# Monads and modules in double categories

### Christina Vasilakopoulou

National Technical University of Athens, Greece

10th Greek Algebra and Number Theory Conference University of Crete

24 May 2025



Categorical properties

Sweedler theory



- 1. Double categories and examples
- 2. Monads and modules in double categories
- 3. Basic categorical properties
- 4. Sweedler theory

### Double categories

 $\star$  Introduced by Ehresmann in the '60s - strict version "category internal in the category of categories"

- $\blacktriangleright$  A double category  $\mathbb D$  consists of
  - $\cdot$  0-cells & vertical 1-cells which form a category  $\mathbb{D}_0$
  - $\cdot$  horizontal 1-cells & 2-maps which form a category  $\mathbb{D}_1$
  - $\cdot$  functor  $1\colon \mathbb{D}_0 \to \mathbb{D}_1$  providing units

· functors  $s, t: \mathbb{D}_1 \to \mathbb{D}_0$  providing source and target  $\begin{array}{c} X \xrightarrow{A} Y \\ f \downarrow \quad \ \ \downarrow \alpha \quad \ \ \downarrow g \\ Z \xrightarrow{B} W \end{array}$ 

· functor  $\circ: \mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \to \mathbb{D}_1$  providing horizontal composition together with natural  $(A \circ B) \circ C \cong A \circ (B \circ C)$ ,  $A \circ 1_X \cong A \cong 1_Y \circ A$ with identity vertical boundaries, satisfying coherence axioms. E.g. the two kinds of compositions of 2-maps obey interchange law

$$\begin{array}{cccc} \stackrel{\rightarrow}{\rightarrow} & \stackrel{\rightarrow}{\rightarrow} \\ \downarrow & \downarrow \alpha & \downarrow & \downarrow \beta & \downarrow \\ \stackrel{\rightarrow}{\rightarrow} & \stackrel{\rightarrow}{\rightarrow} & \\ \downarrow & \forall \gamma & \downarrow & \forall \delta & \downarrow \\ \stackrel{\rightarrow}{\rightarrow} & \stackrel{\rightarrow}{\rightarrow} & \end{array} \qquad (\delta \circ \gamma) \cdot (\beta \circ \alpha) = (\delta \cdot \beta) \circ (\gamma \cdot \alpha)$$

0-cells, horizontal 1-cells, globular 2-maps make horizontal bicategory  $\mathcal{H}(\mathbb{D})$ .

\* Alternative approach to 2-dimensional category theory, often more rich: for objects (0-cells) of interest, two different kinds of morphisms (with strict vs pseudo associative composition) encompassed in single structure.

## Examples of double categories

• Rel with sets as 0-cells, functions as vertical 1-cells ( $\mathbb{R}el_0=Set$ ), relations  $A \subseteq X \times Y$  as horizontal 1-cells  $A: X \to Y$ , maps of relations  $(xAy \Rightarrow f(x)Bg(y))$  as 2-maps.

Works in any regular category  $\mathcal{C} \rightsquigarrow$  double category  $\mathbb{R}el(\mathcal{C})$ .

• Span with Span<sub>0</sub>=Set, horizontal 1-cells spans  $x \xrightarrow{A} y$  and 2-maps



Horizontal composition given by taking pullbacks of spans.

Works in any  $\mathcal{C}$  with pullbacks $\rightsquigarrow$  double category  $\mathbb{S}$ pan( $\mathcal{C}$ ).

• Bim with  $\mathbb{B}im_0 = \operatorname{Rng}$ , the category of rings and ring homomorphisms, horizontall 1-cells  $R \xrightarrow{M} S$  are (R, S)-bimodules and 2-maps  $\stackrel{f}{\underset{M'}{\longrightarrow}} \stackrel{\psi \phi}{\underset{M'}{\longrightarrow}} \stackrel{\downarrow g}{\underset{M'}{\longrightarrow}} S'$ homomorphisms  $\phi \colon M \to M'$  s.t.  $\phi(rm) = f(r)\phi(m), \phi(ms) = \phi(m)g(s)$ .

Horizontal composition  $R \xrightarrow{M} S \xrightarrow{N} T$  is tensor product  $M \otimes_S N$ .

•  $\mathcal{V}$ -Mat for  $(\mathcal{V}, \otimes, I)$  monoidal category+assumptions.  $\mathcal{V}$ -Mat<sub>0</sub> = Set ,  $X \xrightarrow{A} Y$  are  $\mathcal{V}$ -matrices  $Y \times X \xrightarrow{A} \mathcal{V}$  i.e.  $\{A(y, x)\}_{y, x}$  in  $\mathcal{V}$ , 2-maps are



Composition is 'matrix multiplication'  $(B \circ A)(z, x) = \sum_{y} B(z, y) \otimes A(y, x)$ .

