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Generalization of Algebraic Operations via Enrichment

Christina Vasilakopoulou

Summary

In this dissertation we examine enrichment relations between cat-
egories of dual structure and we sketch an abstract framework
where the theory of fibrations and enriched category theory are
appropriately united.

We initially work in the context of a monoidal category, where
we study an enrichment of the category of monoids in the category
of comonoids under certain assumptions. This is induced by the
existence of the universal measuring comonoid, a notion originally
defined by Sweedler in [Swe69] in vector spaces. We then con-
sider the fibred category of modules over arbitrary monoids, and
we establish its enrichment in the opfibred category of comodules
over arbitrary comonoids. This is now exhibited via the existence
of the universal measuring comodule, introduced by Batchelor in
[Bat00].

We then generalize these results to their ‘many-object’ ver-
sion. In the setting of the bicategory of V-enriched matrices (see
[KL01]), we investigate an enrichment of V-categories in V-coca-
tegories as well as of V-modules in V-comodules. This part consti-
tutes the core of this treatment, and the theory of fibrations and
adjunctions between them plays a central role in the development.
The newly constructed categories are described in detail, and they
appropriately fit in a picture of duality, enrichment and fibrations
as in the previous case.

Finally, we introduce the concept of an enriched fibration, ai-
med to provide a formal description for the above examples. Re-
lated work in this direction, though from a different perspective
and with dissimilar outcomes, has been realized by Shulman in
[Shu13]. We also discuss an abstraction of this picture in the en-
vironment of double categories, concerning categories of monoids
and modules therein. Relevant ideas can be found in [FGK11].
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CHAPTER 1

Introduction

Algebras and their modules, as well as coalgebras and their comodules, are

amongst the simplest and most fundamental structures in abstract mathematics.

Formally, algebras are dual to coalgebras and modules are dual to comodules, but

in practice that point of view is very limited. The initial motivation for the material

included in the present thesis was a more striking relation between these notions:

in natural circumstances, the mere category of algebras is enriched in the category

of coalgebras, and that of modules in comodules. These enrichments encapsulate

some very rich algebraic structure, that of the so-called measuring coalgebras and

comodules.

More specifically, the notion of the universal measuring coalgebra P (A,B) was

first introduced by Sweedler in [Swe69], and has been employed as a way of giving

sense to an idea of generalized maps between algebras. Examples of this point of

view and applications are given by Marjorie Batchelor in [Bat91] and [Bat94].

It was Gavin Wraith in the 1970’s, who first suggested that this coalgebra gives

an enrichment of the category of algebras in the category of coalgebras, however

for a long time there was no explicit treatment of Wraith’s idea in the literature.

Furthermore, this idea can be appropriately extended to give an enrichment of a

global category of modules in a global category of comodules, via the universal

measuring comodule Q(M,N) introduced by Batchelor in [Bat00]. These objects

have also found applications on their own, analytically presented in the provided

references.

Independently of questions of enrichment, there is a well-known fibration of

the global category of modules over algebras in addition to an opfibration of the

comodules over coalgebras. This extra structure seems to point torwards a picture

that integrates the two classical notions, enrichment and fibration, which generally

do not go well together. One of the basic objectives of this thesis is to successfully

describe what could be called an enriched fibration.

Inspired by the above, we are led to consider the ‘many-object’ generalization

of the previous situation. Since an algebra is evidently a (linear) category with one

object, the categories of interest on this next step are naturally those of enriched

categories and enriched modules, on the one hand. For the analogues of coalgebras

and comodules, we proceed to the definitions of an enriched cocategory and enriched

comodule. After setting up the theory of these new categories and exploring some

of their more pertinent properties, we establish an enrichment of V-categories in V-

cocategories, and of V-modules in V-comodules. The similarities with the base case

1



2 1. INTRODUCTION

of (co)algebras and (co)modules are expressed primarily by the methodology and the

series of arguments followed. However, this generalization reveals more advanced

ideas and certain patterns of expected behaviour of the categories involved. This

newly acquired perspective urges us to develop a theoretic frame in which a general

machinery, certain aspects of which were described in detail for the two particular

cases, would always result in the speculated enriched fibration picture.

Thus, another central aim of this dissertation is to identify this abstract frame-

work which leads to instances of the enriched fibration notion, with starting point

a monoidal bicategory or even more closely related, a monoidal pseudo double cate-

gory. In fact, the longer term goal of such a development was its possible application

to different contexts, and in particular to the theory of operads. In more detail, if

we replace the bicategory of V-matrices (which is the starting point for the duality

and enrichment relations for V-categories and V-modules) with the bicategory of

V-symmetries (see also [GJ14]), there is strong evidence that we can establish an

analogous enriched fibration which merges symmetric V-operads and operad mod-

ules and their duals. Moreover, both coloured and non-coloured versions can be

included in this plan. This indicates a fruitful area for future work.

The thesis is divided in two parts: the material in Part I is mostly well-known,

serving as the background for the development that follows, while the material in

Part II is mostly new. We assume familiarity with the basic theory of categories, as

in the standard textbook [ML98] by MacLane.

In Chapter 2, we review the basic definitions and features of the theory of

bicategories and 2-categories, with particular emphasis on the concepts of mon-

ads/comonads and their modules/comodules in this abstract setting. Classic refer-

ences on the main notions are [Bén67, Gra74, Str80, Bor94a, KS74]. Coher-

ence for bicategories, very briefly mentioned here, is discussed in [GPS95, MLP85,

Pow89], and of course MacLane’s coherence theorem for monoidal categories pre-

ceded it ([ML63, Kel64, JS93]). Monads in a 2-category have been widely studied,

with basic reference Ross Street’s [Str72]. Categories of modules, more commonly

referred to as algebras especially in the 2-category Cat, are formed as categories of

Eilenberg-Moore algebras on the hom-categories K(A,B) of a bicategory K.

Chapter 3 summarizes basic concepts related to monoidal categories, following

some of the many standard references such as [ML98, JS93, Str07]. Categories

of monoids and modules will play a very important role for the development of

this dissertation, hence extra attention has been given to the presentation of their

properties. In particular, questions regarding the existence of the free monoid and

the cofree comonoid constructions have been of primary interest. Certain papers by

Hans Porst [Por08c, Por08b, Por08a] have addressed this issue from a particular

point of view, in the context of locally presentable categories (see [AR94]). Specific

methods, especially the ones related to local presentability of the categories of dual

objects, are carefully exhibited here and in some cases generalized a bit further.

The main definitions and elementary features of the theory of enriched categories

are summarized in Chapter 4, with standard references [Kel05, EK66]. Since
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enriched modules are essential for the generalization of the monoids and modules

correlation to a V-categories and V-modules one, we devote a section to some of

their aspects needed for our purposes, see [Bén73, Law73]. In the last part, we

recall parts of the theory of actions of monoidal categories on ordinary categories,

which lead to a particular enrichment, as described also in Janelidze and Kelly’s

[JK02]. In fact, this constitutes a special case of a more general result discussed

in [GP97], namely that there is an equivalence between the 2-category of tensored

W-categories and the 2-category of closed W-representations, for W a right-closed

bicategory.

In Chapter 5, the key material about fibred category theory is reviewed. Cen-

tral notions and results are presented, including the correspondence between cloven

fibrations and indexed categories due to Grothendieck. The notion of a fibra-

tion was first introduced in [Gro61], and suitable references on the subject are

[Gra66, Jac99, Joh02b] and Hermida’s work as can be found in, for example,

[Her93, Her94]. Finally, we move to the topic of fibred adunctions and fibre-

wise limits, where the main constructions and ideas can be found in [Her94] and

[Bor94b]. Presently, we develop the issue a bit further: we examine conditions not

only for adjunctions between fibrations over the same basis, but also for general

fibred adjunctions, i.e. between fibrations over arbitrary bases. This slightly gen-

eralizes results which exist in the literature currently. This was not done aimlessly:

Theorem 5.3.7 constitutes an extremely valuable tool for the establishment of the

pursued enrichments later in the thesis.

Chapter 6 describes in detail the enrichment of monoids and modules, which is

the motivating case for what follows. In fact, the results of this chapter in a some-

what more restricted version previously appeared in [Vas12], and have already been

of use to a certain extent, see for example [AJ13]. Explicitly, we identify the more

general categorical ideas underlying the existence of Sweedler’s measuring coalge-

bra P (A,B) of [Swe69, Bat91] and prove its existence in a much broader context.

Its defining equation is in particular also provided in [Por08a] and observed in

[Bar74]. Combined with the theory of actions of monoidal categories, we show how

these P (A,B) for any two monoids A and B induce an enrichment of the category

of monoids Mon(V) in the category of comonoids Comon(V), under specific as-

sumptions on V. Subsequently, the ‘global’ categories of modules and comodules

Mod and Comod are defined, fibred and opfibred respectively over monoids and

comonoids. These categories have nice properties, and in particular, as hinted by

Wischnewsky at the end of [Wis75], Comod is comonadic over V ×Comon(V), a

fact which clarifies its structure. Via the existence of an adjoint of a functor between

the global categories, the universal measuring comodule Q(M,N) is constructed, as

a variation of the notion in [Bat00] in our general setting. Again through a spe-

cific action functor, we obtain an enrichment of Mod in Comod, induced by these

Q(M,N) for any two modules M and N as the enriched hom-objects. Parts of this

work were accomplished in collaboration with Prof. Martin Hyland and Dr. Ignacio
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Lopez Franco. The diagram which roughly depicts the above is the following:

Mod
enriched //

fibred

��

Comod

opfibred

��
Mon(V)

enriched
// Comon(V).

Chapter 7 moves up a level, aiming to estabish essentially the same results as in

the previous chapter but for the ‘many-object’ case of (co)monoids and (co)modules

as explained earlier. The bicategory of V-matrices is the base on which the categories

of enriched (co)categories and (co)modules are formed, following until a certain point

the development of [BCSW83] and [KL01]. The former in fact examines categories

enriched in bicategories via matrices enriched in bicategories, but for our purposes

we restrict to the one-object case, that of monoidal categories. This approach of em-

ploying matrices presents certain advantages: it leads to more unified results such

as existence of limits and colimits, monadicity relations, local presentability for the

categories of V-graphs, V-categories and V-modules, avoiding explicit formulas if

they are not desired. Regarding this, Wolff’s much earlier [Wol74] contains many

important explicit constructions for V-Grph and V-Cat, for a symmetric monoidal

closed category V. In the same underlying framework of V-matrices, the category

V-Cocat of enriched cocategories is described (Definition 7.3.8). Except from gen-

eralizing the concept of comonoids for a monoidal category, V-cocategories appear

to have important applications in their own right. In papers of Lyubashenko, Keller

and others (e.g. [Lyu03, Kel06, KM07]) A∞-categories, which are natural gener-

alizations of A∞-algebras arising in connection with Floer homology and related to

mirror symmetry, are defined as a special kind of differential graded cocategories.

The category of V-comodules is also accordingly defined, and the diagram which

summarizes the main results of the chapter is

V-Mod
enriched //

fibred

��

V-Comod

opfibred

��
V-Cat

enriched
// V-Cocat.

Notice that both enrichments are established via adjoint functors to actions, making

use of the fibrational and opfibrational structure of the categories involved (though

for the bottom one, the hom-functor can be obtained directly via an adjoint functor

theorem). The same holds for the simpler case of the previous chapter, for the global

category of modules and comodules. This is precisely why general fibred adjunctions

in Part I prove to be essential for the study of the particular examples analyzed in

this thesis.
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Finally, in Chapter 8 we utilize the results and theoretical patterns of the previ-

ous two chapters in order to move ‘from special to general’: we formulate a definition

of an enriched fibration and sketch how it is possible to obtain such a formation

in the context of a bicategory or double category. The structures of importance

here are the categories of monoids and comonoids, modules and comodules of a

(pseudo) double category. We note that the enriched fibration concept, originally

mentioned in [GG76], has been studied from an admittedly different point of view

by Mike Shulman in [Shu13] and also independently in [Bun13]. However, the

main definitions and constructions diverge from the ones presented here. Other par-

ticular references for notions employed, such as monoidal bicategories (or monoidal

2-categories) and pseudomonoids therein, are for example [Car95, GPS95, Gur07]

and [DS97, Mar97]. The fundamental definition of a monoidal fibration was first

introduced in [Shu08]. Appropriate references for the theory of pseudo double cat-

egories for our purposes are [GP99, GP04, Shu10, FGK11], and the original

concept of a double category, i.e. a category (weakly) internal in Cat, is traced

back to [Ehr63]. This last part of the dissertation is not as detailed as it could

be, due to limitations of the current treatment. In the double categories section,

most definitions and proofs are only outlined, whereas enrichment in the setting of

fibrations could be the starting point of an entire enriched fibred category theory.

The principal function of this final chapter is to clarify the occurrence of the main

results of this work in an abstract environment, and serve as a guide for future

applications.
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CHAPTER 2

Bicategories

The purpose of this chapter is to provide the reader with the necessary back-

ground material regarding the theory of bicategories. In this way, the related con-

structions and results used later in the thesis can be readily referred to herein.

The original definition of a bicategory and a lax functor (‘morphism’) between

bicategories can be found in Bénabou’s [Bén67]. Other references, including the

definitions of transformations and modifications are [Str96, Bor94a]. 2-categorical

notions are here presented as ‘strictified’ versions of the bicategorical ones, whereas

in later chapters the Cat-enriched view is also addressed. Due to coherence for

bicategories, we are often able to use 2-categorical machinery and operations such

as pasting and mates correspondence, directly in the weaker context. Categories of

(co)monads and (co)modules in bicategories are carefully presented in this chapter,

in order to later be employed as the appropriate formalization for specific cate-

gories of interest. Regarding 2-category theory, see the indicative [KS74, Lac10a],

whereas [Str72] presents the formal theory of monads in 2-categories.

With respect to the notation followed in this chapter, note that the multiplication

for monads is denoted by the letter “m” rather than the usual “µ”, since the latter

is employed for the monad action on their modules. Similarly, we use “∆” for

comultiplication of comonads and “δ” for the coaction on comodules. We also prefer

the term ‘(co)module’ from the more common ‘(co)algebra’ for a (co)monad.

2.1. Basic definitions

Definition 2.1.1. A bicategory K is specified by the following data:

• A collection of objects A,B,C, ..., also called 0-cells.

• For each pair of objects A,B, a category K(A,B) whose objects are called

morphisms or 1-cells and whose arrows are called 2-cells. The composition is called

vertical composition of 2-cells and is denoted by

A

f

""
g //

h

<<
�� α

�� α′
B = A

f
))

h

55��α′·α B.

The identity 2-cell for this composition is

A

f
))

f

55�� 1f B.

9



10 2. BICATEGORIES

• For each triple of objects A,B,C, a functor

◦ : K(B,C)×K(A,B) −→ K(A,C)

called horizontal composition. It maps a pair of 1-cells (g, f) to g ◦ f = gf and a

pair of 2-cells (β, α) to β ∗ α, depicted by

A

f
((

u

66�� α B

g
((

v

66�� β C = A �� β∗α

gf

%%

vu

:: C.

• For each object A ∈ K, a 1-cell 1A : A→ A called the identity 1-cell of A.

• Associativity constraint: for each quadruple of objects A,B,C,D of K, a

natural isomorphism

K(C,D)×K(B,C)×K(A,B)
1×◦ //

◦×1

��

K(C,D)×K(A,C)

◦

��
K(B,D)×K(A,B) ◦

// K(A,D)

FN
α

called the associator, with components invertible 2-cells

αh,g,f : (h ◦ g) ◦ f ∼−→ h ◦ (g ◦ f).

• Identity constraints: for each pair of objects A,B in K, natural isomorphisms

1×K(A,B) ∼= K(A,B)× 1

ks
λ

∼=

��

IA×1

��

1×IB

��
K(A,A)×K(A,B) ◦

// K(A,B)

+3ρ

K(A,B)×K(B,B)◦
oo

called the unitors, with components invertible 2-cells

λf : 1B ◦ f
∼−→ f, ρf : f ◦ 1A

∼−→ f.

Notice that the functor IA : 1 → K(A,A) is given by 1A on objects and 11A on

arrows.

The above are subject to the coherence conditions expressed by the following

axioms: for 1-cells A
f−→ B

g−→ C
h−→ D

k−→ E, the diagrams

((k ◦ h) ◦ g) ◦ f

αkh,g,f

��

αk,h,g∗1f // (k ◦ (h ◦ g)) ◦ f

αk,hg,f

��
(k ◦ h) ◦ (g ◦ f)

αk,h,gf
((

k ◦ ((h ◦ g) ◦ f)

1k∗αh,g,fvv
k ◦ (h ◦ (g ◦ f))

(2.1)



2.1. BASIC DEFINITIONS 11

(g ◦ 1B) ◦ f
αg,1B,f //

ρg∗1f %%

g ◦ (1B ◦ f)

1g∗λfyy
g ◦ f

(2.2)

commute.

It follows from the functoriality of the horizontal composition that for any com-

posable 1-cells f and g we have the equality

A

f
((

f

66�� 1f B

g
((

g

66�� 1g C = A

gf
((

vu

66�� 1gf C

and for any 2-cells α, α′, β, β′ as below we have the equality

���� α
CC

�� α′
// ���� β

CC
�� β
′
// = ##�� β∗α

;;
�� β
′∗α′

//

also known as the interchange law. The above equalities can also be written

1g ◦ 1f = 1g◦f ,

(β′ · β) ∗ (α′ · α) = (β′ ∗ α′) · (β ∗ α).

Given a bicategory K, we may reverse the 1-cells but not the 2-cells and form

the bicategory Kop, with Kop(A,B) = K(B,A). We may also reverse only the 2-cells

and form the bicategory Kco with Kco(A,B) = K(A,B)op. Reversing both 1-cells

and 2-cells yields a bicategory (Kco)op = (Kop)co.

Examples 2.1.2.

(1) For any category C with chosen pullbacks, there is the bicategory of spans

Span(C). This has the same objects as C and hom-categories Span(X,Y )

with objects spans X ← A → Y and arrows α : A ⇒ B commutative

diagrams

A
vv ((

α
��

X Y

B

66hh

with obvious (vertical) composition. The horizontal composition is given

by pullbacks, and their universal property defines the constraints α, ρ, λ.

(2) Suppose C is a regular category, i.e. any morphism factorizes as a strong

epimorphism followed by a monomorphism, and strong epimorphisms are

closed under pullbacks. The bicategory of relations Rel(C) is defined as

Span(C), but its 1-cells are spans X ← R→ Y with jointly monic legs, or

equivalently relations R� X × Y. The factorization system is required in

order to define composition X → Y → Z, since the resulting map from the

pullback to X × Z is not necessarily monic.
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(3) In the bicategory of bimodules BMod objects are rings, 1-cells from R to

S are (R,S)-bimodules (i.e. abelian groups which have a left R-action and

a right S-action that commute with each other), and 2-cells are bimodule

maps. The horizontal composition R � // S � // T is given by tensoring over

S, constructed as in Section 3.4. This generalizes to the bicategory V-

BMod of V-categories and V-bimodules, described in Section 4.2.

(4) The bicategory of matrices Mat has sets as objects, X × Y -indexed fam-

ilies of sets as 1-cells from X to Y and families of functions as 2-cells.

Composition is given by ‘matrix multiplication’: if A = (Axy) : X → Y

and B = (Byz) : Y → Z, their composite is given by the family of sets

(AB)xy =
∑

y

(
Axy ×Byz

)
. The enriched version of this bicategory, V-

Mat, is going to be extensively employed for the needs of this thesis.

Definition 2.1.3. Given bicategories K and L, a lax functor F : K → L consists

of the following data:

• For any object A ∈ K, an object FA ∈ L.

• For every pair of objects A,B ∈ K, a functor FA,B : K(A,B)→ L(FA,FB).

• For every triple of objects A,B,C ∈ K, a natural transformation

K(B,C)×K(A,B)
◦ //

FB,C×FA,B

��

K(A,C)

FA,C

��
L(FB,FC)× L(FA,FB) ◦

// L(FA,FC)

EM
δ

(2.3)

with components δg,f : (Fg) ◦ (Ff) → F (g ◦ f), for 1-cells g : B → C and

f : A→ B.

• For every object A ∈ K, a natural transformation

1
IA //

IFA **

K(A,A)

FA,A

��
L(FA,FA)

DLγ

(2.4)

with components γA : 1FA → F (1A).

The natural transformations γ and δ have to satisfy the following coherence

axioms: for 1-cells A
f−→ B

g−→ C
h−→ D, the diagrams

(Fh ◦Fg) ◦Ff
δh,g∗1 //

α

��

F (h ◦ g) ◦Ff

δhg,f

��
Fh ◦ (Fg ◦Ff)

1∗δg,f
��

F ((h ◦ g) ◦ f)

Fα

��
Fh ◦F (g ◦ f)

δh,gf

// F (h ◦ (g ◦ f)),

(2.5)
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1FB ◦Ff
γB∗1 //

λ

��

F (1B) ◦Ff

δ1B,f

��
Ff F (1B ◦ f)

Fλ
oo

, Ff ◦ 1FA

1∗γA //

ρ

��

Ff ◦F (1A)

δf,1A
��

Ff F (f ◦ 1A)
Fρ

oo

(2.6)

commute.

If γ and δ are natural isomorphisms (respectively identities), then F is called a

pseudofunctor or homomorphism (respectively strict functor) of bicategories. Sim-

ilarly, we can define a colax functor of bicategories by reversing the direction of γ

and δ, sometimes also called oplax. All these kinds of functors between bicategories

can be composed, and this composition obeys strict associativity and identity laws.

Thus we obtain categories Bicatl, Bicatc, Bicatps, Bicats with the same objects

and arrows lax, colax, pseudo and strict functors respectively.

Definition 2.1.4. Consider two lax functors F ,G : K → L between bicate-

gories. A lax natural transformation τ : F ⇒ G consists of the following data:

• For each object A ∈ K, a morphism τA : FA→ GA in L.

• For any pair of objects A,B ∈ K, a natural transformation

K(A,B)
FA,B //

GA,B

��

L(FA,FB)

L(1,τB)

��
L(GA,GB)

L(τA,1)
// L(FA,GB)

CKτ

(2.7)

with components, for any f : A→ B, 2-cells

FA
Ff

//

τA

��

FB

τB

��
GA

G f
// GB.

?Gτf

(2.8)

These data are subject to following axioms: given any pair of arrows A
f−→ B

g−→ C

in K, the component τg◦f relates to the 2-cells τf , τg by the equality

FA
Ff

//

τA
��

F (g◦f)

��
FB

Fg
//

τB
��

FC

τC
��

KS
δg,f

GA
G f

// GB
G g

//

@Hτf

GC

@Hτg

=

FA
F (g◦f)

//

τA
��

FC

τC
��

GA
G (g◦f)

//

G f ++

GC

FNτg◦f

KS
δ′g,f

GB
G g

FF

(2.9)
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expressing the compatibility of τ with composition. Also, for any object A ∈ K we

have the equality

FA
F1A //

τA

��

FA

τA

��
GA

G 1A //

1GA

??GAKS
γ′A

BJτ1A

=

FA

F1A

  

1FA

//

τA
&&

τA

��

∼=
∼=

FA

τA

��

KS
γA

GA
1GA

// GA

(2.10)

expressing the compatibility of τ with units.

Remark.

(1) The naturality for the transformation (2.7) can be expressed by the equality

FA
Fg

++
33

Ff

Fα

τA

��

FB
KS

τB

��
GA

G f
// GB

@Hτf
=

FA
Fg

//

τA

��

FB

τB

��
GA

G g
++
33

G f

Gα GB
KS

@Hτg

for any 2-cell α : f ⇒ f .

(2) Using pasting operations properties (see Section 2.3), the equality (2.9) can

be expressed by the commutativity of

G g ◦ (G f ◦ τA)
G g∗τf //

α−1

��

G g ◦ (τB ◦Ff)
α−1

// (G g ◦ τB) ◦Ff

τg∗Ff
��

(G g ◦ G f) ◦ τA
δ′g,f∗τA ��

(τC ◦Fg) ◦Ff

α
��

G (g ◦ f) ◦ τA

τg◦f **

τC ◦ (Fg ◦Ff)

τC∗δg,ftt
τC ◦F (g ◦ f)

inside the hom-category L(FA,GC).

(3) Similarly, the equality (2.10) can be expressed by the commutativity of

1GA ◦ τA
γ′A∗τA //

λ ��

G (1A) ◦ τA

τ1A

��

τA
ρ−1
��

τA ◦ 1FA τA∗γA
// τA ◦F (1A).

A lax natural transformation τ is a pseudonatural transformation (respectively

strict) when all the 2-cells τf as in (2.8) are isomorphisms (respectively identities).
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Also, a colax (or oplax ) natural transformation is equipped with a natural trans-

formation in the opposite direction of (2.7). Note that between either lax or colax

functors F ,G : K → L of bicategories, we can consider both lax and colax natural

transformations.

Definition 2.1.5. Consider lax functors F ,G : K → L between bicategories,

and τ, σ : F ⇒ G two lax natural transformations. A modification m : τ V σ is a

family of 2-cells

FA

τA
**

σA

44�� mA GA

for every object A of K, such that

FA
Ff

//

σA

��

τA

��

FB

σB

��
GA

G f
//

+3mA

GB

>Fσf

=

FA
Ff

//

τA

��

FB

σB

��

τB

��
GA

G f
// GB.

>Fτf +3mB

(2.11)

It is not hard to define composition of natural transformations and modifica-

tions, and respective identities. Therefore, for any two bicategories K,L there is a

functor bicategory Lax(K,L) = Bicatl(K,L) of lax functors, lax natural transfor-

mations and modifications, and it has a sub-bicategory Hom(K,L) = Bicatps(K,L)

of pseudofunctors, pseudonatural transformations and modifications. In fact, the

tricategory Hom is a very important 3-dimensional category of bicategories (see

[GPS95, Gur13]). Notice that Hom(K,L) is a strict bicategory, i.e. 2-category

when L is a 2-category.

2.2. Monads and modules in bicategories

Definition 2.2.1. A monad in a bicategory K consists of an object B together

with an endomorphism t : B → B and 2-cells η : 1B ⇒ t, m : t ◦ t ⇒ t called the

unit and multiplication respectively, such that the diagrams

(t ◦ t) ◦ t
αt,t,t //

m◦1
��

t ◦ (t ◦ t)
1◦m
��

t ◦ t

m %%

t ◦ t

myy
t

and 1B ◦ t
η◦1

//

λt

  

t ◦ t

m

��

t ◦ 1B
1◦η

oo

ρt

~~
t

commute.

Equivalently, a monad in a bicategory K is a lax functor F : 1 → K, where 1

is the terminal bicategory with a unique 0-cell ? (one 1-cell and one 2-cell). This

amounts to an object F (?) = B ∈ K and a functor

F?,? : 1(?, ?)→ K(B,B)
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which picks up an endoarrow t : B → B in K. The natural transformations δ and γ

of the lax functor give the multiplication and the unit of t

m ≡ δ1?,1? : t ◦ t→ t and η ≡ γ? : 1B → t

and the axioms for F give the monad axioms for (t,m, η).

Remark 2.2.2. As mentioned earlier, lax functors between bicategories compose.

Therefore if G : K → L is a lax functor between bicategories, the composite

1
F−−→ K G−−→ L

is itself a lax functor from 1 to L, hence defines a monad. In other words, if t : B → B

is a monad in the bicategory K, then G t : GB → GB is a monad in the bicategory

L, i.e. lax functors preserve monads.

For an object B in the bicategory K and a monad t : B → B, there is an induced

ordinary monad (i.e. in Cat) on the hom-categories, namely ‘post-composition with

t’. Explicitly, for any 0-cell A we have an endofunctor

K(A, t) : K(A,B) −→ K(A,B)

which is the mapping

A

f
''

g
77�� α B � // A

f
''

g
77�� α B

t // B

for objects and morphisms in K(A,B). The multiplication and unit of the monad m̄

and η̄, are natural transformations with components, for each f : A→ B in K(A,B),

m̄f =

B t

""
A

f
// B ��m

t 00

t

:: B, η̄f = A �� ρ
−1
f

f

$$

f
..

B.

B
t

CC
1B ..

��
η

Now, consider the Eilenberg-Moore category K(A,B)K(A,t) of K(A, t)-algebras. It

has as objects 1-cells f : A→ B equipped with an action µ : K(A, t)(f)⇒ f , i.e. a

2-cell

B t

##
A

f 00

f

88�� µ B

(2.12)

compatible with the multiplication and unit of the monad K(A, t):

B
t
))

��m

t

44

B t

""
A

f 00

�� µ

t

88 B =

B
t
))
B t

""
A

f

==
�� µ

f 00

t

77�� µ
B,

(2.13)
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B
1B

%%

t
..��

η
A

f 00

f

55�� µ B =

B
1B

##
A

f 00

f

77�� ρf B.

Such an 1-cell f together with an action µ is called a t-module or t-algebra. An

arrow (f, µ)
τ−→ (g, µ′) is a 2-cell τ : f ⇒ g in K compatible with the actions, i.e.

such that

B t

%%
A

f ..

g

CC
�� τ

g

@@
�� µ
′

B =

B t

""
A

f 00

f

00�� µ

g

AA

�� τ

B,

(2.14)

called a morphism of t-modules.

Definition 2.2.3. The category of Eilenberg-Moore algebras K(A,B)K(A,t) for

t : B → B a monad in the bicategory K is the category of left t-modules with domain

A, denoted by A
t Mod.

We may similarly define the category ModBs of right s-modules with codomain

B. It is the category of Eilenberg-Moore algebras K(A,B)K(s,B) for s : A → A a

monad in the bicategory K, where K(s,B) is the monad ‘pre-composition with s’.

Moreover, the above endofunctors combined define the monad

K(s, t) : K(A,B) // K(A,B)

(A
f−→ B) � // (A

s−→ A
f−→ B

t−→ B)

on K(A,B), and the category of algebras K(A,B)K(s,t) is now called the category of

right s/left t-bimodules, tMods.

Remark 2.2.4. In the classical case where K=Cat, the term left (respectively

right) ‘t-algebra’ is more commonly restricted to those with domain (respectively

codomain) the unit category 1. A left t-module with domain 1, i.e. a functor

f : 1 → B, is then identified with the corresponding object X in the category B,

and the actions µ : t(X) → X and maps τ : X → Y are morphisms in B. The

category K(1, B)K(1,t) is then denoted by Bt.

Notice that in the above presentation, there is a certain circularity in the def-

inition of modules for a monad in an arbitrary bicategory K. More precisely, the

Eilenberg-Moore category of algebras which is used in the very definition of the cat-

egory of modules in this abstract setting (Definition 2.2.3), is in reality a particular

example of a category of modules for a monad in K = Cat. However, this could

be easily avoided: in Kelly-Street’s [KS74], an action of a monad t in a 2-category

is defined to be a 2-cell as in (2.12) satisfying the specified axioms, and maps are

defined accordingly. Hence, the fact that we now identify from the beginning this

structure with the Eilenberg-Moore category for an ordinary monad does not affect

the level of generality.

Dually to the above, we have the following definitions.
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Definition 2.2.5. A comonad in a bicategory K consists of an object A together

with an endoarrow u : A → A and 2-cells ∆ : u ⇒ u ◦ u, ε : u ⇒ 1A called the

comultiplication and counit respectively, such that the diagrams

u
∆

''

∆

ww
u ◦ u

∆◦1
��

u ◦ u
1◦∆
��

(u ◦ u) ◦ u
αu,u,u

// u ◦ (u ◦ u),

1A ◦ u

λu

!!

u ◦ uε◦1oo 1◦ε // u ◦ 1A

ρu

}}
u

∆

OO

commute.

Notice that a comonad in the bicategory K is precisely a monad in the bicategory

Kco. Similarly to before, for an object A and a comonad u : A→ A in a bicategory

K, there is an induced comonad in Cat between hom-categories

K(u,B) : K(A,B) −→ K(A,B)

which precomposes objects and arrows in K(A,B) with the 1-cell u : A → A. The

axioms for a comonad follow again from those of u, hence we can form the category

of coalgebras K(A,B)K(u,B). Its objects are 1-cells h : A → B equipped with a

coaction δ : h⇒ K(u,B)(h), i.e. a 2-cell

A

h

&&

u
..
�� δ B

A h

==

compatible with the comultiplication and counit of K(u,B), and arrows σ : (h, δ)→
(k, δ′) are 2-cells σ : h⇒ k compatible with the coactions δ and δ′.

Definition 2.2.6. The category of Eilenberg-Moore coalgebras K(A,B)K(u,B)

for a comonad u : A → A in the bicategory K is the category of right u-comodules

or coalgebras with codomain B, denoted by ComodBu .

Similarly, for a comonad v : B → B we can define the category A
v Comod of left

v-comodules with domain A as the category K(A,B)K(A,v) as well as the category of

right u/left v-bicomodules vComodu as the category of coalgebras of the comonad

‘pre-composition with u and post-composition with v’, K(u, v), on K(A,B).

Remark. As mentioned in Remark 2.2.4, for the classical case K = Cat the

term ‘v-coalgebra’ is more commonly restricted to the case that the domain of a left

v-comodule (or respectively the codomain of a right u-comodule) is the unit category

1. The coalgebra h : 1 → B is then identified with the object Z of the category

which is picked out by the functor h, and we denote K(1, B)K(1,v) for a comonad v

as Bv.

Definition 2.2.7. A (lax) monad functor between two monads t : B → B and

s : C → C in a bicategory consists of an 1-cell f : B → C between the 0-cells of the
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monads together with a 2-cell

B
f
//

t
��
|� ψ

C

s

��
B

f
// C

satisfying compatibility conditions with multiplications and units:

C s

$$
B

f //

t
//
�� ψ

t

44�� m

C
s // C

B
f ::

t
//
�� ψ

B f

AA
=

C s

$$
B

�� ψ

f
//

t **

C

s //

s

66��m′ C

B f

==

C 1C

$$

s
11�� η′B

f //

t
//
�� ψ C

B f

::
= B

1B
((

t

66�� η B
f

// C

If the 2-cell ψ is in the opposite direction, and the diagrams are accordingly

modified, we have a colax monad functor (or monad opfunctor) between two monads.

There are also appropriate notions of monad natural transformations for monads in

bicategories, not essential for the purposes of this thesis, which can be found in

detail in [Str72]. Because of the correspondence between monads and lax functors

from the terminal bicategory, we obtain a bicategory Mnd(K) ≡ [1,K]l.

In search of an induced functor between categories of modules, we will need some

well-known results related to maps of monads on ordinary categories. The following

definition is just a special case of the above definition for K = Cat.

Definition 2.2.8. Let T = (T,m, η) be a monad on a category C and T ′ =

(T ′,m′, η′) a monad on a category C′. A lax map of monads (C, T ) → (C′, T ′) is a

functor F : C → C′ together with a natural transformation

C T //

F

��

C

F

��
C′

T ′
// C′

<Dψ

making the diagrams

T ′T ′F
T ′ψ
//

m′F
��

T ′FT
ψT
// FTT

Fm

��
T ′F

ψ
// FT,

F
Fη

//

η′F ""

FT

T ′F

ψ

;;

commute. A strong or pseudo (respectively strict) map of monads is a lax map

(F,ψ) in which ψ is an isomorphism (respectively the identity).
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A very important property of lax maps of monads is that they give rise to maps

between categories of algebras: a lax map (F,ψ) : (C, T )→ (C′, T ′) induces a functor

F∗ : CT // C′T ′

(X, a) � // (FX,Fa ◦ ψX)

which means that if TX
a−→ X is the action of the T -algebra X, then T ′FX

ψX−−→
FTX

Fa−−→ FX is the action which makes FX into a T ′-algebra. In fact, there is a

bijection between the two structures.

Lemma 2.2.9. Let T and T ′ be monads on categories C and C′. There is a one-

to-one correspondence betweeen lax maps of monads (C, T ) → (C′, T ′) and pairs of

functors (K,F ) such that the square

CT K //

U

��

C′T ′

U ′

��
C

F
// C′

commutes, where U,U ′ are the forgetful functors. Explicitly, a lax map (F,ψ) cor-

responds bijectively to the pair (F∗, F ).

We can apply this lemma to obtain functors between the categories of modules

for a monad in a bicategory as described above. More specifically, by Remark 2.2.2

lax functors between bicategories preserve monads, and this in a sense carries over

to the categories of their modules.

Proposition 2.2.10. If F : K → L is a lax functor between two bicategories

and t : B → B a monad in K, there is an induced functor

Mod(FA,B) : K(A,B)K(A,t) −→ L(FA,FB)L(FA,F t)

between the category of left t-modules in K and the category of left F t-modules in L,

which maps a t-module f : A→ B to the F t-module Ff : FA→ FB. Moreover,

the following diagram commutes:

K(A,B)K(A,t)
Mod(FA,B)

//

U

��

L(FA,FB)L(FA,F t)

U

��
K(A,B)

FA,B

// L(FA,FB)

(2.15)

Proof. The endofunctor K(A, t) is an ordinary monad on the hom-category

K(A,B), and since F t is a monad in L, the endofunctor L(FA,F t) is also a

monad on the hom-category L(FA,FB).

In order to apply Lemma 2.2.9, we need to exhibit a map of monads as in

Definition 2.2.8. In fact, we have a functor

FA,B : K(A,B)→ L(FA,FB)



2.3. 2-CATEGORIES 21

and also a natural transformation

K(A,B)
K(A,t)

//

FA,B

��

K(A,B)

FA,B

��
L(FA,FB)

L(FA,F t)
// L(FA,FB)

CKψ

with components, for any 1-cell f : A→ B,

FB F t

%%
FA

Ff 11

F (t◦f)

66�� δt,f FB

where FA,B and δ come from the definition of a lax functor. Hence, we do have a

map of monads

(FA,B, ψ) : (K(A,B),K(A, t)) −→ (L(FA,FB),L(FA,F t))

which induces a functor between the categories of algebras

(FA,B)∗ ≡Mod(FA,B)

such that the diagram (2.15) commutes. �

In a completely dual way, we can verify that colax functors between bicategories

preserve comonads, and that they also induce functors between the corrresponding

categories of comodules.

2.3. 2-categories

A (strict) 2-category is a bicategory in which all constraints are identities, i.e.

α, ρ, λ = 1. In this case, the horizontal composition is strictly associative and unitary

and the axioms (2.1), (2.2) hold automatically. Consequently, the collection of 0-cells

and 1-cells form a category on its own.

Examples.

(1) The collection of all (small) categories, functors and natural transforma-

tions forms the 2-category Cat, which is a leading example in category

theory.

(2) Monoidal categories, (strong) monoidal functors and monoidal natural tra-

nsformations form the 2-category MonCat (see Chapter 3).

(3) If V is a monoidal category, V-enriched categories, V-functors and V-natural

transformations form the 2-category V-Cat (see Chapter 4).

(4) Fibrations and opfibrations over X, (op)fibred functors and (op)fibred natu-

ral transformations form the 2-categories Fib(X) and OpFib(X) (see Chap-

ter 5).
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(5) Suppose E is a category with finite limits. There is a 2-category Cat(E)

with objects categories internal to E, which have an E-object of objects

and an E-object of morphisms. Instances of this are ordinary categories

(E = Set), double categories (E = Cat) and crossed modules (E = Grp).

A (strict) 2-functor is a strict functor between 2-categories, whereas a (strict)

2-natural transformation is a strict natural transformation between 2-functors.

Since a 2-category is a special case of a bicategory, all kinds of functors (and

natural transformations) described in Section 2.1 can be defined in this context.

They now give rise to categories 2-Cat,2-Catps,2-Catl,2-Catc. Moreover, for

K,L 2-categories, there are various kinds of functor 2-categories: [K,L] with 2-

functors, 2-natural transformations and modifications, Lax(K,L)s with lax functors,

strict 2-natural transformations and modifications, [K,L]ps with pseudofunctors,

pseudonatural transformations and modifications etc. Evidently, this implies that all

flavours of categories with objects 2-categories are in reality 2-categories themselves,

and moreover 2-Cat is a paradigmatic example of a 3-category.

Remark 2.3.1. We saw earlier how bicategories and lax/colax/pseudo functors

form ordinary categories, and also how structures like Lax(K,L) or Hom(K,L) of

appropriate functors, natural transformations and modifications are in fact bicate-

gories themselves (or functor 2-categories in the strict case like above). However bi-

categories, lax functors and (co)lax natural transformations fail to form a 2-category.

Even restricting from bicategories to 2-categories and from lax functors to 2-functors

does not suffice in order to form a 2-dimensional structure with a weaker notion of

natural transformation. This is due to problems arising regarding the vertical and

horizontal composition of 2-cells.

The above is thoroughly discussed in Lack’s [Lac10b], where icons are employed

so that bicategories and lax functors can be the objects and 1-cells of a 2-category

Bicat2. More precisely, the 2-cells τ : F ⇒ G are colax natural transformations (see

Definition 2.1.4) whose components τA : FA → GA are identities, hence the name

I denitity C omponent Oplax N atural transformation. That reduces the natural

transformation in the opposite direction of (2.7) to the simpler

K(A,B)

FA,B --

GA,B
11�� τ L(FA,FB)

which satisfies accordingly simplified axioms. Icons were firstly introduced in [LP08]

and they allow the study of bicategories in a plain 2-dimensional setting, with ap-

plications in various contexts.

In many cases, various concepts used in ordinary category theory are special

instances of abstract notions defined in an arbitrary 2-category or bicategory. For

example, the usual notion of equivalence of categories is just a special case of the

following notion of (internal) equivalence in any bicategory, applied to Cat.
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Definition. A 1-cell f : A→ B in a bicategory K is an equivalence when there

exist another 1-cell g : B → A and invertible 2-cells

B g

!!
A

f 11

1A

77�� ∼= A,

A f

!!
B

g 11

1B

88�� ∼= B

i.e. isomorphisms gf ∼= 1A and fg ∼= 1B in K. We write f ' g.

Just as the notion of equivalence of categories can be internalized in any 2-

category, the notion of equivalence for 2-categories can be internalized in any 3-

category in an appropriate way, hence we obtain the following definition for 2-Cat.

Definition. A 2-functor T : K → L between two 2-categories K and L is

a (strict) 2-equivalence if there is some 2-functor S : L → K and isomorphisms

1 ∼= TS, ST ∼= 1. We write K w L.

There is a well-known proposition which gives conditions for a 2-functor to be a

2-equivalence.

Proposition 2.3.2. The 2-functor T : K → L is an equivalence if and only if T

is fully faithful, i.e. TA,A′ : A(A,A′)→ B(TA, TA′) is an isomorphism of categories

for every A,A′ ∈ A, and essentially surjective on objects, i.e. every object B ∈ L is

isomorphic to TA for some A ∈ A.

The appropriate weaker version for the notion of equivalence in the context of

bicategories is the following.

Definition. A biequivalence between bicategories K and L consists of two

pseudofunctors F : K → L and G : L → K and pseudonatural transformations

G F → 1K, 1L → FG which are invertible up to isomorphism. Equivalently,

F : K → L is a biequivalence if and only if it is locally an equivalence, i.e. each

FA,B : K(A,B)→ L(FA,FB) is an equivalence of categories, and every B ∈ L is

equivalent to FA for some A.

Notice that the second statement in fact is equivalent to the first, only if the

axiom of choice is assumed. This has to do with the fact that in general, there

exist notions of strong and weak equivalence between categories, and every weak

equivalence being a strong one is equivalent to the axiom of choice.

The coherence theorems for bicategories and their homomorphisms are of great

importance, and have been fundamental for the development of higher category

theory. In particular, it is asserted that certain diagrams involving the constraint

isomorphisms of bicategories will always commute. Coherence allows us to replace

any bicategory with an appropriate strict 2-category, so that various situations are

greatly simplified. This ensures for example that the pasting diagrams, commonly

used when working with 2-categories, can also be used for bicategories.

Theorem 2.3.3. Every bicategory is biequivalent to a 2-category.
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The proof is based on a bicategorical generalization of the Yoneda Lemma (see

Street’s [Str80]), which states that the embedding

K // Hom(Kop,Cat)

A � // Kop(A,−)

is locally an equivalence, hence any bicategory K is biequivalent to a full sub-2-

category of Hom(Kop,Cat).

Using the notion of category enriched graph, which is a particular case of a V-

graph studied in detail in Section 7.2 and originates from Wolff’s [Wol74], we can

actually construct a strict functor of bicategories between K and a 2-category, which

is a biequivalence. Hence the coherence theorem can be stated in the following more

conventional way.

Theorem 2.3.4 (Coherence for Bicategories). In a bicategory, every 2-cell dia-

gram made up of expanded instances of α, λ, ρ and their inverses must commute.

A more detailed description of coherence for bicategories and homomorphisms

and further references can be found in [MLP85, GPS95, Gur13]. Also, the ap-

proach of Joyal-Street in [JS93] for monoidal categories can be modified to show

the above result.

We now turn to composition of 2-cells in a general 2-category. Additionally to

the usual vertical and horizontal composition, we consider a special case of horizontal

composition which acts on a 1-cell and a 2-cell and produces a 2-cell. Explicitly, if

we identify any morphism f : A → B with its identity 2-cell 1f , we can form the

composite 2-cell

A
f
// B �� α

g

!!

h

??C
k // D ≡ A �� 1f

f

##

f

<< B �� α

g

##

h

;; C �� 1k

k

##

k

;;D

called whiskering α by f and k. It is denoted by kαf : kgf ⇒ khf and really is the

horizontal composite 1k ∗ α ∗ 1f .

The various kinds of composition can be combined to give a more general oper-

ation of pasting (see [Bén67, KS74, Str07]). The two basic situations are

A
f

//

h
  

�� α g

  

k
//

l

??

�� β

B

and
r //

u

��

�� δ

D

C
s

//

p

>>

�� γ t

>>

For the first, we can first whisker α by g and also β by h,

A �� α

f

��

lh

??
g
// B and A

h // �� β

gl

##

k

==B
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in order to obtain two vertically composed 2-cells

A

gf

��
glh //

kh

AA

�� gα

�� βh

B = A

gf

""

kh

==�� βh·gα B

which is called the pasted composite of the original diagram. Following a similar

procedure, we can deduce that the pasted composite of the second diagram is the

2-cell

C

rp

&&

ts

99�� tγ·δp D.

One can generalize the pasting operation further, in order to compute multiple

composites like

��

//

$$

��

A

00

//

%%

��

:: 88

��

��

��

//

:: ::

It is a general fact that the result of pasting is independent of the choice of the

order in which the composites are taken, i.e. of the way it is broken down into basic

pasting operations. This is clear in simple cases, and can be proved inductively in the

general case, after an appropriate formalization in terms of polygonal decompositions

of the disk. A formal 2-categorical pasting theorem, showing that the operation is

well-defined using Graph Theory, can be found in Power’s [Pow90].

We finish this section with some classical notions in 2-categories and their prop-

erties, which are going to be of use later in the thesis.

Definition 2.3.5. An adjunction in a 2-category K consists of 0-cells A and B,

1-cells f : A → B and g : B → A and 2-cells η : 1A ⇒ g ◦ f and ε : f ◦ g ⇒ 1B

subject to the usual triangle equations:

A 1A

""
f




B

g 11

1B
--

�� ε �� η A

B g

<<
= B

g
))

g

55�� 1g A,

B f

##
A

1A 11

f
--

�� η �� ε B

B 1B

<<
g

UU

= A

f
((

f

66�� 1f B

which can be written as (gε) · (ηg) = 1g and (εf) · (fη) = 1f .
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The standard notation for an adjunction is f a g : B → A. The same definition

applies in case K is a bicategory, with the associativity and identity constraints

suppressed because of coherence.

Remark. Suppose that f a g is an adjunction in a 2-category (or bicategory)

K and F : K → L is a pseudofunctor. Then Ff a Fg in L, with unit

1FA
∼= F (1A)

Fη−−→ F (gf) ∼= Fg ◦Ff

and counit

Ff ◦Fg ∼= F (fg)
Fε−−→ F (1B) ∼= 1FB

where the isomorphisms are components of the constraints γ and δ of the pseudo-

functor F . In other words, pseudofunctors preserve adjunctions.

In particular, we can apply the representable 2-functor K(X,−) : K → Cat for

any 0-cell X and obtain an adjunction in Cat

K(X,A)
f◦-

//
⊥ K(X,B)
g◦-

oo

with bijections φh,k : K(X,B)(f ◦ h, k) ∼= K(X,A)(h, g ◦ k) natural in h and k.

We can also apply the contravariant representable 2-functor K(−, X) : Kop → Cat

which produces an (ordinary) adjunction (- ◦ g) a (- ◦ f). This is sometimes called

the local approach to adjunctions, and of course by usual Yoneda lemma arguments

we can reobtain the global approach of Definition 2.3.5.

Definition 2.3.6. Suppose that f a g : B → A and f ′ a g′ : B′ → A′ are

two adjunctions in a 2-category K. A map of adjunctions from (f a g) to (f ′ a g′)
consists of a pair of 1-cells (h : A→ A′, k : B → B′) such that both squares

A
f
//

h

��

B

k

��

g
// A

h

��
A′

f ′
// B′

g′
// A′

commute, and hη = η′h or equivalently kε = ε′k for the units and counits of the

adjunctions.

The equivalence of the two conditions becomes evident as a particular case of

the mate correspondence described below.

Proposition 2.3.7. Let f a g : A→ B and f ′ a g′ : B′ → A′ be two adjunctions

in a 2-category (or bicategory) K, and h : A → A′, k : B → B′ 1-cells. There is a

natural bijection between 2-cells

A
h //

f

��
|� m

A′

f ′

��
B

k
// B′

and B

|� νk

��

g
// A

h

��
B′

g′
// A′
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where ν is given by the composite

B
g

//

1B ++

�� ε

A

f

��

h //

�� m

A′

f ′

��

1A′

���� η′

B
k

// B′
g′

// A′

and m is given by the composite

A
1A //

f ++

A
h // A′ f ′

��
� 
η

B

��
ν

k
//

g

OO

B′

��ε
′

1B′
//

g′

OO

B′.

We call the 2-cells mates under the adjunctions f a g and f ′ a g′. In particular,

for h = k = 1, there is a bijection between 2-cells µ : f ⇒ f ′ and ν : g ⇒ g′.

Using pasting operation, we can deduce that the 2-cells above are explicitly given

by the composites

ν : hg
η′hg

+3 g′f ′hg
g′µg

+3 g′kfg
g′kε
+3 g′k, (2.16)

µ : f ′h
f ′hη

+3 f ′hgf
f ′νf

+3 f ′g′kf
ε′kf

+3 kf. (2.17)

In Section 2.2 we studied monads and modules in bicategories. In the special

case when K is the 2-category 2-Cat, the monad t is usually called a doctrine (or

2-monad) and consists of a 2-functor D : B → B with 2-natural transformations

η : 1B → D, m : D2 → D satisfying the usual axioms. A D-algebra is considered in

the strict sense, although most often the 2-functor has domain 1 so it is identified

with an object A in B, as explained in Remark 2.2.4. For morphisms of D-algebras,

however, the lax ones are the more usual to appear in nature.

Explicitly, for D-algebras (A,µ) and (A′, µ′), a lax morphism (or lax D-functor)

is a pair (f, f̄) where f : A→ A′ is a morphism in B and f̄ is a 2-cell

DA
µ
//

Df
��

A

f
��

DA′
µ′
// A′

>Ff̄

satisfying compatibility axioms with the multiplication and unit of D. If f̄ is an iso-

morphism, then this is a strong morphism of D-algebras, whereas if f̄ is the identity

then we have strict morphism which coincides with the ‘D-modules morphism’ as

defined in the previous section. If we reverse the direction of f̄ and accordingly in

the axioms, we have a colax morphism. Clearly a strong morphism of D-algebras is

both lax and colax.

With appropriate notions of D-natural transformations, we can form 2-categories

D-Algl with lax, D-Algc with colax, D-Algs with strong and D-Alg ≡ BD with
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strict morphisms. All the above can be found in detail in [KS74, BKP89], and the

main results come from the so-called doctrinal adjunction.

Theorem 2.3.8. Let f a g be an adjunction in a 2-category C and let D be a 2-

monad on C. There is a bijective correspondance between 2-cells ḡ which make (g, ḡ)

into a lax D-morphism and 2-cells f̄ which make (f, f̄) into a colax D-morphism.

Proposition 2.3.9. There is an adjunction (f, f̄) a (g, ḡ) in the 2-category

D-Algl if and only if f a g in the 2-category C and f̄ is invertible.

The inverse of f̄ is in fact the mate of ḡ, and both proofs rely solely on the

properties of the mates correspondence. More precisely, 2-cells of the form

DB
β
//

Dg

��

B

g

��
DA

α
// A

=Eḡ

and DA
α //

Df

��
}� f̄

A

f
��

DB
β
// B

which are mates under the adjunctions Df a Dg and f a g are considered, and all

details can be found in [Kel74a].

An application of these facts is going to be exhibited in the next chapter, for the

2-monad D on Cat which gives rise to monoidal categories.



CHAPTER 3

Monoidal Categories

This chapter presents the basic theory of monoidal categories, with particular

emphasis on the categories of monoids/comonoids and modules/comodules. These

structures are of central importance for our purposes, since ultimately they form a

first example of the enriched fibration notion (see Chapter 6). Key references are

[JS93, Str07, Por08c], and the monoidal category V = ModR of R-modules and

R-linear maps for a commutative ring R serves as a motivating illustration of our

results.

A recurrent process in this treatment is the establishment of the existence of

certain adjoints for various purposes, such as monoidal closed structures, free monoid

and cofree comonoid constructions, enriched hom-functors etc. This also justifies the

significance of locally presentable categories (see [AR94]) in our context, since their

properties allow the application of adjoint functor theorems in a straightforward

way. Below we quote some relevant, well-known results which will be employed

throughout the thesis, so that we do not interrupt the main progress.

The following simple adjoint functor theorem which can be found in Max Kelly’s

[Kel05, 5.33] ensures that any cocontinuous functor with domain a locally pre-

sentable category has a right adjoint.

Theorem 3.0.1. If the cocomplete C has a small dense subcategory, every co-

continuous S : C → B has a right adjoint.

The standard way of determining adjunctions via representing objects is con-

nected with the following ‘Adjunctions with a parameter’ theorem (see [ML98,

Theorem IV.7.3]), which defines the important notion of a parametrized adjunction.

Theorem 3.0.2. Suppose that, for a functor of two variables F : A × B → C,

there exists an adjunction

A
F (−,B)

//
⊥ C

G(B,−)
oo (3.1)

for each object B ∈ B, with an isomorphism C(F (A,B), C) ∼= A(A,G(B,C)), natural

in A and C. Then, there is a unique way to assign an arrow

G(h, 1) : G(B′, C) −→ G(B,C)

for each h : B → B′ in B and C ∈ C, so that G becomes a functor of two variables

Bop ×C → A for which the above bijection is natural in all three variables A, B, C.

The unique choice of G(h,−) to realize the above, coming from the fact that it

is a conjugate natural transformation to F (−, h) : F (−, B)⇒ F (−, B′), is given for

29
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example by the commutative

G(B′,−)
G(h,−)

//

η

��

G(B,−)

G(B,F (G(B′,−), B))
G(1,F (G(1,−),h))

// G(B,F (G(B′,−), B′))

G(1,ε′)

OO
(3.2)

where η is the unit of F (−, B) a G(B,−) and ε′ the counit of F (−, B′) a G(B′,−).

The first instance of a parametrized adjoint in this chapter is the internal hom

in a monoidal category, which will play a decisive role. In [CGR12], more advanced

ideas on multivariable adjunctions are presented.

3.1. Basic definitions

Definition. A monoidal category (V,⊗, I, a, l, r) is a category V equipped with

a functor ⊗ : V × V → V called the tensor product, an object I of V called the unit

object, and natural isomorphisms with components

aA,B,C : (A⊗B)⊗ C ∼−→ A⊗ (B ⊗ C),

rA : A⊗ I ∼−→ A, lA : I ⊗A ∼−→ A

called the associativity constraint, the right unit constraint and the left unit co-

nstraint respectively, subject to two coherence axioms: the following diagrams

(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D))

A⊗ ((B ⊗ C)⊗D),(A⊗ (B ⊗ C))⊗D

((A⊗B)⊗ C)⊗D

aA,B,C⊗D

$$

1⊗aB,C,D

LL

aA,B⊗C,D//

aA,B,C⊗1

��

aA⊗B,C,D

::

(A⊗ I)⊗B
aA,I,B //

rA⊗1 &&

A⊗ (I ⊗B)

1⊗lBxx
A⊗B

commute.

Given a monoidal category V, we can define a bicategory K with one object ? by

setting K(?, ?) = V, ◦?,?,? = ⊗ and α, λ, ρ given by the constraints of the monoidal

category. Conversely, any such one-object bicategory yields a monoidal category. In

fact, for any object A in a bicategory K, the hom-category K(A,A) is equipped with

a monoidal structure induced by the horizontal composition of the bicategory:

⊗ : K(A,A)×K(A,A) // K(A,A)

(A
g−→ A, A

f−→ A) � // A
g⊗f :=g◦f−−−−−−→ A

(3.3)
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The unit object is the identity 1-cell I = 1A and the associativity and left/right unit

constraints come from the associator and the left/right unitors of the bicategory K.

The coherence axioms follow in a straightforward way from those of a bicategory.

Due to this correspondence, various results of the previous chapter are of rele-

vance to the theory of monoidal categories. In particular, coherence for bicategories

(Theorems 2.3.3 and 2.3.4) ensures that monoidal categories are also ‘coherent’. The

coherence theorem for monoidal categories first appeared in Mac Lane’s [ML63].

A formulation of it states that every diagram which consists of arrows obtained by

repeated applications of the functor ⊗ to instances of a, r, l and their inverses (the

so-called ‘expanded instances’) and 1 commutes. This essentially allows one to work

as if a, r, l are all identities. This is derived from the fact that any monoidal cat-

egory is monoidally equivalent (via a strict monoidal functor) to a strict monoidal

category, where a, r, l are identities.

Notice that if V is a monoidal category, then its opposite category Vop is also

monoidal with the same tensor product ⊗op. Some authors call ‘opposite monoidal

category’ the reverse category Vrev, which is V with A⊗rev B = B ⊗A, arev = a−1,

lrev = l and rrev = r.

A braiding c for a monoidal category V is a natural isomorphism

V × V
⊗ //

sw

��
�
 c

V

V × V ⊗

FF

with components invertible arrows cA,B : A⊗B ∼−→ B⊗A for all A,B ∈ V, where sw

switches the entries of the pair. These isomorphisms satisfy the coherence axioms

expressed by the commutativity of

A⊗ (B ⊗ C)
cA,B⊗C // (B ⊗ C)⊗A

aB,C,A

''
(A⊗B)⊗ C

aA,B,C 77

cA,B⊗1 ''

B ⊗ (C ⊗A)

(B ⊗A)⊗ C
aB,A,C

// B ⊗ (A⊗ C),
1⊗cA,C

77

(A⊗B)⊗ C
cA⊗B,C // C ⊗ (A⊗B)

a−1
C,A,B

''
A⊗ (B ⊗ C)

a−1
A,B,C 77

1⊗cB,C ''

(C ⊗A)⊗B

A⊗ (C ⊗B)
a−1
A,C,B

// (A⊗ C)⊗B.
cA,C⊗1

77

A braided monoidal category is a monoidal category with a chosen braiding. A

symmetry s for a monoidal category V is a braiding s with components

sA,B : A⊗B ∼−→ B ⊗A
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which also satisfies the commutativity of

A⊗B = //

sA.B
$$

A⊗B

B ⊗A,

sB,A

::

which expresses that s−1
A,B = sB,A. Because of this, only the one hexagon from the

definition of the braiding is needed to define a symmetry.

A monoidal category with a chosen symmetry is called symmetric. Coher-

ence theorems for braided and symmetric monoidal categories again state that any

(braided) symmetric monoidal category is (braided) symmetric monoidally equiva-

lent to a strict (braided) symmetric monoidal category, see [JS93].

Examples. (1) A special collection of examples called cartesian monoidal cate-

gories is given by considering any category with finite products, taking ⊗ = × and

I = 1 the terminal object. The constraints a, l, r are the canonical isomorphisms

induced by the universal property of products. Important particular cases of this

are the categories Set of (small) sets, Cat of categories, Gpd of groupoids, Top of

topological spaces etc. All these examples are in fact symmetric monoidal categories.

(2) The category Ab of abelian groups and group homomorphisms is a symmet-

ric monoidal category with the usual tensor product ⊗ of abelian groups and the

additive group of integers Z as unit object. The associativity and unit constraints

come from the respective canonical isomorphisms for the tensor of abelian groups.

