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Double categories
⋆ Introduced by Ehresmann in the ’60s - strict version “category internal
in the category of categories”

▶ A double category D consists of
· 0-cells & vertical 1-cells which form a category D0

· horizontal 1-cells & 2-maps which form a category D1

· functor 1 : D0 → D1 providing units

· functors s, t : D1 → D0 providing source and target
X Y

Z W

A

f ⇓α g

B

· functor ◦ : D1×D0D1 → D1 providing horizontal composition
together with natural (A ◦ B) ◦ C ∼= A ◦ (B ◦ C), A ◦ 1X ∼= A ∼= 1Y ◦ A
with identity vertical boundaries, satisfying coherence axioms.
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E.g. the two kinds of compositions of 2-maps obey interchange law

⇓α ⇓β

⇓γ ⇓δ

(δ ◦ γ) · (β ◦ α) = (δ · β) ◦ (γ · α)

�
�

�

0-cells, horizontal 1-cells, globular 2-maps

make horizontal bicategory H(D).

⋆ Alternative approach to 2-dimensional category theory, often more rich:
for objects (0-cells) of interest, two different kinds of morphisms (with
strict vs pseudo associative composition) encompassed in single structure.
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Examples of double categories
• Rel with sets as 0-cells, functions as vertical 1-cells (Rel0=Set),
relations A ⊆ X × Y as horizontal 1-cells A : X Y , maps of relations
(xAy ⇒ f (x)Bg(y)) as 2-maps.
Works in any regular category C double category Rel(C).

• Span with Span0=Set, horizontal 1-cells spans
A

X Y and 2-maps
A

X Y

Z W

B

kf g

Horizontal composition given by taking pullbacks of spans.
Works in any C with pullbacks double category Span(C).
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• Bim with Bim0 = Rng, the category of rings and ring homomorphisms,

horizontall 1-cells R M S are (R, S)-bimodules and 2-maps
R S

R ′ S ′

M

f ⇓ϕ g

M′

homomorphisms ϕ : M → M ′ s.t. ϕ(rm) = f (r)ϕ(m), ϕ(ms) = ϕ(m)g(s).
Horizontal composition R M S N T is tensor product M ⊗S N.

• V-Mat for (V, ⊗, I) monoidal category+assumptions. V-Mat0 = Set ,
X A Y are V-matrices Y ×X A−→ V i.e. {A(y , x)}y ,x in V, 2-maps are

Y × X V

W × Z

A

g×f

⇓α

B

αx ,y : A(y , x) → B(gy , fx) ∈ V

Composition is ‘matrix multiplication’ (B◦A)(z , x)=
∑

y
B(z , y)⊗A(y , x).
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Monads in double categories
▶ A monad in D is A : X X with ‘multiplication’ and ‘unit’ 2-maps

X X X

X X

A

⇓µ

A

A

X X

X X

1X

⇓η

A

satisfying usual associativity and unitality axioms. E.g.

X X X X

X X X

X X

A

⇓µ

A A

⇓idA

A
⇓µ

A

A

=

X X X X

X X X

X X

⇓idA

A A

⇓µ

A

A
⇓µ

A

A

⋆ Since all 2-maps are globular, coincide with monads in bicategories.
However, maps of monads are different!
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▶ A monad map from X A X to Y B Y is a 2-map
X X

Y Y

A

f ⇓α f

B

s.t.

X X X

Y Y Y

Y Y

A

f ⇓α ⇓α

A

f f

B
⇓µ

B

B

=

X X X

X X

Y Y

A

⇓µ

A

A
⇓αf f

B

and

X X

X X

Y Y

1X

⇓η

A
f ⇓α f

B

=

X X

Y Y

Y Y

1X

f ⇓1f f

1Y
⇓η

B

■ Monads and monad maps form a category Mnd(D) for any double D.

⋆ When D has single 0-cell and vertical 1-cell, becomes a monoidal
category V (◦ = ⊗). Then Mnd(D) is the category of monoids in V!
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Examples of categories of monads

• For D=Span(C), monad
A

X X
d c

is category internal in C: consists
of C-object X of objects, C-object A of arrows, η picks identities and µ

A ×X A

A A

X X X

A

d c d c

d c

is composition rule.

A monad map is a functor internal in C, so Mnd(Span(C)) = Cat(C)!