### Monads in double categories

▶ A monad in  $\mathbb{D}$  is  $A: X \rightarrow X$  with 'multiplication' and 'unit' 2-maps

satisfying usual associativity and unitality axioms. E.g.



\* Since all 2-maps are globular, coincide with monads in *bicategories*. However, maps of monads are different!

Christina Vasilakopoulou (NTUA)

A monad map from 
$$X \xrightarrow{A} X$$
 to  $Y \xrightarrow{B} Y$  is a 2-map  $\begin{array}{c} X \xrightarrow{A} X \\ f \downarrow \quad \forall \alpha \quad \downarrow f \\ Y \xrightarrow{B} Y \end{array}$  s.t.



If Monads and monad maps form a category  $\mathsf{Mnd}(\mathbb{D})$  for any double  $\mathbb{D}$ .

\* When  $\mathbb{D}$  has single 0-cell and vertical 1-cell, becomes a monoidal category  $\mathcal{V}$  ( $\circ = \otimes$ ). Then Mnd( $\mathbb{D}$ ) is the category of monoids in  $\mathcal{V}$ !

Sweedler theory

### Examples of categories of monads

• For  $\mathbb{D}=\mathbb{S}pan(\mathcal{C})$ , monad  $\chi \overset{d}{\smile} X$  is category *internal* in  $\mathcal{C}$ : consists of  $\mathcal{C}$ -object X of objects,  $\mathcal{C}$ -object A of arrows,  $\eta$  picks identities and  $\mu$ 



is composition rule.

A monad map is a functor internal in C, so Mnd(Span(C)) = Cat(C)!

• For  $\mathbb{R}el(\mathcal{C}) \subseteq \mathbb{S}pan(\mathcal{C})$ , category of monads  $Mnd(\mathbb{R}el(\mathcal{C}))$  is  $Preord(\mathcal{C})$ , category of internal preorders and order-preserving maps in  $\mathcal{C}$ .

• For  $\mathbb{B}$ im, a monad  $R \xrightarrow{A} R$  is an R-algebra and a monad map  $\begin{array}{c} R \xrightarrow{A} R \\ f \downarrow & \downarrow \alpha & \downarrow f \\ S \xrightarrow{R} S \end{array}$ 

is *R*-algebra map  $\alpha \colon A \to B$  with *B* an *R*-algebra via restriction of scalars. So Mnd( $\mathbb{B}$ im)=Alg, a 'global' category of algebras over arbitrary rings.

• For  $\mathcal{V}$ - $\mathbb{M}$ at, a monad  $X \xrightarrow{A} X$  is  $\{A(x, x')\}_{x,x'}$  in  $\mathcal{V}$  with

$$\left(\sum\right) A(x,x') \otimes A(x',x'') \to A(x,x''), \quad I \to A(x,x)$$

+ axioms , i.e. a  $\mathcal{V}$ -category! Moreover, a monad map is a  $\mathcal{V}$ -functor between  $\mathcal{V}$ -categories, thus Mnd( $\mathcal{V}$ -Mat)= $\mathcal{V}$ -Cat.

\* Both internal and enriched categories can be studied in this context!

Modules in double categories A left *A*-module for monad  $X \xrightarrow{A} X$  in  $\mathbb{D}$  is  $U \xrightarrow{M} X$  with 'action'



compatible with  $\mu, \eta$ . A module morphism from *A*-module  $U \xrightarrow{M} X$  to *B*-module  $Z \xrightarrow{N} Y$  is a monad map  $A \rightarrow B$  and a 2-map

$$\begin{array}{ccc} U & \stackrel{M}{\longrightarrow} & X \\ h & \downarrow_{\zeta} & \downarrow_{f} & \text{with } f \text{ the boundary of monad map} \\ Z & \stackrel{}{\longrightarrow} & Y \end{array}$$

compatible with the actions.

• Module and module maps form a category  $Mod(\mathbb{D})$  for any double  $\mathbb{D}$ .

## Monoidal structure

▶ A double category  $\mathbb{D}$  is monoidal when  $\mathbb{D}_0$  and  $\mathbb{D}_1$  are monoidal,  $s, t: \mathbb{D}_1 \to \mathbb{D}_0$  are strict monoidal functors, and

 $(M \otimes N) \circ (M' \otimes N') \cong (M \circ M') \otimes (N \circ N'), \quad 1_{X \otimes Y} \cong 1_X \otimes 1_Y$ 

subject to coherence conditions.

