

In contrast to the frequentist’s Confidence Interval (CI),

where the parameter θ belongs to the CI with probability 0

or 1, within the Bayesian framework we can have probability

statements regarding the parameter θ. Specifically:
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Inference for θ: Interval estimation

In contrast to the frequentist’s Confidence Interval (CI),

where the parameter θ belongs to the CI with probability 0

or 1, within the Bayesian framework we can have probability

statements regarding the parameter θ. Specifically:

Any subset Cα(x) of Θ is called a (1 − α)100% credible set

if:
∫

Cα(x)

p(θ|x)dθ = 1 − α
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Inference for θ: Interval estimation

In contrast to the frequentist’s Confidence Interval (CI),

where the parameter θ belongs to the CI with probability 0

or 1, within the Bayesian framework we can have probability

statements regarding the parameter θ. Specifically:

Any subset Cα(x) of Θ is called a (1 − α)100% credible set

if:
∫

Cα(x)

p(θ|x)dθ = 1 − α

In simple words the (1 − α)100% credible set is any subset

of the parameter space Θ that has posterior coverage

probability equal to (1 − α)100%.
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Inference for θ: Interval estimation

In contrast to the frequentist’s Confidence Interval (CI),

where the parameter θ belongs to the CI with probability 0

or 1, within the Bayesian framework we can have probability

statements regarding the parameter θ. Specifically:

Any subset Cα(x) of Θ is called a (1 − α)100% credible set

if:
∫

Cα(x)

p(θ|x)dθ = 1 − α

In simple words the (1 − α)100% credible set is any subset

of the parameter space Θ that has posterior coverage

probability equal to (1 − α)100%.

The credible sets are not uniquely defined.
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Inference for θ: Interval estimation
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Inference for θ: Interval estimation
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Inference for θ: Interval estimation
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Inference for θ: Interval estimation
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Inference for θ: Interval estimation

For a fixed value of α we would like to obtain the “shortest”

credible set. This leads to the credible set that contains the

most probable values and is known as Highest Posterior

Density (HPD) set. Thus:
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Inference for θ: Interval estimation

For a fixed value of α we would like to obtain the “shortest”

credible set. This leads to the credible set that contains the

most probable values and is known as Highest Posterior

Density (HPD) set. Thus:

HPDα(x) = {θ : p(θ|x) ≥ γ}

where for the constant γ we have:

∫

HPDα(x)

p(θ|x)dθ = 1 − α

i.e. we keep the most probable region.
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Inference for θ: Interval estimation
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Inference for θ: Interval estimation

• The HPD set is unique and for unimodal, symmetric

densities we can obtain it by cutting α/2 from each tail.
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Inference for θ: Interval estimation

• The HPD set is unique and for unimodal, symmetric

densities we can obtain it by cutting α/2 from each tail.

• In all other cases we can obtain it numerically. In some

cases the HPD might be a union of disjoint sets:
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Inference for θ: Interval estimation
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Inference for θ: Hypothesis Testing

We are interested in testing H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1
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Inference for θ: Hypothesis Testing

We are interested in testing H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1

In frequentist based HT, we assume that H0 is true and using

the test statistics, T (x), we obtain the p-value, which we

compare to the level of significance to draw a decision.
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In frequentist based HT, we assume that H0 is true and using

the test statistics, T (x), we obtain the p-value, which we

compare to the level of significance to draw a decision.

Several limitations of this approach are known. Like:

• There are cases where the likelihood principle is violated.

• The p-value offers evidence against H0 (we are not allowed

to say “accept H0” but only “fail to reject”).

M.Sc. Applied Mathematics, NTUA, 2014 – p.94/104



Inference for θ: Hypothesis Testing

We are interested in testing H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1

In frequentist based HT, we assume that H0 is true and using

the test statistics, T (x), we obtain the p-value, which we

compare to the level of significance to draw a decision.

Several limitations of this approach are known. Like:

• There are cases where the likelihood principle is violated.

• The p-value offers evidence against H0 (we are not allowed

to say “accept H0” but only “fail to reject”).

• p-values do not have any interpretation as weight of

evidence for H0 (i.e. it is not the probability that H0 is true).
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Inference for θ: Hypothesis Testing

Within the Bayesian framework though, each of the

hypotheses are simple subsets of the parameter space Θ and

thus we can simply pick the hypothesis with the highest

posterior coverage p(Hi|x), where:

p(Hi|x) =
f(x|Hi)p(Hi)

f(x)
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Inference for θ: Hypothesis Testing

Within the Bayesian framework though, each of the

hypotheses are simple subsets of the parameter space Θ and

thus we can simply pick the hypothesis with the highest

posterior coverage p(Hi|x), where:

p(Hi|x) =
f(x|Hi)p(Hi)

f(x)

Jeffreys proposed the use of Bayes Factor, which is the ratio

of posterior to prior odds:

BF =
p(H0|x)/p(H1|x)

p(H0)/p(H1)

where the smaller the BF the more the evidence against H0
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Inference for θ: Hypothesis Testing

From a decision theoretic approach one can derive the Bayes

test. Assume that ai denotes the action of accepting Hi. We

make use of the generalized 0-1 loss function:
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Inference for θ: Hypothesis Testing

From a decision theoretic approach one can derive the Bayes

test. Assume that ai denotes the action of accepting Hi. We

make use of the generalized 0-1 loss function:

L(θ, a0) =







0, θ ∈ Θ0

cII , θ ∈ Θc
0







, L(θ, a1) =







cI , θ ∈ Θ0

0, θ ∈ Θc
0







where cI(cII) is the cost of Type I (II) error.
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Inference for θ: Hypothesis Testing

From a decision theoretic approach one can derive the Bayes

test. Assume that ai denotes the action of accepting Hi. We

make use of the generalized 0-1 loss function:

L(θ, a0) =







0, θ ∈ Θ0

cII , θ ∈ Θc
0







, L(θ, a1) =







cI , θ ∈ Θ0

0, θ ∈ Θc
0







where cI(cII) is the cost of Type I (II) error.