• For Rel(C) ⊆ Span(C) , category of monads Mnd(Rel(C)) is Preord(C),
category of internal preorders and order-preserving maps in C.
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• For Bim, a monad R A R is an R-algebra and a monad map
R R

S S

A

f ⇓α f

B
is R-algebra map α : A → B with B an R-algebra via restriction of scalars.
So Mnd(Bim)=Alg, a ‘global’ category of algebras over arbitrary rings.

• For V-Mat, a monad X A X is {A(x , x ′)}x ,x ′ in V with(∑)
A(x , x ′) ⊗ A(x ′, x ′′) → A(x , x ′′), I → A(x , x)

+ axioms , i.e. a V-category! Moreover, a monad map is a V-functor
between V-categories, thus Mnd(V-Mat)=V-Cat.

⋆ Both internal and enriched categories can be studied in this context!
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Modules in double categories
▶ A left A-module for monad X A X in D is U M X with ‘action’

U X X

U A

M

⇓λ

A

M

compatible with µ, η. A module morphism from A-module U M X to
B-module Z N Y is a monad map A → B and a 2-map

U X

Z Y

M

h ⇓ζ f

N

with f the boundary of monad map

compatible with the actions.

■ Module and module maps form a category Mod(D) for any double D.
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Monoidal structure
▶ A double category D is monoidal when D0 and D1 are monoidal,
s, t : D1 → D0 are strict monoidal functors, and

(M ⊗ N) ◦ (M ′ ⊗ N ′) ∼= (M ◦ M ′) ⊗ (N ◦ N ′), 1X⊗Y ∼= 1X ⊗ 1Y

subject to coherence conditions.

• Rel(C) and Span(C) are (cartesian) monoidal, Bim is monoidal with
R ⊗ S and M ⊗Z N, V-Mat is monoidal with (X⊗Y )=X×Y and

(A⊗B)((x , y), (z , w)) = A(x , z)⊗B(y , w).

■ If D is monoidal double, Mnd(D) and Mod(D) are monoidal categories.
If A and B are monads, A ⊗ B becomes a monad via

(A ⊗ B) ◦ (A ⊗ B)
∼=−→ (A ◦ A) ⊗ (B ◦ B) µ⊗µ−−−→ A ⊗ B
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Fibrant structure
▶ D is fibrant when the functor (s, t) : D1 → D0 × D0 is a fibration.

F : C → X is a fibration when for every f : X → F (B) in X there exists
unique lifting f ∗(B) → B of f in C with factorization property.

Gives canonical way to turn vertical 1-cells X f−→ Y to two horizontal
ones, the companion f̂ : X Y & the conjoint f̌ : Y X .

• In Span, function X f−→ Y gives spans
X

X Y

1X f

and
X

Y X
f 1X

• In V-Mat, X f−→ Y gives matrices f̂ (x , y) = f̌ (y , x) =
{

I if fx = y
0 if fx ̸= y

■ Mnd(D) → D0 is a fibration, Mod(D) → Mnd(D) is a fibration.

For a vertical X f−→ Y and monad Y A Y , f ∗(A) : X f̂ Y A Y f̌ X .
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Parallel limits and colimits

⋆ Double categorical (co)limits exist and have been studied (Paré et al).
Here, more specific notion is more relevant.

▶ D has parallel (co)limits if D0, D1 have (co)limits, s, t preserve them.

• Span(C) has all parallel limits that C has. V-Mat has parallel
coproducts, and is parallel cocomplete when V is and ⊗ preserves colimits.

■ When D is fibrant and has parallel limits, Mnd(D) has limits, Mod(D)
has limits and Mod(D) → Mnd(D) preserves them.

■ When D is fibrant and has parallel colimits, preserved by - ◦ -, then
• Mnd(D) is monadic over horizontal endo-1-cells (no µ or η);
• Mnd(D) is cocomplete.
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Sweedler theory
⋆ (1960s) Sweedler defines ‘universal measuring k-coalgebra’ P(A, B) for
any two k-algebras. For B = k, ‘finite dual’ coalgebra Ao for which

{algebra maps A → C∗} ∼= {coalgebra maps C → Ao}

⋆ (later) P provides an enrichment of k-algebras Algk in k-coalgebras
Coalgk . Can replace Vectk by monoidal category (V, ⊗, I)+assumptions
⋆ (many-object version) Mon(V) of monoids ‘is’ Mnd(D) for double D
with D0 = {∗} , also exist dual concept of comonads and comodules...

For D a braided monoidal closed and locally presentable double category

Mod(D) Comod(D)

Mnd(D) Cmd(D)

fibered

enriched

opfibered

enriched
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Thank you for your attention!
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