•  $\mathbb{R}el(\mathcal{C})$  and  $\mathbb{S}pan(\mathcal{C})$  are (cartesian) monoidal,  $\mathbb{B}im$  is monoidal with  $R \otimes S$  and  $M \otimes_{\mathbb{Z}} N$ ,  $\mathcal{V}$ -Mat is monoidal with  $(X \otimes Y) = X \times Y$  and

$$(A \otimes B)((x, y), (z, w)) = A(x, z) \otimes B(y, w).$$

■ If  $\mathbb{D}$  is monoidal double, Mnd( $\mathbb{D}$ ) and Mod( $\mathbb{D}$ ) are monoidal categories. If *A* and *B* are monads,  $A \otimes B$  becomes a monad via

$$(A \otimes B) \circ (A \otimes B) \xrightarrow{\cong} (A \circ A) \otimes (B \circ B) \xrightarrow{\mu \otimes \mu} A \otimes B$$

### Fibrant structure

▶  $\mathbb{D}$  is fibrant when the functor (s, t):  $\mathbb{D}_1 \to \mathbb{D}_0 \times \mathbb{D}_0$  is a fibration.

 $F: \mathcal{C} \to \mathcal{X}$  is a fibration when for every  $f: X \to F(B)$  in  $\mathcal{X}$  there exists unique lifting  $f^*(B) \to B$  of f in  $\mathcal{C}$  with factorization property.

Gives canonical way to turn vertical 1-cells  $X \xrightarrow{f} Y$  to two horizontal ones, the *companion*  $\hat{f}: X \to Y$  & the *conjoint*  $\check{f}: Y \to X$ .

• In Span, function 
$$X \xrightarrow{f} Y$$
 gives spans  $X \xrightarrow{1_X} Y$  and  $Y \xrightarrow{f} X \xrightarrow{1_X} X$ 

• In 
$$\mathcal{V}$$
-Mat,  $X \xrightarrow{f} Y$  gives matrices  $\hat{f}(x, y) = \check{f}(y, x) = \begin{cases} I \text{ if } fx = y \\ 0 \text{ if } fx \neq y \end{cases}$ 

 $\blacksquare \operatorname{Mnd}(\mathbb{D}) \to \mathbb{D}_0 \text{ is a fibration, } \operatorname{Mod}(\mathbb{D}) \to \operatorname{Mnd}(\mathbb{D}) \text{ is a fibration.}$ For a vertical  $X \xrightarrow{f} Y$  and monad  $Y \xrightarrow{A} Y$ ,  $f^*(A) \colon X \xrightarrow{\hat{f}} Y \xrightarrow{A} Y \xrightarrow{\check{f}} X$ .

### Parallel limits and colimits

\* Double categorical (co)limits exist and have been studied (Paré et al). Here, more specific notion is more relevant.

▶  $\mathbb{D}$  has parallel (co)limits if  $\mathbb{D}_0$ ,  $\mathbb{D}_1$  have (co)limits, *s*, *t* preserve them.

• Span(C) has all parallel limits that C has.  $\mathcal{V}$ -Mat has parallel coproducts, and is parallel cocomplete when  $\mathcal{V}$  is and  $\otimes$  preserves colimits.

■ When  $\mathbb{D}$  is fibrant and has parallel limits,  $Mnd(\mathbb{D})$  has limits,  $Mod(\mathbb{D})$  has limits and  $Mod(\mathbb{D}) \rightarrow Mnd(\mathbb{D})$  preserves them.

 $\blacksquare$  When  $\mathbb D$  is fibrant and has parallel colimits, preserved by -  $\circ$  -, then

- Mnd(D) is monadic over horizontal endo-1-cells (no μ or η);
- Mnd(D) is cocomplete.

### Sweedler theory

\* (1960s) Sweedler defines 'universal measuring k-coalgebra' P(A, B) for any two k-algebras. For B = k, 'finite dual' coalgebra  $A^o$  for which

 $\{\text{algebra maps } A \to C^*\} \cong \{\text{coalgebra maps } C \to A^o\}$ 

\* (later) *P* provides an enrichment of *k*-algebras Alg<sub>k</sub> in *k*-coalgebras Coalg<sub>k</sub>. Can replace Vect<sub>k</sub> by monoidal category  $(\mathcal{V}, \otimes, I)$ +assumptions \* (many-object version) Mon $(\mathcal{V})$  of monoids 'is' Mnd $(\mathbb{D})$  for double  $\mathbb{D}$  with  $\mathbb{D}_0 = \{*\}$ , also exist dual concept of comonads and comodules...



Sweedler theory

### Thank you for your attention!