Notice that there is also a different symmetric monoidal structure on the cocomplete

Ab, namely (Ab,⊕, 0) where ⊕ is the direct product.

(3) The category ModR of modules over a commutative ring R and R-module

homomorphisms is a symmetric monoidal category with tensor the usual tensor

product ⊗R of R-modules. The unit object is the ring R and the associativity

and unit constraints are the canonical ones. The symmetry s has components the

canonical isomorphisms A⊗R B ∼= B ⊗R A. Clearly the category of k-vector spaces

and k-linear maps Vectk for a field k is again a symmetric monoidal category.

(4) For any bicategory K, the hom-categories (K(A,A), ◦, 1A) for any 0-cell A

are monoidal categories as explained earlier, but not necessarily symmetric. As a

special case for K = Cat, the category End(C) of endofunctors on a category C is a

monoidal category with composition as the tensor product and 1C as the unit.

Definition. If V and W are monoidal categories, a lax monoidal functor be-

tween them consists of a functor F : V → W together with natural transformations

V × V
F×F //

⊗

��
�	 φ

W ×W

⊗

��
V

F
// W

and 1

�� φ0

IV //

IW **

V

F

��
W

(3.4)
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with components

φA,B : FA⊗ FB → F (A⊗B)

φ0 : I → FI

satisfying the associativity and unitality axioms: the diagrams

FA⊗ FB ⊗ FC
φA,B⊗1

//

1⊗φB,C
��

F (A⊗B)⊗ FC

φA⊗B,C
��

FA⊗ F (B ⊗ C)
φA,B⊗C

// F (A⊗B ⊗ C),

(3.5)

FA
1⊗φ0 //

φ0⊗1

��

1

((

FA⊗ FI
φA,I
��

FI ⊗ FA
φI,A

// FA

commute, where the constraints α, l, r have been suppressed.

In the case where φA,B, φ0 are isomorphisms, the functor F is called (strong)

monoidal, whereas if they are identities F is called strict monoidal. Dually, F is

a colax monoidal functor when it is equipped with with natural families in the

opposite direction, ψA,B : F (A ⊗ B) → FA ⊗ FB and ψ0 : FI → I. Notice how

these definitions follow from Definition 2.1.3 for the one-object bicategory case.

A functor F : V → W between braided monoidal categories V and W is braided

monoidal if it is monoidal and also makes the diagram

FA⊗ FB
cFA,FB //

φA,B
��

FB ⊗ FA
φB,A
��

F (A⊗B)
F (cA,B)

// F (B ⊗A)

commute, for all A,B ∈ V. If V and W are symmetric, then F is a symmetric

monoidal functor with no extra conditions.

Definition. If F,G : V → W are lax monoidal functors, a monoidal natural

transformation τ : F ⇒ G is an (ordinary) natural transformation such that the

following two diagrams commute:

FA⊗ FB
φA,B //

τA⊗τB
��

F (A⊗B)

τA⊗B

��
GA⊗GB

φ′A,B

// G(A⊗B),

I
φ0 //

φ′0   

FI

σI

��
GI.

(3.6)

A braided or symmetric monoidal natural transformation is just a monoidal

natural transformation between braided or symmetric monoidal functors.
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It is not hard to verify that the different kinds of monoidal functors compose.

Depending on the monoidal structure that the functors are equipped with, we have

the 2-categories MonCats, MonCat, MonCatl and MonCatc of monoidal cate-

gories, strict/strong/lax/colax monoidal functors and monoidal natural transforma-

tions. If the functors are moreover braided or symmetric, we have different versions

of 2-categories BrMonCat and SymmMonCat.

Remark 3.1.1. The category MonCat is itself a cartesian monoidal category.

For V, W two monoidal categories, their product V × W has the structure of a

monoidal category with tensor product the composite

V ×W × V ×W
⊗(V×W)

//

1×sw×1

��

V ×W

V × V ×W ×W

⊗V×⊗W

::

and unit the pair (IV , IW). On objects, the above operation explicitly gives

((A,B), (A′, B′)) 7→ (A⊗A′, B ⊗B′).

Similarly F ×G is a monoidal functor when F and G are. The terminal category 1

is the unit monoidal category, hence (MonCat,×,1) is in fact a monoidal category.

Definition. The monoidal category V is said to be (left) closed when, for each

A ∈ V, the functor −⊗A : V → V has a right adjoint [A,−] : V → V with a bijection

V(C ⊗A,B) ∼= V(C, [A,B]). (3.7)

natural in C and B. We call [A,B] the (left) internal hom of A and B.

If also every A⊗− has a right adjoint [A,−]′, we say that the monoidal category

V is right closed. When V is a braided monoidal category, each left internal hom

gives a right internal hom [A,B] = [A,B]′. A monoidal category is called closed (or

biclosed) when it is left and right closed.

For example, the symmetric monoidal category ModR is a monoidal closed

category, by the well-known adjunction

ModR
−⊗RM //
⊥ ModR

HomR(M,−)
oo

where HomR is the linear hom functor.

By ‘adjunctions with a parameter’ theorem 3.0.2, the definition of the internal

hom for a monoidal closed category V implies that there is a unique way of making

it into a functor of two variables

[−,−] : Vop × V −→ V

such that the bijection (3.7) is natural in all three variables. Explicitly, if f : C → A

and g : B → D are arrows of V, there is a unique arrow [f, g] : [A,B]→ [C,D] such
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that the diagram

[A,B]⊗ C
[f,g]⊗1

//

1⊗f
��

[C,D]⊗ C

evCD
��

[A,B]⊗A
evAB

// B
g

// D

commutes, where evA is the counit of the adjunction −⊗ A a [A,−] usually called

the evaluation. In other words, the internal hom bifunctor [−,−] is the parametrized

adjoint of the tensor bifunctor (−⊗−).

Notice that in any parametrized adjunction as in (3.1) with natural isomorphisms

C((F (A,B), C) ∼= A(A,G(B,C)), the counit is a collection of components

εBA : F (G(B,A), B) −→ A

which is natural in A and also dinatural or extranatural in B. This is expressed by

the commutativity of

F (G(B′, A), B)
F (1,f)

//

F (G(f,1),1)

��

F (G(B′, A), B′)

εB
′

A

��
F (G(B,A), B)

εBA

// A

(3.8)

for any arrow f : B → B′. Dinaturality is discussed in detail in [ML98, IX.4].

Finally, in any symmetric monoidal closed category V we also have an adjunction

V
[−,A]op

//
⊥ Vop

[−,A]
oo (3.9)

with a natural isomorphism Vop([V,A],W ) ∼= V(V, [W,A]), explicitly given by the

following bijective correspondences:

W // [V,A] in V

W ⊗ V

∼ =

// A in V
V ⊗W

11

V // [W,A] in V.

3.2. Doctrinal adjunction for monoidal categories

As mentioned briefly at the end of Section 2.3, monoidal categories are (strict)

algebras for a specific 2-monad D on Cat, which arise from clubs. Details of these

facts and structures can be found in [Kel72, Kel74a, Kel74b, Web04]. In this

context, lax morphisms of D-algebras turn out to be lax monoidal functors and

D-natural transformations are monoidal natural transformations. Therefore, by

doctrinal adjunction we can see how lax and colax monoidal structures on adjoint

functors between monoidal categories relate to each other.
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Depending on which 2-category of monoidal categories we are working in, Def-

inition 2.3.5 gives us different notions of monoidal adjunctions. For example, an

adjunction in the 2-category MonCatl is an adjunction between monoidal cate-

gories

C
F //
⊥ D
G

oo

where F and G are lax monoidal functors and the unit and the counit are monoidal

natural transformations.

Now, suppose that F a G is an ordinary adjunction between two monoidal

categories C and D, where the left adjoint F has the structure of a colax monoidal

functor, i.e. it is equipped with 2-cells ψ,ψ0 in the opposite direction of (3.4).

Consider the diagram

C × C
F×F //
⊥

⊗
��

D ×D
G×G

oo

⊗
��

C
F //
⊥ D
G

oo

which illustrates two adjunctions and two functors between the categories involved.

Then, by Proposition 2.3.7 which gives the mate correspondance, the 2-cell ψ cor-

responds uniquely to a 2-cell φ via

D ×D
G×G

��
1
��

+3ε×ε

C × C
F×F //

⊗
��

D ×D
⊗
��

+3ψ

C
F //

1
��

D

GssC

+3η

=

D ×D
⊗ //

G×G
��

D

G
��

C × C
⊗ // C.

?Gφ

(3.10)

In terms of components via pasting, φA,B is expressed as the composite

GA⊗GB ηGA⊗GB−−−−−→ GF (GA⊗GB)
GψGA,GB−−−−−−→ G(FGA⊗FGB)

G(εA⊗εB)−−−−−−→ G(A⊗B).

Similarly, the 2-cell ψ0 corresponds uniquely to a 2-cell φ0 via

1
1 //

IC
��

1

ID
��

+3ψ0

C F //

1
��

D

GssC

+3η
=

1
ID //

IC

��

D

G

}}
C

+3φ0

(3.11)

and in terms of components, φ0 is the composite

I
ηI−→ GFI

Gψ0−−→ GI.
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Moreover, the arrows φA,B and φ0 turn out to satisfy the axioms (3.5) thus they

constitute a lax monoidal structure for the right adjoint G.

On the other hand, if we start with a lax monoidal structure (φ, φ0) on G, again

due to the bijective correspondance of mates we end up with a colax structure (ψ,ψ0)

on the left adjoint F , given by the composites

F (A⊗B)

ψA,B --

F (η⊗η)
// F (GFA⊗GFB)

Fφ // FG(FA⊗ FB)

ε

��
FA⊗ FB,

FI
Fφ0 //

ψ0 ((

FGI

ε

��
I.

(3.12)

The above establish the following result.

Proposition 3.2.1. Suppose we have two (ordinary) adjoint functors F a G
between monoidal categories. Then, colax monoidal structures on the left adjoint F

correspond bijectively, via mates, to lax monoidal structures on the right adjoint G.

Of course this is a special case of Theorem 2.3.8 for K = Cat and D the 2-monad

whose algebras are monoidal categories. Proposition 2.3.9 also applies.

Proposition 3.2.2. A functor F equipped with a lax monoidal structure has a

right adjoint in MonCatl if and only if F has a right adjoint in Cat and its lax

monoidal structure is a strong monoidal structure.

Proof. ‘⇒’ Suppose F a G is an adjunction in MonCatl and (φ, φ0), (φ′, φ′0)

are the lax structure maps of F and G. By the above corollary, the lax monoidal

structure of the right adjoint G it induces a colax structure (ψ,ψ0) on the left adjoint

F , given by the composites (3.12).

In order for F to be a strong monoidal functor, it is enough to show that this

colax structure induced from G is the two-sided inverse to the lax structure of F .

• ψA,B ◦ φA,B = 1FA⊗FB:

FA⊗ FB
φA,B //

FηA⊗FηB ))

1FA⊗FB 22

F (A⊗B)
F (ηA⊗ηB)

//

(i)

F (GFA⊗GFB)

Fφ′FA,FB
��

FGFA⊗ FGFB
φGFA,GFB

44

εFA⊗εFB **

(ii)

(iii)

FG(FA⊗ FB)

εFA⊗FB
��

FA⊗ FB

where (i) commutes by naturality of φ, (ii) by the fact that ε : FG ⇒ 1D is a

monoidal natural transformation between lax monoidal functors, and (iii) by one of

the triangular identities.

• ψ0 ◦ φ0 = 1I :

I
φ0 //

1I
((

FI
Fφ′0 // FGI

εI
��
I
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which commutes by the axioms (3.6) for the monoidal counit ε of the adjunction.

By forming similar diagrams we can see how φA,B◦ψA,B = 1F (A⊗B) and ψ0◦φ0 =

idI , hence F is equipped with a strong monoidal structure.

‘⇐’ Suppose that F has the structure of a strong monoidal functor (φ, φ0) and

it has an ordinary right adjoint G. Clearly F has a lax monoidal structure and a

colax monoidal structure (φ−1, φ−1
0 ). Therefore it induces a lax monoidal structure

on the right adjoint G given by the composites (3.10), (3.11).

What is left to show is that the unit η and the counit ε of the adjunction

are monoidal natural transformations, i.e. they satisfy the commutativity of the

diagrams (3.6). For example, the first diagram for η : 1C ⇒ GF becomes

A⊗B
ηA⊗B //

ηA⊗ηB
��

(i)

GF (A⊗B)

GF (ηA⊗ηB)

yy

(ii)GFA⊗GFB

ηGFA⊗GFB

��

G(FA⊗ FB)

GφA,B
ii

G(FηA⊗FηB)

yy
GF (GFA⊗GFB)

Gφ−1
GFA,GFB

// G(FGFA⊗ FGFB)

G(εFA⊗εFB)

55

GφGFA,GFB
pp

where (i) commutes by naturality of η, and (ii) by naturality of φ and one of

the triangular identities. Notice that the lower composite from GFA ⊗ GFB to

GF (A ⊗ B) is the lax structure map φ′′A,B of the composite lax monoidal functor

GF .

The second diagram commutes trivially, and in a very similar way we can show

that ε is also a monoidal natural transformation. Hence, the adjunction can be lifted

in MonCatl. �

The above propositions generalize to the case of parametrized adjoints. For

example, if the functor F : A × B → C between monoidal categories has a colax

structure

ψ(A,B),(A′,B′) : F (A⊗A′, B ⊗B′)→ F (A,B)⊗ F (A′, B′)

ψ0 : F (IA, IB)→ IC ,

then its parametrized adjoint G : Bop × C → A obtains a lax structure via the

composites

G(B,C)⊗G(B′, C ′)
ηB⊗B

′
G(B,C)⊗G(B′,C′)

//

φ(B,C),(B′,C′)

++

G(B ⊗B′, F (G(B,C)⊗G(B′, C ′), B ⊗B′))

G(1,ψ(G(B,C),B),(G(B′,C′),B′))

��
G(B ⊗B′, F (G(B,C), B)⊗ F (G(B′, C ′), B′))

G(1,εBC⊗ε
B′
C′ )

��
G(B ⊗B′, C ⊗ C ′),
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IA
η
IB
IA //

φ0 ++

G(IB, F (IA, IB))

G(1,ψ0)

��
G(IB, IC).

The respective axioms are satisfied by naturality and dinaturality of the unit and

counit η, ε of the parametrized adjunction and the axioms for (ψ,ψ0) of F .

Proposition 3.2.3. Suppose F : A × B → C and G : Bop × C → A are

parametrized adjoints between monoidal categories, i.e. F (−, B) a G(B,−) for all

B ∈ B. Then, colax monoidal structures on F correspond bijectively to lax monoidal

structures on G.

As an application, consider the case of a symmetric monoidal closed category V,

with symmetry s. The tensor product functor ⊗ : V × V → V from the monoidal

V × V (see Remark 3.1.1) is equipped with a strong monoidal structure, namely

φ(A,B),(A′,B′) : A⊗B ⊗A′ ⊗B′
1⊗sB,A′⊗1
−−−−−−−−→ A⊗A′ ⊗B ⊗B′,

φ0 : I
r−1
I−−−→ I ⊗ I.

Therefore Proposition 3.2.3 applies and its parametrized adjoint obtains the struc-

ture of a lax monoidal functor.

Proposition 3.2.4. In a symmetric monoidal closed category V, the internal

hom functor [−,−] : Vop ⊗ V → V has the structure of a lax monoidal functor, with

structure maps

χ(A,B),(A′,B′) : [A,B]⊗ [A′, B′]→ [A⊗A′, B ⊗B′],

χ0 : I → [I, I]

which correspond, under the adjunction −⊗A a [A,−], to the morphisms

[A,B]⊗ [A′, B′]⊗A⊗A′ 1⊗s⊗1−−−−→ [A,B]⊗A⊗ [A′, B′]⊗A′ ev⊗ev−−−−→ B ⊗B′,

I ⊗ I lI=rI−−−→ I.

3.3. Categories of monoids and comonoids

A monoid in a monoidal category V is an object A equipped with arrows

m : A⊗A→ A and η : I → A

called the multiplication and the unit, satisfying the associativity and identity con-

ditions: the diagrams

A⊗A⊗A
1⊗m //

m⊗1

��

A⊗A

m

��
A⊗A

m
// A

and I ⊗A

lA $$

η⊗1
// A⊗A

m

��

A⊗ I
1⊗η
oo

rA
zz

A

(3.13)
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commute, where the associativity constraint is suppressed from the first diagram.

A monoid morphism between two monoids (A,m, η) and (A′,m′, η′) is an arrow

f : A→ A′ in V such that the diagrams

A⊗A m //

f⊗f
��

A

f

��
A′ ⊗A′

m′
// A′

and I
η
//

η′ ��

A

f

��
A′

(3.14)

commute. We obtain a category Mon(V) of monoids and monoid morphisms. Fur-

thermore, a 2-cell α : f ⇒ g is defined to be an arrow α : I → B such that

A
α⊗f

//

g⊗α
��

B ⊗B
m

��
B ⊗B

m
// B

(3.15)

commutes, thus Mon(V) is a 2-category.

Dually, there is a 2-category of comonoids Comon(V) with objects triples

(C,∆, ε) where C is an object in V, ∆ : C → C ⊗ C is the comultiplication and

ε : C → I is the counit, such that dual diagrams to (3.13) commute. Comonoid

morphisms (C,∆, ε) → (C ′,∆′, ε′) are arrows g : C → C ′ in V such that the dual

of (3.14) commutes, and 2-cells β : f ⇒ g are arrows β : C → I satisfying dual

diagrams to (3.15).

For the purposes of this dissertation, the 2-dimensional structure of the cate-

gories of monoids and comonoids (and modules and comodules later) will not be

employed. Notice that as categories, Comon(V) = Mon(Vop)op.

Remark 3.3.1. We saw in Section 3.1 how, for any object B in a bicategory K,

the hom-category K(B,B) obtains the structure of a monoidal category, with tensor

product the horizontal composition and unit the identity 1-cell. From this viewpoint,

the data that define the notion of a monad t : B → B in a bicategory (Definition

2.2.1) equivalently define a monoid in the monoidal category (K(B,B), ◦, 1B). Du-

ally, a comonad u : A → A in a bicategory K as in Definition 2.2.5 is precisely a

comonoid in the monoidal K(A,A).

If the monoidal category V is braided, we can define a monoid structure on the

tensor product A⊗B of two monoids A, B via

A⊗B ⊗A⊗B 1⊗c⊗1−−−−→A⊗A⊗B ⊗B m⊗m−−−→ A⊗B

I
r-1
I−−→I ⊗ I η⊗η−−→ A⊗B

where the constraints are again suppressed. This induces a monoidal structure on

the category Mon(V), such that the forgetful functor to V is a strict monoidal func-

tor. The braiding/symmetry of V lifts to its category of monoids, so Mon(V) is a

braided/symmetric monoidal category when V is. This happens because Mon(V)→
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V always reflects isomorphisms. Dually, Comon(V) also inherits the monoidal struc-

ture from V, via

C ⊗D δ⊗δ−−→ C ⊗ C ⊗D ⊗D ∼= C ⊗D ⊗ C ⊗D, C ⊗D ε⊗ε−−→ I ⊗ I ∼= I.

The monoidal unit in both cases is I, with trivial monoid and comonoid structure

via rI .

For example, the category of monoids in the symmetric monoidal category

(Ab,⊗,Z) is the category of rings Rng, and in the symmetric cartesian monoidal

category (Cat,×,1) it is the category of strict monoidal categories MonCatst. Also,

the category of monoids in the symmetric monoidal category ModR for a commu-

tative ring R is the category of R-algebras AlgR and the category of comonoids is

the category of R-coalgebras CoalgR.

An important property of lax monoidal functors is that they map monoids to

monoids. More precisely, if F : V → W is a lax monoidal functor between monoidal

categories V and W, there is an induced functor

Mon(F ) : Mon(V) // Mon(W)

(A,m, η) � // (FA,m′, η′)

(3.16)

which gives FA the structure of a monoid in W, with multiplication and unit

m′ : FA⊗ FA
φA,A−−−→ F (A⊗A)

Fm−−→ FA

η′ : I
φ0−→ FI

Fη−−→ FA

where φA,A and φ0 are the structure maps of F . The associativity and identity

conditions are satisfied because of naturality of φ, φ0 and the fact that A is a

monoid. Dually, if G : V → W is colax monoidal functor, it maps comonoids to

comonoids via an induced functor

Comon(F ) : Comon(V) // Comon(W)

(C, δ, ε) � // (GC,ψ ◦Gδ, ψ ◦Gε).

For example, in a symmetric monoidal closed category V, the internal hom func-

tor [−,−] : Vop × V → V is lax monoidal by Proposition 3.2.4. The category of

monoids of the monoidal category Vop × V is

Mon(Vop × V) ∼= Mon(Vop)×Mon(V) ∼= Comon(V)op ×Mon(V),

so there is an induced functor betweem the categories of monoids

Mon[−,−] : Comon(V)op ×Mon(V) // Mon(V)

( C , A ) � // [C,A].

(3.17)

The concrete content of this observation is that whenever C is a comonoid and A a

monoid, the object [C,A] obtains the structure of a monoid, with unit I → [C,A]
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which is the transpose under the adjunction −⊗ C a [C,−] of

C
ε−→ I

η−→ A

and with multiplication [C,A]⊗ [C,A]→ [C,A] the transpose of the composite

[C,A]⊗ [C,A]⊗ C
1⊗∆ //

++

[C,A]⊗ [C,A]⊗ C ⊗ C
1⊗s⊗1// [C,A]⊗ C ⊗ [C,A]⊗ C

ev⊗ev
��

A⊗A
m
��
A.

Remark 3.3.2. For the symmetric monoidal closed category ModR, the internal

hom

[−,−] = HomR(−,−) : Modop
R ×ModR −→ModR

has the structure of a lax monoidal functor by Proposition 3.2.4. Therefore it induces

a functor

Mon(HomR) : Coalgop
R ×AlgR // AlgR

( C , A ) � // HomR(C,A)

between the categories of coalgebras and algebras. This implies the well-known fact

that for C an R-coalgebra and A an R-algebra, the set HomR(C,A) of the linear

maps between them obtains the structure of an R-algebra under the convolution

structure

(f ∗ g)(c) =
∑
(c)

f(c1)g(c2) and 1 = η ◦ ε

where ∗ is expressed using the ‘sigma notation’ for the coalgebra comultiplication

∆(c) =
∑

i c1i ⊗ ci2 :=
∑

(c) c(1) ⊗ c(2) introduced in [Swe69].

Another example of a functor induced between categories of monoids is the

following.

Lemma 3.3.3. If F : K → L is a lax functor between two bicategories, there is

an induced functor

MonFA,A : MonK(A,A) −→MonL(FA,FA) (3.18)

for each object A in K, which is the functor FA,A restricted to the category of

monoids of the monoidal category (K(A,A), ◦, 1A).

Proof. Since F is a lax functor between bicategories, we have a functor FA,B :

K(A,B)→ L(FA,FB) between the hom-categories for all A,B ∈ K. In particular,

there is a functor

FA,A : K(A,A)→ L(FA,FA)

which maps the 1-cell f : A → A to Ff : FA → FA and a 2-cell α : f ⇒ g to

Fα : Ff ⇒ Fg. If we regard K(A,A) and L(FA,FA) as monoidal categories

with respect to the horizontal composition as in (3.3), FA,A has the structure of



3.3. CATEGORIES OF MONOIDS AND COMONOIDS 43

a lax monoidal functor. Indeed, it is equipped with natural transformations with

components, for each f, g ∈ K(A,A),

φf,g : Ff ⊗Fg → F (f ⊗ g) and φ0 : IL(FA,FA) → F IK(A,A)

which are precisely the components δf,g and γA of the natural transformations (2.3,

2.4) that the lax functor F is equipped with, since ⊗ ≡ ◦ and IK(A,A) ≡ 1A. The

axioms follow from those of δ and γ. Hence a functor (3.18) between the categories

of monoids is induced. �

In Remark 3.3.1 we saw how a monad t : A → A in a bicategory K is actually

a monoid in K(A,A). The above lemma states that if F is a lax functor, then

F t : FA→ FA is a monoid in L(FA,FA), i.e. F t is a monad in the bicategory

L. Therefore we re-discover the fact that lax functors between bicategories preserve

monads, from a different point of view than Remark 2.2.2, where a monad was

identified with a lax functor from the terminal bicategory to K.

For any monoidal category V, there are forgetful functors

S : Mon(V) −→ V and U : Comon(V) −→ V

which just discard the (co)multiplication and the (co)unit. A crucial issue for our

needs is the assumptions under which these functors have a left or right adjoint

accordingly. In other words, we are interested in the conditions on V that allow the

free monoid and the cofree comonoid construction.

The existence of a free monoid functor is quite frequent, since the monoidal

structures that arise in practice may well be closed, so that the tensor product

preserves colimits in both arguments. In particular, the following is true.

Proposition 3.3.4. Suppose that V is a monoidal category with countable co-

products which are preserved by ⊗ on either side. The forgetful Mon(V)→ V has a

left adjoint L, and the free monoid on an object X is given by the ‘geometric series’

LX =
∐
n∈N

X⊗n.

There are various sets of conditions, stronger or weaker, that guarantee the

existence of free monoids and are connected with the different kinds of settings

where they apply, such as free monads, free algebras, free operads etc. There are

many classical references on these constructions, for example by Kelly, Dubuc, Barr

and others, and most are outlined in Lack’s [Lac10c].

On the other hand, the existence of a cofree comonoid functor is more problem-

atic. In Sweedler’s [Swe69], the cofree coalgebra on a vector space V is constructed

as a certain subcoalgebra of T (V ∗)o, where T gives the tensor algebra of the linear

dual of V , and (−)o is the dual algebra functor as described later in Remark 6.1.2.

In [BL85], a new description of the cofree coalgebra is given, still in Vectk for a

field k. In Barr’s [Bar74], it is shown that the forgetful CoalgR → ModR for a

commutative ring R has a right adjoint, and in Fox’s [Fox93] two constructions on
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the cofree coalgebra on an R-module are presented. Finally in [Haz03], connec-

tions of cofree coalgebras in ModR with the notion of multivariable recursiveness

are examined.

We are here interested in the generalization from Vectk and ModR to the exis-

tence of such cofree objects (comonoids) in an arbitrary monoidal category V. Hans

Porst in a series of papers [Por06, Por08a, Por08b, Por08c] studied the categories

of monoids and comonoids (also the categories of modules and comodules for them)

and their various categorical properties, with emphasis on the local presentability

structure inherited from the initial monoidal category. We are going to employ many

of those strategies for our purposes, so at this point we briefly describe the most

basic parts of this theory. A standard reference for locally presentable categories is

Adamek-Rosicky’s [AR94].

Recall that a small full subcategory A of a category C is called dense provided

that every object of C is a canonical colimit of objects of A, i.e. the colimit of the

forgetful (A ↓ C)→ C. Also, an object in a category C is called λ-presentable for λ

a regular cardinal, provided that its hom-functor C(C,−) preserves λ-filtered limits.

For λ = ℵ0, we have the notion of a finitely presentable object.

Definition. (1) A locally λ-presentable category C is a cocomplete category

which has a set A of λ-presentable objects, such that every object is a λ-filtered

colimit of objects from A. A category is called locally presentable when it is locally

λ-presentable for some regular cardinal λ, and locally finitely presentable for λ = ℵ0.

(2) A λ-accessible category is a category with λ-filtered colimits and a set of

λ-presentable objects, such that every object is a λ-filtered colimit of those. A

category is called accessible if it is λ-accessible for some regular cardinal λ.

Notice that in a locally λ-presentable category C, all λ-presentable objects have

a set of representatives (with respect to isomorphism). Any such set is denoted by

PresλC and is a small dense full subcategory of K, hence also a strong generator.

Recall that a generator is a family of objects G such that for pairs A f //
g // B with

f 6= g, there exists G ∈ G and h : G→ A with fh 6= gh. It is strong if for any A and

a proper subobject, there exists G ∈ G and G→ A which doesn’t factorize through

the subobject.

Other useful properties of locally presentable categories are completeness, well-

poweredness and co-wellpoweredness. Obviously, an accessible category with all

colimits is locally presentable, but so is an accessible category with all limits (see

[AR94, 2.47]). A functor F between λ-accessible categories is accessible if it pre-

serves λ-filtered colimits, whereas a finitary functor in general preserves all filtered

colimits.

In [Por08c] the class of admissible monoidal categories is introduced. These

are locally presentable symmetric monoidal categories V, such that for each object

A the functor A ⊗ − preserves filtered colimits. Examples are the category ModR

for a commutative ring R, every locally presentable category with respect to binary

products, and every monoidal closed category which is locally presentable. However,
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the results exhibited below also hold for small variations from the above conditions.

For example, the symmetry can be replaced with ⊗ preserving filtered colimits on

both entries.

The notion of functor algebras and functor coalgebras for an endofunctor are of

importance in the proofs below. Given an endofunctor on any category F : C → C,
the category AlgF of F -algebras has objects pairs (A,α : FA→ A) and morphisms

(A,α)→ (A′, α′) are arrows f : A→ A′ making the diagram

FA
α //

Ff
��

A

f
��

FA′
α′ // A′

commute. The category CoalgF = (AlgF op)op is defined dually, with objects pairs

(C, β : C → FC) and arrows g : C → C ′ making the diagram

C
β
//

g

��

FC

Fg
��

C ′
β′
// FC ′

commute. More about these categories and their properties can be found in [AR94,

AP03]. The most useful facts are the following:

(i) The forgetful functor AlgF → C creates all limits and and those colimits which

are preserved by F .

(ii) The forgetful functor CoalgF → C creates all colimits and those limits which

are preserved by F .

(iii) If C is locally presentable and F preserves filtered colimits, the categories AlgF

and CoalgF are locally presentable.

Notably, these categories can be expressed as specific inserters AlgF = Ins(F, idC)

and CoalgF = Ins(idC , F ). Fact (iii) thus follows from the more general ‘Weighted

Limit Theorem’ by Makkai and Paré [MP89, 5.1.6], which in particular asserts that

the above inserters are accessible categories when C and F are accessible. For details

about these constructions, see [AR94, Theorem 2.72].

In the applications where AlgF and CoalgF for specific endofunctors are stud-

ied, they usually turn out to be monadic and comonadic respectively over C. Since

coequalizers of split pairs are absolute colimits, i.e. preserved by any functor,

monadicity and comonadicity are established as soon as the forgetful functor has

a left or right adjoint respectively.

Proposition 3.3.5. [Por08c, 2.6-2.7] Suppose V is an admissible category.

(1) Mon(V) is finitary monadic over V and locally presentable.

(2) Comon(V) is a locally presentable category and comonadic over V.

Proof. (Sketch) The idea is to view both categories of monoids and comonoids

as subcategories of the functor algebras and functor coalgebras categories, for specific

endofunctors on V.
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Consider the functors T+ and T× on our admissible category V given by

T+(C) = (C ⊗ C) + I, T×(C) = (C ⊗ C)× I.

These are finitary functors, because the ‘n-th tensor power’ functor Tn = (−)⊗n

preserves filtered colimits, and (− × I) preserves filtered colimits for any locally

presentable category (where finite limits commute with filtered colimits).

We deduce that AlgT+ is finitary monadic over V, locally presentable and con-

tains Mon(V) as a full subcategory, and also CoalgT× is comonadic over V, locally

presentable and contains Comon(V) as a full subcategory. Moreover, the categories

of monoids and comonoids are closed under limits and colimits respectively.

The first part of the proposition regarding Mon(V) follows from general argu-

ments for monadicity and local presentability of categories of algebras for a finitary

monad (see [GU71, Satz 10.3]). On the other hand, these arguments cannot be

dualized for Comon(V). For example, the dual of a locally presentable category is

not locally presentable (unless it is a small complete lattice).

Therefore a different approach is followed, using the notion of an equifier of

a family of natural transformations. The decisive fact then is that if all functors

involved are accessible, then the equifier is an accessible category (see [AR94, 2.76]).

Definition. Let F i1, F
i
2 : A → Bi be a family of functors, and for each i ∈ I,

(φi, ψi) : F i1 → F i2 be a pair of natural transformations. Then, the full subcategory

of A spanned by those object A which satisfy φiA = ψiA for all i is called the equifier

of the above family of natural transformations, denoted by

Eq(φi, ψi){i∈I}.

More explicitly, three pairs (φi, ψi) of natural transformations between compos-

ites of the forgetful CoalgT× → V and the ‘tensor power functor’ ⊗n are defined,

the equality of which give precisely the coassociativity and coidentity conditions of

the definition of a comonoid. Hence Comon(V) = Eq((φi, ψi)i=1,2,3), and for V
admissible this implies that Comon(V) is locally presentable.

Now comonadicity of Comon(V) over V follows: in the commutative triangle

Comon(V)

U **

� � // CoalgF

��
V

where all categories are locally presentable, both forgetful functors to V have a right

adjoint by Theorem 3.0.1, since they are cocontinuous. Moreover, the right leg is

comonadic by basic facts for functor coalgebras, and the inclusion preserves and

reflects all limits from the complete full subcategory Comon(V) to the complete

CoalgF . Therefore it creates equalizers of split pairs and so does U , which then

satisfies the conditions of Precise Monadicity Theorem. In particular, the existence

of the cofree comonoid functor R : V → Comon(V) is established. �

Another property which Comon(V) inherits from the monoidal category V is

monoidal closedness.
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Proposition 3.3.6. [Por08c, 3.2] If V is a symmetric monoidal closed category

which is locally presentable, then the category of comonoids Comon(V) is a locally

presentable symmetric monoidal closed category as well.

Proof. The symmetric monoidal structure of Comon(V) was described earlier.

In order to prove the existence of a right adjoint to

−⊗C : Comon(V)→ Comon(V) (3.19)

for any comonoid C in V, we can use the adjoint functor theorem 3.0.1. The category

Comon(V) is cocomplete and has a small dense subcategory, since it is locally

presentable by Proposition 3.3.5. Moreover, the functor (3.19) preserves all colimits

by the commutativity of

Comon(V)
−⊗C //

U
��

Comon(V)

U
��

V
−⊗UC

// V

where the comonadic forgetful U creates all colimits and − ⊗ UC preserves them

since V is monoidal closed. Hence we have an adjunction

Comon(V)
(−⊗C)

//
⊥ Comon(V)

Hom(C,−)
oo

where Hom denotes the internal hom of Comon(V). �

Corollary. For a commutative ring R, the category of R-algebras AlgR is

monadic over ModR and locally presentable, and the category of R-coalgebras

CoalgR is comonadic over ModR, locally presentable and monoidal closed.

The fact that CoalgR is locally presentable in fact generalizes the Fundamen-

tal Theorem of Coalgebras, which states that every k-coalgebra for a field k is a

filtered colimit of finite dimensional coalgebras, i.e. whose underlying vector space

is finite dimensional (see [Swe69, DNR01]). These are precisely the finitely pre-

sentable objects in Coalgk, hence we obtain an analogous statement for CoalgR for

a commutative ring R.

3.4. Categories of modules and comodules

If (A,m, η) is a monoid in a monoidal category V, a (left) A-module is an object

M of V equipped with an arrow µ : A ⊗ M → M called action, such that the

diagrams

A⊗A⊗M
m⊗1 //

1⊗µ
��

A⊗M
µ

��
A⊗M

µ
// M

and A⊗M
µ

##
I ⊗M

lM

//

η⊗1
99

M

(3.20)
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commute, where a is suppressed. An A-module morphism (M,µ) → (M ′, µ′) is an

arrow f : M →M ′ in V such that the diagram

A⊗M
1⊗f
//

µ

��

A⊗M ′

µ′

��
M

f
// M ′

(3.21)

commutes. Thus for any monoid A in V, there is a category ModV(A) of left

A-modules and A-module morphisms.

Dually, a (right) C-comodule for (C,∆, ε) a comonoid in V is an object X in

V together with the coaction δ : X → X ⊗ C, satisfying compatibility conditions

with the comultiplication and counit. A C-comodule morphism (X, δ)→ (X ′, δ′) is

a arrow g : X → X ′ in V which respects the coactions. There is a category of right

C-comodules ComodV(C) for every comonoid C in a monoidal category V.

In a very similar way, we can define categories of right A-modules and left C-

comodules. If V is a symmetric monoidal category, there is an obvious isomorphism

between categories of left and right A-modules and left and right C-comodules, so

usually there is no distinction in the notation between left and right modules and

comodules.

For example, in the monoidal category of abelian groups Ab, the category of

modules for a ring R ∈ Mon(Ab) is precisely the category of R-modules ModR.

Moreover, for V = ModR itself, we denote by ModA the category of those R-

modules which are equipped with the structure of an A-module for an R-algebra

A ∈ Mon(ModR). Similarly, ComodC is the category of C-comodules for an

R-coalgebra C ∈ Comon(ModR).

Recall how, when a monoidal category V is viewed as the hom-category K(?, ?) of

a bicategory K with one object ?, a monoid A in V is precisely a monad in K (Remark

3.3.1). This analogy carries over to modules for a monoid in V. In Definition 2.2.3,

the category of left t-modules for a monad t in the bicategory K was defined to

be the category of Eilenberg-Moore algebras for the monad ‘post-composition with

t’. For the one-object case, since the tensor product of K(?, ?) is just horizontal

composition, the following well-known fact is immediately implied.

Proposition 3.4.1. For any monoid A and any comonoid C in a monoidal

category V, the categories of A-modules ModV(A) and C-comodules ComodV(C)

are respectively monadic and comonadic over V.

Explicitly, the category of (left) modules for a monoid (A,m, η) is the category

of algebras for the monad (A⊗−, η ⊗−,m⊗−) on V, and the category of (right)

comodules for a comonoid (C,∆, ε) is the category of coalgebras for the comonad

(−⊗ C,−⊗ ε,−⊗∆) on V.

In the previous section, it was demonstrated how a lax monoidal functor between

monoidal categories F : V → W induces a functor MonF between their categories

of monoids, as in (3.16). Furthermore, for any monoid A in V, there is an induced
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functor between the categories of modules

ModF : ModV(A) // ModW(FA)

(M,µ) � // (FM,µ′)

(3.22)

where the object FM in W obtains the structure of a FA-module via the action

µ′ : FA⊗ FM
φA,M−−−→ F (A⊗M)

Fµ−−→ FM

with φA.M the lax structure map of F .

As an application, consider the internal hom functor [−,−] : Vop × V → V in a

symmetric monoidal closed category V. By Proposition 3.2.4 it is lax monoidal, as

the parametrized adjoint of the strong monoidal (−⊗−), and it induces the functor

Mon[−,−] as in (3.17). Now, a monoid in Vop × V is a pair (C,A) where C is a

comonoid and A a monoid, and also

ModVop×V((C,A)) ∼= ModVop(C)×ModV(A) ∼= ComodV(C)op ×ModV(A).

Hence the induced functor (3.22) in this case is

Mod[−,−] : ComodV(C)op ×ModV(A) // ModV([C,A])

( (X, δ) , (M,µ) ) � // ([X,M ], µ′).

(3.23)

This concretely means that whenever X is a C-comodule and M is an A-module,

the object [X,M ] obtains the structure of a [C,A]-module, with action

µ′ : [C,A]⊗ [X,M ]→ [X,M ]

which is the transpose under −⊗X a [X,−] of the composite

[C,A]⊗ [X,M ]⊗X
1⊗δ //

++

[C,A]⊗ [X,M ]⊗X ⊗ C
1⊗s // [C,A]⊗ C ⊗ [X,M ]⊗X

ev⊗ev��
A⊗M

µ
��
M.

(3.24)

Corollary. For A an R-algebra and C an R-coalgebra for a commutative ring

R, there is an induced map

Mod(HomR) : Comodop
C ×ModA // ModHomR(C,A)

( X , M ) � // HomR(X,M)

which endows the R-module of linear maps between X and M with the structure of

a HomR(C,A)-module.

In the previous section, it turned out that for the class of admissible monoidal

categories, the categories of monoids and comonoids had very useful properties (see

Proposition 3.3.5). As far as the categories of modules and comodules are concerned,

ComodV(C) is again more particular than ModV(A) and similar techniques as for
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Comon(V) can be used. The following generalizes the results for comodules over a

coalgebra in V = ModR of [Por06].

Proposition 3.4.2. Suppose V is a locally presentable monoidal category, such

that ⊗ preserves filtered colimits in both variables. Then

(1) ModV(A) for a monoid A is finitary monadic over V and so locally pre-

sentable.

(2) ComodV(C) for a comonoid C is a locally presentable category.

Proof. By Proposition 3.4.1, the endofunctor on V which induces the monad for

which the algebras are (left) A-modules is (A⊗−), which is finitary by assumptions.

Similarly, the endofunctor which gives rise to the comonadic ComodV(C) over

V is FC = − ⊗ C, which is also finitary. Imitating the proof of Proposition 3.3.5,

consider the category of functor FC-coalgebras which contains ComodV(C) as its

full subcategory, closed under formation of colimits. Then CoalgFC is comonadic

over V and locally presentable itself. Now define pairs of natural transformations

φ1, ψ1 : CoalgFC

U
++

FCFCU

33�� V , φ2, ψ2 : CoalgFC

U
++

(−⊗I)U
33�� V

with components

φ1
X : X

β−→ X ⊗ C β⊗1−−→ X ⊗ C ⊗ C and φ2
X : X

β−→ X ⊗ C 1⊗ε−−→ X ⊗ I

ψ1
X : X

β−→ X ⊗ C 1⊗∆−−−→ X ⊗ C ⊗ C ψ2
X : X

r−1

−−→ X ⊗ I

where β : X → X ⊗ C is the structure map of the functor FC-coalgebra X, and

∆, ε are the comultiplication and counit of the comonoid C. Since all categories and

functors involved are accessible, the equifier of this family of natural transformations

is accessible as well. It is not hard to see that

Eq((φi, ψi)i=1,2) = ComodV(C)

so the category of comodules is accessible and moreover cocomplete, thus locally

presentable. �

The above proposition indicates the structure that finitary monadic and fini-

tary comonadic categories over locally presentable categories inherit. We note that

Gabriel and Ulmer’s result in [GU71] for algebras of finitary monads does not seem

to dualize, but by following a similar approach to Adámek and Rosický’s ‘Locally

presentable and accessible categories’, we obtain the following result.

Theorem 3.4.3. Suppose that C is a locally presentable category.

• If (T,m, η) is a finitary monad on C, the category of algebras CT is locally

presentable.

• If (S,∆, ε) is a finitary comonad on C, the category of coalgebras CS is

locally presentable.
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Proof. The category of Eilenberg-Moore algebras CT is always a full subcate-

gory of the locally presentable category of endofunctor algebras AlgT (see previous

section). More precisely, it is expressed as an equifier of natural transformations

between accessible functors AlgT → C hence is accessible as in [AR94, 2.78], and

by default is also complete.

On the other hand, the category of coalgebras CS is a full subcategory of the

locally presentable category of endofunctor coalgebras CoalgT , expressed as the

equifier CS = Eq
(
(φt, ψt)t=1,2

)
for

CoalgS �� φ1,ψ1

U

&&

SSU

88 C with φ1
(C,β) : C

β
// SC

Sβ
// SSC

ψ1
(C,β) : C

β
// SC

∆C // SSC

CoalgS �� φ2,ψ2

U

&&

U

88 C with φ2
(C,β) : C

β
// SC

εC // C

ψ2
(C,β) : C

1C // C.

All categories and functors involved are accessible, hence CS is an accessible category,

with all colimits created from C. �

Proposition 3.4.2 could directly be established from the above. Notice that the

assumptions on V could of course be changed to ‘locally presentable, symmetric

monoidal category, such that B ⊗ − preserves filtered colimits’, i.e. admissible

monoidal category. As mentioned earlier, symmetry allows us to identify in a sense

the categories of left and right modules and comodules, without distinguishing cases

in the respective proofs. Even in the non-symmetric case though, the results hold

for all four cases separately.

Corollary. If A is an R-algebra and C an R-coalgebra for a commutative ring

R, the categories ModA and ComodC are locally presentable.

Notably, many useful properties and constructions for ComodC in the category

ModR are included in Wischnewsky’s [Wis75].

So far we have studied categories of modules and comodules for fixed monoids

and comonoids in a monoidal category V. Since a (co)module is just an object in

V with extra structure, relative to some (co)monoid, it could be expected that the

same object is possible to be endowed with (co)module structures relating it with

different (co)monoids.

Suppose that A,B are two monoids in the monoidal category V. Each monoid

morphism f : A→ B between them determines a functor

f∗ : ModV(B) −→ModV(A) (3.25)

which makes every B-module (N,µ) into an A-module f∗N via the action

A⊗N f⊗1−−→ B ⊗N µ−→ N.



52 3. MONOIDAL CATEGORIES

This functor is sometimes called restriction of scalars along f . Also, each B-module

arrow becomes an A-module arrow (i.e. commutes with the A-actions), and so we

have a commutative triangle of categories and functors

ModV(B)
f∗

//

&&

ModV(A)

xx
V.

(3.26)

On the other hand, if C and D are two comonoids in V, each comonoid arrow

g : C → D induces a functor

g! : ComodV(C) −→ ComodV(D) (3.27)

which makes every C-comodule (X, δ) into a D-comodule g!X via the coaction

X
δ−→ X ⊗ C 1⊗g−−→ X ⊗D,

called corestriction of scalars along g. The respective commutative triangle is

ComodV(C)
g! //

''

ComodV(D)

wwV.

(3.28)

Notice that by the above triangles, where the legs are monadic and comonadic

respectively, f∗ is a continuous functor and g! is a cocontinuous functor when V is

(co)complete.

It is often of interest to deduce the existence of adjoints of the functors f∗

and g!. This is why the last part of this section is a digression, devoted to the

identification of certain assumptions on the monoidal category V which permit the

explicit construction of such adjoints. Most of the constructions are well-known in

particular categories, like V=Ab for the categories of modules for rings, which is

also our motivating example.

If A,B are two monoids in V, define a left A/right B-bimodule M to be an object

in V with a left A-action A⊗M λ−→M and a right B-action M ⊗B ρ−→ B such that

the actions commute, and denote it by AMB. In a dual way, we can define a left

C/right D-bicomodule CXD.

i) In an arbitrary monoidal category V, the tensor product of the bimodules AMB,

BNA′ over B is the coequalizer

M ⊗B ⊗N
1⊗λN //

ρM⊗1
// M ⊗N // // M ⊗B N (3.29)

where ρM is the right B-action on M and λN is the left B-action on N . Dually,

the cotensor product for bicomodules CXD, DYC′ over D is the equalizer

X�DY // // X ⊗ Y
rX⊗1 //

1⊗lY
// X ⊗D ⊗ Y

where rX is the right D-coaction on X and lY is the left D-coaction on Y .



3.4. CATEGORIES OF MODULES AND COMODULES 53

ii) In a symmetric monoidal closed category V, we can form HomA(M,N) for two

A-modules M,N as the equalizer

HomA(M,N) // // [M,N ]
t //

k
// [A, [M,N ]]

where t corresponds under −⊗X a [X,−] to

[M,N ]⊗A⊗M 1⊗s−−→ [M,N ]⊗M ⊗A ev⊗1−−−→ N ⊗A ρN−−→ N

and k corresponds to

[M,N ]⊗A⊗M 1⊗λM−−−−→ [M,N ]⊗M ev−→ N.

Proposition 3.4.4. Suppose that the monoidal category V has coequalizers and

the functor B⊗− preserves them for any monoid B. Then the functor f∗ has a left

adjoint, for any monoid morphism f . Dually, if V has equalizers and the functor

− ⊗ C preserves them for any comonoid C, then g! has a right adjoint for any

comonoid morphism g.

Proof. Firstly notice that any monoid A can be considered as a left and right

A-module via multiplication, and any comonoid C is a left and right C-comodule

via comultiplication.

When B is viewed as a left B/right A-bimodule via restriction of scalars along

f : A→ B, there exists a natural bijection

ModV(B)(B ⊗AM,N) ∼= ModV(A)(M,f∗N)

for any left A-module M and left B-module N, which establishes an adjunction

ModV(A)
B⊗A− //
⊥ ModV(B).
f∗

oo

Notice that the left B-action on B ⊗A M is induced by universality of the top

coequalizer, since B ⊗− preserves them:

B ⊗B ⊗A⊗M
1⊗1⊗λM

..

1⊗1⊗f⊗1
,,

m⊗1⊗1

��

B ⊗B ⊗M // //

m⊗1

��

B ⊗B ⊗AM

∃!λB⊗AM

��

B ⊗B ⊗B ⊗M 1⊗m⊗1

66

B ⊗A⊗M
1⊗µ

--

1⊗f⊗1
--

B ⊗M // // B ⊗AM.

B ⊗B ⊗M m⊗1

66

Dually, for a comonoid arrow g : C → D we have the adjunction

ComodV(C)
g! //
⊥ ModV(D)

−�DC
oo

when C is viewed as a left D-comodule via corestriction along g. �

Remark. By the adjoint lifting theorem (see for example [Joh02a, 1.1.3]), we

can deduce the sheer existence of a left adjoint for f∗ and a right adjoint for g! if
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ModV(B) and ComodV(C) have (co)equalizers (of (co)reflexive pairs) accordingly.

This happens because the legs of the triangles (3.26, 3.28) are respectively monadic

and comonadic. Of course, this agrees with the assumptions of the above proposition,

since B⊗ - and -⊗C are the monad and comonad which give rise to the (co)monadic

categories of modules and comodules.

Proposition 3.4.5. If V is a symmetric monoidal closed category with equaliz-

ers, then f∗ has a right adjoint for any monoid arrow f . Dually, if V has coequalizers

and Vop is monoidal closed, then g! has a left adjoint for any comonoid arrow g.

Proof. There is a natural bijection

ModV(A)(f∗M,N) ∼= ModV(B)(M,HomA(B,N))

for any B-module M , A-module N and f : A → B monoid morphism. Thus we

have an adjunction

ModV(B)
f∗

//
⊥ ModV(A).

HomA(B,−)
oo

The B-action on HomA(B,N) is the unique map induced by universality of the

bottom equalizer

B ⊗HomA(B,M) // //

∃!λHomA(B,M)

��

B ⊗ [B,M ]
1⊗t //

1⊗k
//

u

��

B ⊗ [A, [B,M ]]

v

��
HomA(B,M) // // [B,M ]

t //

k
// [A, [B,M ]],

where u and v are adjuncts to composites of multiplication of B and evaluation.

The left adjoint of g! is constructed dually. �

Obviously, the above sufficient conditions for the existence of adjoints for the core-

striction of scalars are much less common to appear than the ones for the restric-

tion. After all, for most interesting monoidal categories V, their opposite Vop is not

monoidal closed.

In particular, for V = ModR where R is a commutative ring, the situation is as

follows.

Proposition 3.4.6. The functor f∗ for any R-algebra morphism f : A→ B has

a pair of adjoints

ModB f∗ // ModA.

B⊗A−

⊥vv

HomA(B,−)

⊥
hh

On the other hand, the functor g! has a right adjoint for any R-coalgebra morphism

g : C → D, and also a left adjoint in certain cases, e.g. if g is between two finitely

presentable projective R-coalgebras.
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Proof. The symmetric monoidal closed category ModR has all limits and col-

imits, therefore Propositions 3.4.4 and 3.4.5 for the restriction of scalars apply and

the respective adjoints are constructed as above.

Regarding the corestriction of scalars, the functor C ⊗ − does not in general

preserve equalizers in ModR for any R-coalgebra C (except for flat coalgebras).

Also Modop
R is not a monoidal closed category, thus the above propositions do not

apply in this case. However, since g! is cocontinuous and ComodC is a locally

presentable category, Theorem 3.0.1 can be applied instead, to give the existence of

a right adjoint for any g!. In particular, when C is a flat coalgebra, we can construct

this adjoint as above:

ComodC

g!
,,

⊥ ComodD.

−�DC
ll

Moreover, ComodC is complete, well-powered and has a cogenerator as shown in

[Wis75]. We can then apply the special adjoint functor theorem to obtain a right

adjoint only when g! preserves all limits. For example, if the coalgebras C and D

have duals in ModR, the functors −⊗ C and −⊗D preserve limits. Hence in the

commutative triangle (3.28), the comonadic legs create all limits that the comonads

preserve, hence g! is continuous. �





CHAPTER 4

Enrichment

This chapter begins by presenting the most basic definitions and structures re-

lated to enriched category theory, largely following the standard book on the subject

by Kelly [Kel05].

Then, a brief introduction to enriched bimodules is given, intended to clarify

certain essential concepts of Chapter 7. The theory of bimodules (or distributors

or profunctors) has been widely studied, and the notion of a distributor was first

introduced by Lawvere. Here we restrict to the parts relevant to what follows,

hence more emphasis is given on one-sided modules. Appropriate references are

[Bén73, Bor94a, DS97], and also [GS13] where a theory of modules not between

enriched categories but between enriched bicategories is developed.

In the last section, we give the definition of an action of a monoidal category on

an ordinary category and we demonstrate in detail how a V-representation may give

rise to a V-enriched category. This forms one direction of a correspondence between

categories with an action from V with a certain adjoint and tensored V-categories,

for V a right closed monoidal category. In fact, the adjoint gives the hom-objects

and the action gives the tensor of the enriched category. The main references are

[GP97, JK02], and for example in [McC00b] the structure of the 2-category of

V-actegories (i.e. V-representations) V-Act is explored.

4.1. Basic definitions

Suppose that (V,⊗, I, a, l, r) is a monoidal category. A V-enriched category A
consists of a set obA of objects, a hom-object A(A,B) ∈ V for each pair of objects

of A, a composition law

M : A(B,C)⊗A(A,B)→ A(A,C) (4.1)

for each triple of objects, and an identity element jA : I → A(A,A) for each object,

subject to the associativity and unit axioms expressed by the commutativity of

(A(C,D)⊗A(B,C))⊗A(A,B)
a //

M⊗1

��

A(C,D)⊗ (A(B,C)⊗A(A,B))

1⊗M

��
A(B,D)⊗A(A,B)

M
''

A(C,D)⊗A(A,C)

M
ww

A(A,D),

57
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A(B,B)⊗A(A,B)
M // A(A,B) A(A,B)⊗A(A,A)

Moo

I ⊗A(A,B)

jB⊗1

OO

l

55

A(A,B)⊗ I.
r

ii

1⊗jA

OO

For example, Set-enriched categories are ordinary small categories, Ab-categories

are additive categories, Vectk-categories are k-linear categories and Cat-enriched

categories are 2-categories. The latter gives a different perspective of 2-category

theory from the one presented in Chapter 2. Thus, in order to deal with 2-categories

we can either employ the theory of bicategories or the theory of enriched categories.

Notice how in all the examples above, the base V of the enrichment is in fact

enriched over itself: Set is an ordinary category, Ab is an additive category, Vectk

is a k-linear category and Cat is a 2-category. This is due to the fact that the base

monoidal categories are closed, and the internal hom functor in any monoidal closed

category V
[−,−] : Vop × V −→ V

induces an enrichment of the category over itself: the hom-object for A,B ∈ V is

[A,B], the composition law M : [B,C] ⊗ [A,B] → [A,C] corresponds under the

adjunction −⊗X a [X,−] to the composite

[B,C]⊗ [A,B]⊗A 1⊗ev−−−→ [B,C]⊗B ev−→ C

and the identity I → [A,A] corresponds to I ⊗ A
lA−→ A. It is a straightforward

verification that these data indeed exhibit V as a V-category.

If A is a V-category for a symmetric monoidal category V, then Aop is also a

V-category called the opposite V-category, with the same objects obAop = obA, and

hom-objects Aop(A,B) := A(B,A). The composition law Aop(B,C)⊗Aop(A,B)→
Aop(A,C) is

A(B,C)⊗A(B,A)
s−→ A(B,A)⊗A(C,B)

M−→ A(C,A)

and the identity elements I → Aop(A,A) are the same as in A.

For V-categories A and B, a V-functor F : A → B between them consists of a

function F : obA → obB together with a map

FAB : A(A,B)→ B(FA,FB) (4.2)

for each pair of objects in A, subject to the commutativity of

A(B,C)⊗A(A,B)
M //

FBC⊗FAB

��

A(A,C)

FAC

��
B(FB,FC)⊗ B(FA,FB)

M
// B(FA,FC),

I
jA //

jFA
##

A(A,A)

FAA

��
B(FA,FA)

(4.3)

expressing the compatibility of F with composition and identities.
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The notion of an enriched functor in the context of the examples above becomes

respectively an ordinary functor, an additive functor, a k-linear functor and a 2-

functor. Clearly the composite of two composable V-functors is again a V-functor,

and the composition is associative and unital with 1A the identity V-functor.

If V is symmetric monoidal closed, then for any V-category A the assignment

(A,B) 7→ A(A,B) is in fact the object function of a V-functor of two variables

HomA : Aop ⊗A −→ V (4.4)

where V is regarded as a V-category via the internal hom. Its partial functors are

the covariant and the contravariant representable V-functors HomA(A,−) : A → V,

HomA(−, B) : Aop → V. For example, the former sends B ∈ obA to A(A,B) ∈ V,

and on hom-objects it consists of arrows

HomA(A,−)BC : A(B,C)→ [A(A,B),A(A,C)]

which correspond to the composition arrows under (−⊗A) a [A,−].

For V-functors F,G : A → B, a V-natural transformation τ : F ⇒ G consists

of an obA-indexed family of components τA : I → B(FA,GA) satisfying the V-

naturality condition expressed by the commutativity of

I ⊗A(A,B)
τB⊗FAB // B(FB,GB)⊗ B(FA,FB)

M

))
A(A,B)

l−1
99

r−1 %%

B(FA,GB).

A(A,B)⊗ I
GAB⊗τA

// B(GA,GB)⊗ B(FA,GA)

M

55

It is not hard to see that V-natural transformations compose both vertically and

horizontally, in a very similar way to ordinary natural transformations. Thus (small)

V-categories, V-functors and a V-natural transformations constitute a 2-category,

which is denoted by V-Cat.

When V is a symmetric monoidal category, we can define a tensor product in

V-Cat: A⊗ B has objects obA × obB, hom-objects

(A⊗ B)((A,B), (A′, B′)) := A(A,A′)⊗ B(B,B′),

the composition law is the composite

A(A′, A′′)⊗ B(B′, B′′)⊗A(A,A′)⊗ B(B,B′′)

1⊗s⊗1

��

// A(A,A′′)⊗ B(B,B′′)

A(A′, A′′)⊗A(A,A′)⊗ B(B′, B′′)⊗ B(B,B′′)

M⊗M

33

and the identity element is

I
∼−→ I ⊗ I jA⊗jB−−−−→ A(A,A)⊗ B(B,B).



60 4. ENRICHMENT

The axioms are satisfied so A⊗B is a V-category. The tensor product of V-functors

and V-natural transformations can also be defined accordingly, so that we obtain a

2-functor ⊗ : V-Cat × V-Cat → V-Cat. The unit I is the unit V-category with

one object ∗ and I(∗, ∗) = I. Hence with the appropriate constraints, V-Cat is a

monoidal 2-category (for a formal definition, see for example [BN96]). Also, it has

a symmetry sA,B : A⊗B ∼= B⊗A which renders it a symmetric monoidal 2-category.

There is the so-called ‘underlying category functor’

(−)0 : V-Cat→ Cat

which maps the V-category A to the ordinary category A0 = V-Cat(I,A), the

underlying category of the enriched A. Explicitly, A0 has the same objects as the

V-enriched A, while a map f : A → B in A0 is an element f : I → A(A,B) of

A(A,B), i.e. A0(A,B) = V(I,A(A,B)) as sets. There are appropriate definitions

for the underlying V-functor and underlying V-natural transformation. The amount

of information lost in the passage from enriched categories to their underlying cate-

gories depends very much on the base V. In particular, how much information about

A is retained by the underlying A0 depends on ‘how faithful’ the functor V(I,−) is.

We saw earlier that if A is enriched in a symmetric monoidal closed category V,

there is a V-functor HomA as in (4.4) which gives the hom-objects of the enrichment.

There is also an ordinary functor between the underlying categories

A(−,−) : Aop
0 ×A0

// V

(A,B) � // A(A,B)

(4.5)

sometimes called the enriched hom-functor, which maps a pair of arrows (A′
f−→

A,B
g−→ B′) in Aop

0 ×A0 to the top arrow

A(A,B)
A(f,g)

//

r−1

��

A(A′, B′).