Then, the Bayes test (test with minimum Bayes risk) rejects

H0 if:

p(H0|x) <
cII

cI + cII
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Predictive Inference

In some cases we are not interested about θ but we are

concerned in drawing inference for future observable(s) y.
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In some cases we are not interested about θ but we are

concerned in drawing inference for future observable(s) y.

In the frequentist approach, usually we obtain and estimate

of θ (θ̂) which we plug into the likelihood (f(y|θ̂)) and draw

inference for the random future observable(s) y.
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Predictive Inference

In some cases we are not interested about θ but we are

concerned in drawing inference for future observable(s) y.

In the frequentist approach, usually we obtain and estimate

of θ (θ̂) which we plug into the likelihood (f(y|θ̂)) and draw

inference for the random future observable(s) y.

However, the above does not take into account the

uncertainty in estimating θ by θ̂, leading (falsely) to shorter

confidence intervals.
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Predictive Inference

Within the Bayesian arena though, θ is a random variable

and thus its effect can be integrated out leading to the

predictive distribution:
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Predictive Inference

Within the Bayesian arena though, θ is a random variable

and thus its effect can be integrated out leading to the

predictive distribution:

f(y|x) =

∫

f(y|θ)p(θ|x)dθ
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Predictive Inference

Within the Bayesian arena though, θ is a random variable

and thus its effect can be integrated out leading to the

predictive distribution:

f(y|x) =

∫

f(y|θ)p(θ|x)dθ

The predictive distribution can be easily summarized to

point/interval estimates and/or provide hypothesis testing for

future observable(s) y.
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Predictive Inference

Example:

We observe the data f(x|θ) ∼ Binomial(n, θ) and for the

parameter θ we assume: p(θ) ∼ Beta(α, β). In the future

we will obtain N more data points (independently of the

first n) with Z referring to the future number of success

(Z = 0, 1, . . . , N). What can be said about Z?
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Predictive Inference

Example:

We observe the data f(x|θ) ∼ Binomial(n, θ) and for the

parameter θ we assume: p(θ) ∼ Beta(α, β). In the future

we will obtain N more data points (independently of the

first n) with Z referring to the future number of success

(Z = 0, 1, . . . , N). What can be said about Z?

p(θ|x) ∝ f(x|θ)p(θ)

∝
[

θx(1 − θ)n−x
] [

θα−1(1 − θ)β−1
]

= θα+x−1(1 − θ)n+β−x−1 ⇒

⇒ p(θ|x) ∼ Beta(α + x, β + n − x)
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Predictive Inference

f(z|x) =

∫

f(z|θ)p(θ|x)dθ =

=

(

N

z

)

1

Be(α + x, β + n − x)
×

×

∫

θα+x−1(1 − θ)n+β−x−1θz(1 − θ)N−zdθ ⇒

⇒ f(z|x) =

(

N

z

)

Be(α + x + z, β + n − x + N − z)

Be(α + x, β + n − x)

with z = 0, 1, . . . , N .

Thus Z|X is Beta-Binomial.
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Example: Drugs on the job (cont.)

Recall: We have sampled n = 100 individuals and y = 15

tested positive for drug use.
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Example: Drugs on the job (cont.)

Recall: We have sampled n = 100 individuals and y = 15

tested positive for drug use.

θ is the probability that someone in the population would

have tested positive for drugs
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Example: Drugs on the job (cont.)

Recall: We have sampled n = 100 individuals and y = 15

tested positive for drug use.

θ is the probability that someone in the population would

have tested positive for drugs

We use the following prior: θ ∼ Beta(a = 3.4, b = 23)

M.Sc. Applied Mathematics, NTUA, 2014 – p.101/104



Example: Drugs on the job (cont.)

Recall: We have sampled n = 100 individuals and y = 15

tested positive for drug use.

θ is the probability that someone in the population would

have tested positive for drugs

We use the following prior: θ ∼ Beta(a = 3.4, b = 23)

The posterior is then

θ|y ∼ Beta(y + a = 18.4, n − y + b = 108)

M.Sc. Applied Mathematics, NTUA, 2014 – p.101/104



Example: Drugs on the job (cont.)

Then consider a collection of 50 individuals who have just

been selected for testing.
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Example: Drugs on the job (cont.)

Then consider a collection of 50 individuals who have just

been selected for testing.

We can let yf be the number of drug users among these

nf = 50 and we can consider making inferences about yf .
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Example: Drugs on the job (cont.)

Then consider a collection of 50 individuals who have just

been selected for testing.

We can let yf be the number of drug users among these

nf = 50 and we can consider making inferences about yf .

yf = 0, 1, . . . , 50

M.Sc. Applied Mathematics, NTUA, 2014 – p.102/104



Example: Drugs on the job (cont.)

The predictive density of yf is

p(yf |y) =

∫

p(yf |θ)p(θ|y)dθ =

=

∫

p(yf |θ)Bin(yf |50, θ)Beta(θ|18.4, 108)dθ =

=

(

50

yf

)

Be(18.4 + yf , 108 + 50 − yf)

Be(18.4, 108)
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Summary
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Summary

Bayes Rocks!!!
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