A(A,B)⊗ I

1⊗f
��

A(B,B′)⊗A(A′, B)

M

OO

A(A,B)⊗A(A′, A)
M
// A(A′, B)

l−1

// I ⊗A(A′, B)

g⊗1

OO

This functor is evidently the composite

Aop
0 ×A0 −→ (Aop ⊗A)0

(HomA)0−−−−−−→ V(0)

where the first arrow is a canonical functor relating the two underlying categories.

Notice how this functorA(−,−), unlike HomA, can be defined for categories enriched

in any monoidal category V, without further conditions on it.

Speaking loosely, we say that an ordinary category C is enriched in a monoidal

category V when we have a V-enriched category A and an isomorphism A0
∼= C.

Consequently, to be enriched in V is not a property, but additional structure. Of
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course, a given ordinary category may be enriched in more than one monoidal cat-

egories: that is evident in view of the change of base described below. But also, a

category C may be enriched in V in more than one way, so that there may be many

different V-categories with the same underlying ordinary category.

Proposition 4.1.1. Suppose F : V → W is a lax monoidal functor between two

monoidal categories. There is an induced 2-functor

F̃ : V-Cat −→W-Cat

between the 2-categories of V andW-enriched categories, which maps any V-category

A to a W-category with the same objects as A and hom-objects FA(A,B).

Proof. Given a V-category A, the W-category F̃A has objects ob(F̃A) =obA
and hom-objects (F̃A)(A,B) = F (A(A,B)) ∈ W. The composition and the identi-

ties are given by

FA(B,C)⊗ FA(A,B)

φA(B,C),A(A,B)

��

// FA(A,C)

F (A(B,C)⊗A(A,B))

FM

55
IW

φ0

��

// FA(A,A)

FIV

FjA

88

where φ, φ0 are the structure maps of the lax monoidal functor F . It can be checked

that the diagrams of associativity and identities commute, therefore F̃A is a W-

category.

If K : A → B is a V-functor with maps KAB : A(A,B)→ B(KA,KB) in V for

every pair of objects in A, we can form a W-functor

F̃K : F̃A → F̃B

with the same function on objects, and for every pair of objects in F̃A a map

(F̃K)AB : FA(A,B)
F (KAB)−−−−−→ FB(KA,KB)

in W, such that the axioms of a W-functor are satisfied.

If τ : K ⇒ L is a V-natural transformation between V-functors K,L : A → B,

its image F̃ τ : F̃K ⇒ F̃L consists of an ob(F̃A)-indexed family of components

IW
F̃ τA //

φ0

��

FB(KA,LA)

FIV

FτA

88

in W, which satisfy the W-naturality condition in a straightforward way. �

Another standard example of enrichment is the usual functor category between

two V-categories, which under specific assumptions on V obtains a V-enriched struc-

ture itself. Explicitly, when V is a symmetric monoidal closed category with all

limits, we can define the enriched functor category [A,B] with objects V-functors
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A → B, and hom-object [A,B](F,G) for any two V-functors F , G the following end∫
A∈A B(FA,GA) // //

∏
A∈A B(FA,GA)

//
//
∏
A,A′∈A [A(A,A′),B(FA,GA′)]

constructed in detail in [Kel05, 2.1]. It is not hard to define a composition law and

identity elements for the functor category, and the axioms which make [A,B] into

V-category follow from the corresponding axioms for B.

It can be deduced that, when V has the above mentioned properties, the functor

−⊗A : V-Cat→ V-Cat

in the monoidal category V-Cat has [A,−] as its right adjoint, with a (2-)natural

isomorphism

V-Cat(A⊗ B, C) ∼= V-Cat(A, [B, C])

for any V-categories A, B and C. Therefore the symmetric monoidal 2-category

V-Cat has also a closed structure.

4.2. V-enriched bimodules and modules

As mentioned in Examples 2.1.2 of bicategories, there is a bicategory of bimod-

ules BMod where 1-cells are abelian groups M which are left R-modules and right

S-modules for rings R,S, such that the two actions are compatible. More explicitly,

these actions yield group homomorphisms

R⊗M ·−→M, M ⊗ S ·−→M

such that (r · m) · s = r · (m · s) for all r ∈ R, s ∈ S and m ∈ M . Morphisms

between them are group homomorphisms f : M → N which respect the R and

S-actions. These data define a category of (R,S)-bimodules and bimodule maps

between them, which is furthermore an additive category, i.e. each RHomS(M,N)

is an abelian group.

There is another equivalent formulation of these definitions, which make it easier

to obtain a generalization to V-enriched modules. Recall that a ring is essentially

the same as an Ab-category with only one object, in the sense that the underlying

additive group of the ring is the single hom-object and the multiplication of the ring

is composition law. Then an (R,S)-bimodule can be regarded as an additive functor

Sop ⊗R→ Ab

where the opposite ring Sop has reversed multiplication. Equivalently, this amounts

to an additive functor

R→ [Sop,Ab].

In these terms, a bimodule map is an additive natural transformation between the

respective additive functors.

The next step, since Rng=Mon(Ab), would be to consider bimodules for

monoids in an arbitrary monoidal category V. The definitions that arise are pre-

cisely the ones which were employed in Section 3.4 in order to study the existence
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of adjoints for the restriction of scalars. By analogy with ring bimodules, an (A,B)-

bimodule M for monoids A and B in a symmetric monoidal closed V can also be

expressed as a V-functor

M : Bop ⊗A→ V

where the monoids A and B are viewed as one-object V-categories, in the same way

as rings were viewed as one-object additive categories.

Even more generally, we can consider left A-/right B-bimodules for general V-

categories A, B. Hence, define a V-bimodule M to be a V-functor

Bop ⊗A → V (4.6)

for V a symmetric monoidal closed category, where the opposite category Bop is

V-enriched by symmetry of V, the tensor product in V-Cat was defined in the

previous section and V is enriched in itself via the internal hom. Equivalently, if

V is moreover complete, a (A,B)-bimodule is a V-functor A → [Bop,V] using the

monoidal closed structure of V-Cat. Bimodules (enriched in Set) are also called

profunctors or distributors. Maps of enriched bimodules are evidently defined as

V-natural transformations and are called V-bimodule maps.

There is an alternative, more intuitive formulation of the definition of a V-

module (see [Law73]) which is closer to the initial notion of ordinary bimodules.

More specifically, an (A,B)-bimodule M is given by a family of objects M(B,A) ∈ V
for all (B,A) ∈ obA× obB, together with arrows

A(A,A′)⊗M(B,A)→M(A′, B)

M(B,A)⊗ B(B′, B)→M(A,B′)

in V, which satisfy usual axioms and are compatible with each other. A detailed

presentation of the diagrams involved can be found for example in [Car95] and

[GS13], and the equivalence between these two definitions of V-bimodules is easily

verified.

Regarding the maps between them, a V-bimodule map α : M → M ′ between

two left A-/right B bimodules consists of a family of arrows

αA,B : M(B,A)→M ′(B,A)

in V for all A ∈ A, B ∈ B, which respect the A and B-actions. These can be

composed in an evident way, thus we have a category of (A,B)-bimodules for any

V-categories A and B, denoted by V-BMod(A,B) or V-AModB. Notice that for

the second characterization of V-bimodules, we do not need any extra assumptions

on the monoidal category V.

Back to the example of ordinary bimodules, an important feature is the fact

that there is a ‘composition’ operation, by taking the tensor product of bimodules

over a ring. More precisely, given an (R,S)-bimodule M and a (S, T )-bimodule N ,

their tensor product M ⊗S N obtains a structure of a (R, T )-bimodule. Having in

mind that bimodules constitute the 1-cells in the bicategory BMod, if we denote

them as M : R � // S and N : S � // T so that they are also distinguished from ring
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homomorphisms, this process can be written

NM = M ⊗S N : R
M� // S

N� // T ,

and by the canonical isomorphisms

(M ⊗S N)⊗T L ∼= M ⊗S (N ⊗T L), M ⊗S S ∼= M

for a (T, V )-bimodule L, it is clear that this tensor product satisfies associativity

and identity laws up to isomorphism.

In order to generalize the composition of ordinary bimodules to the enriched

case, we will use the expression of the tensor product of modules over a ring as

a coequalizer. For bimodules in a general monoidal category V, this is expressed

precisely by the construction (3.29) of the tensor product of a right B-bimodule and

a left B-bimodule over a monoid B.

For this operation to be accordingly defined in the level of enriched bimodules,

and for the collection of V-bimodules and bimodule morphisms between two V-

categories to obtain the structure of a V-enriched category itself, the base category

V is requested to be a complete and cocomplete symmetric monoidal closed category.

Based on the above idea, for two V-bimodules M : A � // B and N : B � // C we de-

fine their composite N ◦M : A � // C by specifying its components by the following

coequalizer:

∑
B,B′∈BM(B′,A)⊗B(B,B′)⊗N(C,B)

////
∑
B∈BM(B,A)⊗N(C,B) // // (N◦M)(C,A).

The parallel arrows come from the B-actions on M and N . This definition in fact

exhibits the composite as the coend

N ◦M =

∫
B∈B

M(B,−)⊗N(−, B),

which inherits a leftA-action and a right C-action, and we also write (N◦M)(C,A) =

M(B,A)⊗BN(C,B). This operation can be verified to be associative and unitary up

to isomorphism by the associativity, left and right unit constraints of the monoidal

category V. So the above data indeed define a bicategory V-BMod (or V-Dist

or V-Prof) with objects V-categories, 1-cells V-bimodules and 2-cells V-bimodule

maps.

Bimodules can also be thought of as generalized V-functors between V-categories,

considered as ‘V-valued relations’ between them (as in Lawvere’s [Law73]). In

particular, every V-functor F : A → B gives rise to bimodules F∗ : A � // B and

F ∗ : B � // A defined by

F∗(B,A) = B(B,FA), F ∗(A,B) = B(FA,B). (4.7)

This structure implies that V-BMod fits in the context of the final Section 8.2.

For the purposes of this thesis, we are more interested in the categories of one-

sided modules, i.e. left A-modules or right B-modules for V-categories A or B. We

follow the second formulation of the definition of V-modules, which does not require

extra conditions on V.
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Definition 4.2.1. A left A-module Ψ, also written as Ψ : A � // I , is given by

objects ΨA in V for each A ∈ A and arrows

µ : A(A,A′)⊗ΨA→ ΨA′

in V for each A,A′ ∈ A, subject to the commutativity of

A(A′, A′′)⊗A(A,A′)⊗ΨA
1⊗µ

//

M⊗1

��

A(A′, A′′)⊗ΨA′

µ

��
A(A,A′′)⊗ΨA

µ
// ΨA′′,

A(A,A)⊗ΨA

µ

##
ΨA

jA
<<

1ΨA

// ΨA.

The arrows M and jA are the composition and identity element in V, and the

associativity and identity constraints are suppressed. If Ξ : A � // I is another left

A-module, then a left module morphism α : Ψ → Ξ is given by an obA-indexed

family

αA : ΨA→ ΞA

of arrows in V, satisfying the commutativity of

A(A,A′)⊗ΨA
1⊗α //

µ

��

A(A,A′)⊗ ΞA

µ

��
ΨA′

α
// ΞA′

for all A,A′ ∈ A.

The category of left A-modules is denoted by V-Mod(A) or V-AMod. Dually,

we can define the category of right B-modules V-ModB, with objects I � // B .

We could define a left A-module Ψ to be a V-functor Ψ : A → V and a right

B-module Ξ to be a V-functor Ξ : Bop → V. This agrees with (4.6), since of course

A⊗I ∼= A and Bop⊗I ∼= Bop for the unit V-category I, but that would require extra

structure on V as clarified earlier. We would then be able to identify the categories

V-AMod and V-ModB with the presheaf categories [A,V] and [Bop,V] of V-functors

and V-natural transformations. Via this presentation, many useful properties are

inherited from V, such as completeness, cocompleteness (obtained pointwise) and

local presentability: for any locally λ-presentable category C and small category A,

the functor category CA = [A, C] is locally λ-presentable itself by [AR94, 1.54].

Notice that the above concepts are evidently associated with the general notion

of a module (or bimodule) for a monad in a bicategory, as described in Section

2.2. This relation will be illustrated at the last sections of Chapter 7, in the formal

context of the bicategory of V-matrices V-Mat.

4.3. Actions of monoidal categories and enrichment

We now recall some parts of the general theory of actions of monoidal categories,

leading to specific enrichments. We largely follow [JK02] by Janelidze and Kelly,

adding some details.
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An action of a monoidal category V = (V,⊗, I, a, l, r) on an ordinary category

D is given by a functor

∗ : V × D // D

(X,D) � // X ∗D

with a natural isomorphism with components χXYD : (X ⊗ Y ) ∗D ∼−→ X ∗ (Y ∗D)

and a natural isomorphism with components νD : I ∗ D ∼−→ D, satisfying the

commutativity of the diagrams

((X ⊗ Y )⊗ Z) ∗D
χ
//

a∗1
��

(X ⊗ Y ) ∗ (Z ∗D)
χ
// X ∗ (Y ∗ (Z ∗D))

(X ⊗ (Y ⊗ Z)) ∗D
χ

// X ∗ ((Y ⊗ Z) ∗D),

1∗χ

OO
(4.8)

(I ⊗X) ∗D
χ

//

l∗1 ''

I ∗ (X ∗D)

νww
X ∗D,

(X ⊗ I) ∗D
χ

//

r∗1 ''

X ∗ (I ∗D)

1∗νww
X ∗D.

Notice that if ∗ is an action, then the opposite functor ∗op : Vop × Dop −→ Dop is

still an action: the corresponding natural isomorphisms are χ−1 and ν−1 and the

action axioms follow from those for ∗.
For example, any monoidal category V has a canonical action on itself, by taking

∗ = ⊗ : V × V → V

and χ = a, ν = l the monoidal constraints. This is sometimes called the regular

representation of V.

Remark 4.3.1. (i) In Bénabou’s [Bén67], a very inspiring characterization of

actions is provided, connecting the notion with a bicategorical construction. More

specifically, it is asserted that a (left) action of a monoidal category V (multiplicative

category in the terminology therein) on any category A can be identified with a

bicategory K with only two objects {0, 1} and hom-categories

K(0, 0) = 1, K(1, 0) = ∅, K(0, 1) = A, K(1, 1) = V.

The horizontal composition for the possible combinations of the objects 0, 1 gives

the tensor product ⊗ = ◦1,1,1 of V and the action ∗ = ◦0,1,1 on A, the associativ-

ity and identity constraints give the monoidal constraints and the action structure

transformations, whereas the coherence conditions correspond to the appropriate

axioms.

In particular, the canonical action of any monoidal category V on itself gives rise

to a bicategory MV with two objects as above, and hom-categories MV(0, 0) = 1,
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MV(1, 0) = ∅,MV(0, 1) =MV(1, 1) = V. This bicategory will be used for a certain

description of global categories of modules and comodules in Chapter 6.

(ii) A pseudomonoid in a monoidal category is an object with multiplication

and unit as defined in Section 3.3, for which the diagrams (3.13) commute up to

coherent isomorphism. For example, a pseudomonoid in the cartesian monoidal

category (Cat,×,1) is precisely a monoidal category V, with multiplication being

the tensor product and unit picking the unit object.

Furthermore, a pseudomodule for a pseudomonoid in a monoidal category is again

defined as in Section 3.4, where the diagrams (3.20) commute up to isomorphism,

satisfying coherence axioms. From this point of view, the action of a monoidal

category described above is a pseudoaction of a pseudomonoid on an object of the

monoidal Cat, i.e. D is a V-pseudomodule. More on this viewpoint will be discussed

in the final chapter.

Another example of an action which will be used repeatedly is the following.

Lemma 4.3.2. Suppose V is a symmetric monoidal closed category. The internal

hom

[−,−] : Vop × V −→ V

constitutes an action of the monoidal category Vop on the category V, via the stan-

dard natural isomorphisms

χXY Z : [X ⊗ Y,D]
∼−→ [X, [Y,Z]]

νD : [I,D]
∼−→ D.

Moreover, the induced functor

Mon[−,−] : Comon(V)op ×Mon(V) −→Mon(V)

is an action of the monoidal category Comon(V)op on the category Mon(V).

Proof. The isomorphisms χXY Z , νD can be verified to satisfy the axioms (4.8)

using the transpose diagrams under the adjunction (−⊗ Y ) a [Y,−]. Moreover, the

functor Mon[−,−] induced between the categories of comonoids and monoids as in

(3.17) is just a restriction of [−,−]. Hence the natural isomorphisms in Mon(V),

reflected by the conservative forgetful functor S : Mon(V)→ V, render Mon[−,−]

into an action too. Recall that Comon(V) and its opposite are monoidal since V is

symmetric. �

For our purposes, it is a very important fact that given a category D along

with an action of a monoidal category V with a parametrized adjoint, we obtain a

V-enriched category. In fact, this follows from a much stronger result of [GP97]

regarding categories enriched in bicategories, as mentioned in the introduction.

Theorem 4.3.3. Suppose that V is a monoidal category which acts on a category

D via a functor ∗ : V × D → D such that − ∗ D has a right adjoint F (D,−) for
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every D ∈ D, with a natural isomorphism

D(X ∗D,E) ∼= V(X,F (D,E)). (4.9)

Then we can enrich D in V, in the sense that there is a V-category with the same

objects as D, hom-objects F (A,B) for A,B ∈ obD and underlying category D.

Proof. Suppose we have an adjunction

V
−∗D //
⊥ D

F (D,−)
oo (4.10)

for every object D in D, where ∗ is the action of V on D. This implies that there is

a unique way of defining a functor of two variables

F : Dop ×D −→ V

such that the isomorphism (4.9) is natural in all three variables, i.e. F is the

parametrized adjoint of (− ∗ −). We are going to show in detail how these data

induce an enrichment of D in V, with enriched hom the functor F .

The composition law is the arrow M : F (B,C) ⊗ F (A,B) → F (A,C) which

corresponds uniquely under the adjunction − ∗D a F (D,−) to the composite

(F (B,C)⊗ F (A,B)) ∗A

χF (B,C),F (A,B),A

��

// C

F (B,C) ∗ (F (A,B) ∗A)
1∗εAB

// F (B,C) ∗B

εBC

OO (4.11)

where ε is the counit of the adjunction (4.10). The identity element is the morphism

jA : I → F (A,A) which corresponds uniquely to the isomorphism

I ∗A νA−→ A. (4.12)

The associativity axiom diagram translates under the adjunction to the following

diagram in D

((F (C,D)⊗ F (B,C))⊗ F (A,B)) ∗A a∗1 //

χ
��

(F (C,D)⊗ (F (B,C)⊗ F (A,B))) ∗A
χ
��

(F (C,D)⊗ F (B,C)) ∗ (F (A,B) ∗A)

1∗εAB ��

χ

,,

F (C,D) ∗ ((F (B,C)⊗ F (A,B)) ∗A)

1∗χ
��

(F (C,D)⊗ F (B,C)) ∗B
χ
��

F (C,D) ∗ (F (B,C) ∗ (F (A,B) ∗A))

1∗(1∗εAB)
��

F (C,D) ∗ (F (B,C) ∗B)
= //

1∗εBC ��

F (C,D) ∗ (F (B,C) ∗B)

1∗εBC��
F (C,D) ∗ C

εCD ))

F (C,D) ∗ C

εCDuu
D
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which commutes due to naturality of χ and ε. The identity axioms correspond to

the diagrams

(F (B,B)⊗ F (A,B)) ∗A
χ
// F (B,B) ∗ (F (A,B) ∗A)

1∗εAB
��

(I ⊗ F (A,B)) ∗A

(jB⊗1)∗1 44

l∗1 **

χ
// I ∗ (F (A,B) ∗A)

ν

��

jB∗1

33

1∗εAB
// I ∗B

ν
&&

jB∗1
// F (B,B) ∗B

εBB
��

F (A,B) ∗A
εAB

// B,

(F (A,B)⊗ F (A,A)) ∗A
χ
// F (A,B) ∗ (F (A,A) ∗A)

1∗εAA
��

(F (A,B)⊗ I) ∗A

(1⊗jA)∗1 44

χ
//

r∗1 ++

F (A,B) ∗ (I ∗A)

1∗(jA∗1)

44

1∗ν
//

1∗ν
��

F (A,B) ∗A

εAB
��

F (A,B) ∗A
εAB

// B

in D, which commute again for evident reasons.

Therefore we obtain a V-enriched category A, with objects obA = obD and

hom-objects A(A,B) = F (A,B). The underlying category of A is precisely D:

Ao(A,B) = V(I,A(A,B)) = V(I, F (A,B)) ∼= D(I ∗A,B) ∼= D(A,B)

⇒ Ao ∼= D

using the isomorphisms (4.9) and νA. �

As a straightforward application, we recover the well-known fact that the internal

hom in a monoidal closed category V induces an enrichment of V in itself with hom-

objects [A,B], as mentioned in Section 4.1. This is the case, since the canonical

action ∗ = ⊗ has as parametrized adjoint the functor [−,−].

As shown in detail in [JK02], when V is a monoidal closed category the natural

isomorphism (4.9) lifts to a V-natural isomorphism

A(X ∗D,E) ∼= [X,A(D,E)].

The existence of a V-enriched representation of [X,A(D,−)] is expressed by saying

that the V-category A is tensored, with X ∗D as the tensor product of X and D.

Furthermore, the case when not only the functor (− ∗ D) but also (X ∗ −) has a

right adjoint G(X,−) is addressed when V is moreover symmetric. Together with

the natural isomorphism (4.9) we get

D(D,G(X,E)) ∼= D(X ∗D,E) ∼= V(X,F (D,E)).

The bottomline is that the above assumptions result in the existence of a tensored

and cotensored V-enriched category, with underlying category D, tensor product

X ∗D and cotensor product G(X,E).



70 4. ENRICHMENT

As a special case of the above theorem, suppose that there is an action of a

monoidal category V on the opposite of a category D = Bop via a bifunctor

∗ : V × Bop → Bop.

If we have an adjunction as in (4.10), the parametrized adjoint F : B × Bop → V of

∗ can be denoted as

P : Bop × B −→ V

by switching the entries of a pair in the cartesian product. The natural isomorphism

(4.9) then becomes

B(A,X ∗B) ∼= V(X,P (A,B))

for X ∈ V and A,B ∈ B.

Corollary 4.3.4. If ∗ : V × Bop → Bop is an action of the monoidal closed V
on the category Bop along with an adjunction (− ∗ B) a P (−, B) for each B ∈ B,

then Bop is tensored V-enriched with hom-objects Bop(A,B) = P (B,A).

Moreover, if V is symmetric then the opposite of a V-enriched category is still

enriched in V. Hence in the situation above, there is an induced enrichment of

B = (Bop)op in V with the same objects and hom-objects B(A,B) = Bop(B,A).

Corollary 4.3.5. Let V be a symmetric monoidal closed category acting on

Bop. If for each object B, the action functor − ∗ B : V → Bop has a right adjoint

P (−, B) : Bop → V, then the parametrized adjoint

P (−,−) : Bop × B −→ V

of the action provides the hom-objects of a cotensored V-enriched category with un-

derlying ordinary category B and X ∗ B the cotensor product of X and B. If fur-

thermore X ∗ − : Bop → Bop has a right adjoint, the V-category is also tensored.

We are interested in these variations of Theorem 4.3.3, because our examples in

the following chapters fall into these precise formulations.



CHAPTER 5

Fibrations and Opfibrations

This chapter begins with a detailed review of the basic concepts of the theory

of fibrations and opfibrations, which plays a central role in the development of this

thesis. Our presentation follows mainly [Bor94b, Jac99, Joh02b]. The notion of

a fibred category, which arose from the work of Grothendieck in algebraic geometry,

successfully captures the concept of a category varying over (or indexed by) a dif-

ferent category. There has also been a connection of fibrations with foundations for

category theory, investigated in [Bén85].

Inside the total category of a fibration, the cartesian morphisms which are uni-

versally characterized incorporate a coherent structure: that of an indexed category,

i.e. a certain pseudofunctor. This is best understood via the Grothendieck construc-

tion (see Theorem 5.2.1) originally in [Gro61], which demonstrates the essential

equivalence between these two concepts. In fact, the coherent structure maps of an

indexed category, whose existence is only implicit in fibrations, show that an indexed

category has a structure whereas a fibration has a property (which determines such

structure when a cleavage is chosen). Despite their correspondence, fibrations are

technically often more convenient than indexed categories.

In the last section, we turn our attention to the fibrewise limits and adjunctions

between fibred categories. Following the terminology and results of [Her94, Jac99],

we slightly extend the existing theory by examining under which assumptions a fi-

bred 1-cell between fibrations over different bases has a (fibred) adjoint. Hermida

in his thesis [Her93] had already established the factorization of general fibred ad-

junctions in terms of cartesian fibred adjunctions and fibred adjunctions, suggesting

an important characterization of fibred completeness. However, we follow a different

approach to related problems.

5.1. Basic definitions

Consider a functor P : A → X. A morphism φ : A → B in A over a morphism

f = P (φ) : X → Y in X is called (P -)cartesian if and only if, for all g : X ′ → X in

X and θ : A′ → B in A with Pθ = f ◦ g, there exists a unique arrow ψ : A′ → A

such that Pψ = g and θ = φ ◦ ψ:

A′
θ

,,∃!ψ ))

��
A

φ
//

��

B

��

in A

X ′ f◦g=Pθ

,,g ))
X

f=Pφ
// Y in X

71
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For X ∈ obX, the fibre of P over X written AX , is the subcategory of A which

consists of objects A such that P (A) = X and morphisms φ with P (φ) = 1X , called

(P−)vertical morphisms.

The functor P : A → X is called a fibration if and only if, for all f : X → Y

in X and B ∈ AY , there is a cartesian morphism φ with codomain B above f , i.e.

φ : A→ B with P (φ) = f . We call such an φ a cartesian lifting of B along f . The

category X is then called the base of the fibration, and A its total category.

Dually to the above, suppose we have a functor U : C → X. A morphism

β : C → D is cocartesian over a morphism Uβ = f : X → Y in X if, for all

g : Y → Y ′ in X and all γ : C → D′ with Uγ = g◦f , there exists a unique morphism

δ : D → D′ such that Uδ = g and γ = δ ◦ β:

D′

��
C

β
//

��

γ
22

D

��

∃!δ

55

in C

Y ′

X
f=Uβ

//

g◦f=Uγ
22

Y
g

55

in X

The functor U : C → X is an opfibration if Uop is a fibration, i.e. for every C ∈ CX
and f : X → Y in X, there is a cocartesian morphism with domain C above f , called

the cocartesian lifting of C along f . If U is both a fibration and an opfibration, it

is called a bifibration.

Remark. What was above called ‘cartesian’ is sometimes called ‘hypercartesian’

instead. In that case, a cartesian morphism φ : A → B would satisfy the property

that for any θ : A′ → B with P (φ) = P (θ), there is a unique vertical arrow ψ : A′ →
A with φ ◦ ψ = θ:

A′

θ

''

∃!ψ
��
A

φ
// B in A.

If we were to use this definition, we would have to add the requirement that cartesian

arrows are closed under composition, in order to define a fibration.

Examples. (1) Every category C gives rise to the family fibration

f(C) : Fam(C) −→ Set

over the category of sets. The category Fam(C) has objects indexed families of

objects in C, {Xi}i∈I for a set I, and morphisms

({fi}i∈I , u) : {Xi}i∈I −→ {Yj}i∈J

are pairs which consist of a function u : I → J and a family of morphisms fi : Xi →
Yu(i) in C for all i’s. The functor f(C) just takes a family of objects to its indexing

set and a morphism to its function part. The cartesian arrows are pairs for which
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every fi is an isomorphism, so a cartesian lifting of {Yj}j∈J above u : I → J is

{Yu(i)}i∈I
(1,u)

//

f(C)
��

{Yj}j∈J

f(C)
��

in Fam(C)

I
u

// J in Set.

(2) Consider the ‘codomain’ functor for any category A

cod : A2 −→ A (5.1)

where A2 = [2,A] is the category of arrows of A, i.e. the functor category from

2 = (0→ 1) with two objects and one non-identity arrow to A. This functor takes

a morphism f : A→ B in A to its codomain B, and a commutative square

A
f
//

h
��

B

k
��

C
g
// D

which expresses an arrow from f to g, to k : B → D. Now, a cod-cartesian arrow of

C
g−→ D above k : B → D is the pullback square

• //

��

B

k
��

C
g
// D

therefore if A has pullbacks, cod is a fibration. Since this allows one to consider

A as fibred over itself and this is central for developing category theory over A,

we call cod the fundamental fibration of A. The fibre over an object A is simply

the slice category A/A. Dually we have the ‘domain opfibration’ with pushouts as

cocartesian morphisms.

As an immediate consequence of the definition of cartesian and cocartesian mor-

phisms, we have that if g and f are composable (co)cartesian arrows, their composite

g ◦ f is again a (co)cartesian arrow. Also if g ◦ f and g are (co)cartesian arrows,

then so is f . For example, for the fundamental fibration this is the standard result

that if A and B as in

• //

��
A

• //

��
B

•

��
• // • // •

are pullbacks, then the pasted square is a pullback. Moreover, if the outer square

and B are pullbacks, then so is A.

If P : A → X is a fibration, assuming the axiom of choice we may select a

cartesian arrow over each f : X → Y in X and B ∈ AY , denoted by

Cart(f,B) : f∗(B) −→ B.
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Such a choice of cartesian liftings is called a cleavage for P , which is then called a

cloven fibration. Any fibration can be turned into a cloven one, using the axiom of

choice to obtain a cleavage. Thus, henceforth we can assume that the fibrations we

deal with are cloven. Dually, if U is an opfibration, for any C ∈ CX and f : X → Y

in X we can choose a cocartesian lifting of C along f

Cocart(f, C) : C −→ f!(C).

As a result of the above definitions, any arrow θ in the total category above f in

a cloven fibration P : A → X factorizes uniquely into a vertical morphism followed

by a cartesian one. Dually, any arrow γ in the total category above f in the base

category of a cloven opfibration U : C → X factorizes uniquely into a cocartesian

arrow followed by a vertical one:

A
θ //

ψ

��

B

P

��

f∗B

Cart(f,B)

77

P

��

in A

X
f=Pθ

// Y in X,

C

U

��

γ
//

Cocart(f,C)
''

D

f!C

δ

OO

U

��

in C

X
f=Uγ

// Y in X.

Remark. Cartesian liftings of B ∈ AY along f : X → Y in X are unique up to

vertical isomorphism:

A′

ψ=Cart(f,B)

))

α

��
A

φ=Cart(f,B)
//

β

UU

P
��

B

P

��

in A

X
f

))

1X
��
X

f=P (φ)
// Y in X

If φ and ψ are both cartesian morphisms, there exist unique α : A′ → A and unique

β : A→ A′ vertical arrows such that φ◦α = ψ and ψ ◦β = φ respectively. It follows

that α◦β = 1A and β ◦α = 1A′ . Dually, cocartesian arrows are unique up to vertical

isomorphism.

A cleavage for a fibration P : A → X induces, for every morphism f : X → Y in

X, a so-called reindexing functor between the fibre categories

f∗ : AY −→ AX . (5.2)

This maps each B ∈ AY to f∗(B), the domain of the cartesian lifting along f given

by the cleavage, and each φ : B → B′ in the fibre AY to f∗(φ) : f∗(B) → f∗(B′),
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the unique vertical arrow making the diagram

f∗(B)
Cart(f,B)

//

f∗(φ)

��

B

φ

��
f∗(B′)

Cart(f,B′)
// B′

(5.3)

commute. Explicitly, since the composite φ ◦ Cart(f,B) has codomain B′ in the

total category A, it uniquely factorizes through the chosen cartesian lifting of B′

along f by universal property of cartesian arrows.

The uniqueness of the factorization through a chosen cartesian arrow implies

immediately that f∗(ψ) ◦ f∗(φ) = f∗(ψ ◦ φ), i.e. that f∗ is a functor:

f∗(B)
Cart(f,B)

//

f∗(φ)

��
f∗(ψ◦φ)

!!

B

φ

��
f∗(B′)

f∗(ψ)

��

Cart(f,B′)
// B′

ψ

��
f∗(B′′)

P

��

Cart(f,B′′)
// B′′

P

��

in A

X
f

// Y in X

Dually, if U : C → X is a cloven opfibration, for every f : X → Y in X we get a

reindexing functor between the fibres

f! : CX −→ CY

mapping each object C ∈ CX to the codomain f!(C) of the chosen cocartesian lifting

along f , and vertical morphisms γ : C → C ′ to the unique f!(γ) defined dually to

(5.3).

Notice that the opfibration P op for a fibration P : A → X has cocartesian liftings

A
Cocart(f,A)

//

P op

��

f!A

P op

��

in Aop

X
f

// X ′ in Xop

≡

f∗A
Cart(f,A)

//

P

��

A

P

��

in A

X ′
f

// X in X

and reindexing functors f! ≡ (f∗)op : Aop
X −→ A

op
X′ .

Remark 5.1.1. Due to the unique factorization of an arrow in a fibration and

an opfibration through cartesian and cocartesian liftings respectively, we can deduce

that a fibration P : A → X is also an opfibration (consequently a bifibration) if and

only if, for every f : X → Y the reindexing f∗ : AY → AX has a left adjoint, namely

f! : AX → AY (e.g. [Her93, Proposition 1.2.7]).
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In general, for composable maps f : X → Y and g : Y → Z in the base category

X of a fibration, it is not true that f∗ ◦ g∗ = (g ◦ f)∗. However, these functors are

canonically isomorphic, as demonstrated by the following diagram:

f∗g∗A
Cart(f,g∗A)

**
δA

��
g∗A

Cart(g,A)

))
(g ◦ f)∗A

Cart(g◦f,A)
// A in A

X f

++1X

��
Y g

))
X

g◦f
// Z in X.

Since the composition of two cartesian arrows is again cartesian, δA is the unique

vertical isomorphism which makes the above diagram commute. Thus we obtain a

natural isomorphism

δf,g : f∗ ◦ g∗ ∼−−→ (g ◦ f)∗ (5.4)

with components vertical isomorphisms δf,gA : f∗g∗A ∼= (g ◦ f)∗A for any A ∈ A.

Moreover, the identity morphism 1A : A → A for an object A above X is

cartesian over 1X : X → X, and so there exists a unique vertical isomorphism

γXA : A ∼= (1X)∗A making the top diagram

A
1A

))

γA
��

(1X)∗A
Cart(1X ,A)

// A in A

X
1X

// X in X

commute. These morphisms are the components of a natural isomorphism

γX : 1AX
∼−−→ (1X)∗ (5.5)

where 1AX is the identity functor on the fibre AX . The natural transformations δ

and γ will play an important part for the equivalence between fibrations and indexed

categories described in the next section.

In a completely analogous way, for an opfibration U : C → X there is a natural

isomorphism

qf,g : (g ◦ f)!
∼−−→ g! ◦ f! (5.6)

between the reindexing functors for composable arrows f and g, with components

vertical isomorphisms qf,gC : (g ◦ f)!C ∼= g!f!C induced by universality of cocartesian

arrows, and also a natural isomorpism

pX : (1X)!
∼−−→ 1CX

with components vertical isomorphisms pXC : (1X)!C ∼= C.
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Nevertheless, a functorial choice of cartesian liftings is possible in specific situa-

tions. We usually assume, without loss of generality, that the cleavage is normalized

in the sense that Cart(1X , A) = 1A, in which case the isomorphisms γA are equal-

ities. If also Cart(g ◦ f,A) = Cart(f,A) ◦ Cart(g, f∗(A)), and so δA are equalities,

the cleavage of the fibration is called a splitting, and a fibration endowed with a split

cleavage is called a split fibration. Dually, we have the notion of a split opfibration.

We now turn to the appropriate notions of 1-cells and 2-cells for fibrations. A

morphism of fibrations (S, F ) : P → Q between P : A → X and Q : B → Y is given

by a commutative square of functors and categories

A S //

P

��

B

Q

��
X

F
// Y

(5.7)

where S preserves cartesian arrows, meaning that if φ is P -cartesian, then Sφ is

Q-cartesian. The pair (S, F ) is called a fibred 1-cell. In particular, when P and Q

are fibrations over the same base category X, we may consider fibred 1-cells of the

form (S, 1X) displayed by commutative triangles

A S //

P ��

B

Q��
X

which are just cartesian functors S such that Q ◦ S = P . Then S is called a fibred

functor.

Dually, we have the notion of an opfibred 1-cell (K,F ) and opfibred functor

(K, 1X) between opfibrations over arbitrary bases or the same base respectively,

where K preserves cocartesian arrows.

Remark 5.1.2. Any fibred or opfibred 1-cell determines a collection of functors

{SX : AX → BFX} between the fibre categories for all X ∈ obX:

SX : AX
S|X // BFX

A � //

f
��

SA

Sf
��

A′ � // SA′

(5.8)

This functor is well-defined, since Q(SA) = F (PA) = FX by commmutativity of

(5.7), so SA, SA′ are in the fibre BFX . Also Q(Sf) = F (Pf) = F (1X) = 1FX since

F is a functor, so Sf is an arrow in BFX .

The following well-known proposition gives a way, given a fibration and a dif-

ferent functor to its base, to construct a new fibration over the domain of the given

functor. A non-elementary proof (not as the one below) can be found in [Gra66].
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Proposition 5.1.3 (Change of Base). Given a fibration Q : B → Y and an

arbitrary functor F : X→ Y, the pullback diagram

F ∗(B)
π //

F ∗Q

��

B

Q

��
X

F
// Y

exhibits F ∗Q : F ∗(B)→ X as a fibration and (π, F ) as a fibred 1-cell, i.e. π preserves

cartesian arrows.

Proof. By construction of pullbacks in the complete category Cat, objects in

F ∗(B) are pairs (B,X) ∈ obB × obX such that QB = FX, and morphisms are

(h, k) : (B,X)→ (B′, X ′) with h : B → B′ in B, k : X → X ′ in X and Qh = Fk in

Y. The functors π and F ∗Q are the respective projections.

It can be easily verified, since Q is a fibration, that cartesian morphisms in F ∗(B)

exist and are of the form

((Ff)∗B,Z)
(Cart(Ff,B),f)

//

F ∗Q

��

(B,X)

F ∗Q

��

in F∗(B)

Z
f

// X in X

where Cart(Ff,B) is the Q-cartesian lifting of B along Ff . The projection π

obviously preserves cartesian arrows by the choice of cleavage. �

The same construction applies to opfibrations. We say that the fibration P =

F ∗Q is obtained from Q by change of base along F . Notice also that for every object

X ∈ obX, we have an isomorphism F ∗(B)X
∼= BFX of the fibre categories which is

given by SX , the induced functor between the fibres

F ∗(B)X
SX // BFX

(B,X) � //

(f,1X)
��

B

f
��

(B′, X) � // B′.

(5.9)

Going back to properties of fibred 1-cells, if we unravel the definition of a carte-

sian functor it is easy to deduce the following well-known result.

Lemma 5.1.4. Suppose we have two fibrations P : A → X, Q : B → Y and a

fibred 1-cell (S, F ) between them

A S //

P

��

B

Q

��
X

F
// Y.
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Then the reindexing functors commute up to isomorphism with the induced functors

between the fibres. In other words, there is a natural isomorphism

AY

f∗

��

SY //

τf∼=

BFY

(Ff)∗

��
AX

SX

// BFX

(5.10)

for every f : X → Y in X.

Proof. Consider a P -cartesian lifting Cart(f,A) : f∗A → A of A ∈ AY along

f : X → Y in X. The functor S maps cartesian arrows to cartesian arrows, so the

morphism

S(f∗A)
SCart(f,A)

//

��

SA

��

in B

FX
Ff

// FY in Y

is Q-cartesian above Ff with codomain SA. On the other hand, the canonical choice

of a Q-cartesian lifting of SA along Ff is Cart(Ff, SA) : (Ff)∗(SA)→ SA.

Since cartesian arrows are unique up to vertical isomorphism, there exists a

unique vertical isomorphism τ fA : (Ff)∗(SA)
∼−−→ S(f∗A) in the fibre BFX , such

that the diagram

(Ff)∗(SA)

τfA
��

Cart(Ff,SA)

''
S(f∗A)

SCart(f,A)
// SA

commutes in the total category B. The family of invertible arrows τ fA in fact deter-

mines a natural isomorphism τ f as in (5.10). To establish naturality, for an arrow

m : A→ A′ in the fibre AY we can form the following diagram:

(Ff)∗(SA)

(Ff)∗(Sm)

!!

∼= τfA
��

Cart(Ff,SA)

))
S(f∗A)

SCart(f,A)
//

(∗∗) S(f∗m)

��

SA

Sm

��
S(f∗A′)

SCart(f,A′)
//

∼= τf
A′
−1

��

SA′ in B

(Ff)∗(SA′)

Cart(Ff,SA′)

55

FX
Ff

// FY in X
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The outer diagram commutes by definition of the mapping of (Ff)∗ on the arrow

Sm, the right three inner diagrams commute for obvious reasons, hence the part

(**) commutes as well, establishing naturality of τ f . �

In particular, when S is a fibred functor between fibrations over the same base

category X, the isomorphism (5.10) is written

AY

f∗

��

SY //

τf∼=

BY

f∗

��
AX

SX

// BX .

(5.11)

This lemma is relevant to the correspondence between fibrations and indexed cate-

gories, on the level of structure-preserving functors appropriate for these concepts.

This will become clearer in the next section.

Now given two fibred 1-cells (S, F ), (T,G) : P ⇒ Q between fibrations P :

A → X and Q : B → Y, a fibred 2-cell from (S, F ) to (T,G) is a pair of natural

transformations (α : S ⇒ T, β : F ⇒ G) with α above β, i.e. Q(αA) = βPA for all

A ∈ A. We can display a fibred 2-cell (α, β) between two fibred 1-cells as

A
S

))

T

55�� α

P

��

B

Q

��
X

F
))

G

55�� β Y.

(5.12)

In particular, when P and Q are fibrations over the same base category X, we may

consider fibred 2-cells of the form (α, 11X) : (S, 1X) ⇒ (T, 1X) between the fibred

functors S and T , displayed as

A
S

))

T

55�� α

P

��

B

Q

��
X

which are in fact just natural transformations α : S ⇒ T such that Q(αA) = 1PA,

i.e. whose components are vertical arrows. A 2-cell like this is called a fibred natural

transformation. Dually, we have the notion of an opfibred 2-cell and opfibred natural

transformation between opfibred 1-cells and functors respectively.

In this way, we obtain a 2-category Fib of fibrations over arbitrary base cate-

gories, fibred 1-cells and fibred 2-cells, with the evident compositions coming from

Cat. In particular, there is a 2-category Fib(X) of fibrations over a fixed base

category X, fibred functors and fibred natural transformations. We also have the

2-categories Fibsp and Fib(X)sp of split fibrations and morphisms which preserve
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the splitting on the nose (i.e. up to equality and not only up to isomorphism). Du-

ally, we have the 2-categories OpFib and OpFib(X) of opfibrations over arbitrary

base categories and over a fixed base category X accordingly, as well as OpFibsp

and OpFib(X)sp for the split cases.

As a matter of fact, Fib and OpFib are (non-full) sub-2-categories of the 2-

category Cat2 = [2,Cat] of ‘arrows in Cat’, with objects plain functors between

categories, morphisms commutative squares of categories and functors as in (5.7) and

2-cells pairs of natural transformations as in (5.12). Also Fib(X) and OpFib(X)

are sub-2-categories of the slice 2-category Cat/X.

These 2-categories form part of fibrations themselves: we already know that

the functor cod : Cat2 → Cat is the fundamental fibration (5.1), so consider its

restriction to Fib. Proposition 5.1.3 implies that this functor

cod|Fib : Fib −→ Cat

which sends a fibration to its base is still a fibration, with cartesian morphisms

pullback squares and fibre categories Fib(X) for a category X ∈ Cat. Also, the

restricted functor

cod|OpFib : OpFib −→ Cat

is again a fibration, with fibres OpFib(X) for each category X.

5.2. Indexed categories and the Grothendieck construction

Given a category X, a X-indexed category is a pseudofunctor

M : Xop → Cat

which, by Definition 2.1.3, amounts to the following data: a category MX for every

object X ∈ obX and a functor M f : MY → MX for each arrow f : X → Y ,

together with natural isomorphisms δf,g : M f ◦M g ∼= M (g ◦ f) for each com-

posable pair of arrows and γX : 1MX
∼= M (1X) for each object in X, satisfying

associativity and identity laws (2.5, 2.6). The categories MX are usually called

fibres and the functors M f are called reindexing and are sometimes denoted by f∗.

The terminology already indicates the relation with fibrations.

If M and H are X-indexed categories, a X-indexed functor τ : M → H is a

pseudonatural transformation

Xop
M **

H

44�� τ Cat .

By Definition 2.1.4, this means that for each object X of X there is a functor

τX : MX →H X and for each arrow f : X → Y there is a natural isomorphism

MX
M f
//

τX
��

MY

τY
��

H X
H f
// H Y

τf∼=
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subject to the compatibility conditions with the δf,g and γX expressed by (2.9, 2.10).

If τ, σ : M → H are X-indexed functors, a X-indexed natural transformation

m : τ → σ is a modification, which by Definition 2.1.5 consists of a family mX : τX ⇒
σX of natural transformations for every object X ∈ obX subject to compatibility

conditions with the coherence isomorphisms τf and σf expressed by (2.11).

Notice that in the above definitions, the ordinary category X is regarded as a 2-

category with no non-trivial 2-cells. As discussed in Section 2.1, the above data form

a 2-category [Xop,Cat]ps of X-indexed categories, X-indexed functors and X-indexed

natural transformations, also denoted as ICat(X).

The following establishes a correspondence between cloven fibration and indexed

categories, due to Grothendieck, which amounts to an equivalence between the 2-

categories Fib(X) and ICat(X) for a category X.

Theorem 5.2.1.

(i) Every cloven fibration P : A → X gives rise to a X-indexed category MP :

Xop → Cat.

(ii) [Grothendieck construction] Every indexed category M : Xop → Cat gives rise

to a cloven fibration PM : GM → X.

(iii) The above correspondences yield an equivalence of 2-categories

ICat(X) ' Fib(X) (5.13)

so that MPM
∼= M and PMP

∼= P .

Proof. (i) Let P : A → X be a cloven fibration. We can define a pseudofunctor

MP : Xop → Cat as follows:

· Each object X ∈ X is mapped to the fibre category over this object, i.e.

MP (X) = AX .

· Each morphism f : X → Y in X is mapped to the reindexing functor

MP (f) = f∗ : AY → AX as in (5.2).

· Given g : Y → Z and A ∈ AZ , there is a natural isomorphism δf,g :

MP (f) ◦MP (g)
∼−→MP (g ◦ f), explicitly described above (5.4).

· For any object A ∈ AX , there is a natural isomorphism γX : 1MP (X)
∼−→

MP (1A) described in detail above (5.5).

It is straightforward to check that these natural isomorphisms δ and γ satisfy the

coherence conditions for a pseudofunctor as described in the Definition 2.1.3.

(ii) Let X be a category and M : Xop → Cat an indexed category over X. The

Grothendieck category GM of M is defined as follows: objects are pairs (A,X)

where X ∈ obX and A ∈ ob(MX), and morphisms (A,X)→ (B, Y ) are pairs (φ, f)

where f : X → Y is an arrow in X and φ : A → (M f)B is an arrow in MX. This

can also be written as A
φ−→ (M f)B in MX

X
f−→ Y in X.

(5.14)
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The composite of two arrows in this category (A,X)
(φ,f)−−−→ (B, Y )

(ψ,g)−−−→ (C,Z) is

(θ, g ◦ f) : (A,X)→ (C,Z), where θ is the composite

A
φ−→ (M f)B

(M f)ψ−−−−→ (M f ◦M g)C
(δf,g)C−−−−→ [M (g ◦ f)]C

for δ is the natural isomorphism as in (2.3) of the pseudofunctor M . The coherence

axiom (2.5) for δg,f ensures the associativity of this composition. Notice how we

employ the components of the 2-cell δf,g, since in this case it is actually a natural

transformation (the codomain of the pseudofunctor is Cat).

Moreover, the identity arrow for each (A,X) ∈ GM is (i, 1X) : (A,X)→ (A, I),

where i is the composite

A
1A−→ (1MX)A

(γX)A−−−−→M (1X)A

where γ is the natural isomorphism as in (2.4). Again, the identity laws follow from

the coherence conditions (2.6) of the pseudofunctor M , and so GM is a category.

In fact, the projection functor

PM : GM −→ X

which maps each object (A,X) to X and each morphism (φ, f) to f is a cloven

fibration: for each arrow f : X → Y of the base category X and an object (B, Y )

over Y , we can choose the following top arrow

((M f)B,X)
(1(Mf)B ,f)

//

PM

��

(B, Y )

PM

��

in GM

X
f

// Y in X

to be the cartesian lifting Cart(f, (B, Y )). Notice that the fibres (GM )X of the

fibration PM over X ∈ ob(X) are isomorphic to the categories MX, due to the

isomorphism A ≡ (1MX)A ∼= M (1X)A.

(iii) By Proposition 2.3.2, in order to exhibit an equivalence between two 2-

categories, it is enough to construct a fully faithful and essentially surjective on

objects 2-functor between them. Hence, we will demonstrate how the ‘Grothendieck

construction’ mapping on objects M 7→ (PM : GM → X) extends to a 2-functor

P : [Xop,Cat]ps −→ Fib(X)

with the following two properties:

• If M ,H : Xop → Cat are two X-indexed categories, there is an isomorphism

PM ,H : [Xop,Cat]ps(M ,H ) ∼= Fib(X)(PM , PH ) (5.15)

between the category of pseudonatural transformations and modifications and the

category of fibred functors and fibred natural transformations accordingly.

• Every fibration P : A → X is isomorphic to a fibration PM : GM → X arising

from a pseudofunctor M : Xop → Cat.
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Consider a pseudonatural transformation τ : M ⇒ H , consisting of functors

τX : MX → H X for all X ∈ obX and natural isomorphisms τ f : τX ◦M f
∼−→

H f ◦ τY for all arrows f : X → Y . Then, define

PM ,H (τ) : GM −→ GH

to be the functor which maps an object (A,X) ∈ GM to (τXA,X) ∈ GH and an

arrow (φ, f) : (A,X)→ (B, Y ) in GM like (5.14) toτXA
ψ−→ (H f)(τYB) in H X

X
f−→ Y in X

in GH , where ψ is the composite

τXA
τX(φ)−−−→ (τX ◦M f)B

τfB−→ (H f ◦ τY )B.

The fact that PM ,H (τ) is a functor follows from the axioms of the pseudonatural

transformation τ , and it can be easily shown that it preserves cartesian liftings, via

the isomorphisms τ fB for all B. The triangle

GM
PM,L (τ)

//

PM

!!

GH

PH

}}
X

commutes trivially, since the object of X which is projected by the fibrations remains

unchanged, therefore PM ,H (τ) is a fibred functor.

Now consider a modification m : τ V σ between pseudonatural transformations

τ, σ : M ⇒ H , given by a family of natural transformations mX : τX ⇒ σX . We

can then define a natural transformation

PM ,H (m) : PM ,H (τ)⇒ PM ,H (σ)

by setting its components, for each (A,X) in GM , to be ((mX)A, 1X) : (τXA,X)→
(σXA,X). The conditions which make

GM �� PM,H (m)

PM,H (τ)

++

PM,H (σ)

33

PM

!!

GH

PH

}}
X

into a fibred natural transformation are satisfied by the coherence axioms for the

modification m.

The above data define a 2-functor in a straightforward way, and moreover the

functor PM ,H is an isomorphism of categories, since the mappings above are bijec-

tive. Therefore an isomorphism (5.15) is established.
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For the second property, the goal is to show that every fibration P : A → X is

specifically isomorphic to PMP
in Fib(X). The latter fibration arises by applying

the Grothendieck construction to the induced pseudofunctor MP as constructed at

part (i) of the proof. Indeed, there exists an invertible fibred functor

A F //

P
��

GMP

PMP~~
X

which maps an object A in A to the pair (A,PA) in the Grothendieck category

GMP , and a morphism φ : A → B to (θ, Pφ) : (A,PA) → (B,PB), where θ is the

unique vertical arrow of the P -factorization of φ:

A
φ

//

θ
��

B

(Pφ)∗B

Cart(Pφ,B)

99

Functoriality follows from uniqueness of cartesian liftings, and F is evidently bijec-

tive on objects and on arrows. Also, it preserves cartesian arrows and commutes

with the fibrations P , PMP
hence it is an isomorphism of fibrations over X. �

Notice that in the Grothendieck construction above, we write the pairs in the

opposite way from the standard notation. The same will apply for the form of

objects and morphisms of all fibred categories studied later on.

The equivalence (5.13) clearly restricts to one between split fibrations over X
and ‘strict’ X-indexed categories, i.e. functors from Xop to Cat:

[Xop,Cat] ' Fib(X)sp

Dually, we have an analogous result relating opfibrations U : C → X and ‘covariant

indexed categories’, i.e. pseudofunctors F : X→ Cat.

Theorem 5.2.2. There is an equivalence of 2-categories

[X,Cat]ps ' OpFib(X).

In particular, every opfibration U : C → X is isomorphic to UF : GF → X arising

from a pseudofunctor F : X→ Cat, and there is an isomorphism of categories

[X,Cat](F ,G ) ∼= OpFib(X)(UF , UG )

for any two pseudofunctors F ,G : X→ Cat.

The above theorems show how X-indexed categories are ‘essentially the same as’

cloven fibrations over X, and covariant indexed categories as opfibrations, hence we

are able to freely pass from the one structure to the other depending on our needs.

Via this process, we can also transfer properties and state them in the fibrational or

indexed categories language at will.
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As an example of how indexed and covariant indexed categories can be conve-

nient means of studying fibrations and opfibrations, consider the following situation.

If K : C → D is an opfibred functor between U : C → X and V : D → X, by the dual

of Lemma 5.1.4 there is a natural isomorphism

CX
f! //

KX
��

∼=

CY
KY
��

DX
f!

// DY

(5.16)

for any arrow f : X → Y in X. We can also deduce this as follows. By Theorem

5.2.2, the opfibrations U , V correspond to pseudofunctors F ,G : X → Cat, in the

sense that U is isomorphic to UF : GF → X and V is isomorphic to UG : GG → Y.

In particular CX ∼= FX, DX ∼= GX and the reindexing functors are Ff and G f

respectively. Now, the opfibred functor K corresponds uniquely to an X-indexed

functor τ : F ⇒ G , which is a pseudonatural transformation equipped with an

(ordinary) natural isomorphism with components

FX
Ff
//

τX
��

τf∼=

FY

τY
��

GX
G f
// GY

for every f : X → Y in X. This diagram corresponds uniquely to an isomorphism

exactly like (5.16). This is evident after the realization that the functors KX induced

between the fibres as in Remark 5.1.2 are precisely τX .

As another example, suppose that Q : B → Y is a fibration which corresponds

uniquely to the pseudofunctor H : Yop → Cat. Then, if F : X → Y is a functor,

the fibration F ∗Q obtained from Q by change of base along F

F ∗(B)
K //

F ∗Q
��

B

Q

��
X

F
// Y

as in Proposition 5.1.3, corresponds to the composite pseudofunctor

Xop F op

−−−→ Yop H−−→ Cat.

This is evident by part (i) of the proof of the above theorem, since its mapping on

objects is

H (FX) ∼= BFX ∼= F ∗(B)X

by B ∼= GH and the isomorphism (5.9). On arrows, for f : Z → X in X and B

above FX we have

(H (Ff)B,X) ∼= ((Ff)∗B,X) = f∗(B,X)

for f∗ the reindexing functor of the fibration F ∗Q.
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The 2-categories of the form ICat(X) for each X, sometimes also denoted as

CatX, turn out to also be fibres of a fibration, like their equivalent Fib(X). Ex-

plicitly, there is a 2-category ICat with objects indexed categories M : Xop → Cat

for arbitrary categories X. A morphism from M to H : Yop → Cat is given by a

functor F : X→ Y and an X-indexed functor

Xop M //

F op

��
�� τ

Cat

Yop H

@@

and we write (F, τ) : M → H . Notice the direct relation with the indexed expres-

sion of pullbacks described above. A 2-cell (F, τ) → (G, σ) is given by a natural

transformation β : F ⇒ G and a modification

Xop F op
//

M

%%�� τ

Gop

??
�� β

op
Yop H // Cat

m
V Xop

M
((

�� σ

H ◦Gop

77Cat.

Compositions and identities are defined using those in Cat and ICat(−). Hence,

there is a (2-)functor

base : ICat −→ Cat

which maps an indexed category to its domain and a morphism to its first compo-

nent. This is a split fibration, with fibres ICat(X) above X and reindexing functors

precomposition with F op for each F : X→ Y in Cat. For more details, we refer the

reader to [Her93] or [Jac99].

Theorem 5.2.3. There is a (2-)equivalence in the 2-category Fib(Cat)

ICat
' //

base $$

Fib

cod{{
Cat.

5.3. Fibred adjunctions and fibrewise limits

The notions of fibred and opfibred adjunction come from Definition 2.3.5 applied

to the 2-categories Fib and OpFib.

Definition 5.3.1. Given fibrations P : A → X and Q : B → Y, a general fibred

adjunction is given by a pair of fibred 1-cells (L,F ) : P → Q and (R,G) : Q → P

together with fibred 2-cells (ζ, η) : (1A, 1X) ⇒ (RL,GF ) and (ξ, ε) : (LR,FG) ⇒
(1B, 1Y) such that L a R via ζ, ξ and F a G via η, ε. This is displayed as

A

P

��

L //
⊥ B
R

oo

Q

��
X

F //
⊥ Y
G

oo



88 5. FIBRATIONS AND OPFIBRATIONS

and we write (L,F ) a (R,G) : Q → P . In particular, a fibred adjunction is an

adjunction in the 2-category Fib(X), displayed as

A

P
��

L //
⊥ B
R

oo

Q
��

X.

(5.17)

Notice that since (ζ, η) and (ξ, ε) are fibred 2-cells, by definition ζ is above η and

ξ is above ε, which makes (P,Q) into a map of adjunctions (see Definition 2.3.6).

Dually, we have the notions of general opfibred adjunction and opfibred adjunc-

tion for adjunctions in the 2-categories OpFib and OpFib(X) respectively. More-

over, for the 2-categories Fibsp, Fib(X)sp, OpFibsp and OpFib(X)sp they are called

general split (op)fibred adjunction and split (op)fibred adjunction. Then, the func-

tors L and R are required to preserve the cleavages of the split (op)fibrations on the

nose.

Since a basic aim in this section is to identify conditions under which (op)fibred

functors and (op)fibred 1-cells have left or right adjoints, we recall the following

well-known important fact (e.g. see [Win90, 4.5]).

Lemma 5.3.2. Right adjoints in the 2-category Cat/X preserve cartesian arrows

and dually left adjoints in Cat/X preserve cocartesian arrows. The same holds for

adjoints in the 2-category Cat2.

This will prove very useful, since for example if a fibred functor has an ordinary

right adjoint between the total categories which commutes with the fibrations, then

the adjoint is necessarily fibred too.

It is clear that a fibred adjunction as in (5.17) induces fibrewise adjunctions

AX
LX //
⊥ BX
RX

oo

between the fibre categories for each X in X. In the converse direction, we have the

following result, see for example [Bor94b, 8.4.2] or [Jac99, 1.8.9].

Proposition 5.3.3. Suppose S : Q → P is a fibred functor between fibrations

Q : B → X and P : A → X. Then S has a fibred left adjoint L if and only if for

each X ∈ X we have LX a SX , and the adjunct arrows

χA : (LX ◦ f∗)A −→ (f∗ ◦ LY )A (5.18)

described below are isomorphisms for all A ∈ AY and f : X → Y . Similarly, S has

a fibred right adjoint R iff SX a RX and (f∗ ◦RY )B ∼= (RX ◦ f∗)B.

Remark. An equivalent formulation of the above, coming from the correspon-

dent notion of indexed adjunctions (i.e. adjunction in the 2-category ICat(X)),

appears in [Her93]: a fibred adjunction L a R amounts to a family of adjunctions

{LX a RX : BX → AX}X∈X such that for every f : Y → X, (f∗P , f∗Q) is a

pseudo-map of adjunctions.
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Proof. Since S is cartesian, the image of a cartesian lifting

SX(f∗LYA)
SCart(f,LY A)−−−−−−−−−→ SY (LYA)

is again a cartesian arrow above f in the total categoryA, for any A ∈ AY . Therefore

the composite top arrow below factorizes uniquely through it via an isomorphism:

f∗A
Cart(f,A)

//

∃!πA
��

A

ηYA

��
SX(f∗LYA)

��

SCart(f,LY A)
// SY LYA

��

in A

X
f

// Y in X

(5.19)

The arrow χA in (5.18) which we require to be an isomorphism is the one that

corresponds under LX a SX to πA:

πA : f∗A // SXf
∗LYA in AX

χA : LXf
∗A // f∗LYA in BX

Then, these LX assemble into a fibred left adjoint L : A → B: on objects we define

LA := LYA for A ∈ AY , and on arrows we define L(φ) for

C
φ

//

θ ��

A

��

f∗A
Cart(f,A)

55

��

in A

X
f

// Y in X

to be the composite

LXC
Lφ

//

LXθ
��

LYA

��

LXf
∗A

χA
��

in B

f∗LYA

Cart(f,LY A)

::

��
X

f
// Y in X.

(5.20)

Functoriality of L follows, and also we can directly verify that it is a cartesian

functor. Using the fibrewise adjunctions we can also show that η and ε are natural

with respect to all morphisms and not just those in the fibres. �

Remark 5.3.4. There is an equivalent and perhaps more intuitive way of phras-

ing the condition that the transpose χA of πA defined in (5.19) is an isomorphism,
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as in [Jac99] or [KK13]. We require that the Beck-Chevalley condition holds, i.e.

the mate

AY

f∗

��

LY // BY

f∗

��
AX

LX

// BX

=Eχ

of the canonical invertible 2-cell

BY

f∗

��

SY // AY

f∗

��
BX

SX

// AX

∼=

as in (5.11) which comes with the cartesian functor S : B → A, is invertible as well.

Using the mates correspondence of Proposition 2.3.7, we can explicitly compute the

component χA as the composite

LXf
∗A

LXf
∗ηA //

χA
,,

LXf
∗SY LYA

LXτLY A // LXSXf
∗LYA

εf∗LY A

��
f∗LYA

by applying (2.17) for the adjunctions LY a SY and LX a SX .

Similarly for the existence of a right fibred adjoint, the mate

AY

}� ωf∗

��

RY // BY

f∗

��
AX

RX

// BX

under the fibrewise adjunctions S(−) a R(−) is requested to be an isomorphism.

Notice that in order to just define an ordinary left adjoint L : A → B of the fibred

functor S between the total categories, the adjunction between the fibres and the

components of the mate χ are sufficient, as can be seen from the defining diagram

(5.20). The supplementary fact that χ should be an isomorphism ensures that this

adjoint is also cartesian, therefore constitutes a fibred adjoint of K. On the other

hand, for the existence of a right adjoint of S, the natural transformation ω being

an isomorphism is required for the very construction of R, since the components ωA

initially go to the opposite direction than the one needed.

Similarly, there is a dual result concerning fibrewise adjunctions between opfi-

brations over a fixed base.

Proposition 5.3.5. Suppose that K : U → V is an opfibred functor between

opfibrations U : C → X and V : D → X. It has a right opfibred adjoint R : D → C
(respectively left opfibred adjoint L) if and only if it has a fibrewise adjoint KX a RX
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(respectively LX a KX) and the mate of the isomorphism σ : KY ◦ f!
∼= f! ◦ KX ,

given by the components

f!RXD
ηf!RXD //

,,

RYKY f!RXD
RY σRXD // RY f!KXRXD

RY f!εD
��

RY f!D

(5.21)

(respectively the mate LY f! ⇒ f!LY ) for any D ∈ DX is also invertible.

These results give rise to questions concerning adjunctions between fibrations

over two different bases rather than the same as above. In this direction, The-

orem 5.3.7 below is a generalization whose special case coincides with the above

proposition. In what follows, we emphasize more on the existence of a total adjoint

(induced only by its mapping on objects) and then we proceed to its full description.

We initially look at opfibrations because of the nature of the examples that arise

later.

Lemma 5.3.6. Suppose (K,F ) : U → V is an opfibred 1-cell given by the com-

mutative square

C K //

U
��

D
V
��

X
F
// Y

and there is an adjunction between the base categories

X
F //
⊥ Y.
G

oo (5.22)

with counit ε. If, for each Y ∈ Y, the composite functor

CGY
KGY−−−→ DFGY

(εY )!−−−→ DY (5.23)

has a right adjoint RY , then K : C → D between the total categories has a right

adjoint, with R(−) its mapping on objects.

Proof. The adjunction (εY )!KGY a RY comes with a natural isomorphism

DY ([(εY )! ◦KGY ](Z), D) ∼= CGY (Z,RY (D)) (5.24)

for any Z ∈ CGY , D ∈ DY . We claim that this induces a bijective correspondence

D(KC,D) ∼= C(C,RYD) (5.25)

for any C ∈ CX and D ∈ DY , which is natural in C. In other words, there is a

representation of the functor D(K−, D) with representing object RYD. Then, by

adjunctions via representations, there is a unique way to define a functor

R : D −→ C

with object functions R(−) depending on the fibre of the objects, such that (5.25) is

natural also in D thus gives an adjunction K a R.
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An element of the left hand side of (5.25) is an arrow m : KC → D in the total

category D, which can be encoded byf!(KC)
k−→ D in DY

FX
f−→ Y in Y

(5.26)

where k is the unique vertical arrow of the factorization m = k ◦ Cocart(f,KC).

An element of the right hand side of (5.25) is an arrow n : C → RYD in the

total category C, i.e. g!C
l−→ RYD in CGY

X
g−→ GY in X

where n = l ◦ Cocart(g, C). By the natural isomorphism (5.24) and the adjunction

(5.22), this pair of arrows corresponds bijectively to a pair[(εY )! ◦KGY ](g!C)
l̂−→ D in DY

FX
g̃−→ Y in Y

where l̂ is the adjunct of l under (εY !KGY a RY ) and g̃ is the adjunct of g under

F a G, hence it satisfies g̃ = Fg ◦ εY .

In order for this pair to actually constitute an arrow KC → D in D as in (5.26),

it is enough to show that

[(εY )!KGY ](g!C) ∼= g̃!(KC)

in the fibre DY . For that, observe that the diagram

CX
g! //

KX

��

CGY
KGY // DFGY

(εY )!

��
DFX

g̃!

//

(Fg)!

44

DY

(5.27)

commutes up to isomorphism: the left part is an isomorphism for any cocartesian

functor K, dual to (5.10), and the right part is the isomorphism

qFg,εY : g̃!
∼−→ (Fg)! ◦ (εY )!

from the uniqueness of cartesian liftings, as in (5.6).

In other words, the bijective correspondence (5.25) is formally induced by a

mapping C(C,RYD)→ D(KC,D) explicitly given byg!C
l−→ RD in CGY

X
g−→ GY in X

7→

(εFg)!KC
q∼= ε!(Fg)!KC

ε!σ
g

∼= ε!Kg!C
θ(l)→ D in DY

FX
g̃−→ Y in Y

where θ is the natural bijection (5.24) and ε is short for εY . Naturality in C can be

checked, so a right adjoint R of K between the total categories can be defined. �

Since this result in essence generalizes Proposition 5.3.5, it is reasonable to ex-

plore the appropriate conditions in order for this right adjoint R to be cocartesian
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and thus to establish a general opfibred adjunction. Initially we are interested in

adjusting Remark 5.3.4 on this case.

If we call σf the isomorphism induced by cocartesianness of the functor K em-

ployed in the above proof, for some h : Y →W in Y in particular we have a natural

isomorphism

CGY

(Gh)!

��

KGY //

σGh∼=

DFGY

(FGh)!

��
CGW

KGW

// DFGW .

Also, by sheer naturality of ε, we have an isomorphism

ν : (εW )!(FGh)!

q∼= (εW ◦ FGh)! = (h ◦ εY )!

q∼= h!(εY )!.

We can now form an invertible composite 2-cell

CGY

(Gh)!

��

KGY //

σGh∼=

DFGY

(FGh)!

��

(εY )! // DY

h!

��
CGW

KGW

// DFGW
(εW )!

// DW .

ν∼=

(5.28)

Its mate ω under the adjunctions (εY )!KGY a RY and (εW )!KGW a RW has com-

ponents, by (2.16),

(Gh)!RYD
η̄W

//

ωD

,,

(
RW ((εW )!KGW )

)
(Gh)!RYD

RW (σGh∗ν)
// RW

(
h!(εE)!KGY

)
RYD

RW h!ε̄
Y

��
(RWh!)D

(5.29)

where η̄ and ε̄ are the unit and counit of the adjunctions ε(−)!
KG(−) a R(−). These

arrows ωD which generalize the composites (5.21), are essential for the explicit con-

struction of R.

In a dual way to Proposition 5.3.3, R maps an arrow

D
k //

Cocart(h,D)
**

E

h!D

ψ

OO

in D

Y
h

// W in Y

to the composite
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RYD
Rk //

Cocart(Gh,RWD)
))

RWE

RW (h!D)

RWψ
OO

in C

(Gh)!RYD

ωD
OO

GY
Gh

// GW in X

where ωD are the arrows (5.29). It is now not hard to see that by construction of

R, the square of categories and functors

C
U
��

DRoo

V
��

X Y
G

oo

commutes. Moreover, if (ζ, ξ) is the unit and counit of K a R, the pairs (ζ, η)

and (ξ, ε) are above each other. Consequently (K,F ) a (R,G) is already an ad-

junction in Cat2. Finally, if we request that the ωD’s are isomorphisms, putting

k = Cocart(g,D) in the mapping above exhibits the cocartesianness of R.

Theorem 5.3.7. Suppose (K,F ) : U → V is an opfibred 1-cell and F a G is an

adjunction between the bases of the fibrations, as in

C K //

U
��

D
V
��

X
F //
⊥ Y.
G

oo

If the composite (5.23) has a right adjoint for each Y ∈ Y, then K has a right adjoint

R between the total categories, with (K,F ) a (R,G) in Cat2. If the mate

DY
RY //

h!
��

�� ω

CGY
(Gh)!
��

DW
RW

// CGW

of the composite invertible 2-cell (5.28) is moreover an isomorphism for any h : Z →
W in Y, then R is cocartesian and so

C
U
��

K //
⊥ D
R

oo

V
��

X
F //
⊥ Y
G

oo

is a general opfibred adjunction. Conversely, if (K,F ) a (R,G) in OpFib, then

evidently F a G, K a R, R is cocartesian, and moreover for every Y ∈ Y there is

an adjunction (εY )!KGY a RY between the fibres.



5.3. FIBRED ADJUNCTIONS AND FIBREWISE LIMITS 95

Proof. The first part is just Lemma 5.3.6 and the process that follows. For the

converse, start with some f : C → RYD in CGY . There is a bijective correspondence

(C,GY )
(f,1GY )

// (RYD,GY ) ≡ R(D,Y ) in C

K(C,GY ) ≡ (KGY C,FGY )
(f̄ ,εY )

// (D,Y ) in D

since K a R, but the latter morphism is uniquely determined by the vertical arrow
¯̄f : (εY )!KGY C → D in DY because of the factorization of any arrow through the

cocartesian lifting. Hence the required fibrewise adjunction is established. �

Dually, we get the following version about adjunctions between fibrations.

Theorem 5.3.8. Suppose (S,G) : Q→ P is a fibred 1-cell between two fibrations

and F a G is an adjunction between the bases, as shown in the diagram

A
P
��

BSoo

Q

��
X

F //
⊥ Y.
G

oo

If, for each X ∈ X, the composite functor

BFX
SFX−−−→ AGFX

η∗X−−→ AX

has a left adjoint LX , then S has a left adjoint L between the total categories, with

(L,F ) a (S,G) in Cat2. Furthermore, if the mate

AZ
LZ //

f∗

��

BFZ
(Ff)∗

��
AX

LX

// BFX

?G

of the composite isomorphism

BFZ

(Ff)∗

��

SFZ //

τFf∼=

AGFZ

(GFf)∗

��

(ηZ)∗
// AZ

f∗

��
BFX

SFX

// AGFX
(ηX)∗

// AX

κ∼=

is invertible for any f : X → Z in X, then

A
P
��

L //
⊥ B
S

oo

Q

��
X

F //
⊥ Y
G

oo

is a general fibred adjunction. Conversely, if (L,F ) a (S,G) is an adjunction in

Fib, we have adjunctions LX a η∗XSFX for all X ∈ X.



96 5. FIBRATIONS AND OPFIBRATIONS

In the above composite 2-cell, the 2-isomorphism τFf comes from the cartesian

functor S as in (5.10) and κ from naturality of η, the unit of the base adjunction.

We finish this section with some general results concerning fibrewise complete-

ness and cocompleteness. In fact, Hermida’s work on fibred adjunctions was mainly

motivated by its applications on the existence of fibred limits and colimits. For us

though, the establishment of general (op)fibred adjunctions serves different purposes.

For any small category J , we say that a fibration P : A → X has fibred J -limits

(respectively colimits) if and only if the fibred functor ∆̂J : A → ∆∗([J ,A]) uniquely

determined by the diagram below has a fibred right (respectively left) adjoint:

A
∆̃J

''

P

%%

∆̂J

''
∆∗J [J ,A]

π //

∆∗J [J ,P ]?

��

[J ,A]

[J ,P ]

��
X

∆J // [J ,X]

(5.30)

where ∆J and ∆̃J are the constant diagram functors. Notice that [J , P ] is a

fibration when P is, where cartesian morphisms are formed componentwise. We

write
(

ˆlimJ a ∆̂J a ˆcolimJ
)

when the fibration P has fibred limits and colimits.

Dually we can define opfibred J -colimits and limits for an opfibration U .

Proposition 5.3.9. A fibration P : A → X has all fibred J -limits (colimits) if

and only if every fibre has J -limits (colimits) and the reindexing functors f∗ preserve

them, for any arrow f .

Proof. By Proposition 5.3.3, the fibred functor ∆̂J has a fibred right adjoint

R if and only if there is an adjunction between the fibres (∆̂J )X a RX and we have

isomorphisms (RXf
∗)C ∼= (f∗RY )C for any f : X → Y and C ∈ CY . The first

condition is equivalent to each fibre AX being J -complete, since

(∆∗J [J ,A])X ∼= [J ,A]∆JX = [J ,AX ]

by construction of the pullback fibration, and (∆̂J )X : AX → [J ,AX ] is the constant

diagram functor. If we call this fibrewise adjoint RX = limX , the second condition

becomes

(limX ◦ [J , f∗])F ∼= (f∗ ◦ limY )F

for any functor F : J → AY , which means precisely that any f∗ preserves limits

between the fibre categories. Dual arguments apply for the existence of colimits. �

There is an equivalent definition of a fibred J -complete fibration P : A → X.

In [Bor94b, 8.5.1], it is stated that P has all J -limits when the (outer) fibred 1-

cell (∆̃J ,∆J ) given by (5.30) has a fibred right adjoint. The difference relates to

whether we require an adjunction between fibrations over the same bases or not,

since the factorization through the pullback is a tool which permits the restriction

of the problem from Fib to Fib(X). The following result illustrates the latter.
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Theorem 5.3.10. [Her93, 3.2.3] Given P : A → X, Q : B → Y, F a G : Y→ X
via η, ε and a fibred 1-cell (S, F ) : P → Q as shown in the following diagram

A

P
��

S // B
Q

��
X

F //
⊥ Y,
G

oo

let Ŝ : P → F ∗Q in Fib(X) be the unique mediating functor in

A
S

##

P

**

Ŝ
''
F ∗B π //

F ∗Q

��

B

Q

��
X

F
// Y.

Then, the following statements are equivalent:

i) There exists R : B → A such that S a R in Cat and (S, F ) a (R,G) in Fib.

ii) There exists R̂ : F ∗Q→ P such that Ŝ a R̂ in Fib(X).

This theorem uses the fact that change of base along F as in Proposition 5.1.3

yields a so-called cartesian fibred adjunction when F has a right adjoint, meaning

(π, F ) has an adjoint in Fib. Therefore, by performing change of base along a left

adjoint functor, we can factorize a general fibred adjunction into a cartesian and

‘vertical’ fibred adjunction, hence ‘reduce’ a general fibred adjunction to a fibred

adjunction. Dually, this can be done for a general opfibred adjunction accordingly.

Using the above theorem, we can deduce fibrewise completeness conditions from

the total category of the fibration and vice versa.

Corollary 5.3.11. [Her93, 3.3.6] Let J be a small category and P : A → X be

a fibration such that the base category X has all J -limits. Then the fibration P has

all fibred J -limits if and only if A has and P strictly preserves (chosen) J -limits.

The proof relies on Lemma 5.3.2 and essentially constructs a general fibred ad-

junction (∆̃J ,∆J ) a ( ˜limJ , limJ ) for the outer diagram (5.30). Dually, we obtain

fibred colimits for an opfibration with a cocomplete base, from colimits in the total

category which are strictly preserved by the opfibration.

Remark. In essence, Theorems 5.3.7 and 5.3.8 relate to very similar questions

as Theorem 5.3.10, namely the assumptions under which we obtain general fibred

and opfibred adjunctions (starting with an (op)fibred 1-cell). However, they actu-

ally respond to the exact opposite problems: Theorem 5.3.8 provides with a left

adjoint between the total functors, whereas Theorem 5.3.10 reduces the existence of

a right fibred 1-cell adjoint to a right fibred adjoint. This connection should per-

haps be further explored. For example, we could use the new results to study fibred

cocompleteness of fibrations and fibred completeness of opfibrations.
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CHAPTER 6

Enrichment of Monoids and Modules

6.1. Universal measuring comonoid and enrichment

The notion of the universal measuring coalgebra was first introduced by Sweedler

[Swe69] in the context of vector spaces over a field k. The question that motivated

the definition of measuring coalgebras is under which conditions, for A,B k-algebras

and C a k-coalgebra, the linear map ρ ∈ Homk(A,Homk(C,B)) corresponding under

the usual tensor-hom adjunction to σ ∈ Homk(C ⊗k A,B) in Vectk is actually an

algebra map.

More explicitly, the natural bijective correspondence defining the adjunction

(−⊗k C) a Homk(C,−) is given by the invertible mapping

Vectk(A,Homk(C,B)) // Vectk(A⊗ C,B)

A
ρ−→ Homk(C,B) � // A⊗ C ρ̄−→ B

a⊗ c 7→ [ρ(a)](c)

where of course Vectk(−,−) = Homk. If C is a k-coalgebra and B a k-algebra, it is

well-known that Homk(C,B) obtains the structure of a k-algebra via convolution,

also by Remark 3.3.2. Hence if A is also a k-algebra, we may ask under which

conditions on ρ̄, the corresponding linear map ρ is a k-algebra homomorphism. This

resulted in the following definition.

Definition. If A,B are k-algebras, C a k-coalgebra and σ : C ⊗k A → B a

linear map, we say that (σ,C) measures A to B when σ satisfies:

σ(c⊗ aa′) =
∑
(c)

σ(c(1) ⊗ a)σ(c(2) ⊗ a′)

σ(c⊗ 1) = ε(c)1

where the sum comes from the sigma notation for the comultiplication of C, and ε

is the counit.

There is a category of measuring coalgebras and it has a terminal object P (A,B),

equivalently defined by the following one-to-one correspondences

Algk(A,Homk(C,B)) ∼= {σ ∈ Homk(C ⊗A,B)|σ measures} (6.1)

∼= Coalgk(C,P (A,B))

where the first isomorphism comes from the definition of measuring, and the second

expresses the universal property of P (A,B). This object is called the universal

101
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measuring coalgebra, and in [Swe69, Theorem 7.0.4] is constructed as the sum of

certain subcoalgebras of the cofree coalgebra on the vector space Homk(A,B).

As illustrated in Section 3.3, Algk and Coalgk are the categories of monoids and

comonoids and Homk is the internal hom in the symmetric monoidal closed category

Vectk of k-vector spaces and k-linear maps. The aim is to obtain a generalization

of P (A,B) in a broader setting, by identifying the appropriate assumptions on a

monoidal category V in place of Vectk which allow its existence.

Consider a symmetric monoidal closed category V. The lax monoidal internal

hom functor induces a functor between the categories of comonoids and monoids as

in (3.17),

Mon[−,−] : Comon(V)op ×Mon(V) // Mon(V)

( C , A ) � // [C,A]

which is in fact just the restriction of the internal hom on Comon(V)op×Mon(V).

If we call this functor of two variables H, in order to generalize the isomorphism

(6.1) it is enough to prove that the functor

H(−, B)op : Comon(V) −→Mon(V)op

for a fixed monoid B has a right adjoint. Because of the useful properties of the

categories of monoids and comonoids in admissible categories discussed in Section

3.3, and since Vectk is itself an example of such a category, we continue in this

direction.

Proposition 6.1.1. Suppose that V is a locally presentable symmetric monoidal

closed category. There is an adjunction H(−, B)op a P (−, B) with a natural iso-

morphism

Mon(V)(A, [C,B]) ∼= Comon(V)(C,P (A,B)) (6.2)

for any monoids A, B and comonoid C.

Proof. A monoidal category V with these properties belongs to the class of

admissible categories, therefore Proposition 3.3.5 applies. As a result, the category of

comonoids Comon(V) is a locally presentable category, and in particular cocomplete

with a small dense subcategory. Moreover, there is a commutative diagram

Comon(V)op
H(−,B)

//

Uop

��

Mon(V)

S

��
Vop

[−,SB]
// V

where the forgetful functors U , S are respectively comonadic and monadic. The

bottom functor [−, SB] is continuous as the right adjoint of [−, SB]op as in (3.9),

thus the diagram exhibits H(−, B) as a continuous functor. Hence by Theorem

3.0.1, the cocontinuous H(−, B)op has a right adjoint P (−, B) with an isomorphism

as in (6.2). Since this is natural in A and C, there is a unique way to define a functor
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of two variables

P (−,−) : Mon(V)op ×Mon(V) −→ Comon(V) (6.3)

which is the parametrized adjoint of Hop(−,−) by ‘adjunctions with a parameter’

Theorem 3.0.2. �

The object P (A,B) for monoidsA, B is called the universal measuring comonoid,

and the functor P is called the universal measuring comonoid functor or Sweedler

hom in [AJ13]. Notice that in fact, a parametrized adjoint for Hop should have

domain Mon(V) ×Mon(V)op, but it is more natural to work with an essentially

identical functor which is contravariant on the first entry, just by switching the

cartesian product in our notation.

In particular, for the admissible monoidal closed ModR for a commutative ring

R, there is a natural isomorphism

CoalgR(C,P (A,B)) ∼= AlgR(A,HomR(C,B)) (6.4)

defining the universal measuring coalgebra P (A,B). This is also given by [Por08a,

Proposition 4].

Remark 6.1.2. It is a well-known fact that the dual C∗ = Homk(C, k) of a k-

coalgebra, where k is viewed as an algebra over itself, has a natural structure of an

algebra. On the other hand, if A is a k-algebra, its dual A∗ = Homk(A, k) in general

fails to be a coalgebra, unless for example it is finite dimensional as a k-vector space.

This is due to the failure of the canonical linear map

V ∗ ⊗k W ∗ → (V ⊗k W )∗

which gives the lax monoidal structure on Homk, to always be invertible. However,

we can define the subspace

A0 = {g ∈ A∗|∃ ideal I ⊂ kerg s.t. (kerg/I) f.d.}

of A∗ which turns out to have the structure of a coalgebra. Then, the dual algebra

functor Homk(−, k) = (−)∗ is adjoint to (−)0 via the classical isomorphism

Coalgk(C,A
0) ∼= Algk(A,C

∗).

This is a special case of (6.4) for R = k, hence Proposition 6.1.1 in fact generalizes

the dual algebra functor adjunction to ModR, but also in a sense to a more general

monoidal category V, with (−)∗ ∼= [−, I] and (−)0 ∼= P (−, I).

We now proceed to the statement and proof of a lemma which connects the

adjunction (6.2) with the usual (−⊗ C) a [C,−] defining the internal hom.

Lemma 6.1.3. Suppose we have a monoid arrow f : A → [C,B] for A, B

monoids, C a comonoid in a locally presentable symmetric monoidal closed cate-

gory V. If this arrow corresponds to f̄ : A ⊗ C → B in V under (− ⊗ C) a [C,−]

and to f̂ : C → P (A,B) in Comon(V) under H(−, B)op a P (−, B), then the two
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transposes are connected via

f̄ = (ε⊗ f̂) ◦ ev (6.5)

where ev is the evaluation and ε the counit of the universal measuring comonoid

adjunction.

Proof. Consider the following diagram

[P (A,B), B]⊗ C
1⊗f̂

//

[f̂ ,1]⊗1

""

[P (A,B), B]⊗ P (A,B)

evB

&&
A⊗ C

εA⊗1

88

f⊗1

++

f̄

22 B

[C,B]⊗ C

evB

88

where the bottom composite defines f̄ . Notice that the counit ε in reality has

components H(P (A,B), B)op → A in Mon(V)op.

The left part of the diagram gives f from its transpose map f̂ under H(−, B)op a
P (−, B). The right part commutes by dinaturality as in (3.8) of the counit evED :

[D,E] ⊗ D → E of the parametrized adjunction (− ⊗ −) a [−,−]. Therefore the

diagram commutes and the relation (6.5) holds. �

We can now combine the existence of the universal measuring comonoid P (A,B)

with the theory of actions of monoidal categories in Section 4.3, in order to establish

an enrichment of Mon(V) in the symmetric monoidal closed Comon(V). Recall

that for any symmetric monoidal closed category V, the internal hom

[−,−] : Vop × V −→ V

is an action of the monoidal category Vop on the category V, as explained in Lemma

4.3.2. Furthermore, the restricted functor on the categories of comonoids and

monoids H = Mon[−,−] is an action too, by the same lemma. Finally, the op-

posite functor of an action is still an action. Therefore, for the action

Hop : Comon(V)×Mon(V)op −→Mon(V)op (6.6)

of the symmetric monoidal closed category Comon(V) (see Proposition 3.3.6) on

the ordinary category Mon(V)op, Corollaries 4.3.4 and 4.3.5 apply.

Theorem 6.1.4. Let V be a locally presentable symmetric monoidal closed cat-

egory and P the Sweedler hom functor.

(1) The opposite category of monoids Mon(V)op is enriched in the category of

comonoids Comon(V), with hom-objects

Mon(V)op(A,B) = P (B,A)

where the Comon(V)-enriched category is denoted by the same name.
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(2) The category of monoids Mon(V) is a tensored and cotensored Comon(V)-

enriched category, with hom-objects

Mon(V)(A,B) = P (A,B)

and cotensor products [C,B] for any comonoid C and monoid B.

Proof. By Proposition 6.1.1, there is an adjunction

Comon(V)
H(−,B)op

//
⊥ Mon(V)op

P (−,B)
oo

which defines the bifunctor P (6.3) as the parametrized adjoint of the bifunctor Hop.

The latter is an action, thus an enrichment of the category acted on is induced, as

well as of its opposite category Mon(V) since the monoidal category Comon(V) is

symmetric.

In particular, since Comon(V) is closed, the action [−,−] which induces the

enrichment of Mon(V)op renders it a tensored Comon(V)-category, hence its oppo-

site enriched category is cotensored. On the other hand, Mon(V) is also a tensored

Comon(V)-category because the functor

H(C,−)op : Mon(V)op −→Mon(V)op

has a right adjoint for every comonoid C. This follows from the Adjoint Triangle

Theorem (see [Dub68]) applied to the commutative diagram

Mon(V)
H(C,−)

//

S
��

Mon(V)

S
��

V
[C,−]

// V.

The forgetful S is monadic, the locally presentable Mon(V) has coequalizers and

[C,−] has a left adjoint (−⊗C). Therefore H(C,−) has a left adjoint C .− for all

C’s and so there is a unique way to define a bifunctor

. : Comon(V)×Mon(V) −→Mon(V). (6.7)

In [AJ13], this functor is called the Sweedler product. �

6.2. Global categories of modules and comodules

In Section 3.4, the categories ModV(A) and ComodV(C) of A-modules and C-

comodules for a monoid A and a comonoid C in a monoidal category V were defined.

The idea here is that there exist global categories of modules and comodules, which

contain all these ‘fixed (co)monoids’ categories, with appropriate arrows between

modules and comodules of actions and coactions from different sources. These global

categories are central for the development of this thesis, and their construction is

interrelated with the theory of fibrations and opfibrations.
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Definition 6.2.1. The global category of comodules Comod is the category of

all C-comodules X for any comonoid C, denoted by XC . A morphism kg : XC → YD

for X a C-comodule and Y a D-comodule consists of a comonoid morphism g : C →
D and an arrow k : X → Y in V which makes the diagram

X
δ //

k

��

X ⊗ C
1⊗g

// X ⊗D

k⊗1

��
Y

δ
// Y ⊗D

commute. Dually, the global category of modules Mod has as objects all A-modules

M for any monoid A, and morphisms are pf : MA → NB where f : A → B is a

monoid morphism and p : M → N makes the dual diagram

A⊗M
µ

//

1⊗p

��

M

p

��
A⊗N

f⊗1
// B ⊗N

µ
// N

commute. Conventially, unless otherwise stated the modules considered will be left

and the comodules considered will be right.

There are obvious forgetful functors

G : Mod −→Mon(V) and V : Comod −→ Comon(V) (6.8)

which simply map any module MA/comodule XC to its monoid A/comonoid C and

the morphisms to their monoid/comonoid part respectively. In fact, G is a split

fibration and V is a split opfibration: the descriptions of the global categories agree

with the Grothendieck categories for specific (strict) functors

Mon(V)op
ModV // Cat

A � //

f

��

ModV(A)

B � // ModV(B)

f∗

OO

Comon(V)
ComodV // Cat

C � //

g

��

ComodV(C)

g!

��
D � // ComodV(D)

where f∗ and g! are the restriction and corestriction of scalars as in (3.25) and (3.27).

Remark. Under the assumptions of Proposition 3.4.4, the functor f∗ has a

left adjoint and the functor g! has a right adjoint. Thus by Remark 5.1.1, when

V has and A ⊗ − preserves coequalizers for any monoid A, the fibration G is a

bifibration. Dually, when V has and − ⊗ C preserves equalizers for any comonoid

C, the opfibration V is a bifibration.

If we unravel the Grothendieck construction of Theorem 5.2.1, we have the fol-

lowing equivalent characterization of, for example, Comod:
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· Objects are pairs (X,C) with C ∈ Comon(V) and X ∈ ComodV(C).

· Morphisms are pairs (k, g) : (X,C)→ (Y,D) withg!X
k−→ Y in ComodV(D)

C
g−→ D in Comon(V).

· Composition XC
(k,g)−−−→ YD

(l,h)−−→ ZE is given by(hg)!X
θ−→ Z in ComodV(E)

C
hg−→ E in Comon(V)

where θ is the composite (hg)!X = h!g!X
h!l−→ h!Y

k−→ Z.

· The identity morphism isX
1X−−→ X in ComodV(C)

C
1C−−→ C in Comon(V)

since (1C)!X = X.

By comparing this with Definition 6.2.1, we deduce that Comod = G(ComodV)

in a straightforward way. Dually Mod = G(ModV), so objects MA can be seen as

pairs (M,A) with A ∈Mon(V) and M ∈ModV(A), and morphisms pf asM
p−→ f∗N in ModV(A)

A
f−→ B in Mon(V).

Since these presentations of the global categories are essentially the same, we can

freely use the notation which is more convenient depending on the case. The fibre

categories for V = UComodV and G = PModV are respectively ComodV(C) and

ModV(A) and the canonical chosen cartesian and cocartesian liftings are

Cart(f,N) : f∗N
(1f∗N ,f)
−−−−−→ N in Mod, (6.9)

Cocart(g,X) : X
(1g!X ,g)−−−−−→ g!X in Comod.

Remark 6.2.2. There is another way of viewing the global category of modules

Mod for a monoidal category V. It is based on the observation that to give a lax

functor of bicategories MI →MV which is identity on objects is to give an object

in Mod. I thank Steve Lack for explaining this point of view to me.

The bicategories are constructed as in the Remark 4.3.1(i), arising from the

canonical actions of the monoidal categories I, V on themselves via tensor product.

For the unit monoidal category, we of course have that MI(0, 0) = MI(0, 1) =

MI(1, 1) = 1 and MI(1, 0) = ∅. Such an identity-on-objects lax functor F would

in particular consist of functors

F0,1,F1,1 : 1⇒ V

which pick up two objects M and A in V. The components of the natural transfor-

mations δ as in (2.3) give arrows µ : A ⊗M → A and m : A ⊗ A → A in V, the
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components of γ as in (2.4) give η : I → A and the axioms ensure that (A,m, η) is

a monoid in V and (M,µ) is an A-module.

Then, morphisms in Mod are icons, as described in Remark 2.3.1: if MA, NB

are two identity-on-objects lax functors between MI and MV, an icon between

them consists in particular of natural transformations

1 �� f

A

##

B

<< V and 1 �� p

M

##

N

<< V

which are two arrows f : A→ B and p : M → N in V, subject to conditions which

coincide with those of Definition 6.2.1.

Dually, colax natural transformationsMI →MV correspond to comodules over

comonoids, and icons then turn out to be comodule morphisms. Therefore we have

Mod = Bicat2(MI,MV)l

Comod = Bicat2(MI,MV)c

where Bicat2 is the 2-category of bicategories, lax/colax functors and icons (see

[Lac10b]).

We now explore some of the main properties of the global categories. First of all,

if V is a symmetric monoidal category, Comod and Mod are symmetric monoidal

categories as well. It is easy to verify that if s is the symmetry in V, the object

XC ⊗ YD in V for XC , YD ∈ Comod is a comodule over the comonoid C ⊗ D via

the coaction

X ⊗ Y δX⊗δY−−−−→ X ⊗ C ⊗ Y ⊗D 1⊗s⊗1−−−−→ X ⊗ Y ⊗ C ⊗D. (6.10)

The fact that Comon(V) is monoidal itself is evidently required, which holds again

due to symmetry of V. Notice that there is no appropriate way of endowing the fibre

categories ComodV(C) with a monoidal structure in general, since for example, the

tensor product of two C-comodules would end up as a C ⊗C-module by the above.

Similarly, for MA, NB ∈Mod, the object MA⊗NB is a A⊗B-module via the action

A⊗B ⊗M ⊗N 1⊗s⊗1−−−−→ A⊗M ⊗B ⊗N µM⊗µN−−−−−→M ⊗N.

The symmetry of Mod and Comod is inherited from V. Moreover, in this case the

functors V and G of (6.8) have the structure of a strict symmetric monoidal functor:

V (XC ⊗ YD) = C ⊗D = V XC ⊗ V YD (6.11)

G(MA ⊗NB) = A⊗B = GMA ⊗GNB.

The monoidal unit in both cases is I, with a trivial I-action and coaction via rI .

The following result, also mentioned at the end of [Wis75] for V = ModR,

illustrates the structure of the global categories.

Proposition 6.2.3. The functor F : Comod → V × Comon(V) which maps

an object XC to the pair (X,C) is comonadic.
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Proof. First notice that F ‘consists of’ the forgetful functor which discards

the comodule structure from the object of V, and the forgetful V which keeps the

comonoid. Therefore this result is, in a sense, a generalization of Proposition 3.4.1.

Define a functor

R : V ×Comon(V) // Comod

(A,D) � //

(l,g)
��

(A⊗D)D

(l⊗g)g
��

(B,E) � // (B ⊗ E)E

where the D-action on the object A ⊗D is given by A ⊗D 1⊗∆−−−→ A ⊗D ⊗D with

∆ the comultiplication of the comonoid D. It is not hard to establish a natural

bijection

(V ×Comon(V))((X,C), (A,D)) ∼= V(X,A)×Comon(V)(C,D)

∼= Comod(XC , (A⊗D)D)

where (X,C) = F (XC) and (A⊗D)D = R(A,D), so we obtain an adjunction

Comod
F //
⊥ V ×Comon(V).
R

oo

This induces a comonad on V×Comon(V), namely (FR,FηR, ε), where the comul-

tiplication and counit have components

FηK(A,D) : (A⊗D,D)
(1⊗∆,1)−−−−−→ (A⊗D ⊗D,D)

ε(A,D) : (A⊗D,D)
(1⊗ε,1)−−−−→ (A,D)

for the comonoid (D,∆, ε). The category of coalgebras for this comonad is precisely

Comod. �

This in particular implies that if V and Comon(V) are cocomplete categories,

then Comod is also cocomplete. In fact, using results from Section 5.3 concerning

fibrewise colimits, we can recover this as follows.

Corollary 6.2.4. If V and Comon(V) have all colimits, then Comod has all

colimits and V : Comod→ Comon(V) strictly preserves them.

Proof. Since every fibre ComodV(C) of the opfibration V is comonadic over

V, it has all colimits for any comonoid C. Moreover, the reindexing functors

ComodV(g) = g! preserve all colimits by the commutative diagram (3.28) for any

comonoid arrow g. By Proposition 5.3.9, the opfibration V : Comod→ Comon(V)

has all opfibred colimits. Then, by the dual of Corollary 5.3.11, this is equivalent to

the total category Comod being cocomplete and V being strictly cocontinuous. �

Colimits in Comod are therefore constructed as follows. If we consider a dia-

gram D : J → Comod, the composite functor

J D−→ Comod
V−→ Comon(V)
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has a colimiting cocone (τj : V Dj → colim(V D) | j ∈ J ) since Comon(V) is cocom-

plete. Define a new diagram

J H // ComodV(colimV D)

j � //

κ
��

(τj)!Dj = (τj′)!(V Dκ)!Dj

(τj′ )!Dκ
��

j′ � // (τj′)!Dj
′

which, since the category ComodV(colimV D) is cocomplete, also has a colimiting

cocone (σj : (τj)!Dj → colimH | j ∈ J ). It turns out that(
Dj

(σj ,τj)−−−−−→ colimH | j ∈ J
)

is the colimiting cocone of D in Comod, and of course V colimD = colim(V D).

Dually to the above results, we obtain the following.

Proposition 6.2.5. The global category of modules Mod is monadic over the

category V ×Mon(V), and so if V and Mon(V) are complete, Mod has all limits

and G : Mod→Mon(V) strictly preserves them.

Now suppose that V is a symmetric monoidal closed category. In Section 3.4 it

was explained how the internal hom bifunctor induces a functor

ModCA[−,−] : ComodV(C)op ×ModV(A) −→ModV([C,A])

as in (3.23), which is again the restriction of the internal hom on the cartesian

product of the categories of C-comodules and A-modules. There is a way to lift this

functor on the level of the global categories of comodules and modules, in the sense

that there is a functor between the total categories

H̄ : Comodop ×Mod // Mod

( XC , MA ) � // [X,M ][C,A]

(6.12)

such that ModCA[−,−] are the functors induced between the fibres (see Remark

5.1.2). If (kg, lf ) : (XC ,MA)→ (YD, NB) is a morphism in the cartesian product, the

fact that k and l commute with the corestricted and restricted actions accordingly

forces the arrow [k, l] : [X,M ] → [Y,N ] in V to satisfy the appropriate property.

Hence [X,M ]
[k,l]−−→ [g, f ]∗[Y,N ] in ModV [C,A]

[C,A]
[g,f ]−−→ [D,B] in Mon(V)

defines an arrow H̄(k, l)[g,f ] : [X,M ][C,A] → [Y,N ][D,B] in Mod. In fact, the pair

(H̄,H) is a fibred 1-cell depicted by the square

Comodop ×Mod
H̄(−,−)

//

V op×G
��

Mod

G

��
Comon(V)op ×Mon(V)

H(−,−)
// Mon(V),

(6.13)
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where of course the cartesian product V op ×G is treated as a fibration. Commuta-

tivity is clear from the above construction, which ensures that

G([X,N ][C,B]) = [V XC , GNB] = [C,B].

Moreover H̄ is a cartesian functor: it maps a cartesian arrow of the domain, which

is a pair of a cocartesian lifting in Comod and a cartesian lifting in Mod, to the

arrow

[g!Y, f
∗N ]

H̄(Cocart(g,Y ),Cart(f,N))
//

��

[Y,N ]

��

in Mod

[C,A]
[g,f ]

// [D,B] in Mon(V).

By the canonical liftings (6.9) from the Grothendieck construction, that module

arrow is specifically

H̄((1g!Y , g), (1f∗N , f)) = ([1g!Y , 1f∗N ], [g, f ]) = (1[g!Y,f∗N ], [g, f ])

by the definition of H̄ and functoriality of [−,−]. On the other hand, the canonical

cartesian lifting of [Y,N ] along [g, f ] is

[g, f ]∗[Y,N ]
(1[g,f ]∗[Y,N ],[g,f ])

//

��

[Y,N ]

��

in Mod

[C,A]
[g,f ]

// [D,B] in Mon(V).

The above two arrows in Mod are essentially identical, both being 1[Y,N ] : [Y,N ]→
[Y,N ] as morphisms in V between the modules, and the [C,A]-actions on [g!Y, f

∗N ]

and [g, f ]∗[Y,N ] can be computed to be the same. Therefore (H̄,H) is actually a

split fibred 1-cell.

Finally, suppose V is monoidal such that ⊗ preserves (filtered) colimits on both

sides, and moreover locally presentable. It is not hard to see that the comonad on

V ×Comon(V) whose category of coalgebras is Comod (see Proposition 6.2.3) is

finitary: if (λj , τj) : (Xj , Cj)→ (X,C) is a filtered colimiting cocone, then

(λj ⊗ τj , τj) : (Xj ⊗ Cj , Cj) −→ (X ⊗ C,C)

is too, since ⊗ preserves colimits on both variables and Comon(V) is comonadic

over V. Dually, Mod is finitary monadic over V×Mon(V), since (λj⊗τj , τj) : (Aj⊗
Mj , Aj)→ (A⊗M,A) is a filtered colimit when λj is a colimiting cocone in V and

τj in Mon(V). This happens because the monadic Mon(V → V creates all colimits

that the finitary monad preserves (see Proposition 3.3.5(1)). Since V, Mon(V) and

Comon(V) are all locally presentable categories under the above assumptions, we

can apply Theorem 3.4.3 for the global categories.

Theorem 6.2.6. If V is a locally presentable monoidal category such that (−⊗−)

is finitary on both entries, Mod and Comod are locally presentable.
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6.3. Universal measuring comodule and enrichment

The notion of a universal measuring comodule in the category of vector spaces

Vectk was first introduced by Batchelor in [Bat00], where emphasis was given to

its applications. Very similarly to the context of measuring coalgebras, a k-linear

map ψ : X → Homk(M,N) is said to measure if it satisfies

ψ(x)(am) =
∑
(x)

φx(1)(a)ψx(0)(m)

again using sigma notation. Here X is a C-comodule, M an A-module and N a B-

module, for (C, φ) a measuring coalgebra and A,B algebras. The pair (X,ψ) is called

measuring comodule. The question that gave rise to this definition is whether the

transpose arrow ψ̄ : M → Homk(X,N) is a map of A-modules, using the symmetry

in Vectk and the module structure on Homk(X,N).

There is a category of measuring comodules for a fixed measuring coalgebra

C, and it has a terminal object Q(M,N) satisfying the property that there is a

correspondence{
C-comodule maps X → Q(M,N)

}
↔
{
A-module maps M → Homk(X,N)

}
.

(6.14)

The object Q(M,N) is called universal measuring comodule. Initially, the goal is to

extend the existence of the universal measuring comodule in a more general context

than Vectk.

Consider a symmetric monoidal closed category V. In the end of the previous

section, we defined a functor of two variables H̄ : Comodop × Mod → Mod

which maps a comodule and a module to their internal hom in V. Since the aim is a

generalization of the correspondence (6.14) in order to define the universal measuring

comodule, in fact we need a natural isomorphism

Comod(X,Q(M,N)) ∼= Mod(M, H̄(X,N))

where X = XC , M = MA, N = NB and H̄(X,N) = [X,N ][C,B]. Thus it is enough

to show that the functor H̄(−, NB)op : Comod −→ Modop for a fixed B-module

N has a right adjoint.

Moreover, we intend to show that Q(M,N) is a comodule over the universal

measuring coalgebra, hence the assumptions on V have to also cover the existence

of P (A,B). The following result is an application of Theorem 5.3.7 in the abstract

setting of (op)fibrations. A direct proof can be found at the end of this chapter.

Proposition 6.3.1. Let V be a locally presentable symmetric monoidal closed

category. There is an adjunction

Comod
H̄(−,NB)op

//
⊥ Modop

Q(−,NB)
oo

between the global categories of modules and comodules, with a natural isomorphism

Comod(XC , Q(M,N)P (A,B)) ∼= Mod(MA, [X,N ][C,B]). (6.15)
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Proof. The pair of bifunctors (H̄,H) depicted as (6.13) constitutes a fibred

1-cell between the fibrations V op×G and G, as shown earlier. This implies that the

pair of functors (H̄(−, NB), H(−, B)) for a fixed monoid B and a B-module N is

again a fibred 1-cell between V op and G, and hence the opposite square

Comod
H̄(−,NB)op

//

V

��

Modop

Gop

��
Comon(V)

H(−,B)op
// Mon(V)op

is an opfibred 1-cell between the opfibrations V and Gop. Also, by Proposition 6.1.1

there is an adjunction between the base categories

Comon(V)
H(−,B)op

//
⊥ Mon(V)op

P (−,B)
oo

where P is the Sweedler hom functor.

In order for Lemma 5.3.6 to apply, we need the existence of a right adjoint of

the composite functor

ComodV(P (A,B))
H̄(−,NB)op

P (A,B)−−−−−−−−−−→Modop
V ([P (A,B), B])

(εA)!−−−→Modop
V (A) (6.16)

where

εBA : H(P (A,B), B)→ A in Mon(V)op

are the components of the counit of the parametrized adjunction Hop a P . We

already know that ComodV(C) is a locally presentable category by Proposition

3.4.2, so cocomplete with a small dense subcategory, namely the presentable objects.

Moreover, the reindexing functors are always cocontinuous as seen in Section 3.4,

hence so is (εA)! of the opfibration V op. Finally, the following commutative diagram

Comod
H̄(−,NB)op

//

��

Modop

��
V ×Comon(V)

[−,N ]op×H(−,B)op
// Vop ×Mon(V)op

(6.17)

implies that H̄(−, NB)op preserves all colimits: both functors at the bottom have

right adjoints, and the vertical functors create all colimits by Propositions 6.2.3 and

6.2.5. Since the fibres of the total categories Comod and Modop are closed under

colimits, the restricted fibrewise functor H̄(−, NB)op
P (A,B) is cocontinuous too.

Consequently, by Theorem 3.0.1 the composite (6.16) has a ‘fibrewise’ right

adjoint

QA(−, NB) : ModV(A)op −→ ComodV(P (A,B))
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and Theorem 5.3.7 implies that this lifts to a functor between the total categories

Q(−, NB) : Modop −→ Comod such that

Comod
H̄(−,NB)op

//
⊥

V

��

Modop

Q(−,NB)
oo

Gop

��
Comon(V)

H(−,B)op

//
⊥ Mon(V)op

P (−,B)
oo

is an adjunction in Cat2. The isomorphism (6.15) for the adjunction between the

total categories, natural in XC and MA, makes this adjoint uniquely into a functor

of two variables

Q(−,−) : Modop ×Mod −→ Comod

such that the isomorphism is natural in all three variables. In other words, Q is the

parametrized adjoint of the bifunctor H̄op. �

The bifunctor Q is called the universal measuring comodule functor. By con-

struction of Q, the object Q(MA, NB) has the structure of a P (A,B)-comodule.

Similarly, we can show that the symmetric monoidal category Comod has a

monoidal closed structure.

Proposition 6.3.2. The global category of comodules Comod for a locally pre-

sentable symmetric monoidal closed category V is a symmetric monoidal closed cat-

egory.

Proof. By the definition of the symmetric monoidal tensor product

⊗ : Comod×Comod // Comod

( YD , XC ) � // (Y ⊗X)D⊗C

in Comod as in (6.10), we have a commutative square

Comod
(−⊗XC)

//

V

��

Comod

V

��
Comon(V)

(−⊗C)
// Comon(V).

(6.18)

Actually, this is an opfibred 1-cell: the functor (−⊗XC) for a fixed C-comodule X

maps a cocartesian lifting to the right top arrow

Y
Cocart(f,Y )

// f!Y Y ⊗X
Cocart(f,Y )⊗1

//

Cocart **

f!Y ⊗X in Comod

7→ (f ⊗ 1)!(Y ⊗X)

∃!
OO

D
f

// E D ⊗ C
f⊗1

// E ⊗ C in Comon(V).
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The two (E⊗C)-comodules f!Y ⊗X and (f ⊗1)!(Y ⊗X) are both Y ⊗X as objects

in V, and the coactions induced in both cases are equal. Hence, by the canonical

choice of cocartesian liftings for the opfibration V : Comod → Comon(V) and

functoriality of the tensor product, 1(f⊗1)!(Y⊗X) = 1f!Y ⊗ 1X and so (−⊗XC) is a

cocartesian functor.

By Proposition 3.3.6, the category of comonoids for such a monoidal category V
is monoidal closed with internal hom functor Hom via an adjunction

Comon(V)
(−⊗C)

//
⊥ Comon(V)

Hom(C,−)
oo

between the bases of (6.18). Finally, if ε is the counit for this adjunction, the

composite functor

ComodV(Hom(C,D))
(−⊗XC)−−−−−→ ComodV(Hom(C,D)⊗ C)

(εD)!−−−→ ComodV(D)

has a right adjoint HomD(XC ,−). This follows from the adjoint functor Theorem

3.0.1, since ComodV(Hom(C,D)) is locally presentable and the composite func-

tor preserves all colimits. This is the case because reindexing functors are always

cocontinuous, and the commutative diagram

Comod
(−⊗XC)

//

F
��

Comod

F
��

V ×Comon(V)
(−⊗X)×(−⊗C)

// V ×Comon(V)

(6.19)

implies that (−⊗XC) preserves all colimits, since the bottom arrow does by monoidal

closedness of V and Comon(V), and F is comonadic.

By Theorem 5.3.7, the functors HomD(XC ,−) between the fibres assemble into

a total adjoint Hom(XC ,−) : Comod→ Comod such that

Comod
−⊗XC //
⊥

V

��

Comod
Hom(XC ,−)

oo

V

��
Comon(V)

−⊗C //
⊥ Comon(V)

Hom(C,−)
oo

is an adjunction in Cat2. Thus the uniquely defined parametrized adjoint

Hom : Comodop ×Comod −→ Comod (6.20)

of (−⊗−) is the internal hom of the global category of comodules Comod. �

Remark 6.3.3. An alternative approach for the existence of the functors Q and

Hom would be to show that

H̄op(−, NB) : Comod −→Modop

−⊗XC : Comod −→ Comod
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have right adjoints via an adjoint functor theorem. Both functors are cocontinuous

by diagrams (6.17) and (6.19) respectively, and the domain Comod is locally pre-

sentable by Theorem 6.2.6. Hence Theorem 3.0.1 directly establishes the existence

of right adjoints. However, we prefer the method which employs the fibrational

structure of the global categories, because it provides with a better understanding

of the situation. For example, the above proposition ensures that Hom(XC , YD) is

specifically a Hom(C,D)-comodule.

We can now once more combine the existence of the universal measuring co-

module with the theory of actions of monoidal categories, in order to show how the

functor Q induces an enrichment of the global category of modules in the global

category of comodules.

For any symmetric monoidal closed category V, the functor of two variables

H̄(−,−) : Comodop ×Mod −→ Mod defined as in (6.12) is in fact an action of

the symmetric monoidal category Comodop on the ordinary category Mod. It is

easy to see that there exist natural isomorphisms

[X ⊗ Y,M ][C⊗D,A]
∼−→ [X, [Y,M ]][C,[D,A]]

[I,M ][I,A]
∼−→MA

for any coalgebras C, D, algebras A, comodules XC , YD and modules MA that

satisfy the axioms of an action. This follows from the facts that [−,−] and H(−,−)

are actions and the monadic functor Mod → V ×Mon(V) reflects isomorphisms.

Therefore the opposite functor

H̄op : Comod×Modop −→Modop (6.21)

is an action of the symmetric monoidal Comod on Modop.

Since we have an adjunction H̄(−, NB)op a Q(−, NB) for any module NB by

Proposition 6.3.1, Corollaries 4.3.4 and 4.3.5 apply and give the following result.

Theorem 6.3.4. Let V be a locally presentable symmetric monoidal closed cat-

egory and Q the universal measuring comodule functor.

(1) The opposite of the global category of comodules Modop is enriched in the

global category of comodules Comod, with hom-objects

Modop(MA, NB) = Q(N,M)P (B,A)

where the Comod-enriched category is denoted with the same name.

(2) The global category of modules Mod is a tensored and cotensored Comod-

enriched category, with hom-objects

Mod(MA, NB) = Q(M,N)P (A,B)

and cotensor products [X,N ][C,B] for any C-comodule X and B-module N .

Proof. The only part left to show is that the functor

H̄(XC ,−)op : Mon(V)op −→Mon(V)op
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has a right adjoint for every comodule XC . Consider the commutative square

Mod
H̄(XC ,−)

//

��

Mod

��
V ×Mon(V)

[X,−]×H(C,−)
// V ×Mon(V)

where the vertical functors are monadic, Mod is locally presentable by Theorem

6.2.6, [X,−] ` (−⊗X) in V and H(C,−) has a left adjoint as in (6.7). By Dubuc’s

Adjoint Triangle Theorem, the top functor has a left adjoint XC .− for all XC ’s,

inducing a bifunctor

. : Comod×Mod −→Mod

which gives the tensor products of the Comod-enriched category Mod. �

We finish this chapter by giving a direct proof of Proposition 6.3.1, which can

also be found in [Vas12]. We should note here that the proof of the more general

Theorem 5.3.7 in the context of opfibrations actually relied heavily on this special

case of modules and comodules. These objects’ nature and the effect of the well-

behaved reindexing functors on them illustrate the correspondences between the

hom-sets clearly and give insight for the generalized result.

Proof 2. Suppose that V is a locally presentable monoidal closed category, P is

the Sweedler hom as in (6.3) and H̄ is the restricted internal hom between the global

categories as in (6.12). We are going to explicitly establish a bijective correspondence

Comod(X,QA(M,N)) ∼= Mod(M, H̄(X,N)) (6.22)

for any C-comodule X, A-module M and B-module N . The object Q(−)(M,N)

arises once more from the existence of a ‘special case adjunction’

Modop
V ([P (A,B), B]) εA!

++
ComodV(P (A,B))

H̄(−,NB)op 11

⊥ Modop
V (A)

QA(−,NB)

kk

with a natural isomorphism for Z a P (A,B)-comodule(
ComodV(P (A,B))

)
(Z,QA(M,N)) ∼=

(
ModV(A)

)
(M, (εA)∗[Z,N ]). (6.23)

An arbitrary element of Comod(XC , QA(M,N)P (A,B))h!X
k−→ QA(M,N) in ComodV(P (A,B))

C
h−→ P (A,B) in Comon(V)

corresponds uniquely to a pair of arrowsM
t−→ (εA)∗[h!X,N ] in ModV(A)

A
h̃−→ [C,B] in Mon(V)

(6.24)
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as follows: the top one is obtained via the special case adjunction (6.23) since

h!X is a P (A,B)-comodule, and the bottom one via the adjunction (6.2). Here,

(εA)∗[h!X,N ] is an A-module via the induced A-action on [X,N ]

A⊗ [X,N ]
εA⊗1 //

..

[P (A,B), B]⊗ [X,N ]
[h,1]⊗1

// [C,B]⊗ [X,N ]

µ

��
[X,N ]

where µ is the canonical [C,B]-action on [XC , NB] given by (3.24). By definition of

the global category Mod, t is a morphism M → [X,N ] in V which is compatible

with the respective A-actions. Thus the diagram (3.21) which it has to satisfy

corresponds under the adjunction (−⊗X) a [X,−] to

A⊗M ⊗X

µ⊗1

��

1⊗t⊗δ// A⊗ [X,N ]⊗X ⊗ C
ε⊗1⊗1 //

(∗)

..

[P (A,B), B]⊗ [X,N ]⊗X ⊗ C
1⊗h
��

[P (A,B), B]⊗ [X,N ]⊗X ⊗ P (A,B)

1⊗s
��

M ⊗X

t̄

  

[P (A,B), B]⊗ P (A,B)⊗ [X,N ]⊗X
ev⊗1
��

B ⊗ [X,N ]⊗X
1⊗ev
��

B ⊗N

µrrN
(6.25)

where t̄ : M ⊗X → N is the adjunct of t in V.

The goal is to show that the pair (6.24) is actually an element of the set

Mod(M, H̄(X,N)), which is of the general formM → f∗[X,N ] in ModV(A)

A
f−→ [C,B] in Mon(V)

for some f : A→ [C,B], so that a bijective correspondence (6.22) will be established.

For that, it is enough to prove that t coincides with anA-module mapM → h̃∗[X,N ],

since there is already a monoid arrow h̃ : A → [C,B]. So the question would be

whether t satisfies the commutativity of a diagram

A⊗M
1⊗t //

µ

��

A⊗ [X,N ]

��

h̃⊗1

++
[C,B]⊗ [X,N ]

µss
M

t
// [X,N ]
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which again under the adjunction (− ⊗X) a [X,−] translates, by rearranging the

terms appropriately, to the diagram

A⊗M ⊗X
1⊗t⊗δ //

µ⊗1

��

A⊗ [X,N ]⊗X ⊗ C
(∗∗)

h̃⊗1 //

--

[C,B]⊗ [X,N ]⊗X ⊗ C
1⊗s⊗1
��

[C,B]⊗ C ⊗ [X,N ]⊗X
ev⊗1⊗1
��

B ⊗ [X,N ]⊗X
1⊗ev
��

M ⊗X

t̄ ++

B ⊗N

µrrN.

(6.26)

By inspection of the commutative diagram (6.25) and this one (6.26), it suffices to

show that the parts (∗) and (∗∗) are the same for the latter to commute as well.

Since the term [X,N ] remains unchanged, this comes down to the commutativity of

[P (A,B), B]⊗ C
1⊗h // [P (A,B), B]⊗ P (A,B)

ev

**
A⊗ C

ε⊗1 55

h̃⊗1 --

B.

[C,B]⊗ C
ev

44

This is satisfied by Lemma 6.1.3, since h =
ˆ̃
h.

Thus a bijection (6.22) is established, and by standard arguments of adjunctions

via representing objects and Theorem 3.0.2, this results once again to the existence

of a parametrized adjoint Q(−,−) of Hop(−,−). �

In essence, the above proof establishes that the A-modules (εA)∗[h!X,N ] and

(h̃)∗[X,N ] are essentially the same. As objects they are both [X,N ], and their A-

actions can be verified to coincide, when we conveniently translate them under the

usual tensor-hom adjunction. If we compare this with the proof of Lemma 5.3.6,

the above fact follows from the final diagram (5.27), where the part on the right is

actually equality since we are now dealing with split fibrations and opfibrations, and

the part on the left follows from cocartesianess (on the nose) of the functor H̄ as

shown at the end of Section 6.2. However, since in the direct proof neither cocarte-

sianess nor splitness is explicitly used or mentioned, Lemma 6.1.3 incorporates the

necessary information for the proof to be completed.





CHAPTER 7

Enrichment of V-Categories and V-Modules

7.1. The bicategory of V-matrices

The bicategory of V-matrices was mentioned in Examples 2.1.2 for V = Set.

We now give a detailed description of enriched matrices and the structure of the

bicategory they form, unravelling Definition 2.1.1 in this specific case. The main

references here are [BCSW83] and [KL01]. In the former, the more general bi-

category W-Mat of matrices enriched in a bicategory W was studied, leading to

the theory of bicategory enriched categories. For the one-object case, i.e. monoidal

categories, the main results are in works of Bénabou [Bén73] and Wolff [Wol74].

Suppose that V is a cocomplete monoidal category, such that the functors A⊗−
and −⊗A preserve colimits, as is certainly the case if V is monoidal closed. For sets

X and Y , a V-matrix S : X � // Y from X to Y is a functor S : Y ×X → V given

by a family

{S(y, x)}(x,y)∈X×Y

of objects in V, where the set Y ×X is viewed as a discrete category.

The bicategory V-Mat consists of (small) sets X,Y as objects, V-matrices

S : X � // Y as 1-cells and natural transformations

Y ×X
S

**

S′

44�� σ V =: X

�S
))

�
S′

55�� σ Y

as 2-cells between V-matrices S and S′. These are given by families of arrows

σy,x : S(y, x)→ S′(y, x)

in V, for every (x, y) ∈ X × Y . Hence the hom-category for two objects X and Y is

the category

V-Mat(X,Y ) = VY×X

with (vertical) composition of 2-cells being ‘componentwise’ in V and the identity

2-cell 1S : S ⇒ S consisting of identity morphisms (1S)x′,x = 1S(x′,x) in V. The

horizontal composition

◦ : V-Mat(Y,Z)× V-Mat(X,Y )→ V-Mat(X,Z)

maps two composable V-matrices T : Y � // Z and S : X � // Y to their composite

1-cell T ◦ S : X � // Z, given by the family of objects in V

(T ◦ S)(z, x) =
∑
y∈Y

T (z, y)⊗ S(y, x) (7.1)

121
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for all z ∈ Z and x ∈ X. A pair of 2-cells (τ : T ⇒ T ′, σ : S ⇒ S′) is mapped to the

2-cell τ ∗ σ : T ◦ S ⇒ T ′ ◦ S′ with components arrows

(τ ∗ σ)z,x :
∑
y∈Y

T (z, y)⊗ S(y, x)
∑
τz,y⊗σy,x−−−−−−−−→

∑
y∈Y

T ′(z, y)⊗ S′(y, x) (7.2)

in V. For each set X, the identity 1-cell is 1X : X � // X, which is given by

1X(x′, x) =

I, if x = x′

0, otherwise

where I is the unit object in V and 0 is the initial object.

For composable V-matrices X �S // Y �T // Z �R // W, the associator α has compo-

nents invertible 2-cells

αR,T,S : (R ◦ T ) ◦ S ∼−→ R ◦ (T ◦ S)

in V-Mat, given by the family {αw,x}w,x of composite isomorphisms∑
y∈Y

( ∑
z∈Z

R(w, z)⊗ T (z, y)
)
⊗ S(y, x) //

∼=

��

∑
z∈Z

R(w, z)⊗
( ∑
y∈Y

T (z, y)⊗ S(y, x)
)

∑
y∈Y
z∈Z

(
(R(w, z)⊗ T (z, y))⊗ S(y, x)

) ∑
a
//
∑
y∈Y
z∈Z

(
R(w, z)⊗ (T (z, y)⊗ S(y, x))

)
∼=

OO

in V. The isomorphism a is the associativity constraint of V and the vertical invert-

ible arrows express the fact that ⊗ commutes with colimits. This definition clearly

makes the horizontal composition associative up to isomorphism. Finally, for each

V-matrix S : X � // Y, the unitors λ, ρ have components invertible 2-cells

λS : 1Y ◦ S
∼−−→ S, ρS : S ◦ 1X

∼−−→ S

given by families of isomorphisms

λSy,x :
∑
y′∈Y

1Y (y, y′)⊗ S(y′, x) ≡ I ⊗ S(y, x)
lS(y,x)−−−−−→ S(y, x)

ρSy,x :
∑
x′∈X

S(y, x′)⊗ 1X(x′, x) ≡ S(y, x)⊗ I
rS(y,x)−−−−−→ S(y, x)

where l and r are the right and left unit constraints of V. The respective coherence

condition is satisfied, thus these data indeed define a bicategory. Notice that only

the existence of coproducts in V is enough for the formation of V-Mat.

The hom-categories V-Mat(X,X) of this bicategory for a fixed set X will play

an important role in this chapter. The following proposition underlines some of

the properties that these categories possess, and more specifically the ones that

imply certain results with regard to categories of monoids and comonoids as seen in

Chapter 3.
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Proposition 7.1.1. Let V be a cocomplete monoidal category such that ⊗ pre-

serves colimits on both entries. The category V-Mat(X,X) for any set X

(i) is cocomplete, and has all limits that exist in V;

(ii) is a monoidal category, and ⊗ = ◦ preserves colimits on both entries;

(iii) is locally presentable when V is;

(iv) is monoidal closed when V is monoidal closed with products.

Proof. (i) Since V-Mat(X,X) = [X × X,V], all limits and colimits can be

formed pointwise from those in V.

(ii) The hom-categories K(X,X) for any bicategory K obtain a monoidal struc-

ture via the horizontal composition, as in (3.3). The unit object is the identity

V-matrix 1X , so (V-Mat(X,X), ◦, 1X) is a monoidal category.

Horizontal composition of V-matrices preserves colimits on both entries: if (Gj →
G | j ∈ J ) is a colimiting cocone for a diagram of shape J in V-Mat(X,X), this

means that for any x, y ∈ X, the arrows Gj(x, y)→ G(x, y) form colimiting cocones

in V. If we apply the functor

− ◦ S : V-Mat(X,X)→ V-Mat(X,X)

for any V-matrix S : X � // X, we obtain a collection of 2-cells (Gj ◦S → G◦S | j ∈
J ) in V-Mat. For this to be a colimit, for any x, z ∈ X the arrows∑

y∈X
Gj(x, y)⊗ S(y, z) −→

∑
y∈X

colimjGj(x, y)⊗ S(y, z)

must also form colimiting cocones in V. Since by assumptions (− ⊗ A) preserves

colimits for any A ∈ V, we have isomorphisms∑
y∈X

(colimjGj(x, y))⊗ S(y, z) ∼=
∑
y∈X

colimj(Gj(x, y)⊗ S(y, z))

∼= colimj(
∑
y∈X

Gj(x, y)⊗ S(y, z)),

thus − ◦ S is cocontinuous. Similarly, S ◦ − preserves colimits for any V-matrix,

since (A⊗−) does in V.

(iii) For each locally λ-presentable category C, it is known that the functor

category CA = [A, C] for any small category A is locally λ-presentable itself, see

[AR94, 1.54]. Hence, for the discrete small category X ×X, the functor category

VX×X is a locally presentable category.

(iv) We need to demonstrate a bijective correspondence between morphisms

S ◦ T // R in V-Mat(X,X)

S // G(T,R) in V-Mat(X,X).

(7.3)

We define the V-matrix G(T,R) from X to X to be given by the family of objects

in V
G(T,R)(x, y) :=

∏
z∈X

[T (y, z), R(x, z)]
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where [−,−] is the internal hom in V. Then, an arrow σ : S → G(T,R) in

V-Mat(X,X) is given by a family of arrows

σx,y : S(x, y)→
∏
z∈X

[T (y, z), R(x, z)]

in V, for each x, y ∈ X. Since V is monoidal closed, for any fixed z the arrow

S(x, y) → [T (y, z), R(x, z)] corresponds uniquely to S(x, y) ⊗ T (y, z) → R(x, z),

which in turn gives a unique arrow in V from the sum over all y’s in X

ρx,z :
∑
y∈X

S(x, y)⊗ T (y, z)→ R(x, z).

These arrows form a family which defines a 2-cell ρ : S ◦ T → R in V-Mat(X,X),

thus the correspondence (7.3) is now established.

Notice that this actually shows that V-Mat(X,X) is left closed, but we can

repeat the above argument using the (right) internal hom of the monoidal closed V
appropriately, and show that V-Mat(X,X) is (bi)closed. �

Recall that Proposition 3.3.5 presented some very useful properties for the cat-

egories of monoids and comonoids of admissible categories, i.e. locally presentable

symmetric monoidal categories, such that tensoring on one side preserves all filtered

colimits. However, as was also noted then, the results are still valid if we drop the

symmetry condition and ask instead that both A⊗− and −⊗A preserve (filtered)

colimits.

Corollary 7.1.2. If V is a locally presentable monoidal category, where ⊗ pre-

serves colimits in both entries, the forgetful functors

S : Mon(V-Mat(X,X))→ V-Mat(X,X)

U : Comon(V-Mat(X,X))→ V-Mat(X,X)

are monadic and comonadic respectively, and all categories are locally presentable.

The existence of the free monoid and cofree comonoid functors will be of use in

Section 7.3. As mentioned again in Chapter 3, in reality the free monoid construction

requires less assumptions than the ones above, i.e. existence of coproducts which are

preserved by the tensor product. Notice that the current setting only differs from

the general one of Section 3.3, in that the categories of monoids and comonoids of

the non-symmetric (V-Mat(X,X), ◦, 1X) cannot inherit its monoidal structure.

The bicategory V-Mat is in fact a monoidal bicategory (see [Car95]) via a

pseudofunctor

⊗ : V-Mat× V-Mat −→ V-Mat.

This maps any two sets X and Y to their cartesian product X×Y , any two matrices

{S(y, x)}y,x and {T (z, w)}z,w to the V-matrix with components

(S ⊗ T )
(
(y, z), (x,w)

)
= S(y, x)⊗ T (z, w) (7.4)

and any 2-cells to their pointwise tensor product in V. The monoidal unit is the

unit V-matrix I : 1 � // 1 where 1 = {∗} is the singleton set, with I(∗, ∗) = I. This
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monoidal structure will be discussed in detail in the next chapter (see Proposition

8.2.6).

We now proceed to the definition of a specific lax functor which will later give

rise to certain very important mappings for particular enrichment relations we want

to establish. Intuitively, there is an analogy with the internal hom functor of our

monoidal closed V in the previous chapter, which induced the mappings H and H̄

between the categories of monoids/comonoids and modules/comodules.

Suppose that V is a cocomplete symmetric monoidal closed category with prod-

ucts. If V-Matco is the bicategory of V-matrices with reversed 2-cells, define a lax

functor of bicategories

Hom : (V-Mat)co × V-Mat −→ V-Mat (7.5)

as follows:

· each pair of sets (X,Y ) is mapped to the set Hom(X,Y ) := Y X of functions

from X to Y ;

· for all pairs (X,Y ), (Z,W ) there is a functor

V-Mat(X,Z)op × V-Mat(Y,W )
Hom(X,Y ),(Z,W )

// V-Mat(Y X ,WZ)

( S , T ) � //

(σ,τ)
��

Hom(S, T )

Hom(σ,τ)
��

( S′ , T ′ ) � // Hom(S′, T ′)

(7.6)

where the V-matrix Hom(S, T ) : Y X � // WZ is given by the family

Hom(S, T )(q, k) :=
∏
z∈Z
x∈X

[S(z, x), T (qz, kx)] (7.7)

of objects in V, for all q ∈ WZ and k ∈ Y X , where [−,−] is the internal hom in V.

For σ : S′ ⇒ S and τ : T ⇒ T ′, the 2-cell

Y X

�Hom(S,T )

))

�
Hom(S′,T ′)

55�� Hom(σ,τ) WZ (7.8)

has components, for every (q, k) ∈WZ × Y X , arrows in V

Hom(σ, τ)q,k :
∏
(z,x)

[S(z, x), T (qz, kx)] −→
∏
(z,x)

[S′(z, x), T ′(qz, kx)].

For fixed z, x, these correspond under the usual tensor-hom adjunction in V to

[S(z, x), T (qz, kx)]⊗ S′(z, x) //

1⊗σz,x
��

T ′(qz, kx)

[S(z, x), T (qz, kx)]⊗ S(z, x)
evT (qz,kx)

// T (qz, kx)

τqz,kx

OO

where ev is the evaluation;
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· for all (X,Y ), (Z,W ), (U, V ), there is a natural transformation δ with compo-

nents, for (R : Z � // U, O : W � // V ) and (S : X � // Z, T : Y � // W ), 2-cells in

V-Mat

WZ
�

Hom(R,O)

((
Y X

&Hom(S,T ) //

�� δ(S,T ),(R,O)

�
Hom(R◦S,O◦T )

44 V U

(7.9)

which are given by families of arrows in V∑
q∈WZ

Hom(R,O)(t, q)⊗Hom(S, T )(q, k)
δt,k−−→

∏
(u,x)

[(R ◦ S)(u, x), (O ◦ T )(tu, kx)]

for all (t, k) ∈ V U × Y X . These again can be understood via their transposes under

the tensor-hom adjunction, i.e. composites of projections, inclusions, symmetries

and evaluations, using the fact that the tensor product preserves sums;

· for all pairs of sets (X,Y ), there is a natural transformation γ with components

Y X

�1
YX

((

�
Hom(1X ,1Y )

66�� γ(X,Y ) Y X (7.10)

which for q = k ∈ Y X and x′ = x ∈ X consist of the isomorphisms

(γ(X,Y ))q,q : I −→ [1X(x, x), 1Y (kx, kx)] = [I, I].

The coherence axioms of Definition 2.1.3 are satisfied, therefore Hom is a lax functor

of bicategories.

We now turn to some more technical points of the bicategory V-Mat. Any func-

tion f : X → Y between two sets X, Y determines two V-matrices, f∗ : X � // Y

and f∗ : Y � // X, given by

f∗(y, x) = f∗(x, y) =

I, if f(x) = y

0, otherwise
(7.11)

for any x ∈ X, y ∈ Y . It can be easily verified that there is a natural bijec-

tion between 2-cells f∗ ◦ S ⇒ T and S ⇒ f∗ ◦ T for any V-matrices S : Z � // X

and T : Z � // W, thus they form an adjunction f∗ a f∗ in the bicategory V-Mat.

The unit and counit of this adjunction are the 2-cells

X

�1X
((

�
f∗◦f∗

66�� η̌ X and Y

�f∗◦f∗
((

�
1Y

66�� ε̌ Y

with components arrows in V

ε̌y′,y : (f∗ ◦ f∗)(y′, y)→ 1Y (y′, y) ≡


∑

x∈f−1(y)

I ⊗ I rI−→ I, if y = y′

0
!−→ 0, if y 6= y′
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and

η̌x′,x : 1X(x′, x)→ (f∗ ◦ f∗)(x′, x) ≡


I

(rI)−1

−−−−→ I ⊗ I, if x′ = x

0
!−→

I ⊗ I, fx = fx′

0, else
if x′ 6= x

where ! is the unique arrow from the initial to any object. Notice that η̌ and ε̌ are

isomorphisms if and only if the function f is a bijection.

These V-matrices induced by functions between sets are of central importance

to constructions in later sections. Below we show some useful properties.

Lemma 7.1.3. Let f : X → Y and g : Y → Z be functions. There exist

isomorphisms

ζg,f : g∗ ◦ f∗ ∼= (gf)∗ : X � // Z

ξg,f : f∗ ◦ g∗ ∼= (gf)∗ : Z � // X

which are families of invertible arrows

ζg,fz,x = ξg,fx,z :

I ⊗ I
rI=lI−−−→ I, if g(f(x)) = z

0
!−→ 0, otherwise

(7.12)

for each pair of elements (x, z) ∈ X × Z.

Proof. In general, for any V-matrix S : Y � // Z, the composite 1-cell S ◦ f∗ is

computed to be the family

(S ◦ f∗)(z, x) =
∑
y∈Y

S(z, y)⊗ f∗(y, x) =
∑
y=fx

S(z, y)⊗ I = S(z, fx)⊗ I
r∼= S(z, fx)

of objects in V, for any (z, x) ∈ Z ×X. Similarly, for a V-matrix T : Z � // Y, the

composite V-matrix f∗ ◦ T is the family

(f∗ ◦ T )(x, z) =
∑
y∈Y

f∗(x, y)⊗ T (y, z) = I ⊗ T (fx, z)
l∼= T (fx, z)

of objects in V, for all (x, z) ∈ X × Z.

Using the above technique, we can explicitly write the families of objects in V
which define the V-matrices g∗ ◦ f∗ and f∗ ◦ g∗

(g∗ ◦ f∗)(z, x) = (f∗ ◦ g∗)(x, z) =

I ⊗ I, if g(f(x)) = z

0, otherwise

for any pairs of elements (x, z) ∈ X × Z. We can now provide isomorphisms

Y �
g∗

""
X

,f∗ 11

�� ζg,f

�
(gf)∗

99 Z
and

Y �
f∗

##
Z

,g
∗ 11

�� ξg,f

�
(gf)∗

88 X

which consist of families of invertible arrows in V exactly the (7.12). �
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Based on the above formulas, it is straightforward to show that ζ and ξ satisfy

the following relations, which clarify how the composition of three such matrices

works.

Lemma 7.1.4. Consider three composable functions X
f−→ Y

g−→ Z
h−→W . Then

Y
�g∗ ))

Z
	
h∗

��
X

�� ζ
g,f

6f∗ 44

+
(gf)∗

AA

�
(hgf)∗

77�� ζgf,h W =

Y

�
 ζg,h
�

(hg)∗
11

�g∗ ))
Z

	
h∗

��
X �� ζf,hg

6f∗ 44

�
(hgf)∗

77 W

and

Z
�g
∗

))
Y

	
f∗

��
W

�� ξ
g,h

5h∗ 44

+
(hg)∗

@@

�
(hgf)∗

77�� ξf,hg X =

Z

�� ξg,f

�
(gf)∗

11

�g
∗

))
Y



f∗

��
W �� ξgf,h

5h∗ 44

�
(hgf)∗

77 X.

7.2. The category of V-graphs

Graphs, with variations on their exact meaning depending on the mathematical

context they arise, have been of use for a very long time. For the needs of this

thesis, we study the case of graphs enriched in a monoidal category, in order to

better understand V-categories. In this setting, enriched categories are enriched

graphs with extra structure, and V-cocategories will also naturally fit in later.

As a primary example, in [ML98, 11.7] the notion of a small (directed) graph

consisting of a set of objects and a set of arrows was employed to describe the

free category construction, in analogy with the free monoid construction on a set.

Moreover, the idea of O-graphs with a fixed set of objects O inspires the fibrational

view of these categories, which is going to be explicitly described in the following

sections. For the main results regarding V-Grph and V-Cat from a more traditional

point of view, Wolff’s [Wol74] is a classic reference for V a symmetric monoidal

closed category, whereas for the description of V-graphs in terms of V-matrices, we

again closely follow [BCSW83, KL01].

A (small) V-graph G consists of a set of objects obG, and for every pair of objects

A,B ∈ obG an object G(A,B) ∈ V. If G and H are V-graphs, a V-graph morphism

F : G → H consists of a function f : obG → obH between their sets of objects,

together with arrows in V

FA,B : G(A,B)→ H(fA, fB) (7.13)

for each pair of objects A,B in G. These data, with appropriate compositions and

identities, form a category V-Grph.

Notably, the above definition does not require any assumptions on the monoidal

category V. However, the context of the bicategory V-Mat is very convenient for

connecting relations between the above mentioned categories to be exhibited. For
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this reason, we proceed to the presentation of equivalent characterizations in the

language of V-matrices. Inevitably, we have to impose appropriate conditions on

V as in the previous section, namely cocompleteness and ⊗ preserving colimits on

both variables.

One can easily deduce that a V-graph G as described above is an endoarrow in the

bicategory V-Mat, i.e. a set X = obG together with a V-matrix G : X � // X given

by a family of objects G(x′, x) in V, for all x′, x ∈ X. Such a V-graph will be denoted

as (G,X) or GX . Furthermore, a morphism of V-graphs between (G,X) and (H,Y )

can be viewed as a function f : X → Y between their sets of objects, equipped with

a 2-cell

X

�G
((

�
f∗◦H◦f∗

66�� φ X

in V-Mat, where f∗ and f∗ are as in (7.11). This is the case, because the composite

V-matrix

X �f∗ // Y �H // Y �f
∗
// X

is given by the family of objects, for all x′, x ∈ X,

(f∗Hf∗)(x
′, x) =

∑
y∈Y

f∗(x′, y)⊗ (Hf∗)(y, x) = I ⊗ (Hf∗)(f(x′), x)

= I ⊗
∑
y∈Y

H(f(x′), y)⊗ f∗(y, x) = I ⊗H(f(x′), f(x))⊗ I

∼= H(f(x′), f(x)).

Hence the 2-cell φ has components arrows in V

φx′,x : G(x′, x) −→ I ⊗H(fx′, fx)⊗ I ∼= H(fx′, fx)

for x′, x ∈ X. This is essentially (7.13), in the sense that the arrows Fx′,x and φx′x,

are in bijective correspondence. We write F = (φ, f) for this way of viewing V-graph

morphisms.

In fact, because of the adjunction f∗ a f∗, the ‘mates correspondence’ of Propo-

sition 2.3.7 gives a bijection between 2-cells

X �G //

_f∗
��

X

Y �
H
//

�� φ

Y,

_ f∗
OO and X �G // X

_ f∗
��

Y

_f∗

OO

�
H
//

�� ψ

Y

(7.14)

in the bicategory V-Mat. By computing as before, the composite V-matrix

Y �f
∗
// X �G // X �f∗ // Y

is the family of objects in V, for each y, y′ ∈ Y ,

(f∗Gf
∗)(y′, y) =

∑
fx′=y′
fx=y

I ⊗G(x′, x)⊗ I ∼=
∑
fx′=y′
fx=y

G(x′, x).
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So the components of ψ are the arrows in V

ψy′,y :
∑
fx′=y′
fx=y

I ⊗G(x′, x)⊗ I −→ H(y′, y)

which, for fixed x ∈ f−1(y) and x′ ∈ f−1(y′), correspond uniquely to the components

φx′,x. Hence, a V-graph arrow can equivalently be given as a pair (ψ, f) : (G,X)→
(H,Y ) where f : X → Y is a function and ψ : f∗Gf

∗ ⇒ H a 2-cell in V-Mat.

In the established terminology, the composition of two V-graph morphisms

GX
F=(φ,f)−−−−−−→ HY

K=(χ,k)−−−−−−→ JZ

is given by the function kf : X → Y → Z and the composite 2-cell

X �G //

_f∗

��
_(kf)∗

##

�	 φ

X

Y �
H

∼=∼= //

_k∗

��
�	 χ

Y

_ f∗

OO

Z �
J

// Z

_ k∗

OO
_ (kf)∗

bb

where the isomorphisms are ξf,k and ζf,k from Lemma 7.1.3. The identity arrow on

(G,X) is given by the identity function idX : X → X on the set, and the 2-cell

X �G //

_(idX)∗
��

X

X �
G
//

�� iG

X

_ (idX)∗

OO

with components arrows in V

(iG)x′,x : G(x′, x)
l−1r−1

−−−−−→ I ⊗G(x′, x)⊗ I ∼= G(x′, x),

evidently isomorphic to the identity arrows 1G(x′,x) : G(x′, x)→ G(x′, x). We write

1(G,X) = (iG, idX). Notice that in fact, the V-matrices (idX)∗, (idX)∗ are the same

as the identity 1-cell 1X : X � // X on X:

(idX)∗(x
′, x) = (idX)∗(x′, x) =

I, if x = x′

0, otherwise.
(7.15)

We can encode the above data in the following isomorphic characterization of

the category of V-graphs and V-graph morphisms.

Definition 7.2.1. The category of small V-graphs V-Grph has objects pairs

(G,X) ∈ V-Mat(X,X)×Set and arrows (in bijection with) pairs (φ, f) : (G,X)→
(H,Y ) where φ : G→ f∗Hf∗ in V-Mat(X,X)

f : X → Y in Set
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or equivalently pairs (ψ, f) whereψ : f∗Gf
∗ → H in V-Mat(Y, Y )

f : X → Y in Set.

From now on, we will use either description of V-graph morphisms according to

our needs, and the choice will be evident by the context and notation. In particular,

we will usually denote a V-graph morphism in the classic sense as Ff : GX → HY
and (φ, f) : (G,X) → (H,Y ) in the V-matrices view. There is an evident forgetful

functor Q : V-Grph → Set which sends each graph (G,X) to its set of objects X,

and each arrow (φ, f) to the function between the objects f .

We now continue with the basic properties of V-Grph. First of all, when V is

complete, it is straightforward to construct limits inside V-Grph. Indeed, a diagram

of shape J in V-Grph

D : J // V-Grph

j � //

θ
��

(Gj)Xj
(Fθ)fθ��

k � // (Gk)Xk

has as limit the graph GX constructed as follows. The set of objects is the limit X

of the composite diagram

J D−−→ V-Grph
Q−−→ Set,

thus if πj are the projections from X, we have πk = fθπj in Set for every θ. Then,

for any x, x′ ∈ X the hom-object G(x′, x) is the following limit in V:

Gj(πjx′, πjx)

(Fθ)πjx′,πjx
��

G(x′, x)
(Πj)x′,xoo

(Πk)x′,xtt
Gk(fθπjx

′, fθπjx).

The cocone
(
GX

(Πj)πj−−−−→ (Gj)Xj | j ∈ J
)

now satisfies the required universal property.

On the other hand, when V is cocomplete, the category V-Mat(X,X) for any

set X is cocomplete as well, which leads to the following construction of colimits in

V-Grph.

Proposition 7.2.2 ([KL01]). The category V-Grph is cocomplete when V is.

Proof. Suppose J is a small category and F is a diagram of shape J in V-

Grph given by

F : J // V-Grph

j //

θ
��

(Gj , Xj)

(ψθ,fθ)
��

k // (Gk, Xk).

(7.16)
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By Definition 7.2.1, fθ is a function between the sets of objects and (fθ)∗Gj(fθ)
∗ ψθ⇒

Gk is a 2-cell in V-Mat. Again, the composite

J F−−→ V-Grph
Q−−→ Set

has a colimiting cocone (τj : Xj → X | j ∈ J ) in the cocomplete Set. Notice that,

since τj = fθτk for any fθ : Xj → Xk, we have isomorphisms of V-matrices

Xj
�(τj)∗

ζ∼=

//

�
(fθ)∗   

X,

Xk

=
(τk)∗

>>
X �(τj)

∗

ξ∼=

//

�
(τk)∗   

Xj

Xk

<
(fθ)∗

>>

where ζ and ξ are defined as in Lemma 7.12. Now consider the functor

K : J // V-Mat(X,X)

j � //

θ
��

(τj)∗Gj(τj)
∗∼=(τk)∗(fθ)∗Gj(fθ)

∗(τk)
∗

(τk)∗ψθ(τk)∗
��

k // (τk)∗Gk(τk)
∗

(7.17)

which explicitly maps an arrow θ : j → k in J to the composite 2-cell

X

�
(τk)∗ //

ξ∼=

�(τj)
∗

// Xj
�Gj // Xj

_ (fθ)∗

��

�(τj)∗ // X.

ζ∼=

Xk

_(fθ)∗

OO

�
Gk

//

�� ψθ

Xk

3
(τk)∗

GG (7.18)

The colimit of K is formed pointwise in V-Mat(X,X) = [X ×X,V], so there is a

colimiting cocone (λj : (τj)∗Gj(τj)
∗ → G | j ∈ J ). These data allow us to form a

new cocone (
(Gj , Xj)

(λj ,τj)−−−−→ (G,X) | j ∈ J
)

for the initial diagram F in V-Grph, since (G,X) is an endoarrow in V-Mat by

construction, and also the pairs (λj , τj) commute accordingly with the (ψθ, fθ)’s.

This cocone which can be checked to be colimiting, since τj and λj are. Therefore

(G,X) satisfies the universal property of a colimit of F in V-Grph. �

The above construction is presented in [BCSW83], again in the more general

case of enrichment in a bicategory. The existence of all colimits in V-Grph was also

shown in [Wol74] via the explicit construction of coproducts and coqualizers.

The category V-Grph has a monoidal structure inherited from V: given two

V-graphs GX and HY , their tensor product G ⊗H is defined to be the V-graph with

set of objects X × Y and hom-objects

(G ⊗H)((z, w), (x, y)) := G(z, x)⊗H(w, y).

Of course, this comes from the monoidal structure of the bicategory V-Mat as in

(7.4). Similarly, we can define the tensor product of two V-graph morphisms: given
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V-graph arrows Ff : GX → HY , Dd : G′X′ → H′Y ′ , their tensor product

F ⊗D : G ⊗H → G′ ⊗H′

is given by the function f × d : X × Y → X ′ × Y ′ between their sets of objects, and

for every x, z ∈ X, y, w ∈ Y , arrows

(F ⊗D)(z,w),(x,y) : G(z, x)⊗H(w, y)
Fz,x⊗Dw,y−−−−−−−→ G(fz, fx)⊗H(dw, dy)

in V. The monoidal unit is the unit V-graph I with one object, and hom-object

I(∗, ∗) = I. Also, symmetry is also evidently inherited from V.

Furthermore, the category of V-graphs is a monoidal closed category if we assume

certain extra conditions on V.

Proposition 7.2.3. Suppose V is a monoidal closed category with small prod-

ucts. The functor

gHom : V-Grphop × V-Grph→ V-Grph

which maps a pair (GX , HY ) to the V-graph gHom(G,H)Y X with

gHom(G,H)(k, s) :=
∏
x′∈X
x∈X

[G(x′, x),H(kx′, sx)]

for k, s ∈ Y X is the internal hom of V-Grph.

Proof. In order to establish an adjunction (− ⊗HY ) a gHom(HY ,−) for any

V-graph HY , take a V-graph morphism Ff : GX → gHom(HY ,JZ). This consists of

a function f : X → ZY between the sets of objects, and arrows

Fx′,x : G(x′, x)→
∏

y,y′∈Y
[(H(y′, y),J (fx′y

′, fxy))

in V between the hom-objects, where fx = f(x) : Y → Z, for all x, x′ ∈ X. These

arrows correspond bijectively, under the tensor-hom adjunction in V for a fixed pair

of elements (y, y′) ∈ Y , to

G(x′, x)⊗H(y′, y)→ J (fx′y
′, fxy)

since V is monoidal closed. The category Set is cartesian closed, thus the function

f corresponds uniquely to a function f̄ : X × Y → Z. This function together with

the arrows above written as

F̄(x′,y′),(x,y) : G(x′, x)⊗H(y′, y)→ J
(
f̄(x′, y′), f̄(x, y)

)
determines a V-graph morphism F̄f̄ : GX ⊗HY → JZ which establishes a bijective

correspondence

V-Grph(GX ⊗HY ,JZ) ∼= V-Grph(GX , gHom(HY ,JZ)).

Moreover, this bijection is natural in GX , hence gHom(H,J ) is the object function

of a right adjoint functor gHom(H,−) of (−⊗H). Hence the induced functor of two

variables gHom is the parametrized adjoint of ⊗.
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Explicitly, gHom on a pair of V-arrows (Ff : JZ → GX , Dd : HY →MW ) gives

a V-graph morphism

gHom(F,D) : gHom(G,H)Y X −→ gHom(J ,M)WZ . (7.19)

This consists of the function ‘pre-composing with f and post-composing with d’

df : Y X →WZ between the sets of objects, and for each pair (k, s) ∈ Y X an arrow

gHom(F,D)k,s : gHom(G,H)(k, s) −→ gHom(J ,M)(df (k), df (s)) ≡∏
x,x′∈X

[G(x′, x), H(kx′, sx)]→
∏

z,z′∈Z
[J(z′, z),M(dkfz′, dsfz)].

For fixed z, z′ ∈ Z, the latter corresponds uniquely under the usual tensor-hom

adjunction to the composite∏
x,x′∈X

[G(x′, x),H(kx′, sx)]⊗ J (z′, z) //

1⊗Fz,z′
��

M(dkfz′, dsfz).

∏
x,x′∈X

[G(x′, x),H(kx′, sx)]⊗ G(fz′, fz)

πfz′,fz⊗1

��
[G(fz′, fz),H(kfz′, sfz)]⊗ G(fz′, fz)

ev // H(kfz′, sfz)

Dkfz′,sfz

OO

�

In the above proof, there was no need to move to the world of V-matrices. If

we did, however, it would be clear that the mapping of the functor gHom on two

objects (G,X) and (H,Y ) is in fact the mapping of the functor Hom(X,Y ),(X,Y ) (7.6)

provided by the lax functor of bicategories Hom : (V-Mat)co × V-Mat → V-Mat

defined explicitly in the previous section. For the mapping on morphisms though,

the definition of Hom(σ, τ) as in (7.8) is not sufficient, because the morphisms in

V-Grph are not just between endoarrows in V-Mat with the same set of objects.

Hence, in terms of V-matrices, for F = (φ, f) and D = (χ, d) as in Definition 7.2.1,

the V-graph arrow gHom((φ, f), (χ, d)) is the pair ([[φ, χ]], df ) where

Y X �Hom(G,H)
//

_(df )∗

��

�� [[φ,χ]]

Y X

WZ �
Hom(J,M)

// WZ

_ (df )∗

OO (7.20)

has components isomorphic to gHom(Ff , Dd)k,s up to tensoring with I’s on both

sides of the codomain product.

Another important property of V-Grph is the fact that it inherits local pre-

sentability from V. The detailed arguments and constructions for this result can be

found in [KL01].
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Proposition 7.2.4. [KL01, 4.4] The category V-Grph is locally λ-presentable

when V is so.

Proof. (Sketch) Suppose V is a locally λ-presentable category. Then, if the set

G of objects constitutes a strong generator of V, it can be shown that the set

{(Ḡ, 2) / G ∈ G or G = 0}

constitutes a strong generator of V-Grph, where the graph (Ḡ, 2) has as set of

objects 2 = {0, 1} and consists of the objects

Ḡ(0, 0) = G, Ḡ(0, 1) = Ḡ(1, 0) = Ḡ(1, 1) = 0

in V. Also, this set is λ-presentable, in the sense that the hom-functors

V-Grph((Ḡ, 2),−) : V-Grph→ Set

preserve λ-filtered colimits. �

7.3. V-categories and V-cocategories

In Chapter 4, we recalled what it means for a category A to be V-enriched for

a monoidal category V. In this section, we are going to re-define V-categories from

a slightly different perspective, in the context of V-matrices. This is of importance

because it allows us, just by dualizing certain arguments, to later construct the

category of V-cocategories in a natural way. Evidently, the motivation for this is

that enriched categories and cocategories generalize monoids and comonoids in a

monoidal category, since for example it is well-known that a one-object V-category

is precisely an object in Mon(V).

Notice that strictly speaking, composition in the bicategory V-Mat (7.1) results

in the opposite convention (7.21) to that preferred by Kelly (4.1) for the composition

law in an enriched category. Similar issues arise regarding V-modules later. There

seems to be no consistent practice in these matters.

Following once again the approach of [BCSW83], a V-category is defined to be

a monad in the bicategory V-Mat. Unravelling Definition 2.2.1, it consists of a set

X together with an endoarrow A : X � // X, i.e. it is a V-graph with set of objects

obA = X, equipped with two 2-cells, the multiplication and the unit

X
�
A

''
X

.A 77

�
A

22�� M X and X �� η

�1X
((

�
A

66 X

satisfying the following axioms:

X �A // X
	
A

��
X

5A
44

*
A

;;

�
A

55

��M
��M

X = �
 M

X �A //

�
A //
�
 M

X
	
A

��
X

6A
55

�
A

55 X,
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X
�
A

  
X

��M
��
η

01X 00

2
A

DD

�
A

44 X = X �� 1A

�A
&&

�
A

88 X = �� M

X
�
1X

��

A --
�	 η

X

2A
44

�
A

44 X.

Notice that in the above diagrams, the associator and the unitors of the bicategory

V-Mat which are essential for the domains and codomains of the equal 2-cells to

coincide, are suppressed. In terms of components, they are given by

Mz,y,x :
∑
y∈X

A(z, y)⊗A(y, x) −→ A(z, y) (7.21)

ηx : I −→ A(x, x)

which are the usual composition law and identity elements. If we also express the

above relations that M and η have to satisfy in terms of components of the 2-cells

involved, we re-obtain the associativity and unit axioms of an enriched category.

Also by Remark 3.3.1, a monad in a bicategory is the same as a monoid in the

appropriate endoarrow hom-category, i.e. a V-category A with set of objects X is

a monoid in the monoidal category (V-Mat(X,X),◦,1X). Denote a V-category as a

pair (A,X) or AX .

A V-functor F : A → B between two V-categories AX and BY was again defined

in Section 4.1, and in fact is a V-graph morphism Ff : AX → BY (in the classic

sense) which respects the composition law and the identities. In the current context

of V-matrices, a V-functor can be defined to be a morphism of V-graphs (φ, f) :

(A,X)→ (B, Y ) as in Definition 7.2.1, which satisfies

X �A //

_f∗

��
|� φ̂

X �A //

_ f∗

��
|� φ̂

X

_ f∗

��
Y �

B
//

�
B

>>
�� M

Y �
B

// Y

=

X
	
A

��
X

_f∗
��

5A
55

�
A

//
�� M

�� φ̂

X

_ f∗
��

Y �
B

// Y,

(7.22)

X

�1X

##�� η�
A

//

_f∗

��

X

_ f∗

��
Y �

B
//

�� φ̂

Y

= X �1X //

_f∗ ∼=

��

�
f∗

''

X

_ f∗∼=

��
Y �1Y //

�
B

;;
�� η

Y.

Here, the 2-cell φ̂ : f∗A⇒ Bf∗ corresponds bijectively to φ via mates correspondence

‘on the one side’, i.e. by pasting the counit ε̌ of f∗ a f∗ on the right. This description

agrees with the standard V-functor definition up to isomorphism again: the 2-cell φ̄
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has components

φ̄y,x : I ⊗A(x′, x)→ B(fx′, fx)⊗ I

for x′ ∈ f -1y, and the equality of the above pasted diagrams agrees with the commu-

tative diagrams (4.3) up to tensoring the objects with I’s and composing the arrows

with the left and right unit constraints of V.

Remark 7.3.1. The pair (f∗, φ̂) is a special case of ‘colax monad functor’ between

the monads (A,X) and (B, Y ) in the bicategory V-Mat, as in Definition 2.2.7.

However, it is not true that any colax monad functor given by the data

X �A //

_S

��
�� χ

X

_ S

��
Y �

B
// Y

for some V-matrix S can be seen as a V-functor, since it is obviously not true that

any S : X � // Y is of the form f∗ for some function f : X → Y . This explains why

the category V-Cat cannot be characterized as Mnd(V-Mat), even if they have the

same objects. Similar issues were discussed in a bigger depth in [GS13], employing

the theory of proarrow equipments.

There is a 2-dimensional aspect for all the basic categories we study in this chap-

ter, including V-Cat. However, we choose to omit its description in this treatment,

because it is not of central importance for our main results. More specifically, for

the enrichment relations and the fibrational structures we explore, the 2-categorical

structure of those categories is unnecessary.

Since a V-category with set of objects X can be seen as a monoid in the

monoidal category V-Mat(X,X), a similar characterization for V-functors could

be attempted, in order to obtain a result analogous to Definition 7.2.1 for V-Grph.

The following is indicative of how to proceed.

Lemma 7.3.2. Let (B, Y ) be a V-category. If f : X → Y is any function, the

composite V-matrix

X �f∗ // Y �B // Y �f
∗
// X

is a monoid in V-Mat(X,X), i.e. the pair (f∗Bf∗, X) constitutes a V-category.

Proof. The multiplication M ′ : f∗Bf∗f
∗Bf∗ → f∗Bf∗ is given by the compos-

ite 2-cell

X �
f∗

""
Y

+f
∗ 00

�
1Y

77�� ε̌ Y �
B

""
X �f∗ // Y

B 00

�
B

88

�� M

Y �f
∗
// X
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and the unit η′ : 1X → f∗Bf∗ is given by the composite 2-cell

X

�1X

))



f∗ &&

X

Y

�1Y
&&

�
B

88��
η

�� η̌

Y,

1
f∗

88

where ε̌ and η̌ are the counit and unit of the adjunction f∗ a f∗ in V-Mat, and

M and η the structure maps of the monoid B. Using pasting operations, the new

multiplication and unit can be expressed as

M ′ = f∗
(
M · (Bε̌B)

)
f∗,

η′ = (f∗ηf∗) · η̌.

The associativity and unit axioms follow from the ones for the multiplication and

unit of the monoid B : Y � // Y and the triangular identities for η̌ and ε̌. �

It is not hard to see that the diagrams (7.22) which a V-functor F = (φ, f) :

(A,X) → (B, Y ) has to satisfy, coincide with the ones that an arrow in Mon(V-

Mat(X,X)) between the monoids A and f∗Bf∗ has to satisfy. For example, asso-

ciativity can be written, using mates correspondence, as

X �A //

_f∗

��
�� φ

X

�
f∗

��

�A //

�� φ

X

�
f∗

��
Y �

B
//

�
B

::Y

_ f∗

OO

�� M

�
1Y

//
�� ε̌

Y �
B
// Y

_ f∗

OO

�
1Y

//
�� ε̌

Y

=

X
�
A

��
X

_f∗
��

8A
66

�
A

//
�� M

�� φ

X
�
f∗

��
Y �

B
// Y

_ f∗
OO

�
1Y

//��
ε̌

Y

which implies the commutativity of the first diagram in (3.14) for a monoid mor-

phism, taking into account the form of multiplication M ′ of f∗Bf∗. Therefore, the

following characterization of the category of V-categories is established.

Lemma 7.3.3. The objects of V-Cat are pairs

(A,X) ∈Mon(V-Mat(X,X))× Set

and morphisms are pairs (φ, f) : (A,X)→ (B, Y ) whereφ : A→ f∗Bf∗ in Mon(V-Mat(X,X))

f : X → Y in Set.

As in the case of V-Grph in the previous section, the category V-Cat as pre-

sented in Chapter 4 is in fact isomorphic with the category described above, in the

sense that there is a bijection between objects (i.e. the identity) and a bijection

between arrows of these categories.

We already saw how V-Cat inherits a (symmetric) monoidal structure from V.

The tensor product of the V-categories AX and BY is defined to be the V-graph
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(A⊗B)X×Y , given by the family of objects {A(z, x)⊗B(w, y)} in V for all x, z ∈ X
and y, w ∈ Y , with composition law and identities as given in Section 4.1.

Similarly to the free monoid construction on an object in a monoidal category V,

briefly discussed in Section 3.3, we now proceed to the description of an endofunctor

on V-Grph inducing the ‘free V-category’ monad. The following proof can also be

found in [BCSW83, KL01].

Proposition 7.3.4. Let V be a monoidal category with coproducts, such that ⊗
preserves them on both sides. The functor

S̃ : V-Cat→ V-Grph

which forgets composition and identities has a left adjoint L̃, which maps a V-

graph G : X � // X to the geometric series∑
n∈N

G⊗n : X � // X.

Proof. Recall that by Proposition 7.1.1, V-Mat(X,X) admits the same class

of colimits as V, and also ⊗ = ◦ preserves colimits on both sides. Hence, the forgetful

functor S from its category of monoids has a left adjoint, namely the ‘free monoid’

functor, as in Proposition 3.3.4:

L : V-Mat(X,X) // Mon(V-Mat(X,X))

G � //
∑

n∈NG
n.

By Lemma 7.3.3, we deduce that this geometric series is in fact a V-category with

set of objects X. We now claim that the mapping

L̃ : V-Grph // V-Cat

(G,X) � // (LG,X)

(7.23)

induces a left adjoint of the forgetful functor S̃. For that, it is enough to show that

the V-graph morphism η̃ : (G,X) → S̃L̃(G,X) which is the identity function on

objects and the injection 2-cell of the summand G into the series, has the following

universal property: if (B, Y ) is a V-category and F is a V-graph arrow from (G,X) to

its underlying V-graph S̃(B, Y ), then there exists a unique V-functor H : (LG,X)→
(B, Y ) such that the diagram

(G,X)
η̃

//

F &&

S̃(
∑
n∈N

Gn, X)

S̃H
ww

S̃(B, Y )

(7.24)

commutes.

By Definition 7.2.1, a V-graph functor F can be seen as a pair (φ, f) where

φ : G→ f∗Bf∗ is an arrow in V-Mat(X,X), and furthermore Lemma 7.3.2 ensures

that f∗Bf∗ obtains a monoid structure. Since LG is the free monoid on the object

G of V-Mat(X,X), φ extends uniquely to a monoid morphism χ : LG → f∗Bf∗
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such that the diagram

G
η

//

φ %%

∑
n∈N

Gn

Sχww
f∗Bf∗

commutes in the category V-Mat(X,X), where η and S are respectively the unit

and forgetful functor of the ‘free monoid’ adjunction L a S.

By Lemma 7.3.3, this 2-cell χ :
∑

n∈NG
n ⇒ f∗Bf∗ in V-Mat, together with

the function f , determine a V-functor H = (χ, f) : (LG,X)→ (B, Y ) satisfying the

universal property (7.24). These data are sufficient to define an adjoint functor L̃

with object function (7.23), thus the ‘free V-category’ adjunction

V-Grph
L̃

⊥
// V-Cat

S̃

oo

is established. �

The above result was also given earlier in [Wol74, Proposition 2.2] but construc-

tively, in the sense that the explicit description of the free V-category along with its

composition and identities is provided, and the universal property is shown with-

out the use of V-matrices. As a result, in that plain context, just the existence of

coproducts in V suffices to establish the free V-category adjunction, without requir-

ing ⊗ to preserve them. Also, as proved in detail in [Wol74] and later generalized

in [BCSW83] for categories enriched in bicategories, V-Cat has and the forgetful

functor S̃ reflects split coequalizers when V is cocomplete. By Beck’s monadicity

theorem, since S̃ also reflects isomorphisms, we have the following well-known result.

Proposition 7.3.5. If V is a cocomplete monoidal category (such that ⊗ pre-

serves colimits on both variables), the forgetful S̃ : V-Cat→ V-Grph is monadic.

Consequently, the category V-Cat is isomorphic to the category of S̃L̃-algebras

on V-Grph. As mentioned earlier, V-Grph is complete when V is, thus

Corollary 7.3.6. The category V-Cat is complete when V is.

The fact that V-Cat also has all colimits follows from a result by Linton in

[Lin69], which states that if the category of algebras for a monad has coequalizers

of reflexive pairs and A has all small coproducts, then AT has all small colimits. By

Proposition 7.2.2 V-Grph admits all colimits if V does, hence the following is true.

Corollary 7.3.7. The category V-Cat is cocomplete when V is.

Finally, V-Cat also inherits local presentability from V-Grph. As shown in

[KL01], the monad S̃L̃ is finitary. Thus by a result of Gabriel and Ulmer [GU71,

Satz 10.3] which states that if A is locally presentable, then AT for a finitary monad

is locally presentable, we obtain the following result.

Theorem. [KL01, 4.5] If V is a monoidal closed category whose underlying

ordinary category is locally λ-presentable, then V-Cat is also λ-presentable.
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We can now turn to the ‘dualization’ of the concept of a V-category in the context

of the bicategory V-Mat. Henceforth V is a monoidal category with coproducts,

such that the tensor product ⊗ preserves them on both entries. The definition

below follows Definition 2.2.5.

Definition 7.3.8. A (small) V-cocategory C is a comonad in the bicategory V-

Mat. Thus it consists of a set X with an endoarrow C : X � // X, i.e. a V-graph

with set of objects obC = X, equipped with two 2-cells, the comultiplication and

the counit

X
�

C ''

�C

''
�� ∆ X

X

.
C

77 and X �� ε

�C
((

�
1X

66 X

satisfying the following axioms:

X

�
C **

�
C

��

�C

''

�� ∆
�� ∆

X

X �
C
// X

6
C

CC = X

�
C ))

�C

''
X

��∆

X �
C
//

*C --

��∆

X,

7
C

CC

X
�� ∆

�
 ε



1X ..

�
C

��

�C

&&
X

X

1
C

?? = X �� 1C�
C

88

�C
&&
X = X



C ++

�C

&&
X

��∆

X.
1
1X

CC
0C --

��
ε

In terms of components, the cocomposition of a V-cocategory C is given by

∆x,z : C(x, z)→
∑
y∈X
C(x, y)⊗ C(y, x)

for any two objects x, z ∈ X, and the coidentity elements are given by

εx,y : C(x, y)→ 1X(x, y) ≡

C(x, x)
εx,x−−→ I, if x = y

C(x, y)
εx,y−−→ 0, if x 6= y

for all objects x ∈ X. The commutative diagrams expressing the coassociativity and

counit axioms are

C(x,w)

∆

xx

∆

&&∑
z
C(x, z)⊗ C(z, w)

∑
z

∆⊗1

��

∑
y
C(x, y)⊗ C(y, w)

∑
y

1⊗∆

��∑
z

(
∑
y
C(x, y)⊗ C(y, z))⊗ C(z, w)

α

∼= //
∑
y
C(x, y)⊗ (

∑
z
C(y, z)⊗ C(y, w))
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∑
z
C(x, z)⊗ C(z, y)

∑
z
ε⊗1

��

C(x, y)

ρ-1

))
λ-1

uu

∆oo ∆ //
∑
z
C(x, z)⊗ C(z, y)

∑
z

1⊗ε
��

I ⊗ C(x, y) C(x, y)⊗ I
where α is the associator and λ, ρ are the unitors of V-Mat. The vertical arrows of

the latter diagram are explicitely the unique morphisms making the left and right

parts of the diagram commute: ∑
z
C(x, z)⊗ C(z, y)

∑
z
εx,z⊗1

��

∑
z

1⊗εz,y

��

C(x, x)⊗ C(x, y)

% �
i 33

εx,x⊗1 ++

C(x, y)⊗ C(y, y)
9 Y

ikk

1⊗εy,yss
I ⊗ C(x, y) C(x, y)⊗ I.

As for comonads in any bicategory, a V-cocategory C with obC = X is the same

as a comonoid in the monoidal category (V-Mat(X,X), ◦, 1X). Thus a one-object V-

cocategory is the same as a comonoid in the monoidal category V. We denote such

a V-cocategory as CX or (C,X). Analogously to V-graphs and V-categories, the

notation (C,X) is preferred for the V-matrices context, whereas CX for the dual to

the ‘classic presentation’ which basically corresponds to the componentwise version.

The latter can evidently be expressed without the explicit use of V-matrices.

The next step is to define the appropriate morphisms between V-cocategories.

For V-graph arrows and V-functors, morphisms F were initially defined in the stan-

dard way, i.e. consisting of certain arrows in V as in (7.13) and (4.2). Then, using

the formulation in terms of V-matrices, F was expressed as a pair (φ, f), where

φ is a 2-cell in V-Mat with components isomorphic arrows to the previous ones.

This led to the characterization of Definition 7.2.1 for V-Grph, and allowed the

V-functor axioms to be written in a colax monad functor style which resulted in

characterization of Lemma 7.3.3 for V-Cat. We similarly proceed for arrows for

V-cocategories.

Definition 7.3.9. A V-cofunctor Ff : CX → DY between two V-cocategories is

a morphism of V-graphs, consisting of a function f : X → Y between their sets of

objects and arrows in V
Fx,z : C(x, z)→ D(fx, fz) (7.25)

for any two objects x, z ∈ obC, which satisfy the commutativity of

C(x, z)
∆C
x,z //

Fx,z

��

∑
y∈X
C(x, y)⊗ C(y, z)

��

∑
y
Fx,y⊗Fy,z

''∑
fy∈Y

D(fx, fy)⊗D(fy, fz)

ww

ιrrD(fx, fz)
∆D
fx,fz

//
∑
w∈Y
D(fx,w)⊗D(w, fz)

(7.26)
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and C(x, x)
εCx,x //

Fx,x
��

I

D(fx, fx).

εDfx,fx

66

The above commutative diagrams express the compatibility with cocomposition

and coidentities. Equivalently, we can view a V-functor as a pair (φ, f) : (C,X) →
(D,Y ) between two comonads in V-Mat, with f : X → Y a function and φ a 2-cell

C ⇒ f∗Df∗ which satisfies the equalities

X �C //

_f∗

��

�� ∆

|� φ̂

�C

!!
X �C //

_ f∗

��
|� φ̂

X

_ f∗

��
Y �

D
// Y �

D
// Y

=

X

_f∗
��

�C //

�� φ̂

X

_ f∗
��

Y

�� ∆	
D ))

�
D

// Y

Y

5
D

BB

(7.27)

X
�� ε

�C

""
�

1X

//

_f∗ ∼=
��

�
f∗

''

X

_ f∗∼=
��

Y �
1Y

// Y

= X �C //

_f∗

��

X

_ f∗
��

Y

�
1Y

==
�� ε

�D //

�� φ̂

Y

for φ̂ : f∗C ⇒ Df∗ the mate of φ ‘on the one side’. These two ways of defining a

V-cofunctor are equivalent in the sense that there is a bijection between them. The

components of φ̂ are given by∑
x′∈f -1y

I ⊗ C(x′, x)→ D(fx′, fx)⊗ I

which for fixed x′ are in bijection to (7.25). The equalities (7.27) written in terms of

components then agree with the commutativity of (7.26) up to appropriate tensoring

with I.

It is not hard to see that V-cofunctors compose, also by viewing them as spe-

cific types of lax comonad functors dually to Remark 7.3.1. Therefore we obtain a

category V-Cocat of V-cocategories and V-cofunctors.

Dually to Lemma 7.3.2, we have the following.

Lemma 7.3.10. Let (C,X) be a V-cocategory. If f : X → Y is a function, then

the composite V-matrix

Y �f
∗
// X �C // X �f∗ // Y
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is a comonoid in V-Mat(Y, Y ), which implies that (f∗Cf
∗, Y ) is also a V-cocategory.

Proof. The comultiplication ∆′ : f∗Cf
∗ → f∗Cf

∗f∗Cf
∗ and the counit ε′ :

f∗Cf
∗ → 1X are given by the composites

Y �f
∗
// X

�C

&&

�
C
..

�� ∆

X �f∗ // Y

X

�
f∗

..

�1X

''
�� η̌ X

,C
<<

Y
,
f∗

<<

X �
1X

88

�C
&&

�� ε

�� ε̌

X
�
f∗

%%
Y

�
1Y

55

2f∗ 99

Y,

where ε̌ and η̌ are the counit and unit of the adjunction f∗ a f∗ in V-Mat and ∆

and ε the comonoid structure maps of C. In terms of pasting oparation, the new

comultiplication and counit can be written as

∆′ = f∗
(
(Cη̌C) ·∆

)
f∗,

ε′ = ε̌ · (f∗εf∗).

The coassociativity and counit axioms follow immediately from the axioms of the

comonoid C : X � // X and the the triangular identities for ε̌ and η̌. �

Once again, it can be deduced that the diagrams (7.27) a V-cofunctor F :

(C,X) → (D,Y ) has to satisfy coincide with the ones for a comonoid arrow be-

tween f∗Cf
∗ and D. The following characterization is now established.

Lemma 7.3.11. Objects in V-Cocat are pairs

(C,X) ∈ Comon(V-Mat(X,X))× Set

and morphisms are pairs (ψ, f) : (C,X)→ (D,Y ) whereψ : f∗Cf
∗ → D in Comon(V-Mat(Y, Y ))

f : X → Y in Set.

Notice how, out of the two equivalent formulations for V-graph morphisms of

Definition 7.2.1, V-functors are expressed via pairs (φ, f) and V-cofunctors are ex-

pressed via pairs (ψ, f), where the 2-cells φ : G ⇒ f∗Hf∗ and ψ : f∗Gf
∗ ⇒ H are

mates in V-Mat.

The category V-Cocat obtains a monoidal structure when V is symmetric mo-

noidal. For two V-cocategories CX and DY , C⊗D is their tensor product as V-graphs,

i.e. has as set of objects the cartesian product X × Y and consists of the family of

objects in V
(C ⊗ D)

(
(z, w), (x, y)

)
= C(z, x)⊗D(w, y).
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The cocomposition law is given by the composite

C(z, x)⊗D(w, y) //

∆C
z,x⊗∆D

w,y

))

∑
(x′,y′)

C(z, x′)⊗D(w, y′)⊗ C(x′, x)⊗D(y′, y)

∑
(x′,y′)

C(z, x′)⊗ C(x′, x)⊗D(w, y′)⊗D(y′, y)

s
OO

∑
x′
C(z, x′)⊗ C(x′, x)⊗

∑
y′
D(w, y′)⊗D(y′, y)

∼=
OO

and the coidentity element is

C(x, x)⊗D(y, y)
εCx,x⊗εDy,y−−−−−−→ I ⊗ I ∼= I.

The unit for this tensor product is the unit V-graph I with obvious cocomposition

and coidentities. Similarly we can define the tensor product of two V-cofunctors

between V-cocategories, and also symmetry is inherited, hence (V-Cocat,⊗, I) is a

symmetric monoidal category.

Dually to Proposition 7.3.4, we now construct the ‘cofree V-cocategory’ functor

using the cofree comonoid construction. As discussed in Section 3.3, the existence of

the cofree comonoid usually requires more assumptions on V than the free monoid,

and the following is no exception.

Proposition 7.3.12. Suppose V is a locally presentable monoidal category, such

that ⊗ preserves colimits in both variables. Then, the evident forgetful functor

Ũ : V-Cocat −→ V-Grph

has a right adjoint R̃, which maps a V-graph (G, Y ) to the cofree comonoid (RG, Y )

on G ∈ V-Mat(Y, Y ).

Proof. The forgetful functor Ũ maps any V-cocategory (C,X) to the ‘under-

lying’ V-graph (UC,X), where U is the forgetful functor from the category of

comonoids of the monoidal category (V-Mat(Y, Y ), ◦, 1Y ). By Corollary 7.1.2, U

has a right adjoint

R : V-Mat(Y, Y ) −→ Comon(V-Mat(Y, Y ))

namely the cofree comonoid functor. By Lemma 7.3.11, the pair (RG, Y ) where RG

is the cofree comonoid on an endoarrow G : Y � // Y is in fact a V-cocategory with

set of objects Y . We claim that the mapping

R̃ : V-Grph // V-Cocat

(G, Y ) � // (RG, Y )

(7.28)

gives rise to a right adjoint of the forgetful Ũ . It is enough to show that for ε the

counit of the cofree comonoid adjunction U a R, the V-graph arrow ε̃ = (ε, idY ) :

Ũ R̃(G, Y )→ (G, Y ) is universal. This means that for any V-cocategory CX and any

V-graph morphism F from its underlying V-graph Ũ(C,X) to (G, Y ), there exists a
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unique V-cofunctor H : (C,X)→ (RG, Y ) such that the diagram

Ũ(RG, Y )
ε̃ // (G, Y )

Ũ(C,X)

ŨH

ee

F

::
(7.29)

commutes.

The V-graph arrow F can be seen as a pair (ψ, f) where f : X → Y is the

function on objects and ψ : f∗Cf
∗ → G is an arrow in V-Mat(Y, Y ). However, by

Lemma 7.3.10 the composite f∗Cf
∗ is an object of Comon(V-Mat(Y, Y )), since C

is a comonoid itself. Due to RG being the cofree comonoid on G, this ψ extends

uniquely to a comonoid arrow χ : f∗Cf
∗ → RG such that the diagram

RG
ε // G

f∗Cf
∗

ψ

<<

Uχ

cc

commutes in V-Mat(Y, Y ). Then, by Lemma 7.3.11 this 2-cell χ in Comon(V-

Mat(Y, Y )) along with the function f : X → Y determines a V-cofunctor H :

(C,X)→ (RG, Y ), which satisfies the commutativity of (7.29). Therefore R̃ extends

to a functor with mapping on objects as in (7.28), which establishes the ‘cofree V-

cocategory’ adjunction Ũ a R̃ : V-Grph→ V-Cocat. �

At this point, properties of V-Cocat cease to be straightforward dualizations of

the ones of V-Cat. As an example, in order to deduce results such as comonadicity

of V-Cocat over V-Grph, we will later show that V-Cocat is locally presentable via

a different method, under the conditions for the existence of the cofree V-cocategory

functor R̃.

We close this section by the construction of colimits in V-Cocat. In fact, this

follows from the construction of colimits in V-Grph in Proposition 7.2.2, with an

induced extra structure on the colimiting cocone which amounts to a colimit of

V-cocategories.

Proposition 7.3.13. Suppose that V is a locally presentable monoidal category,

such that ⊗ preserves colimits in both variables. The category V-Cocat has all small

colimits.

Proof. Consider a diagram in V-Cocat given by

D : J // V-Cocat

j � //

θ
��

(Cj , Xj)

(ψθ,fθ)
��

k � // (Ck, Xk)
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for a small category J . By Lemma 7.3.11, fθ : Xj → Xk is a function and ψθ is an

arrow (fθ)∗Cj(fθ)
∗ → Ck in Comon(V-Mat(Xk, Xk)), i.e. a 2-cell in V-Mat

Xj
�Cj // Xj

_ (fθ)∗
��

Xk

_(fθ)∗

OO

�
Ck

//

�� ψθ

Xk

satisfying the usual comonoid morphism properties. We can first construct the

colimit of the underlying V-graphs of this diagram as in Proposition 7.2.2. We then

obtain a colimiting cocone(
(Cj , Xj)

(λj ,τj )
−−−−−→ (C,X) | j ∈ J

)
(7.30)

in V-Grph, where (τj : Xj → X | j ∈ J ) is the colimit of the sets of objects of the

V-cocategories in Set, and (λj : (τj)∗Cj(τj)
∗ → C | j ∈ J ) is the colimiting cocone

of the diagram K as in (7.17) in the cocomplete V-Mat(X,X).

Notice that K : J → V-Mat(X,X) in fact lands inside Comon(V-Mat(X,X)):

Lemma 7.3.10 ensures that V-matrices of the form f∗Cf
∗ for any comonoid C in-

herit a comonoid structure, and also the composite arrows (7.18) where the mid-

dle 2-cell is now the comonoid arrow ψθ ensure that Kθ are comonoid morphisms.

Since by Corollary 7.1.2 the category of comonoids is comonadic over V-Mat(X,X),

the respective forgetful functor creates all colimits, therefore C : X � // X obtains a

unique comonoid structure. Moreover, the legs of the cocone

Xj
�Cj // Xj

_ (τj)∗
��

X

_(τj)
∗
OO

�
C
//

�� λj

X

are comonoid arrows, hence together with the functions τj they form V-cofunctors.

Thus the colimit (7.30) lifts in V-Cocat. �

7.4. Enrichment of V-categories in V-cocategories

We now wish to extend the results presented in Section 6.1, where the exis-

tence of the universal measuring comonoid and the induced enrichment of monoids

in comonoids were established. Similarly to the previous development, we aim to

identify an action of the symmetric monoidal closed category V-Cocat on the or-

dinary category V-Cat (or better its opposite), with a parametrized adjoint which

will turn out to be the ‘enriched-hom’ functor of a (V-Cocat)-enriched category

with underlying category V-Cat. The relevant theory which underlies this process

is contained in Section 4.3.

Suppose that V is a cocomplete symmetric monoidal closed category with prod-

ucts. Recall that there exists a lax functor of bicategories

Hom : (V-Mat)co × V-Mat −→ V-Mat
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defined as in (7.5). Then the functor between the hom-categories (of endoarrows)

Hom(X,Y ),(X,Y ) induces the internal hom gHom : V-Grphop × V-Grph→ Grph of

V-graphs as described in Proposition 7.2.3, via

Hom((G,X), (H,Y ))(k, s) :=
∏

x,x′∈X
[G(x′, x), H(kx′, sx)]

for all k, s ∈ Y X . Moreover, by Lemma 3.3.3, every lax functor between bicategories

induces a functor between monoids of hom-categories of endoarrows. For the lax

functor Hom, we obtain

Mon(Hom(X,Y ),(X,Y )): Comon(V-Mat(X,X))op ×Mon(V-Mat(Y,Y ))→Mon(V-Mat(Y X ,Y X))

(7.31)

which is just the restriction of Hom(X,Y ),(X,Y ) on the category

Mon
(

(V-Matco×V-Mat)((X,Y ),(X,Y ))
)
∼= Mon

(
V-Mat(X,X)op×V-Mat(Y,Y )

)
∼= Mon

(
V-Mat(X,X)op

)
×Mon

(
V-Mat(Y,Y )

)
∼= Comon

(
V-Mat(X,X)

)op
×Mon

(
V-Mat(Y,Y )

)
.

Since a V-cocategory CX = (C,X) has the structure of a comonoid in the monoidal

(V-Mat(X,X), ◦, 1X) and a V-category BY = (B, Y ) has the structure of a monoid

in (V-Mat(Y, Y ), ◦, 1Y ), we deduce that Mon(Hom(X,Y ),(X,Y )) is in fact the object

mapping of a functor

K : V-Cocatop × V-Cat −→ V-Cat (7.32)

which is the restriction of the functor gHom on the product of V-cocategories and

V-categories. This concretely means that whenever we have a V-cocategory CX and

a V-category BY , the V-graph K(CX ,BY ) ≡ Hom(C,B)Y X obtains the structure of

a V-category.

Explicitly, for each triple of functions k, s, t ∈ Y X , the composition law M :

K(C,B)(k, s)⊗K(C,B)(s, t)→ K(C,B)(k, t) for K(C,B) is an arrow∏
a,a

[C(a′, a),B(ka′, sa)]⊗
∏
b,b′

[C(b′, b),B(sb′, tb)]→
∏
c,c′

[C(c′, c),B(kc′, tc)].

This is defined via its adjunct under the usual tensor-hom adjunction

∏
a,a′

[C(a′,a),B(ka′,sa)]⊗
∏
b,b′

[C(b′,b),B(sb′,tb)]⊗C(c′,c)

1⊗∆c′,c
��

// B(kc′,tc)

∏
a,a′

[C(a′,a),B(ka′,sa)]⊗
∏
b,b′

[C(b′,b),B(sb′,tb)]⊗
∑
c′′
C(c′,c′′)⊗C(c′′,c)

s

��∑
c′′

∏
a,a′

[C(a′,a),B(ka′,sa)]⊗C(c′,c′′)⊗
∏
b,b′

[C(b′,b),B(sb′,tb)]⊗C(c′′,c)

πc′,c′′⊗1⊗πc′′,c⊗1

��∑
c′′

[C(c′,c′′),B(kc′,sc′′)]⊗C(c′,c′′)⊗[C(c′′,c),B(sc′′,tc)]⊗C(c′′,c)
ev⊗ev

// ∑
c′′
B(kc′,sc′′)⊗B(sc′′,tc)

Mkc′,tc

OO
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for fixed c, c′. The identities for each object s ∈ Y X are arrows

ηk : I → K(C,B)(k, k) =
∏

a,a′∈X
[C(a′, a),B(sa′, sa)] (7.33)

which correspond uniquely for fixed a = a′ ∈ X to the composite

I ⊗ C(a, a) //

1⊗εa,a ))

B(sa, sa).

I ⊗ I
rI
// I

ηsa,sa

@@

At the diagrams above, ∆ and ε are the cocomposition and coidentites of C and M,

η the composition and identities of B. For a 6= a′, the arrow (7.33) corresponds to

I ⊗ C(a′, a)
1⊗εa′,a−−−−→ 0

!−→ B(sa′, sa).

Moreover, it can be checked that for a V-cofunctor Ff : C′X′ → CX and a V-functor

Gg : BY → B′Y ′ , the V-graph arrow

gHom(F,G)gf : gHom(C,B)Y X → gHom(C′,B′)Y ′X′

as defined in (7.19) is in fact a V-functor between the V-categories, i.e. respects the

compositions and identities described above. Therefore we deduce that the functor

K is well defined.

Proposition 7.4.1. Suppose that V is a cocomplete symmetric monoidal closed

category with products. The functor K (7.32) is an action, and so is its opposite

functor

Kop : V-Cocat× V-Catop // V-Catop

( CX , BY ) � // Homop(C,B)Y X .

Proof. By Lemma 4.3.2, the internal hom functor in any symmetric monoidal

closed category V constitutes an action of Vop on V. Thus for the symmetric

monoidal closed category of V-graphs, the functors

gHom : V-Grphop × V-Grph→ V-Grph

as well as gHomop are actions. As stressed earlier, K is the restriction of gHom on

V-Cocatop × V-Cat, hence there exists isomorphisms

Hom(C ⊗ D,A)
∼−−→ Hom(C,Hom(D,A))

Hom(I,D)
∼−−→ D

for any V-cocategories CX , DY and V-category AZ , initially in V-Grph. Notice that

⊗ and I of the monoidal V-Cocat are inherited from V-Grph, and Hom is the

object function of both gHom and K.

Since S̃ : V-Cat → V-Grph is conservative, these isomorphisms are reflected

into V-Cat, and the coherence diagrams still commute. Therefore K is an action,

and in particular its opposite functor Kop is an action of the symmetric monoidal

category V-Cocat on the category V-Catop. �
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What is left to show is that this action Kop has a parametrized adjoint, which

will induce the enrichment of the category on which the monoidal category acts. In

order to prove the existence of the adjoint in question, we need some preliminary

results which further clarify the structure of V-Cocat.

First of all, we can apply the techniques from Propositions 3.3.5 and 3.4.2 re-

garding the expression of the categories Comon(V) and ComodV(C) as an equifier,

so that we obtain the following result.

Proposition 7.4.2. Suppose that V is a locally presentable monoidal category,

such that (−⊗−) preserves colimits on both sides. Then, the category V-Cocat is

a locally presentable category.

Proof. Define an endofunctor on the category of V-graphs by

F : V-Grph // V-Grph

(G,X) � //

(ψ,f)

��

(G ◦G,X)× (1X , X)

F (ψ,f)

��
(H,Y ) � // (H ◦H,Y )× (1Y , Y ).

The mapping on arrows, for a 2-cell ψ : f∗Gf
∗ ⇒ H, is explicitly

X

�� ψ

�G // X

_f∗

��

�1X //

�� η̌

X

�� ψ

�G // X

_ f∗

��
Y

_f∗

OO

�
H

// Y

E
f∗

GG

�
H

// Y

×

X �1X //

�
f∗

%%

�� ∼=

X

_ f∗

��
Y

_f∗

OO

�
1Y

//

�� ε̌

Y

where the left unitor λ of the bicategory V-Mat is suppressed.

The category of coalgebras CoalgF for this endofunctor has as objects V-graphs

(C,X) equipped with a morphism α : C → C ◦ C × 1X , i.e. two V-graph arrows

α1 : (C,X)→ (C ◦ C,X) and α2 : (C,X)→ (1X , X).

A morphism (C,α)→ (D,β) is a V-graph morphism (ψ, f) : (C,X)→ (D,Y ) which

is compatible with α and β, i.e. satisfy the equalities

X

�C

!!

�� ψ

�C //

�� α1

X

�� η̌
_f∗

��

�1X // X

�� ψ

�C // X

_ f∗

��
Y

_f∗

OO

�
D

// Y

I
f∗

II

�
D

// Y

=

X �C //

�� ψ

X

_ f∗

��
Y

_f∗

OO

�� β1�
D **

�D // Y

Y

7
D

DD
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X
�� α2

�C

$$�
1X

//

�
f∗

''

X

_ f∗∼=

��
Y

_f∗

OO

�� ε̌
�

1Y

// Y

= X �C // X

_ f∗

��
Y

_f∗

OO

�
1Y

<<
�� β2

�D //

�� ψ

Y.

Notice that the category CoalgF contains V-Cocat as a full subcategory: the

morphisms are precisely the same, by comparing the above diagrams with (7.27)

where φ̂ is a mate of ψ, and objects are V-graphs equipped with cocomposition and

coidentities arrows that don’t necessarily satisfy coassociativity and counit axioms.

Since V-Cocat is a cocomplete category by Proposition 7.3.13, we claim that it is

furthermore accessible, thus a locally presentable category. It is enough to express

V-Cocat as an equifier of a family of pairs of natural transformations between

accessible functors, i.e. functors between accessible categories that preserve filtered

colimits.

First of all, we have to show that the endofunctor F preserves all filtered colimits.

Take a colimiting cocone(
(Gj , Xj)

(λj ,τj)−−−−−→ (G,X) | j ∈ J
)

in V-Grph for a diagram like (7.16) for a small filtered category J , constructed

as in Proposition 7.2.2, i.e. (τj : Xj → X) is a colimiting cocone in Set and

(λj : (τj)∗Cj(τj)
∗ → C) is a colimiting cocone in V-Mat(X,X). We require its

image under F

F (λj , τj) : (Gj ◦Gj , Xj)× (1Xj , Xj)→ (G ◦G,X)× (1X , X) (7.34)

to be a colimiting cocone in V-Grph.

For the first part of the diagram, we can immediately deduce that

(τj)∗ ◦Gj ◦ (τj)
∗ ◦ (τj)∗ ◦Gj ◦ (τj)

∗ λj∗λj−−−−→ G ◦G

is a colimit in (V-Mat(X,X), ◦, 1X), as the tensor product (horizontal composite)

of two colimiting cocones. We claim that pre-composing this with the unit

1 ∗ η̌ ∗ 1 : (τj)∗ ◦Gj ◦ 1Xj ◦Gj ◦ (τj)
∗ → (τj)∗ ◦Gj ◦ (τj)

∗ ◦ (τj)∗ ◦Gj ◦ (τj)
∗

still gives a colimiting cocone. Indeed, if we take components in V of the respective

2-cells in V-Mat, this comes down to showing that the inclusion

τju=x′
τjw=x∑
z∈Xj

Gj(u, z)⊗Gj(z, w) ↪→

τju=x′
τjw=x∑
τja=τjb

Gj(u, a)⊗Gj(b, w)

for any two fixed x, x′ ∈ X, where u,w, a, b ∈ Xj , does not alter the colimit. One

way of showing this is by considering the following discrete opfibrations over the
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filtered shape J :

L = {(j, a, b) | j ∈ J , a, b ∈ Xj , τja = τjb}

M = {(j, z) | j ∈ J , z ∈ Xj}

where for example the arrows (j, a, b) → (j′, a′, b′) in L are determined by arrows

θ : j → j′ in J such that a′ = fθ(a) and b′ = fθ(b) (the function fθ : Xj → Xj′ is

the image of the diagram (7.16) in Set). We can now define diagrams of shape L
and M in V

L : L // V

(j, a, b) � // Gj(u, a)⊗Gj(b, w)

M : M // V

(j, z) � // Gj(u, z)⊗Gj(z, w)

and appropriately on morphisms. The colimits for these diagrams in V, taking into

account that the fibres are discrete categories, are

colimL ∼= colim
j

∑
τja=τjb

Gj(u, a)⊗Gj(b, w)

colimM ∼= colim
j

∑
z∈Xj

Gj(u, z)⊗Gj(z, w).

Finally, notice that there exists a functor T :M→ L mapping each (j, z) to (j, z, z)

and making the triangle

M T //

M   

L

L��
V

commute. Due to the construction of filtered colimits in Set, it is not hard to show

that the slice category
(
(j, z, w) ↓ T

)
is non-empty and connected. Hence T is a final

functor and we can restrict the diagram on L to M without changing the colimit,

as claimed.

For the second part of the diagram, it is enough to show that

�� ε̌

Xj

�
(τj)∗

%%
X �

1X

44

3(τj)
∗ 99

Y

is a colimiting cocone in V-Mat(X,X), for the diagram mapping each j to

X �(τj)
∗
// Xj

�
1Xj // Xj

�(τj)∗ // X

as in (7.32). This can be established by first verifying that ε̌ is a cocone, and then

that it has the required universal property.

We have thus shown that the cocone (7.34) is indeed colimiting, hence F is a

finitary functor as required. This part of the proof is due to Ignacio Lopez Franco.

Since V-Grph is locally presentable and the endofunctor F preserves filtered

colimits, CoalgF is a locally presentable category by the basic facts for endofunctor
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coalgebra categories in Section 3.3. Also the forgetful functor V : CoalgF → V-

Grph creates all colimits. Now consider the following pairs of natural transforma-

tions between functors from CoalgF to V-Grph:

φ1, ψ1 : V ⇒ FFV , φ2, ψ2 : V ⇒ (− ◦ 1X)V , φ3, ψ3 : V ⇒ V (− ◦ 1X)

given by the components

φ1
(C,X) : X



C ,,

�
C

!!

�C

''

�� α1
�� α1

X,

X �
C
// X

/
C

??
ψ1

(C,X) : X

�
C

,,

�C

''
X

��α1

X �
C
//

'C ++

��α1

X
0
C

@@

φ2
(C,X) : X 	� α1

�� α2

�
1X

11

�
C

��

�C

''
X,

X
)
C

99 ψ2
(C,X) : X

�
1X

..

�C

))∼= X

X
)
C

99

φ3
(C,X) : X

�
C

..

�C

''
X,��α1

X
(
1X

;;

)C ++

��α2
ψ3

(C,X) : X

�
C

..

�C

))∼= X.

X
(
1X

88

It is now clear that the full subcategory of CoalgF spanned by those objects (C,X)

which satisfy φi(C,X) = ψi(C,X) is precisely the category of V-cocategories,

Eq((φi, ψi)i=1,2,3) = V-Cocat

as in Definition 7.3.8. Since all categories and functors involved are accessible, V-

Cocat is accessible too. �

The fact that V-Cocat is a locally presentable category is very useful for the

proof of existence of various adjoints, as seen below.

Proposition 7.4.3. Suppose V is a locally presentable monoidal category such

that ⊗ preserves colimits in both entries. The forgetful functor Ũ : V-Cocat → V-

Grph is comonadic.

Proof. By Proposition 7.3.12 the forgetful Ũ has a right adjoint, namely the

cofree V-cocategory functor R̃. By adjusting the arguments of Proposition 3.3.5,

consider the following commutative triangle

V-Cocat

Ũ
&&

� � ι // CoalgG

V

��
V-Grph

where the top functor is the inclusion of the full subcategory in the functor coalgebra

category as described above, and the respective forgetful functors discard the struc-

tures maps α of the coalgebras. We already know that CoalgF is comonadic over
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V-Grph, hence V creates equalizers of split pairs, so it is enough to show that the

inclusion ι also creates equalizers of split pairs, since we already have Ũ a R̃. Both

V-Cocat and V-Grph are locally presentable categories so in particular complete,

and it is easy to see that ι preserves and reflects, thus creates, all limits. Hence Ũ

satisfy the conditions of Precise Monadicity Theorem and the result follows. �

Proposition 7.4.4. Suppose that V is a locally presentable symmetric monoidal

closed category. Then the category of V-cocategories is symmetric monoidal closed

as well.

Proof. The symmetric monoidal structure of V-Cocat was described in the

previous section and is given by a functor of two variables

−⊗− : V-Cocatop × V-Cocat→ V-Cocat.

The functor (−⊗DY ) for a fixed V-cocategory DY evidently has a right adjoint: the

following commutative diagram

V-Cocat
(−⊗DY )

//

Ũ

��

V-Cocat

Ũ

��
V-Grph

(−⊗ŨDY )

// V-Grph

shows it is cocontinuous, since the comonadic Ũ creates all colimits and the bottom

arrow preserves them by the adjunction (− ⊗ GY ) a gHom(GY ,−) for any V-graph

GY (Proposition 7.2.3). Also V-Cocat is a locally presentable category, hence co-

complete with a small dense subcategory. Thus by Theorem 3.0.1 for example, we

have an adjunction

V-Cocat
−⊗DY //
⊥ V-Cocat

gHom(DY ,−)
oo (7.35)

which exhibits the uniquely induced bifunctor

gHom : V-Cocatop × V-Cocat −→ V-Cocat

as the internal hom of V-Cocat. �

At this point, we possess all the necessary tools in order to show the existence

of an adjoint of the action Kop as outlined earlier, as well as demonstrate the en-

richment of V-categories in V-cocategories.

Proposition 7.4.5. The functor Kop : V-Cocat × V-Catop → V-Catop has a

parametrized adjoint

T : V-Catop × V-Cat −→ V-Cocat, (7.36)

given by adjunctions K(−,BY )op a T (−,BY ) for every V-category BY .

Proof. By Proposition 7.4.2, the domain V-Cocat of K(−,B)op is locally pre-

sentable, hence cocomplete with a small dense subcategory, namely the presentable
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objects. Now consider the following diagram

V-Cocat
K(−,BY )op

//

Ũ

��

V-Catop

S̃

��
V-Grph

gHom(−,S̃BY )op

// V-Grphop

which commutes by definition of K, and the left and right legs create all colim-

its by Propositions 7.3.5 and 7.4.3. The bottom arrow preserves all colimits by
gHom(−,GY )op a gHom(−,GY ) for any internal hom functor in a monoidal closed

category, thus the functor K(−,B)op is cocontinuous. By Kelly’s adjoint functor

theorem 3.0.1, there are adjunctions

V-Cocat
K(−,BY )op

//
⊥ V-Catop

T (−,BY )
oo

for all V-categories BY . This suffices to uniquely make T into a functor of two

variables (7.36), which is by definition the parametrized adjoint of Kop. �

The functor T , which is a generalization of the universal measuring comonoid

functor P (6.3) in the ‘many-object’ context, is called generalized Sweedler hom.

Morever, it can also be deduced that the functor K(CX ,−)op has a right adjoint for

any V-cocategory CX , or equivalently its opposite functor has a left adjoint. The

following diagram

V-Cat
K(CX ,−)

//

S̃

��

V-Cat

S̃

��
V-Grph

gHom(ŨCX ,−)

// V-Grph

commutes, where S̃ is the monadic forgetful functor and the locally presentable

category V-Cat has all coequalizers. Thus by Dubuc’s Adjoint Triangle Theorem in

[Dub68], the existence of a left adjoint (CX⊗−) a gHom(CX ,−) for any (underlying)

V-graph CX in the symmetric monoidal closed V-Grph implies the existence of a

left adjoint (CX .−) of the top functor. The induced functor of two variables

. : V-Cocat× V-Cat −→ V-Cat

is called the generalized Sweedler product, since it is an extension of the respective

functor (6.7).

The conditions of Corollaries 4.3.4 and 4.3.5 are now satisfied, for the symmetric

monoidal category closed V-Cocat which acts on the opposite of the category V-Cat

via the action Kop.
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Theorem 7.4.6. Suppose V is a symmetric monoidal closed category which is

locally presentable, and T is the generalized Sweedler hom functor.

(1) The opposite category of V-categories V-Catop is enriched in the category

of V-cocategories V-Cocat, with hom-objects

V-Catop(AX ,BY ) = T (BY ,AX)

where the (V-Cocat)-enriched category with underlying category V-Catop

is denoted by the same name.

(2) The category V-Cat is a tensored and cotensored (V-Cocat)-enriched cat-

egory, with hom-objects

V-Cat(AX ,BY ) = T (AX ,BY ),

cotensor product K(C,B)Y Z and tensor product CZ . AX , for any V-coca-

tegory CZ and any V-categories AX ,BY .

7.5. Graphs, categories and cocategories as (op)fibrations

This section presents a different approach to establishing the enrichment of V-

categories in V-cocategories. In the section above, the result follows from the exis-

tence of an adjoint T which constitues the enriched hom-functor, as a straightforward

application of an adjoint functor theorem (Proposition 7.4.5). This is possible ba-

sically due to local presentability of V-Cocat. However, the categories V-Grph,

V-Cat and V-Cocat also have a structure which places them in a fibrational con-

text, allowing the application of the theory of fibrations of Chapter 5. In particular,

we will show how we can alternatively obtain this adjoint T as an application of

Theorem 5.3.7 regarding adjunctions between fibrations.

First of all, we are going to exhibit in detail the fibrational structure of the

categories involved, a well-known fact at least for V-categories over sets. We initially

assume that V is a cocomplete monoidal category, such that the tensor product

preserves colimits on both sides.

Proposition 7.5.1. The category V-Grph of small V-graphs is a bifibration

over Set.

Proof. Due to the correspondence between fibrations and pseudofunctors stud-

ied in Theorem 5.2.1, it is enough to define certain indexed categories, i.e. pseud-

ofunctors M : Setop → Cat and F : Set → Cat which give rise to a fibration

and opfibration with total category isomorphic to V-Grph, via the Grothendieck

construction.

Define the pseudofunctor M as follows:

M : Setop // Cat

X � //

f
��

V-Mat(X,X)

Y � // V-Mat(Y, Y ),

M f

OO

(7.37)
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where the functor M f is given by the mapping

(Y �H // Y ) � // (X �f∗ // Y �H // Y �f
∗
// X)

on objects and

(Y

�H
((

�
H′
66�� σ Y ) � // (X �f∗ // Y

�H
&&

�
H′

88�� σ Y �f
∗
// X)

on arrows. In other words, M f = (f∗ ◦ − ◦ f∗) is the functor ‘pre-composition

with f∗ and post-composition with f∗’, where the induced V-matrices f∗ and f∗ are

defined as in (7.11). In terms of components, the family {H(y′, y)}y,y′∈Y of objects

in V which defines the V-matrix H, is mapped to the family

{
(
(M f)H

)
(x′, x)}x,x′∈X = {I ⊗H(fx′, fx)⊗ I}fx,fx′∈Y

and the family {σy′,y : H(y′, y)→ H ′(y′, y)}y′,y of arrows in V which define the 2-cell

σ, is mapped to the family(
(M f)σ

)
x′,x

: I ⊗H(fx′, fx)⊗ I
1⊗σfx′,fx⊗1
−−−−−−−−−→ I ⊗H ′(fx′, fx)⊗ I

for all x′, x ∈ X.

In order to show that the above data determine a pseudofunctor M , we need

the existence of certain natural isomorphisms satisfying coherence conditions as in

Definition 2.1.3. For every triple of sets X,Y, Z, there is a natural isomorphism δ

with components

V-Mat(Y, Y ) M f

))
V-Mat(Z,Z)

M g 22

M (g◦f)

22�� δg,f V-Mat(X,X)

for any f : X → Y and g : Y → Z, satisfying the commutativity of (2.5). Explicitely,

each δg,f has components, for each V-matrix J : Z � // Z, the invertible arrows

δg,fJ : (M f ◦M g)J
∼−−→M (g ◦ f)J

in V-Mat(X,X) which are the composite 2-cells

X �f∗ //

�
(gf)∗ --

Y �g∗ // Z �J // Z �g
∗
// Y �f

∗
// X

�� ζg,f

Z �
J

//

�� 1J

Z

�� ξg,f ,
(gf)∗

;; (7.38)

where the isomorphisms ζ and ξ are defined in Lemma 7.1.3. This 2-isomorphism

δg,f = ξg,f ∗ 1J ∗ ζg,f

is given by the family of invertible arrows

(δg,fJ )x′,x : I ⊗ I ⊗ J(gfx′, gfx)⊗ I ⊗ I rI⊗1⊗rI−−−−−−→ I ⊗ J(gfx′, gfx)⊗ I
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in V, and the coherence axiom is satisfied by the properties of ξ and ζ (see Lemma

7.1.4). Moreover, for any set X there is a natural isomorphism γ with components

the natural transformations

V-Mat(X,X)

1V-Mat(X,X)
,,

M (idX)

22�� γX V-Mat(X,X)

where idX is the identity function on any set X and 1 is the identity functor.

Explicitly, γX has as components invertible arrows in V-Mat(X,X)

γXG : 1V-Mat(X,X)G
∼−−→M (idX)G

for any V-matrix G : X � // X, which are the composite 2-cells

γXG : X

�G

''

�
(idX)∗ **

�� ρ
−1
G X.

X �
G

//

)G --

�� λ
−1
G

X

2
(idX)∗

@@ (7.39)

By recalling that (idX)∗ = (idX)∗ = 1X by (7.15), this isomorphism

γXG = (λ−1
G 1X) · (ρ−1

G )

consists of the family of invertible arrows

(γXG )x′,x : G(x′, x)
l−1

−−→ I ⊗G(x′, x)
1⊗r−1

−−−−→ I ⊗G(x′, x)⊗ I

in V. It can be verified that the axioms (2.6) are satisfied, therefore M is a pseud-

ofunctor.

The Grothendieck category GM for this pseudofunctor has as objects pairs

(G,X), where X is a set and G is an object in the category MX = V-Mat(X,X),

and as arrows (φ, f) : (G,X)→ (H,Y ) pairsG
φ−→ (M f)H in MX

X
f−→ Y in Set

=

G
φ−→ f∗ ◦H ◦ f∗ in V-Mat(X,X)

X
f−→ Y in Set.

By Definition 7.2.1, this category is isomorphic to V-Grph, in the sense that there is

a one-to-one correspondence between the objects, which can actually be identified,

and the hom-sets. Thus M gives rise to a fibration PM : GM → Set which is

isomorphic to the forgetful functor Q : V-Grph→ Set, i.e.

GM
∼= //

PM

  

V-Grph

Q
||

Set

commutes by definition of the functors involved, hence Q is a fibration.



7.5. GRAPHS, CATEGORIES AND COCATEGORIES AS (OP)FIBRATIONS 159

Now, define a covariant indexed category F as follows:

F : Set // Cat

X � //

f
��

V-Mat(X,X)

Ff
��

Y � // V-Mat(Y, Y )

(7.40)

where the mapping on objects is the same as for the pseudofunctor M above, and

Ff is the mapping

(X

�G
((

�
G′
66�� τ X) � // (Y �f

∗
// X

�G
&&

�
G′

88�� τ X �f∗ // Y )

on objects and on arrows, i.e. Ff = (f∗ ◦ − ◦ f∗). In terms of components, the

family {G(x′, x)}x,x′∈X of objects in V which define the V-matrix G, is mapped to

the family

{Ff(G)(y′, y)}y,y′∈Y = {
∑
fx′=y′
fx=y

I ⊗G(x′, x)⊗ I}y,y′∈Y

and the family {τx,x′ : G(x′, x) → G′(x′, x)}x,x′ of arrows in V which defines the

2-cell τ , is mapped to the family of arrows

Ff(τ)y′,y :
∑

I ⊗G(x′, x)⊗ I
∑

1⊗σx′,x⊗1
−−−−−−−−−→

∑
I ⊗G′(x′, x)⊗ I,

where the sums are over x, x′ such that fx′ = y′, fx = fy, based on the computations

of Section 7.1. Again, there exist natural isomorphisms δ, γ with components

δg,f : Fg ◦Ff ⇒ F (g ◦ f) : V-Mat(X,X)→ V-Mat(Z,Z)

γX : 1V-Mat(X,X) ⇒ F (idX) : V-Mat(X,X)→ V-Mat(X,X)

which satisfy the properties (2.5) and (2.6) from the definition of a pseudofunctor.

In fact, they are essentially the same as in the case of M , i.e. δ now has components

the invertible composite 2-cells

δf,gG :

Y �
f∗

%%
Y �

g∗

%%
Z

)g
∗ //

�
(gf)∗

66�� ξg,f X

�G
((

�
G

66�� 1G X

(f∗ //

�� ζg,f
�

(gf)∗

66 Z,

(7.41)

which are formed like (7.38) but composing with ζ and ξ in the reverse order, and

γ is the same as in (7.39). Therefore F is a pseudofunctor, and by Theorem 5.2.2

it gives rise to an opfibration

UF : GF → Set.

The Grothendieck category in this case coincides with the isomorphic characteriza-

tion of V-Grph in Definition 7.2.1, with the ‘second version’ form of arrows. Hence

UF is again isomorphic to the forgetful Q : V-Grph → Set, endowing it with the

structure of an opfibration. Thus V-Grph is a bifibration over Set. �
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Notice that we could immediately deduce that the fibration Q is a bifibration

via Remark 5.1.1. The reindexing functor M f = f∗ ◦ - ◦ f∗ does have a left adjoint

f∗ ◦ - ◦ f∗, by the natural bijection between 2-cells of the form (7.14). We explicitly

constructed the opfibration above in order to employ it later.

An immediate consequence of viewing the category of V-graphs as a bifibration

is that we can discuss fibred and opfibred limits and colimits (see Section 5.3).

Corollary 7.5.2. The bifibration Q : V-Grph→ Set has all fibred limits and

all opfibred colimits, when V is complete and cocomplete respectively.

Proof. By Corollary 5.3.11 and its dual, an (op)fibration with (co)complete

base category has all (op)fibred (co)limits if and only if the total category has all

(co)limits and the fibration strictly preserves them. In this case, the base of the

bifibration is the complete and cocomplete category of sets, and since the total

category V-Grph is (co)complete when V is and the forgetful functor Q preserves

limits and colimits ‘on the nose’ by construction, the result follows. �

Moreover, by Proposition 5.3.9 we can now deduce that the reindexing functors

(f∗ ◦ - ◦ f∗) and (f∗ ◦ - ◦ f∗) preserve all limits and colimits between the complete

and cocomplete fibres V-Mat(X,X). The latter was evident by Proposition 7.1.1.

The construction of the two pseudofunctors M and F which exhibit V-Grph

as a bifibred category over Set clarify the way in which the categories V-Cat and

V-Cocat are themselves fibred and opfibred respectively over Set.

Proposition 7.5.3. The category V-Cat of small V-categories is a fibration

over Set.

Proof. Similarly to the above proof, it will suffice to construct an indexed

category L : Setop → Cat such that the category V-Cat is isomorphic to the

Grothendieck category of the fibration PL .

Define the pseudofunctor L as follows: a set X is mapped to the category

LX = Mon(V-Mat(X,X))

of monoids of the monoidal category of endoarrows (V-Mat(X,X), ◦, 1X), and a

function between sets f : X → Y is mapped contravariantly to the functor

L f : Mon(V-Mat(Y, Y )) // Mon(V-Mat(X,X))

(B,µ, η) � //

σ
��

(f∗Bf∗, µ
′, η′)

f∗σf∗
��

(E,µ, η) � // (f∗Ef∗, µ
′, η′).

As described in detail in Lemma 7.3.2, the induced monoid f∗Bf∗ has multiplication

µ′ = f∗[µ · (Bε̌B)]f∗ and unit η′ = (f∗ηf∗) · η̌, where ε̌ and η̌ are the counit and

unit of the adjunction f∗ a f∗, and also (f∗σf∗) can easily be checked to commute

with the appropriate monoid structure maps. Evidently, this functor L f is just

M f = (f∗ ◦− ◦ f∗) defined in (7.37), restricted between the respective categories of

monoids.
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Again, we need to identify natural transformations γ and δ satisfying certain

coherence axioms, for L to be a pseudofunctor according to Definition 2.1.3. In this

case, these will have components natural isomorphisms

δg,f : L f ◦L g ⇒ L (g ◦ f) : Mon(V-Mat(Z,Z))→Mon(V-Mat(X,X))

γX : 1Mon(V-Mat(X,X)) ⇒ L (idX) : Mon(V-Mat(X,X))→Mon(V-Mat(X,X))

for X
f−→ Y

g−→ Z in Set, where idX is the identity function. We can define δg,f and

γX to be natural transformations given exactly as the ones for the pseudofunctor

M , as in (7.38) and (7.39). The domains and codomains of these composite 2-cells

are by default monoids in the appropriate endoarrow hom-categories of V-matrices,

and it can be verified via computations that the invertible arrows δg,fJ and γXA for

monoids J : Z � // Z and A : X � // X commute with the respective multiplications

and units of the monoids involved. Moreover, the diagrams (2.5, 2.6) commute

because they do for all V-matrices, by pseudofunctoriality of M . Therefore L is

indeed a pseudofunctor.

If we construct the Grothendieck category for L : Setop → Cat, with objects

pairs (A,X) where A ∈ Mon(V-Mat(X,X)) for a set X, and arrows (A,X) →
(B, Y ) pairs A

φ−→ f∗Bf∗ in Mon(V-Mat(X,X))

X
f−→ Y in Set,

it is evident by Lemma 7.3.3 that GL ∼= V-Cat. Moreover, both forgetful functors

to Set have the same effect on objects and on arrows, namely separating the set-part

of the data. Hence

P : V-Cat −→ Set

is a fibration, isomorphic to PL arising via the Grothendieck construction. �

Corollary 7.5.4. The fibration P : V-Cat→ Set has all fibred limits when V
is complete.

Proof. Since the fibration P has as base category the complete category Set,

in order for P to have all fibred limits it suffices for V-Cat to be complete and for the

forgetful P to preserve all limits strictly, again by Corollary 5.3.11. Corollary 7.3.6

ensures that V-Cat has all limits and since a limit of V-graphs has as underlying

set precisely the limit of the sets, the result follows. �

Finally, in order to establish that V-Cocat is opfibred over Set, we are going to

use the pseudofunctor F defined as in (7.40).

Proposition 7.5.5. The category V-Cocat of small V-cocategories is an opfi-

bration over Set.

Proof. We will once more construct a covariant indexed category K : Set →
Cat, for which the Grothendieck construction gives a category isomorphic to V-

Cocat along with the forgetful functor to sets, mapping every V-cocategory to its

set of objects.
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Define K as follows: a set X is mapped to the category of comonoids in the

monoidal category (V-Mat(X,X), ◦, 1X), and a function f : X → Y is mapped to

the functor

K f : Comon(V-Mat(X,X))→ Comon(V-Mat(Y, Y ))

which precomposes with f∗ and postcomposes with f∗ both V-matrices and 2-cells.

Explicitly, the functor K f is defined on objects by

(C,∆, ε) � // (f∗Cf
∗,∆′, ε′)

where ∆′ = f∗[(Cη̌C) · ∆]f∗ and ε′ = ε̌ · (f∗εf∗) as described in detail in Lemma

7.3.10, and on arrows

(C
τ +3 D) � // (f∗Cf

∗ f∗τf∗ +3 f∗Df
∗)

where f∗τf
∗ can easily be verified to commute with the respective counits and

comultiplications. Again, notice that K f is in fact the restriction of Ff (7.40)

to the categories of comonoids. The above mappings define a pseudofunctor K ,

since the two natural transformations γ and δ in this case, with components natural

isomorphisms

Comon(V-Mat(X,X))

K g◦K f

,,

K (g◦f)

22�� δg,f Comon(V-Mat(Z,Z))

Comon(V-Mat(X,X))

1Comon(V-Mat(X,X))

,,

K ( idX)

22��γX Comon(V-Mat(X,X))

consist of the invertible composite 2-cells as in (7.41) and (7.39) for the pseudo-

functor F . Their domains and codomains are by construction comonoids in the

appropriate categories of V-matrices, and they satisfy the properties of comonoid

morphisms. Hence δ and γ are well-defined, and the diagrams (2.5, 2.6) commute

by pseudofunctoriality of F .

The Grothendieck category GK for this pseudofunctor has as objects pairs

(C,X) where C ∈ Comon(V-Mat(X,X)) for a set X, and as arrows (C,X) →
(D,Y ) pairs f∗Cf∗

ψ−→ D in Comon(V-Mat(Y, Y ))

X
f−→ Y in Set.

By Lemma 7.3.11, this is isomorphic to the category V-Cocat. As a result, the

forgetful functor

W : V-Cocat −→ Set

is an opfibration, isomorphic to UK arising via the Grothendieck construction since

they have the same effect on objects and on morphisms. �
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Corollary 7.5.6. The opfibration W : V-Cocat→ Set has all opfibred colim-

its, when V is locally presentable.

Proof. The base category of this opfibration is again the cocomplete category

of sets, and also the total category V-Cocat has all colimits which by construction

are strictly preserved by the forgetful functor, see Proposition 7.3.13. Therefore by

the dual of Corollary 5.3.11, the opfibration W has all opfibred colimits. �

Remark. For the definition of the two pseudofunctors which give rise to V-

categories and V-cocategories as their Grothendieck categories, the functors M f =

f∗ ◦ − ◦ f∗ and Ff = f∗ ◦ − ◦ f∗ as in (7.37), (7.40) were employed. Lemmas 7.3.2

and 7.3.10 suggested already that these two functors may ‘lift’ to the respective

categories of monoids and comonoids. This can be further clarified if we observe that

both these functors have the structure of a lax/colax monoidal functor respectively,

between the monoidal hom-categories of endomorphisms in V-Mat. For example,

for a function f : X → Y and two V-matrices B,B′ : Y � // Y, the lax monoidal

structure map

φB,B′ : f∗ ◦B ◦ f∗ ◦ f∗ ◦B′ ◦ f∗ ⇒ f∗ ◦B ◦B′ ◦ f∗

of M f has components the composite 2-cells

X �
f∗

��
X �f∗ // Y �B′ // Y

/f∗ 22

�
1Y

//�� ε̌

�
B

::
��
ρ∼=
Y �B // Y �f

∗
// X.

Similarly for φ0, and also for the functor Ff . Therefore, these lax/colax monoidal

functors induce functors between the categories of monoids and comonoids of V-

Mat(X,X) in a straightforward way, as in (3.16).

The fibre categories for the bifibration, fibration and opfibration Q, P and W

respectively are

V-GrphX = V-Mat(X,X)

V-CatX = Mon(V-Mat(X,X))

V-CocatX = Comon(V-Mat(X,X)).

Notice that, even if the total categories of V-categories and V-cocategories have a

monoidal structure as seen in Section 7.3, their fibres are not monoidal categories,

since the monoidal (V-Mat(X,X), ◦, 1X) fails to be symmetric or braided.

We now turn back to the primary question of the existence of a right adjoint for

the functor

K(−,BY )op : V-Cocat −→ V-Catop

coming from K (7.32), which in reality is the internal hom functor gHom of the

monoidal closed category of small V-graphs restricted on V-cocategories and V-

categories, as explained in detail in Section 7.4. The plan is to now obtain this
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adjoint via the theory of fibrations and in particular from Theorem 5.3.7, and then

the enrichment of V-categories in V-cocategories will follow in the exact same way

as in the end of previous section.

Lemma 7.5.7. The diagram

V-Cocat
K(−,(B,Y ))op

//

W

��

V-Catop

P op

��
Set

Y (−)op
// Setop

exhibits
(
K(−, (B, Y ))op, Y (−)op)

as an opfibred 1-cell between the opfibrations W

and P op.

Proof. It is straightforward to verify that the above diagram commutes, since

the set of objects of the internal hom is by construction the exponential of the

underlying sets of objects of the V-cocategory and the V-category, and similarly

for morphisms (see Proposition 7.2.3). It remains to show that K(−, (B, Y ))op is

a cocartesian functor, or equivalently that the contravariant K(−, (B, Y )) maps

cocartesian liftings to cartesian liftings.

Using the canonical choice of cocartesian liftings for any opfibration obtained via

the Grothendieck construction (see Theorem 5.2.1), consider a cocartesian lifting of

(C,X) along the function f : X → Z with respect to the opfibration W : V-

Cocat→ Set:

C
1f∗Cf∗ //

��

f∗Cf
∗

��

in V-Cocat

X
f

// Z in Set.

Notice that the pair notation for objects in the total category is suppressed, since

the respective set of objects of the V-cocategories is clear from the picture. The

image of this arrow under K(−, (B, Y )) gives

Hom((f∗Cf
∗, Z), (B, Y ))

[[1f∗Cf∗ ,1B ]]
//

��

Hom((C,X), (B, Y ))

��

in V-Cat

Y Z

Y f
// Y X in Set

by definition of the functor gHom, and the 2-cell in Mon(V-Mat(Y Z , Y Z))

Y Z �Hom(f∗Cf∗,B)
//

_(Y f )∗

��
�� [[1f∗Cf∗ ,1B ]]

Y Z

Y X �
Hom(C,B)

// Y X

_ (Y f )∗

OO
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as in (7.20) explicitly consists of arrows [[1f∗Cf∗ , 1B]]k,s∏
z,z′

[
∑
fx=z

fx′=z′

I ⊗ C(x′, x)⊗ I,B(kz′, sz)]→ I ⊗
∏
x,x′

[C(x′, x), B(kfx′, sfx)]⊗ I

in V for all k, s ∈ Y Z . On the other hand, the canonical cartesian lifting of

(Hom(C,B), Y X) along the function Y f with respect to the fibration P : V-Cat→
Set is

(Y f )∗Hom(C,B)(Y f )∗
1

(Y f )∗Hom(C,B)(Y f )∗ //

��

Hom(C,B)

��
Y Z

Y f
// Y X .

By comparing this cartesian arrow with the image under K(−, (B, Y )) above, it is

enough to show that [[1f∗Cf∗ , 1B]] is isomorphic to the identity arrow in the fibre

V-CatY Z = Mon(V-Mat(Y Z , Y Z)). We have natural isomorphisms∏
z,z′

[
∑
fx=z

fx′=z′

I ⊗ C(x′, x)⊗ I,B(kz′, sz)] ∼=
∏
z,z′

∏
fx=z

fx′=z′

[I ⊗ C(x′, x)⊗ I,B(kz′, sz)]

∼=
∏
x′,x

[I ⊗ C(x′, x)⊗ I,B(kfx′, sfx)] ∼= I ⊗
∏
x,x′

[C(x′, x), B(kfx′, sfx)]⊗ I

since sum commutes with ⊗ and [−, A] maps colimits to limits for any monoidal

closed category V. By applying r and l to move the I’s appropriately, we deduce

that the result holds. �

Lemma 7.5.8. Suppose that V is a locally presentable symmetric monoidal closed

category, and ε is the counit of the exponential adjunction

Set
Y (−)op

//
⊥ Setop.

Y (−)

oo (7.42)

For any V-category BY and any set Z, the composite functor

V-CocatY Z
K(−,BY )op

−−−−−−−−→ V-Catop

Y Y Z
(εZ)!−−−−−−−→ V-Catop

Z

has a right adjoint T0(−,BY ).

Proof. We can rewrite the above composite as

Comon(V-Mat(Y Z , Y Z))

++

Mon(Hom(−,(B,Y )))op

// Mon(V-Mat(Y Y Z , Y Y Z))op

L εZ

��
Mon(V-Mat(Z,Z))op

where the top functor was already given by (7.31) but is now viewed as the induced

‘functor between the fibres’ from K(−,B), as in (5.8). By Corollary 7.1.2, the

category of comonoids Comon(V-Mat(Y Z , Y Z)) of the locally presentable monoidal

category V-Mat(Y Z , Y Z) is also locally presentable. As such, it is in particular
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cocomplete and has a small dense subcategory. Moreover, the following commutative

diagram

Comon(V-Mat(X,X))
Mon(HomX(−,(B,Y ))op

//

U
��

Mon(V-Mat(Y X , Y X))op

Sop

��
V-Mat(X,X)

HomX(−,(B,Y ))op
// V-Mat(Y X , Y X)op

for a fixed V-category (B, Y ) shows that the top arrow KX(−, (B, Y )) is cocon-

tinuous for any set X. This is the case because the functors U and Sop are

comonadic by Corollary 7.1.2 and the bottom arrow is the cocontinuous internal

hom gHom(−, B)op restricted between the cocomplete fibres. Finally, Proposition

5.3.9 ensures that all reindexing functors for the fibration P are continuous, since

P : V-Cat → Set has all fibred limits by Corollary 7.5.4. So the ones for the opfi-

bration P op are cocontinuous, and in particular so is (εZ)!. Thus, by Kelly’s theorem

3.0.1, the composite functor (εZ)! ◦KY Z (−,BY ) has a right adjoint

V-CocatY Z
(εZ)!◦K(−,BY )op

//
⊥ V-Catop

Z .
T0(−,BY )

oo

�

At this point, all the assumptions of Lemma 5.3.6 are satisfied, so we can apply it

in this setting to obtain the enriched hom-functor T , evidently isomorphic to (7.36)

of the previous section.

Proposition 7.5.9. The functor between the total categories

Kop : V-Cocat× V-Catop → V-Catop

has a parametrized adjoint

T : V-Catop × V-Cat −→ V-Cocat

which makes the following diagram serially commute:

V-Cocat
K(−,BY )op

//
⊥

W

��

V-Catop

T (−,BY )
oo

P op

��
Set

Y (−)op

//
⊥ Setop.

Y (−)

oo

Proof. By Lemma 7.5.7, we have an opfibred 1-cell (K(−,BY )op, Y (−)op
) be-

tween the opfibrations W : V-Cocat→ Set and P op : V-Catop → Setop. Also there

is an adjunction Y (−)op a Y (−) between the base categories, since the exponential is

the internal hom in the cartesian monoidal closed Set. Lastly, by Lemma 7.5.8 the

composite functor between the fibre categories

KY Z (−,BY ) ◦ (εZ)! : V-CocatY Z −→ V-Catop
Z
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has a right adjoint TZ(−,BY ) for any fixed set Z.

Therefore, by Theorem 5.3.7 the functorK(−,BY )op has a right adjoint T (−,BY )

between the total categories

V-Cocat
K(−,BY )op

//
⊥ V-Catop,

T (−,BY )
oo (7.43)

with (K(−,BY )op, Y (−)op
) a (T (−,BY ), Y (−)) in Cat2, i.e. (W,P op) is a map of

adjunctions. The adjunction (7.43) for any V-category BY makes T into a functor

of two variables such that the natural isomorphism of the adjunction is natural in

all three variables, i.e. T is the parametrized adjoint of Kop. �

Notice that the above proof of existence of the adjoint T between the total

categories automatically provides us with the underlying set of objects of the V-

cocategory T (AX ,BY ), namely Y X . On the contrary, Proposition 7.4.5 did not

establish this piece of data in a straightforward way. We could also explicitly con-

struct T on arrows, using the formulas provided in Section 5.3.

7.6. V-modules and V-comodules

In these last two sections of the chapter, the aim is to generalize the existence

of the universal measuring comodule, which induces an enrichment of the global

category of modules in the global category of comodules as seen in Section 6.3.

This follows the idea of the (V-Cocat)-enrichment of V-Cat as the many-object

generalization of the enrichment of monoids in comonoids in V of Section 6.1.

We are going to closely follow the development of the previous chapter in defining

the global category of V-enriched modules and the global category of V-enriched

comodules. On that level, by employing the theory of fibrations and opfibrations

once again, we will determine the objects that induce the enrichment in question.

In Section 4.2, a brief account of the bicategory of V-bimodules was given, with

emphasis on the one-sided modules of V-categories. In the current setting of the

bicategory of V-matrices, we can reformulate Definition 4.2.1 of a left A-module

for a V-category A in a way that will clarify how V-modules are a special case of

modules for a monad in a bicategory as in Section 2.2. Motivated by Remark 2.2.4,

we are here interested in categories of modules in the bicategory V-Mat with fixed

domain the singleton set 1 = {∗}, i.e. the initial object in Set. The monads in this

bicategory are of course V-categories A : X � // X.

For the following definitions, the assumptions on V are initially the ones required

for the formation of V-Mat, i.e. existence of sums which are preserved by the tensor

product on both sides.

Definition 7.6.1. The category of left A-modules for a V-category AX , i.e a

monad (A,X), is the category of left A-modules with domain the singleton set in the

bicategory V-Mat, i.e. the category of Eilenberg-Moore algebras for the (ordinary)
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monad ‘post-composition with A’ on the hom-category V-Mat(1, X)

V-AMod = V-Mat(1, X)V-Mat(1,A).

Explicitly, the objects are V-matrices Ψ : 1 � // X given by a family {Ψ(x)}x∈X of

objects in V, equipped with an action µ : A ◦Ψ⇒ Ψ with components

µx :
∑
x′∈X

A(x, x′)⊗Ψ(x′)→ Ψ(x)

such that the diagrams∑
x′′

(
∑
x′
A(x, x′)⊗A(x′, x′′))⊗Ψ(x′′)

α //

∑
Mx,x′′⊗1

��

∑
x′
A(x, x′)⊗ (

∑
x′′
A(x′, x′′)⊗Ψ(x′′))

∑
1⊗µx′

��∑
x′′
A(x, x′′)⊗Ψ(x′′)

µx
((

∑
x′
A(x, x′)⊗Ψ(x′)

µxvv
Ψ(x),∑

x∈X
A(x, x)⊗Ψ(x)

µx // Ψ(x)

I ⊗Ψ(x)
ηx⊗1

gg

λ

;;

commute. M and η are the composition law and identities for A, and α, λ are the

associator and left unitor of the bicategory V-Mat. Morphisms between two left

A-modules Ψ and Ψ′ are 2-cells σ : Ψ⇒ Ψ′ in V-Mat compatible with the actions,

i.e. families of arrows

σx : Ψ(x)→ Ψ′(x)

in V for all x ∈ X, making the diagram

∑
x′
A(x, x′)⊗Ψ(x′)

µΨ
x //

∑
1⊗σx′

��

Ψ(x)

σx

��∑
x′
A(x, x′)⊗Ψ′(x′)

µΨ′
x

// Ψ′(x)

commute.

This is essentially Definition 4.2.1, with a slight variation in the notation due to

the different convention used for composition of V-matrices. It directly follows from

Definition 2.2.3 for K = V-Mat, where the axioms (2.13, 2.14) for the appropriate

2-cells

X �
A

%%
1

*Ψ 00

�
Ψ

66�� µ X, 1

 Ψ

%%

�
Ψ′

99�� σ X
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expressing the action and left t-modules morphisms, coincide with the above dia-

grams for their components in V. Notice also how in Section 4.2, a left A-module was

denoted by Ψ : A � // I, not to be confused with the actual V-matrix Ψ : 1 � // X

which encodes its data, where I is the unit category and 1 is the singleton set.

Similarly, we can define the category of right B-modules for a V-category BY ,

i.e. a monad B : Y � // Y, to be the category of right B-modules with codomain 1

V-ModB ≡ V-Mat(Y, 1)V-Mat(B,1)

and also the more general category of (AX ,BY )-bimodules as the category of algebras

for the monad ‘pre-composition with B and post-composition with A’

V-AModB ≡ V-Mat(Y,X)V-Mat(B,A)

which gives the hom-category of a bicategory of V-enriched bimodules V-BMod.

This way of presenting of enriched bimodules is also included in [BCSW83]. We

note that this bicategorical structure as well as the one that the enriched bicomodules

later possibly form are not central for the current development.

In a completely dual way, we now proceed to the study of the notion of a V-

enriched comodule for a V-cocategory. The definitions of the various cases of comod-

ules for comonads in bicategories can again be found in Section 2.2, and in particular

for K = V-Mat, a comonad is a V-cocategory C : X � // X.

Definition 7.6.2. The category of left C-comodules for a V-cocategory (C,X) is

the category of left C-comodules with fixed domain the singleton set in the bicategory

V-Mat

V-CComod = V-Mat(1, X)V-Mat(1,C).

Objects are V-matrices Φ : 1 � // X given by a family of objects {Φ(x)}x∈X in V,

equipped with the coaction δ : C ◦ Φ⇒ Φ, a 2-cell in V-Mat with components

δx : Φ(x)→
∑
x′∈X

C(x, x′)⊗ Φ(x′)

satisfying the commutativity of the following diagrams:

Φ(x)

δx

vv

δx

((∑
x′′
C(x, x′′)⊗ Φ(x′′)

∑
∆x,x′′⊗1

��

∑
x′
C(x, x′)⊗ Φ(x′)

∑
1⊗δx′

��∑
x′′

(
∑
x′
C(x, x′)⊗ C(x′, x′′))⊗ Φ(x′′)

α //
∑
x′
C(x, x′)⊗ (

∑
x′′
C(x′, x′′)⊗ Φ(x′′)),

Φ(x)
δx //

λ−1
$$

∑
x
C(x, x)⊗ Φ(x)

εx⊗1ww
I ⊗ Φ(x).
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∆ and ε are the cocomposition law and coidentities for C. Morphisms between two

left C-comodules Φ and Φ′ are 2-cells τ : Φ ⇒ Φ′ in V-Mat which are compatible

with the coactions, i.e. families of arrows

τx : Φ(x)→ Φ′(x)

in V for all x ∈ X, which satisfy the commutativity of

Φ(x)
δΦ
x //

τx

��

∑
x′
C(x, x′)⊗ Φ(x′)

∑
1⊗τx′

��
Φ′(x)

δΦ′
x

//
∑
x′
C(x, x′)⊗ Φ′(x′).

In an analogous way, we can define the category of right DY -comodules for a

V-cocategory to be the category of right D-comodules with codomain 1

V-ComodD = V-Mat(Y, 1)V-Mat(D,1)

and also more generally the category of left CX/right DY -bicomodules as the category

of coalgebras for the monad ‘pre-composition with D and post-composition with C’

V-CModD = V-Mat(Y,X)V-Mat(D,C).

By Proposition 7.1.1, the hom-categories V-Mat(X,Y ) = VY×X of the bicate-

gory V-Mat have various useful properties, which may be transferred to the cate-

gories defined above. For example, V-AMod and V-CComod which are monadic

and comonadic by definition, have all limits/colimits that V has, and those col-

imits/limits that are preserved by the monad/comonad. Also, they inherit local

presentability, as explained below.

Proposition 7.6.3. Suppose V is a cocomplete monoidal category such that the

tensor product preserves colimits in both variables.

(1) The category of left A-modules for a V-category AX is cocomplete and lo-

cally presentable when V is.

(2) The category of left C-comodules for a V-cocategory CX is cocomplete and

locally presentable when V is.

Proof. (1) The ordinary monad V-Mat(1, A) which post-composes every V-

matrix S : 1 � // X with the monad A : X � // X preserves colimits, since composi-

tion of V-matrices commutes with all colimits in general.

In particular, A ◦ − preserves filtered colimits, therefore V-AMod is finitary

monadic over V-Mat(1, X), which is locally presentable when V is. By Theorem

3.4.3, categories of finitary algebras of locally presentable categories are also locally

presentable, hence the result follows.

(2) The category V-CComod has all colimits since they are created from those

in the cocomplete V-Mat(1, X). The endofunctor

FC : V-Mat(1, X)
C◦−−−−→ V-Mat(1, X)
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which gives rise to that comonad is again finitary, so for a locally presentable V,

Theorem 3.4.3 applies. �

Remark.

(i) We can also express the axioms which define the objects and the arrows in

V-CComod by the diagrams

Φ
α +3

α

��

C ◦ Φ

1◦α
��

C ◦ Φ
∆◦1
+3 C ◦ C ◦ Φ,

Φ
α +3

1Φ ��

C ◦ Φ

ε◦1{�
Φ

for a V-matrix Φ with domain 1 equipped with α : Φ⇒ C ◦ Φ, and

Φ
α +3

k
��

C ◦ Φ

1◦k
��

Ψ
β
+3 C ◦Ψ

for a 2-cell k : Φ ⇒ Ψ. This could create the impression that V-CComod is an

ordinary category of comodules for a comonoid, here C ∈ Comon(V-Mat(X,X)),

in some monoidal category. However, that would require everything to take place

in the context of the fixed monoidal category (V-Mat(X,X), ◦, 1X), therefore the

comodules category would be

ComodV-Mat(X,X)(C) = V-Mat(X,X)V-Mat(X,C)

by Proposition 3.4.1. In our terminology, this is the category of left C-comodules

with fixed domain X in the bicategory V-Mat, rather than just the ones with domain

1 = {∗}, like V-CComod was defined. The same applies to the categories of modules

for a V-category A ∈Mon(V-Mat(X,X)).

From this point of view, we could formulate all the above definitions in a more

abstract way: left AX -modules could be V-matrices Ψ : Y � // X with arbitrary do-

main set Y , given by a family of objects {Ψ(x, y)}(x,y)∈X×Y in V and a left action

from A given by arrows

µx.y :
∑
x′∈X

A(x, x′)⊗Ψ(x′, y)→ Ψ(x, y)

satisfying appropriate axioms. This is also how V-bimodules are defined. Neverthe-

less, for the purposes of this thesis we are interested in V-modules/comodules given

by families indexed only over the set of objects of the underlying V-category/coca-

tegory.

(ii) Notice that establishing local presentability for particular categories of inter-

est has been of varied difficulty, depending on their further structure. For example,

for the categories ComodV(C) (Proposition 3.4.2) and V-CComod the result was

straightforward because they were both evidently finitary comonadic over locally

presentable categories. On the other hand, for Comon(V) and V-Cocat we first

had to verify local presentability (Propositions 3.3.5 and 7.4.2), and comonadicity



172 7. ENRICHMENT OF V-CATEGORIES AND V-MODULES

followed afterwards. Notably, expressing a category as an equifier of a family of nat-

ural transformations of accessible functors between accessible categories has been

the underlying key technique in all cases.

We now consider global categories of enriched modules and comodules, i.e. (left)

V-modules and (left) V-comodules for which the V-category and V-cocategory which

acts or co-acts is not fixed as above, but varies. The definitions below are motivated

by the concepts in Section 6.2.

Definition 7.6.4. The global category of left V-modules V-Mod is defined as

follows. Objects are left A-modules Ψ for an arbitrary V-category AX , denoted by

ΨA, and a morphism κF : ΨA → ΞB between a AX -module Ψ and a BY -module Ξ

consists of a V-functor Ff : AX −→ BY and a family of arrows in V κx : Ψ(x) −→
Ξ(fx) for all objects x ∈ X of A, such that the diagram

∑
x′
A(x, x′)⊗Ψ(x′)

µΨ
x //

∑
1⊗κx

��

Ψ(x)

κx

��∑
x′
A(x, x′)⊗ Ξ(fx′) ∑

Fx,x′⊗1
//
∑
x′
B(fx, fx′)⊗ Ξ(fx′)

µΞ
fx

// Ξ(fx)

(7.44)

commutes. The arrows µΨ and µΞ are the left A and B actions on Ψ and Ξ respec-

tively.

Dually, the global category of left V-comodules V-Comod has as objects left

C-comodules for an arbitrary V-cocategory CX , denoted by ΦC , and a morphism

sG : ΦC → ΩD consists of a V-cofunctor Gg : CX → DY and a family of arrows in V
νx : Φ(x)→ Ω(gx) for all x ∈ X, such that the diagram

Φ(x)
δΦ
x //

νx

��

∑
x′
C(x, x′)⊗ Φ(x′)

∑
Gx,x′⊗1

//
∑
x′
D(gx, gx′)⊗ Φ(x′)

∑
1⊗νx��∑

x′
D(gx, gx′)⊗ Ω(gx′)

��
ι
��

Ω(gx)
δΩ
gx

//
∑
y∈Y

D(gx, y)⊗ Ω(y)

(7.45)

commutes. The arrows δΦ and δΩ are the corresponding coactions, and ι is the

inclusion into a larger sum.

Notice the similarities between the diagrams (7.44), (7.45) that morphisms be-

tween V-modules and V-comodules over different V-categories and V-cocategories

have to satisfy, with the respective diagrams from Definition 6.2.1. This was of

course expected, since V-Mod and V-Comod are to be thought of as the many-

object generalizations of the global categories Mod and Comod.
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Both global categories of V-enriched modules and comodules have the structure

of a (symmetric) monoidal category, when V is symmetric monoidal. For a left

AX -module Ψ and a left BY -module Ξ, their tensor product is a V-matrix

Ψ⊗ Ξ : 1 � // X × Y (7.46)

given by the family of objects in V

(Ψ⊗ Ξ)(x, y) := Ψ(x)⊗ Ξ(y)

equipped with a left (A ⊗ B)X×Y action (since V-Cat is monoidal) a 2-cell µ :

(A⊗ B) ◦ (Ψ⊗ Ξ)⇒ Ψ⊗ Ξ, with components arrows in V

µ(x,y) :
∑

(x′,y′)∈X×Y

(A⊗ B)((x, y), (x′, y′))⊗ (Ψ⊗ Ξ)(x′, y′)→ (Ψ⊗ Ξ)(x, y)

which are explicitly the composites

A(x, x′)⊗B(y, y′)⊗Ψ(x′)⊗ Ξ(y′)
1⊗s⊗1 //

--

A(x, x′)⊗Ψ(x′)⊗B(y, y′)⊗ Ξ(y′)

µΨ
x⊗µΞ

y

��
Ψ(x)⊗ Ξ(y)

for all x, x′ ∈ X and y, y′ ∈ Y . The axioms for an A ⊗ B-action are satisfied by

the axioms for µΨ and µΞ. Dually, if Φ is a left CX -comodule and Ω is a left DY -

module, their tensor product is a V-matrix Φ⊗Ω as (7.46) given by (Φ⊗Ω)(x, y) =

Φ(x)⊗ Ω(y), with left (C ⊗ D)X×Y -action consisting of the composite arrows

Φ(x)⊗ Ω(y)
δΦ
x⊗δΩ

y //

,,

∑
x′∈X

C(x, x′)⊗ Φ(x′)⊗
∑
y′∈Y

D(y, y′)⊗ Ω(y′)

1⊗s⊗1

��∑
x′∈X
y′∈Y

C(x, x′)⊗D(y, y′)⊗ Φ(x′)⊗ Ω(y′).

Notice that the right arrow incorporates an isomorphism due to ⊗ preserving sums.

It is not hard to check that we can extend the definition of a tensor product to

V-module and comodule morphisms, and also symmetry from V is clearly inherited.

The monoidal unit in both cases is again the unit V-matrix I : 1 � // 1 , with trivial

I-action from the unit V-(co)category.

There are obvious forgetful functors from these global categories to V-categories

and V-cocategories

N : V-Mod→ V-Cat

H : V-Comod→ V-Cocat

which map any left A-module ΨA and C-comodule ΦC to the V-category A and

V-cocategory C respectively, and the morphisms to the underlying V-functor and V-

cofunctor. These functors will turn out to be a fibration and an opfibration, allowing
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us to once again employ Theorem 5.3.7 regarding adjunctions between fibrations, in

order to establish an enrichment of V-Mod in V-Comod.

Similarly to the V-categories and V-cocategories development, we will first for-

mulate isomorphic characterizations of these two categories which will clarify the

fibrational and opfibrational structure later. Lemmas 7.3.3 and 7.3.11 justify the

form of the V-functors and V-cofunctors used below.

Lemma 7.6.5. Suppose that Ξ : 1 � // Y is a left B-module and F : (A,X)
(φ,f)−−−→

(B, Y ) is a V-functor. Then, the composite V-matrix

1 �Ξ // Y �f
∗
// X

has the structure of a left A-module. Moreover, this mapping gives rise to a functor

(f∗ ◦ −) : V-BMod −→ V-AMod.

Proof. The induced left A-action µ′ on f∗Ξ is the composite 2-cell

Y �f
∗

//

�
B

''

X

�
A

��
1

�� µ

;Ξ

88

�
Ξ

22

�� φ̂

Y �
f∗

// X

where φ̂ : f∗A⇒ Bf∗ corresponds bijectively to φ : A⇒ f∗Bf∗ via mates. In terms

of pasting operations, this is the composite 2-cell

µ′ : Af∗Ξ
φ̂Ξ
+3 f∗BΞ

f∗µ
+3 f∗Ξ.

The fact that µ′ satisfies the axioms for an A-action for a monad A : X � // X follows

from the axioms of the V-functor F = (φ, f) and the left B-action µ on Ξ. Also, it

is easy to check that if σ : Ξ→ Ξ′ is a left B-module morphism, then

1

 Ξ

##

�
Ξ′

<<�� σ Y �f
∗
// X

is a left A-module morphism. In terms of components, the family {Ξ(y)}y∈Y of

objects in V is mapped to the family

{(f∗ ◦ Ξ)(x)}x∈X = {I ⊗ Ξ(fx)}x∈X

and the family σy : Ξ(y)→ Ξ′(y) of arrows in V is mapped to

(f∗σ)x : I ⊗ Ξ(fx)
1⊗σfx−−−−−→ I ⊗ Ξ′(fx).

Compatibility with composition and identities for this functor follow from properties

of vertical and horizontal composition of 2-cells. �
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Notice that the above lemma, like other results of this section, does not only

hold for left modules with fixed domain the singleton set 1, but for modules with

arbitrary domain. Similarly, for right modules with fixed codomain, if we replace

(f∗ ◦ -) with (- ◦ f∗) we get an analogous functor. Dually, we can consider left

V-comodules.

Lemma 7.6.6. If Φ : 1 � // X is a left C-comodule and G : (C,X)
(ψ,g)−−−→ (D,Y )

is a V-cofunctor, the composite V-matrix

1 �Φ
// X �g∗ // Y

obtains the structure of a left D-comodule. This mapping gives rise to a functor

(g∗ ◦ −) : V-CComod −→ V-DComod.

Proof. The induced D-coaction δ′ on g∗Φ is the composite 2-cell

1 �Φ //

�� δ
�

Φ
&&

�� ψ̂

X �g∗ // Y

X

:
C

77

�
g∗

// Y

;
D

CC

where again ψ̂ is the mate of ψ ‘on the one side’. This is the pasted composite

δ′ : g∗Φ
g∗δ +3 g∗CΦ

ψ̂Φ
+3 Dg∗Φ ,

and the D-coaction axioms are satisfied by the axioms for δ and the V-cofunctor

G = (ψ, g). Moreover, if τ : Φ→ Φ′ is a left C-comodule morphism, post-composing

it with g∗ produces a 2-cell which satisfies the axioms for a left D-comodule. In

terms of components, the functor (g∗ ◦ −) maps the family {Φ(x)}x∈X of objects in

V to

{(g∗ ◦ Φ)(y)}y∈Y = {
∑
y=fx

I ⊗ Φ(x)}y∈Y

and the family τx : Φ(x)→ Φ(x′) of arrows in V to

(g∗τ)y :
∑
y=fx

I ⊗ Φ(x)
∑

1⊗τx−−−−−→
∑
y=fx

I ⊗ Φ′(x).

This mapping is a functor since it preserves composition and identities for evident

reasons. �

We can now give the following characterizations of the global categories of V-

modules and V-comodules.

Lemma 7.6.7. The objects of V-Mod are pairs (Ψ,AX) ∈ V-AMod × V-Cat

and morphisms are (in bijection with) pairs (κ, Ff ) : (Ψ,AX)→ (Ξ,BY ) whereΨ
κ−→ f∗ ◦ Ξ in V-AMod

F : (A,X)
(φ,f)−−−→ (B, Y ) in V-Cat.
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Evidently the objects of this description are exactly the same as in Definition

7.6.4, whereas the morphisms satisfy

X
�
A

  
1

�� κ

(Ψ --

�
Ξ

44

�
Ξ

33

Y �� φ̂

1
f∗

??



B ++

X

�� µ
Y

1
f∗

??
=

X
�
A

!!
1

�� µ
1Ψ 33

�Ψ 22



Ξ ++

�� κ

X.

Y

0
f∗

>>

where the multiplication of f∗ ◦ Ξ is given by Lemma 7.6.5. If translated in terms

of components κx : Ψ(x) → I ⊗ Ξ(fx), the above is equivalent to the commutative

diagram (7.44), again ‘up to tensoring with I in the left’. This implies that there is

a bijection between these two forms of the morphisms.

Lemma 7.6.8. The objects of V-Comod are pairs (Φ, CX) ∈ V-CComod ×
V-Cocat and morphisms are pairs (ν,Gg) : (Φ, CX)→ (Ω,DY ) whereg∗ ◦ Φ

ν−→ Ω in V-CComod

G : (C,X)
(ψ,g)−−−→ (D,Y ) in V-Cocat.

We are now in position to illustrate the fibrational and opfibrational struc-

ture of the categories of enriched modules and comodules. Similarly to Section

7.5, the idea is to define appropriate pseudofunctors, which will then give rise via

the Grothendieck construction to (op)fibrations isomorphic to the forgetful func-

tors N and T . The fibre categories will evidently be the categories of left mod-

ules/comodules for a fixed V-category/cocategory.

Proposition 7.6.9. The global category of V-modules V-Mod is fibred over the

category of V-categories V-Cat.

Proof. Define an indexed category H as follows:

H : V-Catop // Cat

(A,X) � //

(φ,f)
��

V-AMod

(B, Y ) � // V-BMod

H (φ,f)

OO

where H (φ, f) = (f∗ ◦ -) as described in Lemma 7.6.5, i.e. post-composition with

the V-matrix f∗ induced from the object mapping f of the V-functor. For any two

composable V-functors Ff : (A,X) → (B, Y ) and Gg : (B, Y ) → (E,Z), there is a

natural isomorphism

V-BMod H F

))
V-EMod

H G 11

H (G◦F )

33�� δF,G V-AMod
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with components invertible arrows in AMod

δG,FΨ :

Y �
f∗

$$
1 �Ψ // Z

*g
∗ 00

�
(gf)∗

88�� ξg,f X

where ξ is like in (7.12). These 2-cells consist of families of isomorphisms in V

(δG,FΨ )x : I ⊗ I ⊗Ψ(gfx)
rI⊗1−−−−→ I ⊗Ψ(gfx)

which trivially commute with the induced A-actions of the modules f∗g∗Ψ and

(gf)∗Ψ. Also, for any V-category (A,X), there is a natural isomorphism

V-AMod �� γA

1V-AMod

((

H (1A)

66
V-AMod

with components invertible arrows

γAΨ : 1

�Ψ

((

�
Ψ

//
�� λ−1 X

X
(
1X

99

where (idX)∗ = 1X is the underlying function of the identity functor 1A and λ is

the left unitor of the bicategory V-Mat, thus consist of isomorphisms

(γAΨ)x : Ψ(x)
l−1

−−−→ I ⊗Ψ(x),

again trivially being left A-module morphisms. The natural transformations δ and

γ with components the above isomorphisms can be verified to satisfy the conditions

2.5 and 2.6, therefore H is a well-defined pseudofunctor.

By Theorem 5.2.1, the Grothendieck category GH has as objects pairs (Ψ,AX)

where AX is in V-Cat and Ψ is in V-AMod, and morphisms (Ψ,AX) → (Ξ,BY )

are pairs Ψ→ (H F )Ξ in H BY
F : (A,X)→ (B, Y ) in V-Cat

which, by definition of the functor H F , coincide with the isomorphic formulation of

left V-module morphisms as in Lemma 7.6.7, hence GH ∼= V-Mod. Moreover, the

forgetful functor N : V-Mod → V-Cat which keeps the V-category and V-functor

part of structure, has essentially the same effect as the fibration

PH : GH −→ V-Cat

so N ∼= PH exhibits N as a fibration itself. �

Proposition 7.6.10. The global category of (left) V-comodules V-Comod is

opfibred over the category of V-cocategories V-Cocat.
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Proof. Define a (covariant) indexed category as follows:

S : V-Cocat // Cat

(C,X) � //

(ψ,f)
��

V-CComod

S (ψ,f)
��

(D,Y ) � // V-DComod

where S (ψ, f) = (f∗ ◦ -) as in Lemma 7.6.6. For any two composable V-cofunctors

Ff : (C,X) → (D,Y ) and Gg : (D,Y ) → (E,Z), we have a natural isomorphism

δG,F : SG ◦SF ⇒ S (G ◦ F ) with components the composite 2-cells

δG,FΦ :

Y �
g∗

$$
1 �Φ // X

(f∗ //

�
(gf)∗

66�� ζg,f Z

in V-EComod, consisting of the families of arrows in V

(δG,FΦ )z :
∑
z=gy
y=fx

I ⊗ I ⊗ Φ(x)
∑
rI⊗1−−−−−→

∑
z=gfx

I ⊗ Φ(x)

which trivially commute with the respective E-coactions. Moreover, for any V-

cocategory (C, X), we have a natural isomorphism γC : 1V-CComod ⇒ S (1C) with

components the same invertible arrows λ-1 as in the previous proof. The natural

isomorphisms δ and γ can be checked to satisfy the appropriate axioms 2.5 and 2.6,

so S is a well-defined pseudofunctor. Via Grothendieck construction, it gives rise

to an opfibration

US : GS −→ V-Cocat

which maps a pair (Ψ, CX) where Ψ ∈ V-CComod to its V-cocategory CX , and(SF )Φ→ Ω in S CX
F : (C,X)→ (D,Y ) in V-Cocat

to the V-functor F . By Lemma 7.6.8 it is now evident that US
∼= H, hence the

forgetful functor H : V-Comod→ V-Cocat is an opfibration. �

Corollary 7.6.11. The opfibration H has all opfibred colimits, hence V-Comod

has all colimits and H strictly preserves them.

Proof. The fibre categories of the opfibration H are the cocomplete categories

V-CComod for each V-cocategory CX , and the reindexing functors (f∗ ◦ -) for any

V-cofunctor Ff preserve colimits (as composition of V-matrices always does). There-

fore, Proposition 5.3.9 ensures that H is opfibred cocomplete, so by Corollary 5.3.11

and cocompleteness of V-Cocat, the result follows. �

Remark. In this section, emphasis was given to the study of left-sided V-

modules and V-comodules, whereas in Section 6.2 where the ‘one-object case’ global

categories Mod and Comod where defined, the distinction between left and right

was mostly omitted due to symmetry in V. In fact, in a very similar manner we could
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have defined global categories of right V-modules and V-comodules. Then by slightly

changing the reindexing functors (replacing post- with pre-composition, and lower

with upper stars), we would end up with a fibrational characterization as above.

However, in this case there does not exist an isomorphism between right and

left enriched modules and comodules as before, which would allow us to regard the

different (fibre and total) categories as essentially the same. Explicitly, for ModV(A)

with V symmetric, a left A-module (M,µ) for a monoid A always gives rise to a right

A-action µ′ on M via

A⊗M
µ

// M

M ⊗A
µ′

66

∼ = s

OO

and all appropriate axioms are satisfied. On the other hand, the left A-action for a

V-category AX on a V-module Ψ is given by arrows in V

A(x, x′)⊗Ψ(x′)→ Ψ(x)

for all x, x′ ∈ X, which are not in bijective correspondence with arrows which would

define a right A-action on Ψ, of the form

Ψ(x′)⊗A(x′, x)→ Ψ(x)

for all x, x′, even if V is symmetric. This is because the elements of the indexing

set of the family of objects of Ψ in the formula would agree with the second, rather

than the first entry of the hom-sets of A in the above formula.

7.7. Enrichment of V-modules in V-comodules

Similarly to Sections 6.3 and 7.4, we are now going to work our way through the

data which induce an enrichment of the global category of enriched modules V-Mod

in the global category of enriched comodules V-Comod.

Suppose that V is a symmetric monoidal closed category, with products and

coproducts. Recall that the lax functor Hom : V-Matco × V-Mat → V-Mat as in

(7.5) provides a functor between the hom-categories

Hom(Y,W ),(X,Z) : V-Mat(Z,X)op × V-Mat(W,Y )→ V-Mat(WZ , Y X)

which maps a pair of V-matrices (S : Z � // X, T : W � // Y ) to Hom(S, T ) given

by the family of objects in V

Hom(S, T )(k,m) =
∏
x∈X
z∈Z

[S(x, z), T (mx, kz)]

for all k ∈ WZ and m ∈ Y X . Moreover, in Section 7.4 we made use of the induced

functor Mon(Hom(X,Y ),(X,Y )) as in (7.31), between the categories of comonoids and

monoids of the endoarrow hom-category. This gave rise to the functor

K : V-Cocatop × V-Cat→ V-Cat
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between V-(co)categories, i.e. the V-matrix K(CX ,BY ) = Hom(C,B)Y X obtains the

structure a V-category.

Now, by Proposition 2.2.10, we know that for any lax functor F between bicate-

gories K,L and any monad t in K, there is an induced functor Mod(FA,B) between

the category of left t-modules in K and left F t-modules in L. If we apply this in

the current setting, the induced functor is Mod(Hom(Y,W ),(X,Z))(
V-Mat(Z,X)V-Mat(Z,C)

)op
×V-Mat(W,Y )V-Mat(W,B)−→V-Mat(WZ ,Y X)V-Mat(WZ,Hom(C,B))

for (C,X) a V-cocategory and (B, Y ) a V-category, for any sets X,Y, Z,W . This

is the case, because a monad in the domain category of the lax functor Hom is a

pair (C,B) where C is a monad in V-Matco, i.e. a comonad in V-Mat, and B is a

monad in V-Mat. Also the domain of the above induced functor is isomorphic to(
(V-Matco × V-Mat)((Z,W ), (X,Y ))

)(V-Matco×V-Mat)((Z,W ),(C,B))

since V-Matco(Z,X) = V-Mat(Z,X)op and the category of algebras for the monad

(in fact, opposite comonad) V-Mat(Z,C)op on this category is precisely the opposite

category of coalgebras (
V-Mat(Z,X)V-Mat(Z,C)

)op
.

In particular, if we choose Z=W=1 to be the singleton set, we obtain the functor

Mod(Hom(1,1),(X,Y )):
(
V-Mat(1,X)(-◦C)

)op
×V-Mat(1,Y )(-◦B)→V-Mat(1,Y X)(-◦Hom(C,B))

where the ‘pre-composition’ monads and comonads are just the endofunctors V-

Mat(1, C), V-Mat(1, B) and V-Mat(1,Hom(C,B)) respectively. We denote this

functor by

K̄(X,Y ) : V-CComodop × V-BMod // V-Hom(C,B)Mod

( Φ , Ψ ) � // Hom(Φ,Ψ)

using Definitions 7.6.1 and 7.6.2 for the categories involved. This concretely means

that whenever Φ is a left CX -comodule and Ψ is a left BY -module, the V-matrix

Hom(ΦC ,ΨB) : 1 � // Y X

obtains the structure of a left Hom(C,B)-module, where Hom(C,B) : Y X � // Y X is

a monad in V-Mat as mentioned above. Explicitly, the left Hom(C,B)-action

µs :
∑
t∈Y X

Hom(C,B)(s, t)⊗Hom(Φ,Ψ)(t)→ Hom(Φ,Ψ)(s)

for all s ∈ Y X is given by a family of arrows in V∑
t∈Y X

∏
a,a′∈X

[C(a′, a),B(sa′, ta)]⊗
∏
b∈X

[Φ(b),Ψ(tb)]→
∏
c∈X

[Φ(c),Ψ(sc)]

which, for fixed t ∈ Y X and c ∈ X, corresponds bijectively under the usual tensor-

hom adjunction to the composite
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∏
a,a′ [C(a′,a),B(sa′,ta)]⊗

∏
b [Φ(b),Ψ(tb)]⊗Φ(c) //

1⊗δc
��

Ψ(sc)

∏
a,a′ [C(a′,a),B(sa′,ta)]⊗

∏
b [Φ(b),Ψ(tb)]⊗

∑
c′ C(c,c′)⊗Φ(c′)

∼ =

��∑
c′
∏
b [Φ(b),Ψ(tb)]⊗C(c,c′)⊗

∏
b [Φ(b),Ψ(tb)]⊗Φ(c′)

∑
πc,c′⊗1⊗πc′⊗1

��∑
c′ [C(c,c′),B(sc,tc′)]⊗C(c,c′)⊗[Φ(c′),Ψ(tc′)]⊗Φ(c′) ∑

ev⊗ev

// ∑
c′ B(sc,tc′)⊗Ψ(tc′)

µsc

OO

where δ is the left C-coaction on Φ and µ is the left A-action on Φ. Notice that for

this formula to work, both the V-module and the V-comodule have to be left-sided.

Also, by Proposition 2.2.10 again, this induced functor between the categories of

modules is by construction such that the diagram

V-CComodop × V-BMod
K̄(X,Y )

//

��

V-Hom(C,B)Mod

��
V-Mat(1, X)op × V-Mat(1, Y )

Hom(1,1),(X,Y )

// V-Mat(1, Y X).

(7.47)

commutes. The left and right arrows are the respective monadic forgetful functors

from the categories of algebras to the base categories, for CX a V-cocategory and

BY a V-category.

As done earlier for the functor K (7.32), we can now define a functor between

the global categories of left V-modules and V-comodules

K̄ : V-Comodop × V-Mod −→ V-Mod (7.48)

given by K̄(X,Y ) on objects. For any left V-module morphism κF : ΨB → Ψ′B′ and

left V-comodule morphism νG : Φ′C′ → ΦC as in Definition 7.6.4, define a morphism

K̄(ν, κ) : Hom(Φ,Ψ)Hom(C,B) −→ Hom(Φ′,Ψ′)Hom(C′,B′)

in the global category V-Mod as follows: it consists of the V-functor

K(G,F )fg : Hom(C,B)Y X → Hom(C′,B′)Y ′X′

between the V-categories which act on the V-modules, and the family of arrows

K̄(ν,κ)s:Hom(Φ,Ψ)(s)−→Hom(Φ′,Ψ′)(fg(s))≡
∏
x

[Φ(x),Ψ(sx)]−→
∏
x′

[Φ′(x′),Ψ′(fsgx′)]

which correspond uniquely, for a fixed x′ ∈ X, to the composite morphism∏
x∈X [Φ(x),Ψ(sx)]⊗ Φ′(x′) //

νx′

��

Ψ′(fsgx′)

∏
x∈X [Φ(x),Ψ(sx)]⊗ Φ(gx′)

πgx′⊗1
// [Φ(gx′),Ψ(sgx′)]⊗ Φ(gx′)

ev
// Ψ(sgx′)

κsgx′

OO
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under the tensor-hom adjunction in the monoidal closed V. It can be verified via

computations that these arrows satisfy the commutativity of (7.44) thus K̄(ν, κ) is

a well-defined V-module morphism.

Following the same approach as for earlier results, we would now like to exhibit

this functor K̄ as an action, whose adjoint will induce the suggested enrichment.

Before we continue in this direction, we introduce a category whose properties will

further clarify the current setting. In fact, the following structure serves very similar

purposes as V-graphs, which were used as the ‘base case’ for V-Cat and V-Cocat. If

we conceive of V-Grph as the category of all endo-1-cells of the bicategory V-Mat,

the following is the category of all 1-cells with fixed domain the singleton set 1.

Consider a category C with objects all V-matrices of the form S : 1 � // X for

any set X, i.e. families of objects {S(x)}x∈X in V, where a morphism ν from S with

codomain X to T with codomain Y

νf : (1 �S // X )→ (1 �T // Y )

consists of a function f : X → Y and arrows νx : S(x)→ T (fx) in V for all x ∈ X.

Moreover, this category is in fact bifibred over Set, with reindexing functors those

used in Propositions 7.6.9 and 7.6.10. However, this fact is not fundamental at this

point since the (op)fibrations N and H have already been established, so details are

not provided.

Under this section’s assumptions on V, the category C is a symmetric monoidal

category, with the family of objects in V

{(S ⊗ T )(x, y)}(x,y)∈X×Y = {S(x)⊗ T (x)}x∈X
y∈Y

determining the tensor product S ⊗ T : 1 � // X × Y of V-matrices S and T with

codomains X and Y accordingly. In a sense, this is where the tensor products of V-

Mod and V-Comod come from. Moreover, C is a monoidal closed category: for all

V-matrices S, T and R with codomains X, Y and Z respectively, there is a bijective

correspondence between arrows

(S ⊗ T )X×Y // RZ in C

SX // Hom(T,R)ZY in C

where Hom(T,R) is the mapping on objects of the functor Hom(1,1),(Y,Z) as in (7.6).

Indeed, any arrow κ : S ⊗ T → M in C, given by a function f : X × Y → Z and

arrows κ(x,y) : S(x) ⊗ T (y) → R(f(x, y)) in V corresponds bijectively, under the

tensor-hom adjunction in V, to

S(x)→ [T (y), R(f(x, y))]

for all x ∈ X, y ∈ Y . Having in mind that by cartesian closedness in Set, f(x, y) =

f̄x(y) for the corresponding function f̄ : X → ZY , the above is a family of arrows

S(x)→
∏
y∈Y

[T (x), R(f̄xy)]
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for all x ∈ X, which together with f̄ uniquely determine an arrow S → Hom(T,R)

in C as expected. This is natural in S, therefore Hom(1,1),(Y,Z)(T,−) is the object

function of a right adjoint of −⊗ T which induces a functor of two variables

cHom(−,−) : Cop × C −→ C

namely the internal hom of C. This is obviously very similar to the proof of Propo-

sition 7.2.3. It is also evident that V has all small limits, and the proof is almost

identical with that of completence of V-Grph in Section 7.2.

Notice that the global categories V-Mod and V-Comod are (non-full) subcat-

egories of this C, like V-Cat and V-Cocat were subcategories of V-Grph. Their

objects are objects of C with extra structure. In particular, the functor K̄ defined

earlier is a restriction of cHom(−,−) to the appropriate subcategory of Cop × C.
We are now going to employ this category C in order to obtain comonadicity

of V-Comod and monadicity of V-Mod over appropriate categories, similarly to

Propositions 6.2.3 and 6.2.5 of the previous chapter.

Proposition 7.7.1. The global category of V-modules is monadic over the pull-

back category C×SetV-Cat and the global category of V-comodules is comonadic over

the pullback category C ×Set V-Cocat.

Proof. Consider the functor

U : V-Mod // C ×Set V-Cat

ΨA //

κF
��

(ΨX , AX)

(κf ,Ff )
��

ΞB // (ΞY , BY )

which ‘separates’ the V-matrix with domain 1 from the V-category which acts on it.

This is well-defined: the pullback category is formed as in

C ×Set V-Cat //

��

V-Cat

��
C // Set,

where the right edge is the fibration P which maps any V-category to its set of

objects, and the bottom edge is the bifibration which maps a V-matrix with fixed

domain 1 to its codomain. We will now construct a left adjoint to U , and the

category of algebras for the induced monad will turn out to be V-Mod. Define

G : C ×Set V-Cat // V-Mod

(SX ,AX) //

(νf ,Ff )
��

(A ◦ S)A

��
(TY ,BY ) // (B ◦ T )B
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where the composite V-matrix 1 �S // X �A // X obtains a left A-action via multiplica-

tion of the monad A, and the image of the morphism between the two left V-modules

consists of the V-functor Ff : AX → BY and the family κx : (A◦S)(x)→ (B◦T )(fx)

of the composite arrows in V∑
x′∈X

A(x, x′)⊗ S(x′) //

∑
Fx,x′⊗νx′

��

∑
y′∈Y

B(fx, y′)⊗ T (y′).

∑
x′∈X

B(fx, fx′)⊗ S(fx′)
% � ι

77

The above is possible only because ν and F have the same ‘underlying function’ f

between the ‘underlying sets’ X and Y of the enriched modules and the enriched

categories, since they determine an arrow in the specific pullback category. This

morphism κF commutes with the A-action and B-action on (A ◦ S) and (B ◦ T )

respectively, since Ff respects the composition laws of A and B which induce the

actions. Now, there is a bijective correspondence between the hom-sets

V-Mod(G(S,AX),ΞB) ∼= (C ×Set V-Cat)((S,AX), U(Ξ,BY ))

for any left BY -module Ξ, V-matrix S : 1 � // X and V-category AX , as follows.

(i) Given a left V-module morphism κF : (A ◦S)A → ΞB with V-functor Ff and

arrows κx :
∑

x′ A(x, x′) ⊗ S(x′) → Ξ(fx) in V, we can form a pair of morphisms

(νf : S → Ξ, Ff ) in the pullback category, where ν in C is given by the function

f : X → Y and the composite arrows in V

νx : S(x) ∼= I ⊗ S(x)
ηx⊗1−−−→ A(x, x)⊗ S(x)

ι−→
∑
x′∈X

A(x, x′)⊗ S(x′)
κx−→ Ξ(fx)

where η is the unit of the monad (A,X).

(ii) Given a pair of morphisms (σf , Ff ) in the pullback, where

σ : (1 �S // X )→ (1 �Ξ
// Y )

with function f : X → Y and arrows σx : S(x)→ Ξ(fx) in V is a morphism in C, and

Ff : AX → BY is a V-functor, we can form a left V-module morphism (A◦S)A → ΞB

with the same V-functor Ff and family of arrows∑
x∈x

A(x, x′)⊗ S(x′)

∑
Fx,x′⊗σx′−−−−−−−−→

∑
x′∈X

B(fx, fx′)⊗ Ξ(fx′)
µΞ
fx−−→ Ξ(fx).

These two directions are inverse to each other, due to properties of the arrows

involved, and also the bijection is natural, thus we established an adjunction

C ×Set V-Cat
G //
⊥ V-Mod
U

oo

which gives rise to a monad (GU,UεG, η) on C ×Set V-Cat. The GU -algebras are

precisely left V-modules, since by definition they are objects in V-AMod for each

different V-category A, and the diagram that a morphism between GU -algebras has
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to satisfy coincides with (7.44). Thus(
C ×Set V-Cat

)GU ∼= V-Mod.

Dually, we can show that the forgetful functor

V-Comod // C ×Set V-Cocat

ΦC //

νG
��

(Φ , CX)

(ν,Gg)
��

ΩD // (Ω , DY )

has a right adjoint, such that the induced comonad on C ×Set V-Cocat is essentially

the same as the global category of V-comodules, hence V-Comod is comonadic over

the pullback category. �

The above proposition leads to a better understanding of the structure and

properties of the global categories. For example, V-Mod inherits completeness from

the pullback category C ×SetV-Cat when V is complete, and the forgetful functor to

V-Cat strictly preserves all limits by construction. Hence by Corollary 5.3.11, the

fibration N of Proposition 7.6.9 has all fibred limits, and Proposition 5.3.9 implies

that the reindexing functors

(Ff )∗ = (f∗ ◦ -) : V-BMod→ V-AMod (7.49)

for a V-functor Ff : AX → BY preserve limits between the complete fibre categories.

As a further application, the functor K̄ (7.48) between the global categories

turns out to be an action, in essence because the functors K and cHom are actions.

Proposition 7.7.2. The functor K̄ between the global categories of V-modules

and V-comodules is an action, hence its opposite functor

K̄op : V-Comod× V-Modop → V-Modop

is an action of the symmetric monoidal category V-Comod on the (ordinary) cate-

gory V-Modop.

Proof. As seen in Section 4.3, we need natural isomorphisms with components

K̄(ΦC ⊗ΩD,ΨA)
∼−→ K̄(ΦC , K̄(ΩD,ΨA)) and K̄(1,ΨA)

∼−→ ΨA for V-comodules ΦC ,

ΩD and V-modules ΨA in the global category V-Mod. By definition of the functor

K̄, these are in fact of the form

Hom(Φ⊗ Ω,Ψ)Hom(C⊗D,A)
ZX×Y

∼= Hom(Φ,Hom(Ω,Ψ))Hom(C,Hom(D,A))
ZY

X

Hom(1,Ψ)Hom(I,A)X1
∼= ΨAX

where Hom is given by the product (7.7) in V. Now, the functors

K : V-Cocatop × V-Cat→ V-Cat

cHom(−,−) : Cop × C → C
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are actions, the former by Proposition 7.4.1 and the latters as the internal hom of

C. Thus we have isomorphisms

Hom(C ⊗ D,A) ∼= Hom(C,Hom(D,A)), Hom(I,A) ∼= A in V-Cat

Hom(Φ⊗ Ω,Ψ) ∼= Hom(Φ,Hom(Ω,Ψ)), Hom(1,Ψ) ∼= Ψ in C

for the two actions (notice they have the same mapping on objects). If we place these

in pairs, they form natural isomorphisms in the pullback category C ×Set V-Cat for

the chosen (co)modules over (co)categories. Since the forgetful functor from V-Mod

is monadic, it reflects all isomorphisms so these pairs lift to the required invertible

arrows in V-Mod. Moreover, the diagrams (4.8) commute because they do for all

objects of C and the arrows involved are in V-Mod. �

We aim to establish an enrichment of V-Mod in V-Comod by employing the

theory of actions, and in particular Theorem 4.3.3. This process is in line with the

ones which led to the enrichment of Mon(V) in Comon(V) in Section 6.1, of Mod

in Comod in Section 6.3 and of V-Cat in V-Cocat in Section 7.4. Therefore, we

need to show the existence of a parametrized adjoint of the action bifunctor K̄,

which will be the enriched hom functor of the (V-Comod)-enriched category with

underlying category V-Mod. The theory of fibrations and opfibrations will be again

of central importance, and so we begin with some lemmas which are helpful for the

application of the main Theorem 5.3.7.

Lemma 7.7.3. The diagram

V-Comod
K̄(−,ΨB)op

//

H

��

V-Modop

Nop

��
V-Cocat

K(−,BY )op
// V-Catop

exhibits the pair of functors (K̄(−,ΨB)op,K(−,BY )op) as an opfibred 1-cell between

the opfibrations H and Nop.

Proof. The fact that this diagram commutes can be easily verified. For exam-

ple, we already know that

K(CX ,BY ) = Hom(X,Y ),(X,Y )(C,B)Y X and

K̄(ΦC ,ΨB) = Hom(1,1),(X,Y )(Φ,Ψ)K(CX ,BY )

by definition of the two functors, which clearly implies that the V-category action

on some K̄(Φ,Ψ) is precisely K(C,B) for the V-cocategory and V-category which

act on the initial V-comodule and module.

We now have to show that the functor K̄(−,ΨB)op is cocartesian, i.e. maps

a cocartesian lifting in V-Comod to a cartesian lifting in V-Mod, since it is con-

travariant. By Proposition 7.6.10, we know that H is isomorphic to the opfibration

which arose via the Grothendieck construction on the pseudofunctor S , hence the
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canonical cocartesian lifting Cocart(Ff ,ΦC) : ΦC → (F!Φ)D is

Φ
1f∗Φ //

��

f∗Φ

��

in V-Comod

CX
Ff

// DZ in V-Cocat

(7.50)

since S (Ff ) = (f∗ ◦ −) is the reindexing functor. Notice that the pair notation

of objects and arrows of the Grothendieck category is again dropped, because it is

clear from the diagram where each element is mapped via the opfibration.

If we apply the functor K̄(−,ΨB), we get the arrow K̄((1f∗Φ, Ff ), 1) with domain

Hom((f∗Φ)D,ΨB), whereas the canonical cartesian lifting of Hom(ΦC ,ΨB) along the

V-functor K(F, 1) is

(Y f )∗Hom(Φ,Ψ)
1

(Y f )∗Hom(Φ,Ψ)
//

��

Hom(Φ,Ψ)

��

in V-Mod

Hom(D,B)Y Z
K(Ff ,1)

// Hom(C,B)Y X in V-Cat.

This is the case because by Proposition 7.6.9, the reindexing functor of the isomor-

phic fibration coming from the pseudofunctor H is H (Gg) = (g∗ ◦ −).

For the image of (7.50) under K̄(−,Ψ) to be a cartesian arrow then, we have to

show that the canonical arrow between the domains of the two arrows in V-Mod is

a vertical isomorphism. By definition of the operations involved, the domain of the

canonical cartesian lifting is a family of objects in V

(Y f )∗Hom(ΦC ,ΨD)(k) = I ⊗
∏
x∈X

[Φ(x),Ψ(kfx)]

for all k ∈ Y Z , and the domain of the image of the cocartesian arrow in V-Comod

Hom(f∗Φ,Ψ)(k) =
∏
z∈Z

[(f∗Φ)(z),Ψ(kz)] =
∏
z

[
∑
x∈f -1z

I ⊗ Φ(x),Ψ(kz)]

∼=
∏
z∈Z
z=fx

[I ⊗ Φ(x),Ψ(kz)] =
∏
x

[I ⊗ Φ(x),Ψ(kfx)]

since the internal hom maps colimits to limits on the first variable. Thus the iso-

morphism is∏
x

[I ⊗ Φ(x),Ψ(kfx)]
∏

[l,1]−−−−→
∏
x

[Φ(x),Ψ(kfx)]
l-1−−→ I ⊗

∏
x

[Φ(x),Ψ(kfx)]

for l the left unit constraint of V, thus K̄(−,Ψ)op is a cocartesian functor. �
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Lemma 7.7.4. Suppose ΨB is a V-module and AZ , BY are V-categories. If ε̃ is

the counit of the adjunction

V-Cocat
K(−,BY )op

//
⊥ V-Catop

T (−,BY )
oo

which defines the generalized Sweedler hom functor T , the composite functor

V-ComodT (A,B)

K̄(−,Ψ)op

−−−−−−−→ V-Modop
K(T (A,B),B)

(ε̃A)!−−−−→ V-Modop
A (7.51)

has a right adjoint T̄0(−,ΨB).

Proof. By Proposition 7.4.5, the functor T was defined as the parametrized

adjoint of Kop and was retrieved by Proposition 7.5.9, where it was also shown that

the underlying set of objects of the V-cocategory T (AX ,BY ) is Y X . The composite

in question consists of functors between fibre categories, and we can view as

V-S(A,B)Comod

++

Mod(Hom
(1,1),(Y Z,Y )

)op

// V-K(S(A,B),B)Modop

H op(ε̃ε)

��
V-AModop

where ε : Y Y Z → Z is the counit of the exponential adjunction (7.42). The functor

Mod(Hom) is continuous by the commutative diagram (7.47) for a fixed variable,

and so is the reindexing functor (ε̃ε)
∗ as in (7.49). Therefore the above composite of

the opposite functors is cocontinuous. Since V-T (A,B)Comod is a locally presentable

category by Proposition 7.6.3, it is cocomplete and it has a small dense subcategory.

Thus, the cocontinuous composite (7.51) has a right adjoint. �

All conditions of Lemma 5.3.6 are now satisfied, hence the existence of a para-

metrized adjoint of K̄ (more precisely, of its opposite functor) can be established as

follows.

Proposition 7.7.5. The functor K̄op : V-Comod×V-Modop → V-Modop has

a parametrized adjoint

T̄ : V-Modop × V-Mod→ V-Comod (7.52)

which makes the following diagram of categories and functors serially commute:

V-Comod
K̄(−,ΨB)op

//
⊥

H

��

V-Modop

T̄ (−,ΨB)

oo

Nop

��
V-Cocat

K(−,BY )op

//
⊥ V-Modop.

T (−,BY )
oo

(7.53)



7.7. ENRICHMENT OF V-MODULES IN V-COMODULES 189

Proof. We have an opfibred 1-cell (K̄(−,ΨB)op,K(−,BY )op) between the op-

fibrations H and Nop by Lemma 7.7.3, and an adjunction (7.43) between the base

categories of the opfibrations. Also, by Lemma 7.7.4, we have an adjunction

V-T (A,B)Comod

(ε̃A)!◦K̄op
T (A,B)

(−,Ψ)
//

⊥ V-AModop

T̄A(−,Ψ)

oo

for any V-category A. By Theorem 5.3.7, these data suffice for the existence of a

right adjoint

T̄ (−,ΨB) : V-Comod→ V-Modop

of the functor K̄op(−,ΨB) between the total categories of the opfibrations, with

T̄A(−,Ψ) its mapping on objects. By construction of this adjoint, the opfibrations

H and Nop constitute a map of adjunctions, thus (7.53) is an adjunction in Cat2.

Moreover, since we have adjunctions K̄op(−,Ψ) a T̄ (−,Ψ) for all left BY -modules

Ψ, there is a unique way to make T̄ into a functor of two variables as in (7.52). This

determines a parametrized adjoint of K̄op and the proof is complete. �

Notice that by construction of T̄ , the V-comodule T̄ (ΩA,ΨB) is a V-matrix with

codomain the set Y X , and a left T (AX ,BY )-action. This object evidently generalizes

the universal measuring comodule of Proposition 6.3.1.

Using a similar series of arguments, we can also deduce that the global category

of enriched comodules is a monoidal closed category, under assumptions which allow

the category of V-cocategories to be monoidal closed.

Proposition 7.7.6. Suppose that V is a locally presentable symmetric monoidal

closed category. The global category of left V-comodules V-Comod is a monoidal

closed category too.

Proof. We saw in the previous section how the global categories of modules

and comodules are (symmetric) monoidal when V is. We are now going to use

Lemma 5.3.6 once again, in order to obtain a right adjoint for the tensor product

endofunctor −⊗ ΦC on V-Comod.

By Proposition 7.4.4, the category V-Cocat is also a symmetric monoidal closed

category when V is, and its internal hom is denoted by gHom. Hence there is a square

V-Comod
−⊗ΦC //

H

��

V-Comod

H

��
V-Cocat

−⊗CX
// V-Cocat

(7.54)

which commutes by definition of the monoidal structure of V-Comod, and also an

adjunction between the base categories

V-Cocat
(−⊗CX)

//
⊥ V-Cocat

gHom(CX ,−)
oo
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as in (7.35). Moreover, the functor (− ⊗ ΦC) is cocartesian: it maps a cocartesian

lifting to the top arrow of the triangle

Ω
Cocart(F,Ω)

// F!Ω Ω⊗ Φ
Cocart(F,Ω)⊗1

//

Cocart(F⊗1,Ω⊗Φ) ))

F!Ω⊗ Φ in V-Comod

7→ (F ⊗ 1)!(Ω⊗ Φ)

∃!γ
OO

DY
Ff

// EZ (D ⊗ C)Y×X
(F⊗1)f×1

// (E ⊗ C)Z×X in V-Cocat

for any left DY -comodule Ω. By Proposition 7.6.10, the reindexing functor (Ff )! for

a V-cofunctor with underlying function on objects f is given by post-composition

with the induced V-matrix f∗, i.e. (Ff )! = (f∗ ◦ -). Now, the two V-matrices

(f∗ ◦ Ω)⊗ Φ, (f × 1)∗ ◦ (Ω⊗ Φ) : 1 � // Z ×X

in V-E⊗CComod are isomorphic: they are given by the families of objects in V(
(f∗ ◦ Ω)⊗ Φ

)
(z, x) = (f∗ ◦ Ω)(z)⊗ Φ(x) =

( ∑
z=fy

I ⊗ Ω(y)
)
⊗ Φ(x)

(f × 1)∗ ◦ (Ω⊗ Φ)(z, x) =
∑
z=fy

I ⊗ (Ω⊗ Φ)(y, x) =
∑
z=fy

I ⊗
(
Ω(y)⊗ Φ(x)

)
so the isomorphism between them is given by the fact that ⊗ commutes with

sums. Furthermore the above triangle commutes, so the square (7.54) exhibits

(−⊗ΦC ,−⊗ CX) as an opfibred 1-cell between H and H. Finally, if ε̄ is the counit

of the adjunction (7.35) which defines the internal hom gHom for V-cocategories,

the composite functor between the fibres

V-ComodgHom(C,D)
−⊗ΦC−−−−−→ V-ComodgHom(C,D)⊗C

(ε̄D)!−−−−→ V-ComodD

has a right adjoint, call it gHomD(ΦC ,−). This is because the category of left
gHom(C,D)-comodules is locally presentable by Proposition 7.6.3, (ε̄D)! is cocontin-

uous because it is composition of V-matrices, and (− ⊗ ΦC) is cocontinuous by the

commutative diagram

V-Comod
−⊗ΦC //

��

V-Comod

��
C ×Set V-Cocat

(−⊗Φ)×(−⊗CX)
// C ×Set V-Cocat.

Therefore we have an adjunction (− ⊗ ΦC) a gHom(ΦC ,−) between the total cate-

gories for all V-comodules ΦC , exhibiting the induced bifunctor

gHom : V-Comodop × V-Comod→ V-Comod

as the internal hom of V-Comod. Also, gHom(ΦC ,ΩD) is a gHom(C,D)-comodule.

�
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Consequently, we can now apply Corollaries 4.3.4 and 4.3.5 for the action K̄op

of the symmetric monoidal closed category V-Comod on the ordinary category

V-Modop and obtain the pursued enrichment.

Theorem 7.7.7. Suppose that V is a locally presentable, symmetric monoidal

closed category.

(1) The opposite of the global category of left V-modules V-Modop is enriched

in the global category of left V-comodules V-Comod, with hom-objects

V-Modop(ΨA,ΞB) = T̄ (Ξ,Ψ)T (B,A)

where the (V-Comod)-enriched category is denoted by the same name.

(2) The global category of left V-modules V-Mod is a cotensored (V-Comod)-

enriched category, with hom-objects

V-Mod(ΨA,ΞB) = T̄ (Ψ,Ξ)T (A,B)

and cotensor product K̄(Φ,Ξ)K(C,B) for any V-modules ΨA, ΞB and V-

comodules ΦC.





CHAPTER 8

An Abstract Framework

This last chapter is an attempt to exhibit some underlying motives of certain

techniques used in the previous sections, and discuss possible generalizations of

processes which resulted in the main theorems of the thesis. The previous chapter

had as its clear goal to generalize the results of Chapter 6 in the next level of ‘many-

object’ (co)monoids and (co)modules, namely V-(co)categories and V-(co)modules.

The thorough investigation of this development reveals an intrinsic pattern of how

the categories involved are expected to behave.

In the first section, the aim is to state and justify a definition of the notion

of enriched fibration. More precisely, we would like to be able to characterize a

(plain) fibration as being enriched in another, special kind of fibration, serving sim-

ilar purposes as the monoidal base of usual enrichment of categories. There are

two things that would incorporate the success of such a definition, in the frame of

this thesis: firstly, the carefully examined cases of monoids/modules, enriched cat-

egories/enriched modules and dual structures should constitute examples of it, and

secondly there should be a theorem which, under certain assumptions, would ensure

the existence of an enriched fibration.

A first formal definition in this conceptual direction was given in [GG76], called

‘a fibration relative to A’, where A was fibred over a monoidal category in an ap-

propriate sense. As mentioned in the introduction, Shulman in [Shu13] develops a

theory of ‘enriched indexed categories’, i.e. categories which are simultaneously in-

dexed over a base category S with finite products, and also enriched in an S-indexed

monoidal category. The definition of an indexed V-category was also given indepen-

dently by Bunge in [Bun13]. The main issue is that even if we herein employ the

same notion of a monoidal fibration (Definition 8.1.1), Bunge’s and Shulman’s ap-

proach only concerns enrichment in fibrations strictly over cartesian monoidal bases,

which is not the chosen monoidal structure of, say, Comon(V) and V-Cocat. More-

over, the notion of an enriched indexed category refers only to a fibration enriched

in another fibration over the same base, approximately depicted as

A enriched //

fibred

$$

V

fibred

��
S.

In our examples, this is certainly not the case: we seek for enrichments between

both the total and the base categories of the two fibrations involved.

193
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In the second section of this chapter, the aim is to give an approximate descrip-

tion of a way in which the central results of this thesis fit into the theory of double

categories. The motivation for this approach is that in the bicategory V-Mat, fun-

damental for the development of the previous chapter, the functions f between the

sets and especially the V-matrices f∗, f
∗ induced by them were of importance for

our constructions. This belongs to a variety of examples of bicategorical structures,

where in fact two natural kinds of morphisms exist, typically some complicated ones

(like V-matrices between sets in our case) comprising the bicategory, and some more

elementary ones which are discarded but in fact important. Therefore, having ev-

erything encompassed in a double category provides a conceptual advantage. Often,

there is a lifting property which turns a vertical 1-cell into a horizontal 1-cell as in

our situation, and this corresponds to the concept of a fibrant double category.

Due to the lack of machinery for dealing with double categories comparatively to

bicategories or 2-categories, recently there has been some serious activity regarding

the more systematic study and development of the theory of double categories. The

exposition in this chapter is not meant to be a significant step in this direction,

not being as rigorous or detailed as such an attempt deserves. Rather it introduces

certain notions which might be of use to further research on the topic. Categories

of monoids (or monads) in double categories have been methodically studied in

[FGK11]. In the current treatment, they are combined with notions of comonoids,

modules and comodules in double categories in order to exhibit a framework for the

existence and properties of specific categories we dealt with in earlier chapters.

Various important facts about double categories such as detailed definitions for

double functors and double natural transformations, monoidal structure, coherence

for pseudo double categories and numerous examples can be found in the refer-

ences provided in the introduction added to the ones mentioned later. The explicit

definition of a monoidal bicategory can be found in [Car95], or in [GPS95] as a

one-object tricategory.

8.1. Enriched fibrations

Chapters 6 and 7 were devoted to the establishment of the enrichment of certain,

mostly well-studied categories like Mon(V), Mod, V-Cat and V-Mod, in their

dual-flavored monoidal categories Comon(V), Comod, V-Cocat and V-Comod.

Such enrichments were in fact combined, in a very natural way, with the theory of

fibrations and opfibrations. The very adjunctions inducing enriched hom-functors

often employed results regarding fibred functors, implying a strong relation between

the two notions. Below we graphically summarize the results of the two previous

chapters. The monoidal category V is required to be a locally presentable, symmetric

monoidal closed category.

The category of monoids is enriched in the (symmetric monoidal closed) category

of comonoids in V, with enriched hom-functor the Sweedler hom

P : Mon(V)op ×Mon(V)→ Comon(V)
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which is the parametrized adjoint of the opposite of the restricted internal hom

H : Comon(V)op ×Mon(V) // Mon(V)

( C , A ) � // [C,A]

by Proposition 6.1.1 and Theorem 6.1.4. Moreover, the global category of modules

is enriched in the (symmetric monoidal closed) global category of comodules in V,

with enriched hom-functor the universal measuring comodule functor

Q : Modop ×Mod→ Comod

which is the parametrized adjoint of the opposite of the further restricted

H̄ : Comodop ×Mod // Mod

( XC , MA ) � // [X,M ][C,A]

by Proposition 6.3.1 and Theorem 6.3.4. The diagram

Modop

Q(−,NB)
--

>

Gop

��

Comod

H̄(−,NB)op

mm

V

��
Mon(V)op

P (−,B)
..

> Comon(V)
H(−,B)op

mm

(8.1)

which describes the above situation is in fact an adjunction in the 2-category Cat2.

The category of V-enriched categories is enriched in the (symmetric monoidal

closed) category of V-enriched cocategories, with enriched hom-functor the general-

ized Sweedler hom

T : V-Catop × V-Cat→ V-Cocat

which is the parametrized adjoint of the opposite of the internal hom as V-graphs

K : V-Cocatop × V-Cat // V-Cat

( CX , BY ) � // Hom(C,B)Y X

defined by Hom(C,B)(k, s) =
∏
x′,x[C(x′, x),B(kx′, sx)], by Proposition 7.5.9 and

Theorem 7.4.6. Moreover, the global category of V-enriched modules is enriched

in the (symmetric monoidal closed) global category of V-enriched comodules, with

enriched hom-functor

T̄ : V-Modop × V-Mod→ V-Comod

which is the parametrized adjoint of the opposite of

K̄ : V-Comodop × V-Mod // V-Mod

( ΦC , ΨB ) � // Hom(Φ,Ψ)Hom(C,B)
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where Hom(Φ,Ψ)(t) =
∏
x[Φ(x),Ψ(tx)], by Proposition 7.7.5 and Theorem 7.7.7.

The diagram

V-Modop

T̄ (−,ΨB)
--

Nop

��

> V-Comod

K̄(−,ΨB)op

mm

H

��
V-Catop

T (−,BY )
--

P op

��

> V-Cocat
K(−,BY )op

mm

W

��
Setop

Y (−)

--> Set

Y (−)op

mm

(8.2)

depicts the above situation.

An appropriate enriched fibration notion would successfully encapsulate the rich

structure of the above situations. Intuitively, we are looking for a definition which

would ensure that the opfibration Gop is enriched in the opfibration V , and that the

opfibrations Nop and P op are enriched in the opfibrations H and W respectively.

Because of the nature of our examples, it is now evident that we are unable to

employ the definitions and theory of [Shu13]. As mentioned earlier, the numerous

examples therein restrict to fibrations (or indexed categories) over monoidal cate-

gories with tensor product the cartesian product. However, in the diagrams (8.1)

and (8.2) the base categories (except Set) of the fibrations which we intend to use as

base for enrichment are not viewed as cartesian monoidal categories. Moreover, and

perhaps more importantly, the indexed enrichment (over the same base category) as

stated in [Shu13, Definition 4.1] is conceived as ‘fibrewise’ enrichments between the

fibres of the total categories, plus some preservation of the enriched structure via

the reindexing functors. Apart from the absence of a monoidal structure on the fibre

categories here, like ComodV(C), the fact that we require an enrichment between

the (distinct) base categories of the fibrations makes a great difference.

Therefore, we are going to explore a new approach to this problem. The ba-

sic idea is to shift Theorem 4.3.3 from the context of categories to the context of

fibrations. The reason for doing so is that this result provides an enrichment of

an ordinary category in a monoidal category when certain conditions are satisfied,

which can be rephrased if we replace categories by fibrations. This becomes clearer

in the light of the following remarks (see also Remark 4.3.1(ii)).

• A monoidal category (V,⊗, I, a, l, r) is a pseudomonoid in the cartesian

monoidal 2-category (Cat,×,1).

• An action ∗ of a monoidal category V on an ordinary category A is a

pseudoaction of a pseudomonoid on an object of (Cat,×,1).

• A V-representation (A, ∗), i.e. an ordinary category on which V acts, is a

pseudomodule for the pseudomonoid V in (Cat,×,1).
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Theorem 4.3.3 and its following comments in fact give the one direction of the

equivalence

V-Repcl ' V-Cat⊗

on the level of objects between closed V-representations (i.e. equipped with a para-

metrized adjoint) and tensored V-categories for V a monoidal closed category. This

equivalence is in fact a special case of the more general [GP97, Theorem 3.7]. We

would now like to produce an adjusted version of this, moving from (Cat,×,1) to the

monoidal 2-category (Fib,×, 11), where 11 is the identity functor on the terminal

category. Indeed, the 2-functor

× : Cat×Cat→ Cat

which is the cartesian 2-monoidal structure on Cat, induces a monoidal structure on

the 2-category Cat2 which restricts to the sub-2-category Fib, since the cartesian

product of two fibrations is still a fibration.

Initially, we would like to identify the pseudomonoids in this monoidal 2-category,

which will be the analogue of monoidal categories. The concept of a pseudomonoid

was formally defined in [DS97], and the more general pseudomonad viewpoint can

be found in [Mar97, Lac00]. As an idea, a tensor object in [JS93] already captures

the required structure. By applying this definition in the 2-category of fibrations,

fibred 1-cells and fibred 2-cells, a monoidal fibration is a fibration T : V → W with

arrows M : T × T → T , η : 1→ T equipped with natural isomorphisms

T × T × T
M×1 //

1×M

��

a∼=

T × T

M

��
T × T

M
// T

1× T

l∼=

,,

η×1
// T × T

r∼=M

��

T × 1
1×η
oo

rrT

satisfying certain coherence conditions. More explicitly, there are fibred 1-cells M =

(MV ,MW), η = (IV , IW) displayed by the commutative squares

V × V
MV //

T×T
��

V

T
��

W×W
MW

// W

and 1
IV //

1
��

V
T
��

1
IW

// W

(8.3)

where the functors MV and IV are cartesian, and invertible fibred 2-cells a =

(aV , aW), r = (rV , rW), l = (lV , lW) displayed as

V × V × V
M(M×1)

++

M(1×M)

33�� aV

T×T×T

��

V

T

��
W×W×W

M(M×1)
++

M(1×M)

33�� aW W
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V × 1

M(1×I)
**

∼
44�� rV

T×1

��

V

T

��
W× 1

M(1×I)
**

∼
44�� rW W

1× V
M(I×1)

**

∼
44�� lV

1×T
��

V

T

��
1×W

M(I×1)
**

∼
44�� lW W.

Recall that the natural isomorphisms aV , rV , lV lie above aW, rW, lW, by definitions

in Section 5.1. The axioms that these data are required to satisfy turn out to give

the usual axioms which make (V,MV , IV) and (W,MW, IW) into monoidal categories,

with associativity, left and right unit constraints a, r, l respectively. This is due to

the fact that the functors dom, cod : Fib → Cat are strict monoidal functors.

In other words, the equality of pasted diagrams of 2-cells in Fib breaks down into

equalities for the two natural transformations it consists of.

Moreover, the strict commutativity of the diagrams (8.3) imply that T preserves

the tensor product and the unit object between V and W on the nose, i.e.

TA⊗W TB = T (A⊗V B), IW = T (IV)

if we denote M = ⊗. Along with the last conditions that T (aV) = aW, T (lV) = lW

and T (rV) = rW, these data define a strict monoidal structure on the functor T .

Therefore we obtain the following definition, which coincides with [Shu08, 12.1].

Definition 8.1.1. A monoidal fibration is a fibration T : V →W such that

(i) V and W are monoidal categories,

(ii) T is a strict monoidal functor,

(iii) the tensor product ⊗V of V preserves cartesian arrows.

In a dual way, we can define a monoidal opfibration to be an opfibration which is

a strict monoidal functor, where the tensor product of the total category preserves

cocartesian arrows. Also, if V and W are symmetric monoidal categories and T is a

symmetric strict monoidal functor, call T a symmetric monoidal fibration.

We are now going to describe a pseudoaction of a pseudomonoid in Fib, and

what it means for a fibration to be a pseudomodule for a monoidal fibration T .

For a general 2-category or bicategory, the idea of a pseudomodule can be found in

similar contexts in [Mar97, Lac00] (called (pseudo)algebra for a pseudomonad).

Conceptually, as was the case for modules for monoids in a monoidal category, it

arises as a pseudoalgebra for the pseudomonad (M ⊗−) in our monoidal bicategory,

where M is a fixed pseudomonoid.

In our case, a pseudoaction of a monoidal fibration T : V → W on an ordinary

fibration P : A → X is a fibred 1-cell µ = (µA, µX) : T × P → P displayed by the

commutative

V ×A
µA

//

T×P
��

A

P
��

W× X
µX

// X

(8.4)
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where µA is a cartesian functor, equipped with natural isomorphisms

T × T × P
M×1 //

1×µ
��

χ∼=

T × P
µ

��
T × P

µ
// T

1× P
ν∼=

∼ //

η×1
// T × P

µ

��
P

in Fib. These are invertible fibred natural transformations χ = (χA, χX), ν =

(νA, νX) represented by

V ×A µ

%%
V × V ×A

M×1 00

1×µ
..
�� χA

T×T×P

��

A

P

��

V ×A µ

99

W× X µ

%%
W×W× X

M×1 00

1×µ
..
�� χX X
W× X µ

99

V ×A µ

%%
1×A

I×1 00

∼

55�� νA

1×P

��

A

P

��W× X µ

%%
1× X

I×1 00

∼

55�� νX X

where χA, νA are above χX, νX with respect to the appropriate fibrations. These data

are subject to certain axioms, which in fact again split up in two sets of commutative

diagrams, for the components of the two natural isomorphisms that the fibred 2-cells

χ and ν consist of. The resulting diagrams coincide with the ones for an action of a

monoidal category (4.8).

Definition 8.1.2. The fibration P : A → X is a T -representation (or a T -

module) for a monoidal fibration T : V → W, when it is equipped with a T -

pseudoaction µ = (µA, µX). This amounts to two actions

µA = ∗ : V ×A −→ A

µX = � : W× X −→ X

of the monoidal categories V, W on the categories A and X respectively, such that

µA preserves cartesian arrows and PχAXY A = χX
(TX)(TY )(PA), Pν

A
A = νXPA for all

X,Y ∈ V and A ∈ A.

The last two relations are easy to verify in specific examples. In greater detail,

the commutative diagram (8.4) representing the pseudoaction implies that

P (X ∗A) = TX � PA

for any X ∈ V, A ∈ A, hence the isomorphisms χAXY A : X ∗ (Y ∗A) ∼= (X ⊗V Y ) ∗A
lie above certain isomorphisms in X

PχAXY A : TX � (TY � PA)
∼−−→ (TX ⊗W TY ) � PA

in W, since T is strict monoidal. Similarly, νAA : I ∗A ∼= A is mapped, under P , to

PνAA : IX � PA
∼−−→ PA
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since P (IV ∗ A) = T (IV) � PA = IW � PA by strict monoidality of T again. These

isomorphisms then are required to coincide with the components of structure iso-

morphisms χX and νX of the W-representation X.

The last step in order to get a clear picture of how a modified correspondence

between representations of a monoidal fibration and enriched fibrations would work,

is to introduce a notion of a parametrized adjunction in Fib. For that, we first re-

formulate the ‘adjunctions with a parameter’ Theorem 3.0.2 in the context of Cat2.

Even though the abstract definition of an adjunction applies to any 2-categorical, or

bicategorical, setting as in Definition 2.3.5, for its appropriate parametrized version

we need the 0-cells of our 2-category to be category-like themselves. Intuitively, in

such cases, if we have a 1-cell with domain a product of two objects t : A×B → C,

we are able to consider a 1-cell ta : B → C by fixing an ‘element’ of one of the

0-cells, a in A.

Theorem 8.1.3 (Adjunctions with a parameter in Cat2). Suppose we have a

morphism (F,G) of two variables in [2,Cat], given by a commutative square of

categories and functors

A× B F //

H×J
��

C

K

��
X× Y

G
// Z.

(8.5)

Assume that, for every B ∈ B and Y ∈ Y, there exist adjunctions F (−, B) a R(B,−)

and G(−, Y ) a S(Y,−), such that the ‘partial’ morphism (F (−, B), G(−, JB)) has

a right adjoint (R(B,−), S(JB,−)) in Cat2. This is represented by the diagram

A

H

��

F (−,B)
//

⊥ C

K

��

R(B,−)
oo

X
G(−,JB)

//
⊥ Z

S(JB,−)
oo

(8.6)

where both squares of left and right adjoints respectively commute, and (H,K) is

a map of adjunctions. Then, there is a unique way to define a morphism of two

variables

Bop × C R //

Jop×K
��

A

H

��
Yop × Z

S
// X

(8.7)

in Cat2, for which the natural isomorphisms

C(F (A,B), C) ∼= A(A,R(B,C))

Z(G(X,Y ), Z) ∼= X(X,S(Y,Z))

are natural in all three variables.
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Proof. The result is straightforward from the theory of parametrized adjunc-

tions between categories. The fact that (R(B,−), S(JB,−)) is an arrow in Cat2

for all B’s, ensures that the diagram (8.7) commutes on the second variable, and

also on the first variable on objects, since HR(B,C) = S(JB,KC). On arrows,

commutativity follows from the unique way of defining R(h, 1) and S(Jh, 1) for any

h : B → B′ under these assumptions, given by (3.2). More explicitly, it is enough

to consider the image of R(h, 1) under H and use the fact that the unit and counit

of F (−, B) a R(B,−) are above the unit and counit of G(−, JB) a S(JB,−) with

respect to the fibrations H and K. �

We call (S,R) the parametrized adjoint of (F,G) in [2,Cat]. If we started with

a morphism of two variables in Fib ⊂ Cat2, i.e. a fibred 1-cell (F,G) depicted as

(8.5), what would change in the above statement is that the diagram (8.6) would be

required to be a general fibred adjunction as in Definition 5.3.1, i.e. the partial right

adjoint R(B,−) to be a cartesian functor itself. However, notice that by Lemma

5.3.2, right adjoints always preserve cartesian arrows in Cat2, therefore we do not

need to request this as an extra condition. The pair (S,R) is then called the fibred

parametrized adjoint of (F,G). On the other hand, in the context of OpFib, for the

concept of an opfibred parametrized adjoint we request both F and R(B,−) to be

cocartesian.

We are now able to propose a definition of an enriched fibration, based on the

evidence provided above. The theorem that follows justifies this statement, in the

sense that it completes our initial goal: to generalize Theorem 4.3.3 from Cat to

Fib, in order to establish an enrichment on the level of 0-cells of these 2-categories.

Definition 8.1.4 (Enriched Fibration). Suppose T : V → W is a monoidal

fibration. We say that an (ordinary) fibration P : A → X is enriched in T when the

following conditions are satisfied:

• the total category A is enriched in the total monoidal V and the base

category X is enriched in the base monoidal W, in such a way that

Aop ×A
A(−,−)

//

P op×P

��

V

T

��
Xop × X

X(−,−)
// W

(8.8)

commutes;

• the composition law and the identities of the enrichments are compatible,

in the sense that

TMAA,B,C = MX
PA,PB,PC (8.9)

TjAA = jXPA;

• the partial functor A(A,−) is cartesian.
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It does not seem completely natural to ask for cartesianness of the enriched

hom-functor between the total categories only on the second variable. However this

condition is the only one with real effect, since the functor A(−, A) : Aop → X goes

from the total category of an opfibration to the total category of a fibration. We

accordingly have the notion of an enriched opfibration.

The compatibility of the composition and identities of the two enrichments only

says that if we take the image of the arrows

MAA,B,C : A(B,C)⊗V A(A,B)→ A(A,C)

jAA : IV → A(A,A)

in A under the (monoidal) fibration T , we obtain the actual

MX
PA,PB,PC : X(PB,PC)⊗W X(PA,PB)→ X(PA,PC)

jXPA : IW → X(PA,PA)

where the domains and codomains already coincide by strict monoidality of T and

the commutativity of (8.8).

Notice that in the above definition, there exists the usual abuse of notation,

where the same name is given to the enriched categories and their underlying ordi-

nary categories. If we wanted to be more rigorous, we should denote the categories

with the additional enriched structure differently, for example A and X. In that case

the ‘enriched hom-functor’ (8.8), analogous to (4.5) for enrichment in Cat, would

be written as

Aop ×A
A(−,−)

//

P op×P
��

V

T
��

Xop × X
X(−,−)

// W

and its partial 1-cell (A(A,−),X(PA,−)) is required to be a fibred 1-cell.

Remark 8.1.5. When an ordinary fibration P : A → X is enriched in a monoidal

fibration T : V →W, the latter has a strict monoidal structure hence by Proposition

4.1.1 we can make the V-category A into a W-enriched T̃A, with the same set of

objects obA and hom-objects TA(A,B) = X(PA,PB).

Then, the ordinary functor P can be viewed as a W-enriched functor between

the W-categories T̃A and X: on objects it is the function obP : obA → obX and on

hom-objects it is the identity arrow TA(A,B)
=−−→ X(PA,PB). The compatibility

with the composition and the identities of the enriched categories, expressed by the

commutativity of the diagrams (4.3), is ensured by the relations (8.9).

After a closer comparison between our Definition 8.1.4 of an enriched fibration,

and Shulman’s [Shu13, Definition 4.1] of an indexed V-category, we conclude that

even if there are conceptual similarities, our definition cannot even restrict in a

straightforward way to the case of fibrations over the same base: the monoidal

category W is not in principle enriched over itself, and certainly not via an identity
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functor. For a more accurate description of the similarities and differences of the two

approaches to the subject, a detailed exposition of the ideas and theory in [Shu13]

would be needed, but this would go beyond the scope of this thesis.

We now proceed to a result which asserts that to give a fibration and an action

(∗, �) of a monoidal fibration T with a fibred parametrized adjoint, is to give a

T -enriched fibration.

Theorem 8.1.6. Suppose that T : V → W is a monoidal fibration, which acts

on an (ordinary) fibration P : A → X via the fibred 1-cell

V ×A ∗ //

T×P
��

A

P
��

W× X �
// X.

If this action has a parametrized adjoint (R,S) : P op × P → T in Fib, then we can

enrich the fibration P in the monoidal fibration T .

Proof. By Definition 8.1.2, the T -action on P consists of two actions ∗ and � of

the monoidal categories V and W on the ordinary categories A and X respectively.

Moreover, by Theorem 8.1.3, we have two pairs of adjunctions

A
−∗A //
⊥ V

R̄(A,−)

oo and X
−�X //
⊥ W

R(X,−)
oo (8.10)

for all A ∈ A and X ∈ X. By Theorem 4.3.3, there exists a V-category with under-

lying category A and hom-objects R̄(A,B) and also a W-category with underlying

category X and hom-objects R(X,Y ). By the definition of fibred parametrized ad-

joints, we have that (R̄, R) is a 1-cell in Cat2 and moreover (R̄(A,−), R(PA,−)) is

a 1-cell in Fib.

Lastly, we need to show that the composition and identity laws of the enrichments

are compatible as in (8.9). By computing the adjuncts of MAA,B,C and jAA under

(− ∗ A) a R̄(A,−) which are given explicitly by the arrows (4.11) and (4.12) and

taking their images under T , it can be seen that they bijectively correspond to the

morphisms MX
PA,PB,PC and jXPA under the adjunction (− �X) a R(X,−). For this,

we use that (P, T ) is a map between the adjunctions (8.10), T is a strict monoidal

functor and that the actions ∗ and � are compatible, in the sense of the definition

of a T -representation. �

Clearly, there is a dual version of the above, characterizing the enrichment of an

opfibration in a monoidal opfibration. In order for our examples to fit in this theory,

we also need the notion of a fibration enriched in an opfibration and its dual.

Definition 8.1.7. Suppose that T : V → W is a symmetric monoidal opfi-

bration. We say that a fibration P : A → X is enriched in T if the opfibration

P op : Aop → Xop is an enriched T -opfibration.
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We can now apply Theorem 8.1.6 to obtain an enrichment of the fibration

G : Mod→Mon(V) in the monoidal opfibration V : Comod→ Comon(V). First

of all, V is a strict monoidal functor (6.11) and ⊗ : Comod×Comod→ Comod

preserves cocartesian arrows on the nose (see proof of Proposition 6.3.2), thus V is

indeed a monoidal opfibration. Then, by Definition 8.1.2 we have an action of V

on Gop, given by the actions Hop of Comon(V) on Mon(V)op and H̄op of Comod

on Modop as in (6.6) and (6.21). The compatibility conditions between these two

actions hold and H̄op strictly preserves cocartesian liftings (see Section 6.2). Fi-

nally, there is evidence that the universal measuring comodule functor Q preserves

cocartesian liftings on the first variable, which would make (Q,P ) into an opfibred

parametrized adjoint for the action (H̄op, Hop). We can thus enrich Gop in V .

Proposition 8.1.8. If Q(−, NB) is cocartesian, the fibration G : Mod →
Mon(V) is enriched in the monoidal opfibration V : Comod→ Comon(V).

Of course, it would as well suffice to verify the conditions of Definition 8.1.4 for

this particular case, in order to obtain the above result.

At this moment, similar complications arise for the proof that the generalized

Sweedler hom functor T (−,BY ) and the functor T̄ (−,ΨB) between V-modules and

V-comodules preserve cartesian liftings. As a result, we also cannot claim the en-

richment of the fibrations N and P in the monoidal opfibrations H and W as in

(8.2) unless this condition is satisfied (like the above proposition), even though the

remaining conditions hold. We aim to verify these properties with future work.

8.2. Double categorical and bicategorical setting

We are now interested in generalizing the above development, starting with an

arbitrary bicategory or even a double category in place of V-Mat. The fact that

Chapter 7 is centered around the bicategory of V-matrices and Chapter 6 addresses

the one-object bicategory case are indicative of such an extension. So the driving

question of this section is to determine what kind of structure a bicategory K should

have, in order to recapture the main results of the previous two chapters.

There are two functors of bicategories which are fundamental for our purposes.

Firstly, a homomorphism (pseudofunctor)

⊗ : K ×K −→ K

which will be part of a monoidal structure on our bicategory, and also a lax functor

H : Kco ×K −→ K

which under circumstances, will lead to enrichment relations between total categories

of certain fibrations and opfibrations. The above functors of bicategories provide

(ordinary) functors

⊗(A,B),(C,D) : K(A,C)×K(B,D)→ K(A⊗B,C ⊗D) (8.11)

H(A,B),(C,D) : K(A,C)op ×K(B,D)→ K(H(A,B), H(C,D))
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between the hom-categories. Moreover, as seen in Lemma 3.3.3, any lax functor

of bicategories induces a functor between the categories of monoids of endoarrow

hom-categories with horizontal composition. Here they produce

Mon(⊗(A,B)) : MonK(A,A)×MonK(B,B)→MonK(A⊗B,A⊗B)

Mon(H(A,B)) : ComonK(A,A)op ×MonK(B,B)→MonK(H(A,B), H(A,B)).

These functors are just restrictions of (8.11) on the appropriate categories, which in

fact turn out to be fibres of total categories, crucial for the development. Since ⊗ is

a pseudofunctor, i.e. also colax with respect to the horizontal composition, there is

also an induced functor

Comon(⊗(A,B)) : ComonK(A,A)×ComonK(B,B)→ ComonK(A⊗B,A⊗B).

Under certain conditions, these functors ‘between the fibres’ induce total functors

which give rise to specific structures of importance.

For K = V-Mat for example, these categories are MonK(A,A) = V-CatA

and ComonK(A,A) = V-CocatA for fixed sets of objects A. The bicategory of

V-matrices is in fact a monoidal bicategory with tensor product as in (7.4) which

induces the monoidal structure of the total categories V-Cat and V-Cocat. Also,

the lax functor H = Hom : (V-Mat)co × V-Mat→ V-Mat defined as in (7.5) gives

rise to the functor K, whose adjoint induces the enrichment stated by Theorem

7.4.6.

Furthermore, by Proposition 2.2.10 the lax functors ⊗ and H induce

K(A,C)K(A,t) ×K(B,D)K(B,s) → K(A⊗B,C ⊗D)K(A⊗B,t⊗s)

K(A,C)K(A,u)op ×K(B,D)K(B,s) → K(H(A,B), H(C,D))K(H(A,B),H(u,s))

between the categories of left modules and comodules with fixed domains, for monads

t : C → C, s : D → D and comonad u : C → C in K. These can also be written as

Mod(⊗(A,B),(C,D)) : At Mod× B
s Mod −→ A⊗B

t⊗s Mod

Mod(H(A,B),(C,D)) : AuComodop × B
s Mod −→ H(A,B)

H(u,s) Mod

by Definitions 2.2.3, 2.2.6. Again, since ⊗ is a homomorphism of bicategories, it

also induces

Comod(⊗(A,B),(C,D)) : AuComod× B
v Comod −→ A⊗B

u⊗v Comod

between the categories of comodules. These functors between the fibres of the global

categories are expected to give the monoidal structures to modules and comodules,

and the enrichment of modules in comodules respectively. For the bicategory V-

Mat, the monoidal structures of V-Mod and V-Comod as well as Theorem 7.7.7

are obtained by employing instances of the above functors.

In order to identify suitable assumptions on the bicategory K, we are going to

employ the theory of double categories. This turns out to be an appropriate theo-

retical framework leading to enriched fibrations as discussed in last section, because
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it provides with a better understanding of the nature of the categories appearing

in our examples. We largely follow the approach of [Shu10], where a method for

constructing (symmetric) monoidal bicategories from (symmetric) monoidal dou-

ble categories which satisfy a lifting condition is described. This process allows us

to reduce a lengthy and demanding task of verifying the coherence conditions of

monoidal structure on a bicategory into a much more concise and speedy procedure,

essentially involving a pair of ordinary monoidal categories.

Definition 8.2.1. A (pseudo) double category D consists of a category of objects

D0 and a category of arrows D1, with structure functors

1 : D0 → D1, s, t : D1 ⇒ D0, � : D1×D0D1 → D1

such that s(1A)=t(1A)=A, s(M � N)=s(N), t(M � N)=t(M) for all A ∈ obD0,

M,N ∈ obD1, equipped with natural isomorphisms

α : (M �N)� P ∼−−→M � (N � P )

λ : 1s(M) �M
∼−−→M

ρ : M � 1t(M)
∼−−→M

in D1 for all M,N,E ∈ obD1, such that t(α), s(α), t(λ), s(λ), t(ρ), s(ρ) are all identi-

ties, and satisfying the usual coherence conditions (as for a bicategory).

The objects of D0 are called 0-cells and the morphisms of D0 are called 1-

morphisms or vertical 1-cells, denoted as f : A → B. The objects of D1 are the

(horizontal) 1-cells, denoted as M : A //• B where s(M) = A is the source and

t(M) = B the target of M . The morphisms of D1 are the 2-morphisms, denoted as

squares

A
M //•

�� αf
��

B

g

��
C

N
//• D

or fαg : M ⇒ N , where s(α) = f and t(α) = g. The composition of vertical 1-

cells and the vertical composition of 2-morphisms are strictly associative since D0

and D1 are categories, whereas horizontal composition of horizontal 1-cells and 2-

morphisms is associative up to isomorphism due to the isomorphisms aM,N,P . These

are respectively written as

A
M //•

f
�� �� α

B

g
��

C
N //•

h
�� �� β

D

k
��

E
P
//• F

=

A
M //•

hf

��

B

kg

��

C �� βα

E
P
//• F,

A
M //•

f
�� �� α

B
N //•

g
�� �� β

C

h
��

D
P
//• E

K
//• F

=

A
N�M //•

f
�� �� β�α

C

h
��

D
K�P

//• F.

The vertical identity 1-cell idA : A→ A for any object A and the identity 2-morphism

1M for any 1-cell M make the vertical compositions also strictly unital. Also, the
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horizontal unit 1-cell 1A : A //• A for every object A and the horizontal unit 2-

morphism 1f for any 1-morphism f : A → B make the horizontal compositions

unital up to isomorphism. The identity 2-morphisms are denoted by

A
M //•

idA
��

�� 1M

B

idB
��

A
M
//• B

A
1A //•

f

��
�� 1f

A

f

��
B

1B

//• B

and in particular 11A = 1idA . Functoriality of the horizontal composition � results

in the relation 1N � 1M = 1N�M and the interchange law which the two different

compositions obey:

(β′β)� (α′α) = (β′ � α′)(β � α).

The opposite double category Dop is the double category with vertical category

Dop
0 and horizontal category Dop

1 . There also exist the horizontally opposite double

category Dhop and vertically opposite double category Dvop, where the horizontal

and vertical categories respectively are the opposite ones.

A 2-morphism with identity source and target 1-morphisms, like a, l, r above,

is called globular. Evidently, for every double category D there is a corresponding

bicategory denoted by H(D) or just D, called its horizontal bicategory. It consists

of the objects, (horizontal) 1-cells and globular 2-morphisms. In a sense, this comes

from discarding the vertical structure of the double category.

Many well-known bicategories arise as the horizontal bicategories of specific

double categories. For example, consider the double category V-Mat: the cate-

gory of objects is V-Mat0=Set, and the category of arrows V-Mat1 consists of

V-matrices S : X � // Y as 1-cells, and 2-morphisms fαg : S ⇒ T given by families

of arrows

αy,x : S(y, x)→ T (gy, fx)

in V for all x ∈ X and y ∈ Y . The structure functor 1 gives the identity V-

matrix 1X : X � // X for all sets X and the unit 2-morphism 1f with components

arrows

(1f )x′,x : 1X(x′, x)→ 1X(x′, x) ≡

I
1I−→ I, if x = x′

0→ 0, if x 6= x′.

The source and target functors give the evident sets and functions, and the functor

� : V-Mat1×V-Mat0V-Mat1 → V-Mat1

is given by the usual composition of V-matrices as in (7.1) on objects, and on 2-

morphisms f (β � α)g : T ◦ S ⇒ T ′ ◦ S′ is given by the composite arrows

∑
y T (z, y)⊗ S(y, x)

∑
βz,y⊗αy,z //

--

∑
y T
′(hz, gy)⊗ S′(gy, fx)

_�

ι
��∑

y′ T
′(hz, y′)⊗ S′(y′, fx)
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in V, for all x ∈ X and z ∈ Z. Notice how this generalizes the operation (7.2)

between V-matrices of different domain and codomain. Compatibility conditions of

source and target functors with composition can be easily checked, and the globular

2-isomorphisms are the ones described in Section 7.1. Of course, its horizontal

bicategory H(V-Mat) is precisely the bicategory V-Mat.

Definition 8.2.2. For D and E (pseudo) double categories, a pseudo double

functor F : D → E consists of functors F0 : D0 → E0 and F1 : D1 → E1 be-

tween the categories of objects and arrows, such that s ◦ F1 = F0 ◦ s and t ◦ F1 =

F0 ◦ t, and natural transformations F�, FU with components globular isomorphisms

F1M�F1N
∼−→ F1(M�N) and 1F0A

∼−→ F1(1A) respectively, which satisfy the usual

coherence axioms for a pseudofunctor.

We also have notions of lax and colax double functors between pseudo double

categories, where the natural transformations F� and FU have components glob-

ular 2-morphisms in one of the two possible directions respectively. The explicit

definitions can be found in the appendix of [GP99] or [GP04]. In particular, nat-

urality of F� in this context means the following: for any composable 2-morphisms
fαg : M ⇒M ′ and gβh : N ⇒ N ′ in D, the components of F� satisfy

F0A
F1M //•

��F1α
F0f
��

F0B
F1N //•

��F1β
F0g
��

F0C

F0h
��

F0A
′

F1M ′
//•

��F�

F0B
′

F1N ′
//• F0C

′

F0A
′

F1(N ′�M ′)
//• F0C

′

=

F0A
F1M //•

��F�

F0B
F1N //• F0C

F0A
F1(N�M)

//•

��F1(β�α)
F0f
��

F0C

F0h
��

F0A
′

F1(N ′�M ′)
//• F0C

′.

(8.12)

Whenever we have a pseudo double functor F : D → E, there is an induced

pseudofunctor between the respective horizontal bicategories

HF : H(D)→ H(E)

which consists of the following data:

· for each 0-cell A ∈ D0 in the bicategory H(D), a 0-cell F0A ∈ E0 in the

bicategory H(E);

· for each two 0-cells A,B ∈ D0, a functor

HFA,B : H(D)(A,B)→ H(E)(F0A,F0B)

which maps a horizontal 1-cell M : A //• B to the 1-cell F1M : F0A //• F0B and

A
M //•

idA

��
�� α

B

idB

��
A

N
//• B

7→

F0A
F1M //•

id(F0A)

��
�� F1α

F0B

id(F0B)

��
F0A

F1N
//• F0B

using functoriality of F0 and compatibility of F0 and F1 with sources and targets;
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· for every triple of 0-cells A,B,C, a natural isomorphism with components

invertible arrows

δN,M : F1N � F1M
∼−−→ F1(N �M)

for M : A //• B and N : B //• C, given by F�;

· for every 0-cell A, a natural isomorphism with components invertible

γA : 1F0A
∼−−→ F1(1A)

given by FU .

The coherence axioms are satisfied by definition of the pseudo double functor.

Similarly we get (co)lax functors between bicategories from (co)lax double functors.

This is indicative of the way that structure may be inherited from a pseudo double

category to its horizontal bicategory. From now on, the adjective ‘pseudo’ will be

dropped whenever it is clearly implied.

The formal definition of a monoidal double category can be found in [Shu10]

and is omitted here. Notice that in [GP04] for example, the tensor product ⊗ as

below is required to be a colax double functor rather than pseudo double. If we

unpack the definition, we get the following simplified description.

Definition 8.2.3. A monoidal double category is a double category D equipped

with (pseudo) double functors

⊗ : D× D→ D and I : 1→ D,

such that (D0,⊗0, I) and (D1,⊗1, 1I) are monoidal categories with 1I : I //• I for

I = I(∗), the functors s, t are strict monoidal and preserve associativity and unit

constraints, and there exist globular isomorphisms

(M ⊗1 N)� (M ′ ⊗1 N
′) ∼= (M �M ′)⊗1 (N �N ′)

1(A⊗0B)
∼= 1A ⊗1 1B

subject to coherence conditions.

For example, consider the double category V-Mat where both categories of ob-

jects and arrows are monoidal categories. Indeed, (Set,×, {∗}) is cartesian monoidal

and V-Mat1 has tensor product

⊗ : V-Mat1 × V-Mat1
// V-Mat1 (8.13)

(X �S //

f
��

�� α

Y

g

��

, Z
T� //

h

��
�� β

W )

k
��

� // X × Z
S⊗T� //

f×h
��

�� α⊗β

Y ×W

g×k
��

(X ′
S′

� // Y ′ , Z ′
T ′

� // W ′) � // X ′ × Z ′
S′⊗T ′

� // Y ′ ×W ′

given by the families (S ⊗ T )((y, w), (x, z)) := S(y, x)⊗ T (w, z) of objects in V and

(α⊗ β)(y,w),(x,z) := S(y, x)⊗ T (w, z)
αy,x⊗βw,z−−−−−−→ S′(gy, fx)⊗ T ′(kw, hz)

of arrows in V, and monoidal unit the V-matrix I : {∗} � // {∗} with I(∗, ∗) = IV .

The conditions for s and t are satisfied, and the natural isomorphisms come down to
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combinations of associativity and unit constraints of V and the fact that the tensor

product in V commutes with sums.

Proposition 8.2.4. The pseudo double category V-Mat is monoidal.

What is further required to obtain a monoidal structure on the horizontal bi-

category of a monoidal double category is a way of turning vertical 1-morphisms

into horizontal 1-cells. The links between vertical and horizontal 1-cells in a double

category have been studied by various authors, and the terminology used below can

be found in [GP04, Shu08, DPP10].

Definition 8.2.5. Let D be a double category and f : A → B a vertical 1-

morphism. A companion of f is a horizontal 1-cell f̂ : A //• B together with 2-

morphisms

A
f̂
//•

�� p1f

��

B

idB
��

B
1B

//• B

and

A
1A //•

�� p2idA
��

A

f

��
A

f̂

//• B

such that p1p2 = 1f and p1 � p2
∼= 1f̂ . Dually, a conjoint of f is a horizontal

1-cell f̌ : B //• A together with 2-morphisms

B
f̌
//•

�� q1idB
��

A

f

��
B

1B

//• B

and

A
1A //•

�� q2f

��

A

idA
��

B
f̌

//• A

such that q1q2 = 1f and q2 � q1
∼= 1f̌ .

The ideas which led to the above definitions go back to [BS76], where a connec-

tion on a double category corresponds to a strictly functorial choice of a companion

for each vertical arrow. Now, a fibrant double category ([Shu10, Definition 3.4]) is a

double category for which every vertical 1-morphism has a companion and a conjoint

(called framed bicategory in [Shu08]). Many important properties for fibrant dou-

ble categories can be obtained just from the definitions. For example, companions

and conjoints of a specific 1-morphism are essentially unique (up to unique globular

isomorphism), and ĝ � f̂ , ǧ � f̌ are the companion and the conjoint of gf .

The significance of these notions is clear in the context of our primary example,

the double category V-Mat. The companion of a function f : X → Y is the V-

matrix f∗ : X � // Y and its conjoint is V-matrix f∗ : Y � // X, as defined in (7.11).

Properties of these V-matrices, such as the adjunction f∗ a f∗ in the horizontal

bicategory V-Mat or Lemmas 7.1.3 and 7.1.4, are in fact true in the general setting

of any fibrant double category. I.e. for any vertical 1-morphism f in D, we have an

adjunction f̂ a f̌ in H(D).

Another important example of a fibrant double category is the one with horizon-

tal bicategory V-BMod (or V-Prof) of enriched bimodules, as briefly described in
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Section 4.2. In particular, the companion and conjoint for each V-functor (which are

the vertical 1-morphisms) are given by the ‘representable’ profunctors as in (4.7).

The main Theorem 5.1 in [Shu10] asserts that the horizontal bicategory of

a fibrant monoidal double category inherits a monoidal structure. Explicitly, it

consists of the induced pseudofunctor of bicategories H(⊗) : H(D)×H(D)→ H(D)

and the monoidal unit 1I of D1. In particular, the double category of V-matrices

is a fibrant monoidal double category, hence the result follows for its horizontal

bicategory H(V-Mat).

Proposition 8.2.6. The bicategory V-Mat of V-matrices is a monoidal bicate-

gory.

The monoidal unit is the unit V-matrix I and the induced tensor product pseud-

ofunctor ⊗ : V-Mat × V-Mat → V-Mat maps two sets X,Y to their cartesian

product X × Y , and the functor

⊗(X,Y ),(Z,W ) : V-Mat(X,Z)× V-Mat(Y,W )→ V-Mat(X × Y,Z ×W ),

is defined as in (8.13), for 2-morphisms with domain and codomain the identity

vertical 1-morphisms.

We are now in position to examine how constructions and results of the previous

chapter may fit in the general frame of any fibrant double category. As up to this

point, our presentation aims to sketch the main ideas rather than rigorously establish

a theory.

Suppose D is an arbitrary fibrant double category, with no monoidal structure

to begin with. Define the category D•1 to be the (non-full) subcategory of D1 of all

horizontal endo-1-cells and 2-morphisms with the same source and target. Explicitly,

objects are all 1-cells of the form M : A //• A and arrows are of the form

A
M //•

�� αf

��

A

f

��
B

N
//• B

denoted by αf : MA → NB. In [FGK11], this category coincides with the vertical

1-category of the double category End(D) of (horizontal) endomorphisms, horizontal

endomorphism maps, vertical endomorphism maps and endomorphism squares in D.

This definition is motivated by the fact that V-Mat•1 = V-Grph: objects are

V-graphs, i.e. endo-V-matrices G : X � // X given by objects {G(x′, x)} in V, and

arrows αf : GX → HY are V-graph morphisms, i.e. a function f : X → Y and

arrows αx′,x : G(x′, x) → H(fx′, fx) in V. In the view of [FGK11, Remark 2.5],

this is analogous to the fact that the category GrphE of graphs and graph morphisms

internal to a finitely complete E is identified with the category of endomorphisms

and vertical endomorphism maps in the double category SpanE .

Proposition 8.2.7. Suppose D is a fibrant double category. The category D•1 is

bifibred over D0.
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Proof. We can easily adjust a series of previous relevant proofs, in order to

construct pseudofunctors whose Grothendieck construction gives rise to a fibration

and an opfibration, isomorphic to the evident forgetful functor D•1 → D0 mapping

GX to X and αf to f . Like Proposition 7.5.1, the respective pseudofunctors are

M : Dop
0

// Cat,

A � //

f
��

H(D)(A,A)

B � // H(D)(B,B)

(f̌�-�f̂)

OO

F : D0
// Cat

A � //

f
��

H(D)(A,A)

(f̂�-�f̌)
��

B � // H(D)(B,B).

(8.14)

We can illustrate the isomorphism between, for example, the Grothendieck category

GM and D•1, just by employing companions and conjoints. The objects are the

same (horizontal endo-1-cells), and there is a bijective correspondence between the

morphisms: given an arrow αf in D•1, we obtain a composite 2-cell

A
M //•

�� αf
��

A

f
��

B
N
//• B

7→

A

idA
��

1A //•

�� p2

A
M //•

f
�� �� α

A

f
��

1A //•

�� q2

A

idA��
A

f̂

//• B
N

//• B
f̌

//• B

which is a morphism in GM . This assignment is an isomorphism, with inverse

mapping β 7→ (q1 � 1N � p1)β for some β : M ⇒ f̌ ◦N ◦ f̂ in H(D)(A,A).

Similarly GF ∼= D•1, but we can also deduce that D•1 is a bifibration by Remark

5.1.1, since we have an adjunction (f̌ � -� f̂) ` (f̂ � -� f̌) for all f . �

Even though the above result was independently established as a generalization

of earlier proofs, the fibration part was also included in [FGK11, Proposition 3.3].

We now proceed to the definitions of structures in arbitrary double categories, which

are fundamental for the formalization of our examples.

A monoid in a double category D is an endo-1-cell M : A //• A , i.e. an object

in D•1, equipped with globular 2-morphisms

A
M //•

��midA

��

A
M //• A

idA

��
A

M
//• A,

A
1A //•

�� ηidA

��

A

idA

��
A

M
//• A

satisfying the usual associativity and unit laws. In fact, this is the same as a monad

in its horizontal bicategory H(D). A monoid homomorphism consists of an arrow

αf : MA → NB in D•1 which respects multiplication and unit:

A
M //•

f �� �� α

A
M //•

f�� �� α

A
f��

B
N
//•

��m

B
N
//• B

A
N

//• A

=

A
M //•

��m

A
M //• A

A
M

//•

f
�� �� α

A

f
��

B
N

//• B,

A
1A //•

�� η
A

A
M
//•

f �� �� α

A
f��

B
N
//• B

=

A
1A //•

f �� �� 1f

A
f��

B
1B

//•

�� η

B

B
N
//• B.
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We obtain a category Mon(D), which is a non-full subcategory of D1.

These definitions can be found in [Shu08] for fibrant double categories, and

in [FGK11] as monads and vertical monad maps in a double category D. In the

terminology of the latter, Mon(D) is in fact the vertical category of Mnd(D), the

double category of monads, horizontal and vertical monad maps and monad squares.

Remark. Considering monads in a double category rather than in a bicate-

gory or 2-category presents certain advantages. For example, V-Cat is precisely

Mon(V-Mat): objects are monads A : X � // X in the horizontal bicategory H(V-

Mat), and morphisms are V-graph morphisms (i.e. in V-Mat•1) which respect the

appropriate structure.

It was noted in Remark 7.3.1 that even if objects of V-Mat are monads in

the bicategory of V-matrices, V-functors do not correspond bijectively to monad

(op)functors in V-Mat. So, in order to fully describe V-Cat as in Lemma 7.3.3, we

had to provide isomorphic characterizations for V-functors. Now things are much

clearer: we are able to recapture the whole category as the category of monoids

in a double category, since a V-functor properly matches the notion of a monoid

morphism in V-Mat.

Dually, we can define a category Comon(D) for any double category. Objects

are comonoids in D, i.e. horizontal endo-1-cells C : A //• A equipped with globular

1-morphisms

A
C //•

idA

��

A

idA

��
A

C
//•

�� ∆

A
C
//• A,

A
C //•

idA

��

A

idA

��
A

C
//•

�� ε

A

satisfying the usual coassociativity and counit axioms for a comonad in the hori-

zontal bicategory H(D). Morphisms are comonoid homomorphisms, i.e. αf : CA →
DB in D•1 satisfying dual axioms to the monoid ones. Notice that Mon(Dop) =

Comon(D)op.

For the double category D = V-Mat, the above exactly describe the category of

V-cocategories as in the Definition 7.3.8, thus Comon(V-Mat) = V-Cocat. This

is again conceptually simpler and more straightforward than the isomorphic charac-

terization of V-Cocat as in Lemma 7.3.11.

Proposition 8.2.8. Let D be a fibrant double category. The forgetful functors

Mon(D)→ D0 and Comon(D)→ D0

which map a horizontal endo-1-cell to its object and a 2-morphism to its vertical

1-morphism, are a fibration and an opfibration respectively.

Proof. We can again directly generalize Propositions 7.5.3 and 7.5.5 by re-

stricting (8.14) to the categories Mon(H(D)(A,A)) and Comon(H(D)(A,A)) re-

spectively.
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Alternatively, we can exhibit the cartesian lifting of a monoid N : B //• B

f̌ �N � f̂
Cart(f,N)

//

��

N

��

in Mon(D)

A
f

// B in D0

along a 1-morphism f to be the 2-morphism

A

f

��

f̂
//•

�� p1

B
N //•

�� 1N

B
f̌

//•

�� q1

A

f

��
B

1B

//• B
N

//• B
1B

//• B.

The universal property can be easily verified using the properties of companions and

conjoints. Similarly, we can provide the cocartesian liftings

Cocart(f, C) : C ⇒ f̂ � C � f̌ ≡ p2 � 1C � q2 (8.15)

for the forgetful Comon(D)→ D0. �

In the proof of [FGK11, Proposition 3.3], the new multiplication and unit of

(f̌ � N � f̂) for a monoid N is explicitly stated, and an analogous version for the

comultiplication and counit of (f̂�C�f̌) for a comonoid can be written. Essentially,

they are the same as the ones of Lemmas 7.3.2 and 7.3.10 for the particular case of

V-categories and V-cocategories.

We now proceed with the appropriate concepts of modules and comodules in

double categories, and the (op)fibrations they form over Mon(D) and Comon(D).

A (left) M -module for a monoid M : A //• A in a double category D is a horizon-

tal 1-cell Ψ : Z //• A with specified target A, equipped with a globular 2-morphism

Z
Ψ //•

�� µ

A
M //• A

Z
Ψ

//• A

called the action, which satisfies the usual compatibility axioms with the multipli-

cation and unit of the monoid M . In fact this coincides with the concept of a left

M -module for a monad M in the horizontal bicategory H(D).

A (left) module homomorphism between a left M -module Ψ and a left N -module

Ξ consists of a monoid map αf from M to N along with a 2-morphism

Z
Ψ //•

�� βk

��

A

f

��
W

Ξ
//• B
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with specified target f , which satisfies the equality

Z
Ψ //•

�� µ

A
M //• A

Z
Ψ

//•

k
��

�� β

A

f

��
W

Ξ
//• B

=

Z
Ψ //•

k
��

�� β

A
M //•

f

��
�� α

A

f

��
W

Ξ
//•

�� µ

B
N
//• B

W
Ξ

//• B.

Denote the category of (left) modules and module homomorphisms as Mod(D).

There are certain subcategories of importance to us: we can consider all left

modules with fixed source Z and arrows kβf with k = idZ which form a category
ZMod(D); we can also consider the category MMod(D) of all left M -modules and

module homomorphisms kβf with f = idA; finally we have the category Z
MMod(D)

of all M -modules with source Z and globular 2-morphisms. As expected, the latter

is the category Z
MMod(H(D)) = H(D)(Z,A)H(D)(Z,M) as in Definition 2.2.3.

We can dualize the above definitions to obtain the category Comod(D) of

(left) comodules and comodule homomorphisms for any double category D. Ex-

plicitly, for a comonoid C : A //• A in D, a left C-comodule is a horizontal 1-

cell Φ : W //• A with target A, equipped with a globular 2-morphism

W
Φ //•

�� δ

A

W
Φ
//• A

C
//• A

called the coaction, compatible with the comultiplication and counit of the comonoid

C. A comodule homomorphism between a C-comodule Φ and a D-comodule Ω

consists of a comonoid map αf between C and D and a 2-morphism kβf : Φ ⇒ Ω

which respects the coactions. Notice how for both module and comodule maps, the

target agrees with the source (and target) of the (co)monoid map, i.e. t(β) = s(α).

Once again, we have the subcategories WComod(D) of left comodules with

fixed source W , CComod(D) of left C-comodules for a fixed comonoid C, and the

category of left C-comodules with fixed target W

W
C Comod(D) := W

C Comod(H(D)) = H(D)(W,A)H(D)(W,C).

We could appropriately define categories of right modules and comodules in a

double category D, as well as bimodules and bicomodules. In fact, bimodules between

monoids are the horizontal 1-cells for a double category Mod(D) studied in [Shu08],

in the context of fibrant double categories. According to the notation followed in this

thesis though, Mod corresponds only to one-sided modules and BMod to two-sided.

Motivated by Section 7.6, we now focus on ZMod(D) and WComod(D). Ex-

plicitly, for D=V-Mat the categories 1Mod(V-Mat) and 1Comod(V-Mat) are pre-

cisely the global categories V-Mod and V-Comod, where 1 = {∗} is the singleton.
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Whenever appropriate, we will briefly remark what the results for the more general

categories of modules and comodules would look like.

Proposition 8.2.9. Suppose D is a fibrant double category. The categories
ZMod(D) and WComod(D) are fibred and opfibred respectively over Mon(D) and

Comon(D), for any 0-cells Z and W .

Proof. Analogously to Propositions 7.6.9 and 7.6.10, the indexed categories

which give rise to the fibration and opfibration in this case are

H : Mon(D)op // Cat,

M � //

αf

��

Z
MMod(D)

N � // Z
NMod(D)

(f̌�-)

OO

S : Comon(D) // Cat

C � //

αf

��

W
C Comod(D)

(f̂�-)
��

D � // W
D Comod(D).

As an illustration, if Ψ : Z //• B is a left N -module, then f̌ �Ψ : Z //• B //• A

obtains the structure of a left M -module, via the action

Z
Ψ //•

�� 1Ψ

B
f̌
//•

�� 1f̌

A
M //•

�� λ-1

A

Z
Ψ
//•

�� 1Ψ

B
f̌

//•

�� q1

A
M
//•

�� α
f
��

A
1A

//•

�� q2
f
��

A

Z
Ψ
//•

�� 1Ψ

B
1B

//•

�� ρ

B
N
//• B

f̌

//•

�� 1f̌

A

Z
Ψ
//• B

N
//•

�� µ

B
f̌

//•

�� 1f̌

A

Z
Ψ

//• B
f̌

//• A

.

This essentially generalizes Lemma 7.6.5, which is clearer if we suppress the natural

isomorphisms λ, ρ of the pseudo double category. In a dual way, we can determine

the induced D-coaction on a composite horizontal 1-cell f̂ � Φ : Z //• A //• B for

a left C-module Φ, adjusting Lemma 7.6.6.

Alternatively, we can deduce that the forgetful functors ZMod(D) →Mon(D)

and WComod(D) → Comon(D) are a fibration and opfibration respectively, by

exhibiting the (co)cartesian arrows. For any left N -module Ψ and any monoid

homomorphism αf : M → N , the required cartesian lifting Cart(Ψ, αf ) : f̌�Ψ→ Ψ

in ZMod(D) is the left-module morphism

Z
Ψ //•

�� 1Ψ

B
f̌
//•

�� q1

A

f
��

Z
Ψ
//•

�� λ

B
1B

//• B

Z
Ψ

//• B.



8.2. DOUBLE CATEGORICAL AND BICATEGORICAL SETTING 217

The universal property is easily checked by the relations between q1 and q2, and

similarly we can write the cocartesian liftings for the second forgetful functor. �

We could also establish a fibration Mod(D) → Mon(D) and an opfibration

Comod(D) → Comon(D) for the categories of left modules and comodules with

arbitrary sources. The fibre categories would then be MMod(D) and CComod(D)

respectively, and the reindexing functors the same as above.

Remark. Consider the categories XD1 for any 0-cell X, of horizontal 1-cells with

domain X and 2-morphisms with source idX . We can generalize Proposition 7.7.1

and deduce that ZMod(D) is monadic over the pullback category ZD1×D0 Mon(D),

and WComod(D) is comonadic over WD1×D0 Comon(D). This further clarifies the

structure and properties of these categories. Similarly for (co)modules of arbitrary

domain, if we replace XD1 by plain D1.

We have so far totally recovered the fibrational view of Sections 7.5 and 7.6 in the

abstract framework of fibrant double categories. As remarked earlier, the definitions

of Mon(V-Mat) and Comon(V-Mat) wholly encapsulate the categories V-Cat and

V-Cocat, and the same applies to the categories V-Mod and V-Comod which are

identified with Mod(V-Mat) and Comod(V-Mat). We now turn to the issue of

enrichment between those categories.

In order to generalize the main results of the previous chapter in the monoidal

double categorical context, we require the existence of the following functors (com-

pare also with the beginning of this section): a pseudo double functor

⊗ : D× D −→ D (8.16)

which constitutes the tensor product of the double category, and a lax double functor

H : Dop × D −→ D (8.17)

with the property that H0 gives a monoidal closed structure on (D0,⊗0, I) and H1

a monoidal closed structure on (D1,⊗1, 1I).

We could assume that the extra structure given by this lax double functor H

makes D into a monoidal closed double category. However, this seems to not be the

case, even if there is an analogy with Definition 8.2.3 of a monoidal double category,

where the pseudo double functor ⊗ = (⊗0,⊗1) induces monoidal structures to the

vertical and horizontal categories D0 and D1.

In [GP04], a (weakly) monoidal closed pseudo double category D is a monoidal

double category such that each pseudo double functor (- ⊗ D) : D → D has a lax

right adjoint, call it HomD. Notice that in fact, (- ⊗ D) = (- ⊗0 D, - ⊗1 1D). This

falls into the more general case of pseudo/lax adjunction between pseudo double

categories as described in [GP04, 3.2], whereas double adjunctions are also studied

in [FGK12] in detail. Explicitly, it consists of two ordinary adjunctions

D0

(−⊗0D)
//

⊥ D0

HomD
0 (D,−)

oo , D1

−⊗11D)
//

⊥ D1

HomD
1 (1D,−)

oo
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for any 0-cell D in D, with units and counits η0,1, ε0,1 satisfying appropriate triangle

identities, such that conditions expressing compatibility with the horizontal compo-

sition and identities are satisfied. It immediately follows that D0 is a monoidal closed

category, but this cannot be deduced for D1 since 1D is not an arbitrary horizontal

1-cell.

We call a monoidal pseudo double category equipped with a functor H as in

(8.17) with such properties a locally monoidal closed double category. The above

arguments justify that a monoidal closed structure on a double category does not

imply a locally monoidal closed structure.

For example, consider the monoidal double category V-Mat. The tensor product

is given by ⊗0 = ×, the cartesian monoidal structure in Set, and ⊗1 defined as in

(8.13). Moreover, if V is monoidal closed and has products, there is a lax double

functor H = (H0, H1) defined as follows. On the vertical category, we have the

exponentiation functor

H0 : Setop × Set
(−)(−)

−−−−−→ Set

which is the internal hom in Set. On the horizontal category

H1 : V-Matop
1 × V-Mat1

// V-Mat1

(X �S //

f
�� �� α

Y

g

��

, Z
T� //

h
�� �� β

W )

k
��

� // ZX
H1(S,T )� //

hf
�� ��H1(α,β)

W Y

kg
��

(X ′
S′

� // Y ′ , Z ′
T ′

� // W ′) � // Z ′X
′

H1(S′,T ′)

� // W ′Y
′

is defined on objects as H1(S, T )(m,n) =
∏

(y,x)[S(y, x), T (m(y), n(x))] for all m ∈
W Y , n ∈ ZX , and on arrows as

H1(α, β) : H1(S, T )(m,n)→ H1(S′, T ′)(kg(m), hf (n)) ≡∏
y∈Y
x∈X

[S(y, x), T (m(y), n(x))]→
∏
y′∈Y ′
x′∈X′

[S′(y′, x′), T ′(kmg(y′), hnf(x′))]

which corresponds under the adjunction (-⊗X) a [X,−] in V for fixed y′, x′ to the

composite∏
y∈Y
x∈X

[S(y, x), T (my, nx)]⊗ S′(y′, x′) //

1⊗αy′,x′
��

T ′(kmgy′, hnfx′)

∏
y∈Y
x∈X

[S(y, x), T (my, nx)]⊗ S(gy′, fx′)

πgy′,fx′⊗1
��

[S(gy′, fx′), T (mgy′, nfx′)]⊗ S(gy′, fx′)
ev // T (mgy′, nfx′).

βmgy′,nfx′

OO

The globular transformations

H1(R,O)�H1(S, T )
∼−−→ H1(R� S,O � T ), 1H0(X,Y )

∼−−→ H1(1X , 1Y )
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which make H = (H0, H1) into a lax double functor are as in (7.9), (7.10). The

functor H1 constitutes a monoidal closed structure for (V-Mat1,⊗1, 1I), the proof

being essential Proposition 7.2.3 in the more general case of arbitrary horizontal

1-cells and not only endoarrows like V-graphs.

For an arbitrary locally monoidal closed double category D, we now aim to

investigate possible enrichment relations between the (op)fibrations of Propositions

8.2.8 and 8.2.9. The following properties of double functors resemble to properties

of monoidal functors studied in Chapter 3.

Proposition 8.2.10. Any lax double functor (F0, F1) : D→ E induces an ordi-

nary functor

MonF : Mon(D)→Mon(E)

between the categories of monoids, which is F1 restricted to MonD. Dually, any

colax double functor induces a functor between the categories of comonoids.

Remark. Since monoids in a double category are monads in its horizontal bi-

category and a lax double functor induces a lax functor between the horizontal

bicategories, the above statement on the level of objects coincides with Remark

2.2.2.

Proof. A monoid M : A //• A with m : M �M → M and η : 1M → M is

mapped to F1M : F0A //• F0A with multiplication and unit

F0A
F1M //•

��F�

F0A
F1M //• F0A

F0A
F1(M�M)

//•

�� F1m

F0A

F0A
F1M

//• F0A

and

F0A
F1(1A)

//•

��FU

F0A

F0A
1F0A

//•

�� F1η

F0A

F0A
F1M

//• F0A

and the axioms follow from the axioms for F� and FU . A monoid arrow αf : M → N

is mapped to

F0A
F1M //•

F0f

��
��F1α

F0A

F0f

��
F0B

F1N
//• F0B

which respects multiplications and units by naturality of F� as in (8.12) and FU . �

Proposition 8.2.11. Any lax double functor F : D→ E induces a functor

ZModF : ZMod(D)→ F0ZMod(E)

between the categories of modules, which is a restriction of F1. Dually, any colax

double functor G induces a functor

WComodG : WComod(D)→ G0WComod(E).
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Proof. On the level of objects, Proposition 2.2.10 gives functors

Z
MModF : ZMMod(D)→ F0Z

F1M
Mod(E)

W
C ComodG : WC Comod(D)→ G0W

G1C
Comod(E)

since (co)modules for a (co)monoid in a double category are (co)modules for a

(co)monad in its horizontal bicategory. The F1M -action on F1Ψ : F0Z //• F0A

for (Ψ, µ) a left M -module is just

F0Z
F1Ψ //•

��F�

F0A
F1M //• F0A

F0Z
F1(M�Ψ)

//•

�� F1µ

F0A

F0Z
F1Ψ

//• F0A.

On arrows, the fact that the image idF0Z (F1β)F0f : F1Ψ ⇒ F1Ξ of a left module

morphism β commutes with the induced actions on F1Ψ, F1Ξ is easily verified, by

naturality of F� and axioms for β. �

The functors ZModF and WComodG are in fact special cases of the more

general ModF : Mod(D) →Mod(E) and ComodG : Comod(D) → Comod(E),

between categories of (co)modules of arbitrary source, with a (co)action of any

(co)monoid.

Motivated by our original examples, we wish to employ functors between cate-

gories of modules with strictly the same domain. The following lemma shows how

under certain assumptions on D (but not in general), isomorphic 0-cells in D0 deter-

mine equivalent categories of modules with such domains.

Lemma 8.2.12. Suppose D is a fibrant double category. If two objects Z and W

are isomorphic in D0, there is an equivalence between the categories of (left) modules

with fixed domain Z and W , i.e. ZMod(D) ' WMod(D).

Proof. Recall that for any isomorphism f in D0, the adjunction f̂ a f̌ in H(D)

is an adjoint equivalence, and in particular the unit and counit η̌, ε̌ are isomorphisms

([Shu10, Lemma 3.21]).

Denote by f : Z
∼−−→ W the vertical isomorphism between the 0-cells. The

functor (- � f̌) : ZD1 → WD1 between categories of horizontal 1-cells with fixed

domains and 2-morphisms with sources vertical identities, has an inverse up to

isomorphism, namely the functor (-�f̂). For example, there is a natural isomorphism

Z
Ψ //•

�� ρ-1

A

Z
1Z

//•

�� η̌

Z
Ψ
//•

�� 1Ψ

A

Z
f̂

//• W
f̌

//• Z
Ψ
//• A
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between Ψ and Ψ� f̌ � f̂ , since in this case η̌ is invertible. This equivalence in fact

lifts to the categories of horizontal 1-cells with the structure of a left M -module for

an arbitrary monoid M in D, i.e. (-)Mod(D). �

We can now apply the above results to the double functors ⊗ (8.16) and H (8.17)

for our fibrant locally monoidal closed double category D.

Firstly, in any monoidal double category, the tensor product of (D1,⊗1, 1I) re-

stricts to the category D•1 of endo-1-cells, therefore (D•1,⊗1, 1I) is a monoidal category

itself. Then, by Proposition 8.2.10, the pseudo double functor ⊗ induces (ordinary)

functors

Mon⊗ :Mon(D)×Mon(D)→Mon(D)

Comon⊗ :Comon(D)×Comon(D)→ Comon(D),

given by ⊗1 between the specific subcategories of D•1. The unit element is still

1I : I //• I for I the unit of D0.

Proposition 8.2.13. If D is a monoidal double category, then the categories D•1,

Mon(D) and Comon(D) inherit a monoidal structure from D1.

For the monoidal double category D = V-Mat, this directly implies that the

categories V-Grph, V-Cat and V-Cocat obtain a monoidal structure essentially

given by (8.13), which of course agrees with the previous chapter.

Furthermore, by Proposition 8.2.11 the tensor product also gives rise to functors

(Z,Z′)Mod⊗ : ZMod(D)× Z′Mod(D)→ Z⊗0Z′Mod(D)

(W,W ′)Comod⊗ : WComod(D)× W ′Comod(D)→ W⊗0W ′Comod(D).

For the general categories of (left) modules and comodules with arbitrary domain

Mod(D) and Comod(D), these mappings turn out to induce monoidal structures

with unit element 1I . However, since we are here interested in categories with fixed

domains and in particular IMod(D) and IComod(D) because of our motivating

example, the following ‘modified’ monoidal structure is essential.

Lemma 8.2.14. Suppose that D is a fibrant monoidal double category. The cat-

egories IMod(D) and IComod(D) inherit a ‘tensor product’ functor from D1.

Proof. Since D0 is a monoidal category with ⊗0, there exists a vertical isomor-

phism r0
I=l

0
I : I ⊗0 I

∼−−→ I. Hence, by Lemma 8.2.12 we have an equivalence

I⊗0IMod(D) ' IMod(D) (8.18)

between the categories of left modules with domain I⊗0 I and of those with domain

I. We can thus define a composite functor

⊗̃ : IMod(D)× IMod(D)
(I,I)Mod⊗−−−−−−−−→ I⊗0IMod(D)

'−−→ IMod(D) (8.19)

where the first functor is ⊗1 and the second is the equivalence (- � řI). It can

be checked that this composite is equipped with natural coherent isomorphisms

(Ψ⊗̃Ξ)⊗̃Θ ∼= Ψ⊗̃(Ξ⊗̃Θ), coming from the respective ones for ⊗1. Similarly, we
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can work out a tensor product for IComod(D), making use of the equivalence
I⊗0IComod(D) 'I Comod(D). �

Even though, intuitively, this functor should give rise to a monoidal structure

on IMod(D), the natural choice of 1I : I //• I does not serve as the monoidal unit

for ⊗̃ as in (8.19). This is due to the fact that there is not an evident isomorphism

between

I
řI //• I ⊗0 I

Ψ⊗11I //• A⊗ I and I
Ψ //• A

unless, for example, q2 for the conjoint řI is invertible. However, when the equiva-

lence (8.18) is an isomorphism, we can deduce that (IMod(D), ⊗̃, 1I) is a monoidal

category. This is again motivated by D = V-Mat, where I={∗} is the singleton set.

Now consider the lax double functor H : Dop × D → D on a locally monoidal

closed double category D. First of all, it is easy to see that H1 restricts to the

subcategory D•1 of endo-1-cells. Also, the natural isomorphism

D1(M ⊗1 N,P ) ∼= D1(M,H1(N,P ))

which defines the adjunction (−⊗1N) a H1(N,−) implies that D•1 is also a monoidal

closed category. For example, for D = V-Mat this gives the monoidal closed struc-

ture on V-Grph. Then, by Proposition 8.2.10 there is an induced ordinary functor

MonH : Comon(D)op ×Mon(D)→Mon(D) (8.20)

which is H1 on the category Mon(Dop×D) ∼= Mon(Dop)×Mon(D). It is now easy

to verify that for any monoid M : A //• A, the diagram

Comon(D)op
H1(−,M)

//

��

Mon(D)

��
Dop

0
H0(−,A)

// D0.

commutes. There is also an adjunction between the base categories

D0

Hop
0 (−,A)

//
⊥ Dop

0
H0(−,A)

oo

for the monoidal closed category D0. If D is moreover fibrant, the legs of the diagram

are fibrations by Proposition 8.2.8. Lastly, if D is symmetric monoidal (for the

explicit definition, see [Shu10]), the internal homs H0 and H1 of the monoidal

closed categories D0 and D1 are actions of the monoidal Dop
0 , Dop

1 on the ordinary

D0, D1 by Lemma 4.3.2. Subsequently Hop
0 and

Hop
1 : D1 × Dop

1 → Dop
1

are actions too. Then the opposite MonHop of the induced functor between monoids

as in (8.20) is an action of the monoidal category Comon(D) on the opposite cate-

gory Mon(D)op, since the forgetful Mon(D)→ D1 reflects isomorphisms.



8.2. DOUBLE CATEGORICAL AND BICATEGORICAL SETTING 223

We can now combine the above with Theorem 8.1.6 of the previous section to

outline how we could obtain an enriched opfibration from the above data.

Theorem 8.2.15. Suppose D is a fibrant symmetric locally monoidal closed dou-

ble category.

(1) If Hop
1 : Comon(D)×Mon(D)op →Mon(D)op is cocartesian with a parame-

trized adjoint P , the categories Mon(D)op and Mon(D) are enriched in Comon(D).

(2) If furthermore

Comon(D)
Hop

1 (−,M)
//

��

⊥ Mon(D)op

��

P (−,M)
oo

D0

Hop
0 (−,A)

//
⊥ Dop

0
H0(−,A)

oo

is a general opfibred adjunction for any monoid M : A //• A in D, then the fibration

Mon(D)→ D0 is enriched in the monoidal opfibration Comon(D)→ D0.

Notice that the forgetful Comon(D)→ D0 is a monoidal fibration for any fibrant

monoidal double category D: by definition, the tensor product of two comonoids has

source and target the tensor product ⊗0 of the 0-cells in D0, and it can also be

verified that ⊗1 preserves the cocartesian liftings (8.15) in Comon(D). Moreover,

for the existence of such an adjoint P and the establishment of a parametrized

adjunction in OpFib we can evidently employ Lemma 5.3.6 and Theorem 5.3.7 .

We now shift to the level of modules and comodules in a fibrant locally monoidal

closed double category, still focusing on categories of horizontal 1-cells with fixed

domain I, the monoidal unit of D0. By Proposition 8.2.11, the lax double functor

H gives rise to a functor

(Z,W )ModH : ZComod(D)op × WMod(D)→ H0(Z,W )Mod(D)

which is H1 on (Z,W )Mod(Dop ×D) ∼= ZMod(Dop)×WMod(D). We now obtain a

commutative diagram

IComod(D)op
(I,I)ModH(−,Ψ)

//

��

H0(I,I)Mod(D)
' //

��

IMod(D)

xx
Comon(D)op

MonH(−,M)
// Mon(D)

for any left M -module Ψ, where by Lemma 8.2.12 the equivalence is the functor

(-� ǧ), for g : H0(I, I) ∼= I the isomorphism in the monoidal closed category D0.

The following roughly sketches how we can establish the enrichment of IMod(D)

in IComod(D), as in our particular examples. Notice that the modified tensor

product of Lemma 8.2.14 gives a monoidal structure on IComod(D) only when the

equivalence between IComod(D) and I⊗0IComod(D) is actually an isomorphism.
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Theorem 8.2.16. Suppose that the assumptions of Theorem 8.2.15 hold, and

also IComod(D) ∼= I⊗0IComod(D). If the functor ModH has a parametrized

adjoint Q such that for any left M -module Ψ,

IComod(D)
Hop

1 (−,Ψ)�ǧ
//

⊥

��

IMod(D)op

��

Q̄(−�ĝ,Ψ)

oo

Comon(D)
Hop

1 (−,M)
//

⊥ Mon(D)op

Q(−,M)
oo

is a general opfibred adjunction, then the fibration IMod(D)→Mon(D) is enriched

in the monoidal opfibration IComod(D)→ Comon(D).

We should stress that the above two theorems are just an attempt to place the

most significant results and concepts of this thesis in a framework where they may

arise in a natural way, rather than of actual importance on their own right as mathe-

matical statements. What should be quite noticeable about this final section is that

we are more interested in fitting this recurring duality and enrichment picture into

a general theory via fibrations, than determining the more technical specifications

required for the exact enrichments to appear, as was the focus in the previous two

chapters. This explains why we have not addressed particular issues, such as exis-

tence of limits and colimits in the categories involved, monadicity, continuity of the

key functors, cartesianness and fibrewise limits as well as local presentability, which

were broadly studied previously.

Hence, the significance of this abstraction basically lies in the clarification of

a setting for an enriched fibration picture between categories of a dual flavor, and

moreover and perhaps most importantly, the possibility of further applications in

the context of other double categories/bicategories. Regarding this last aspect we

should point out the following, without proceeding into a more detailed descrip-

tion due to the conceptual limits of this thesis. In the context of a bicategory of

V-symmetries, following a similar process we would possibly be able to establish

enrichments of categories of V-operads in V-cooperads, and V-operad modules in V-

cooperad comodules. Evidently, this indicates the necessity of further work in this

area.
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235 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker

Inc., New York, 2001. An introduction.
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