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Hopf measuring comonoids and enrichment
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Abstract

We study the existence of universal measuring comonoids P (A,B) for a pair of monoids A,
B in a braided monoidal closed category, and the associated enrichment of the category of
monoids over the monoidal category of comonoids. In symmetric categories, we show that if A is
a bimonoid and B is a commutative monoid, then P (A,B) is a bimonoid; in addition, if A is a
cocommutative Hopf monoid then P (A,B) always is Hopf. If A is a Hopf monoid, not necessarily
cocommutative, then P (A,B) is Hopf if the fundamental theorem of comodules holds; to prove
this we give an alternative description of the dualizable P (A,B)-comodules and use the theory
of Hopf (co)monads. We explore the examples of universal measuring comonoids in vector spaces
and graded spaces.

1. Introduction

The finite or Sweedler dual of a k-algebra [29] plays a central role in the duality theory of Hopf
algebras. If A is an algebra over a field k, its finite dual A◦ is a coalgebra with the property
that coalgebra morphisms C → A◦ are in natural bijection with algebra morphisms A → C∗,
for any coalgebra C. When A has finite dimension, A◦ is isomorphic to the linear dual A∗, but
in arbitrary dimension A∗ may not have a natural coalgebra structure.

The classical construction of the finite dual A◦ depends on the fact that k is a field, a
hypothesis that was somewhat weakened in [2]. The existence of a coalgebra A◦ satisfying the
universal property described in the previous paragraph can be proven in great generality (see
[24], but also Section 4 where a braiding is not required); in particular, A◦ exists over any
commutative ring, but its classical description may no longer hold true.

That fact that the category of k-algebras admits an enrichment in the category of k-
coalgebras has long been part of mathematical folklore. It seems that Gavin Wraith was the
first to appreciate this fact and that he lectured on it and related matters at the Oberwolfach
meeting Universelle und Kategorische Algebra, 3–10 July 1968. When Sweedler’s book [29] on
Hopf algebras came out, Wraith immediately recognised that the enrichment is given by what
Sweedler called the universal measuring coalgebra of a pair of algebras.

In this paper we explore the existence of a generalisation of the finite dual construction,
called universal measuring comonoidsP (A,B), for a pair of monoids A, B in a monoidal closed
category, and the properties of this construction. The comonoid P (A,B) is defined by the the
property that monoid morphisms A → [C,B] are in natural bijection with comonoid morphisms
C → P (A,B), for all comonoids C; note that A◦ = P (A, I), where I is the monoidal unit. We
show that, when the monoidal category has a braiding, the functor with mapping on objects
(A,B) �→ P (A,B) is monoidal, so there are coherent comonoid morphisms

P (A,B) ⊗ P (A′, B′) −→ P (A⊗A′, B ⊗B′) and I −→ P (I, I) (1)

(the latter is invertible), and when the braiding is a symmetry, P is a braided monoidal functor.
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The enrichment of the opposite of the category Mon(V)op of monoids in V over the category
Comon(V) of comonoids in V arises from an action of the latter, viewed as a monoidal category,
on the former. We are lead to consider actions of monoidal categories and answer the following
question: what extra structure on an action of the monoidal category C on A ensures that the
associated C-enriched category is monoidal? This extra structure is what we call an opmonoidal
action, and we use it to deduce that for a symmetric V, the category of monoids is a symmetric
monoidal Comon(V)-category.

The classical construction of the Sweedler dual A◦ of a k-algebra [29] satisfies two important
properties: A◦ is a bialgebra if A is so, and A◦ is Hopf algebra if A is so. We show in
complete generality that P (A,B) is a bimonoid if A is a bimonoid and B is a commutative
monoid. We then prove that P (A,B) is a Hopf monoid in two situations. First, if A is
a Hopf cocommutative bimonoid and B is commutative; secondly, if A is a Hopf monoid
(not necessarily cocommutative) and the base symmetric monoidal category satisfies the
fundamental theorem of comodules. To prove this last result, we provide an alternative
description of the dualizable P (A,B)-comodules, as dualizable objects X equipped with a
morphism A⊗X → X ⊗B that satisfies two axioms.

We now briefly outline the organisation of the article. Section 2 collects some known facts
about monoidal closed categories, monoids and comonoids, and locally presentable categories.
After recalling the connection between actions of monoidal categories and enrichment, Section 3
introduces opmonoidal actions and braided opmonoidal actions, and proves that they give
rise to monoidal and braided monoidal enriched categories. Section 4 studies the existence of
universal measuring comonoids in a more general setting than the category of R-modules of [24],
namely, in locally presentable monoidal categories. The enrichment of monoids in comonoids
is recovered in Section 5, while Section 6 gives some tools to compute universal measuring
comonoids, especially via their comodules. Section 7 explores induced monoidal structures of
dualizable comodules, and 8 certain (co)commutativity relations for P (A,B). In Section 9, we
move to the Hopf setting by proving that the universal measuring comonoids of cocommutative
Hopf monoids are Hopf monoids, in the general context of a locally presentable symmetric
monoidal closed category. The case when the Hopf monoid is not necessarily cocommutative is
dealt with in Section 10, which also contains some aspects of the theory of Hopf monads and
comonads. The example of graded coalgebras is given its own in Section 11.

The presentation of Sections 2, 4, 5 and part of Section 3 is similar to that found in [31, 32].
Soon after the first version of this manuscript was made public, the preprint [26] appeared,
containing some overlapping material.

2. Background

Let us start the section with a few words on terminology and notation around monoidal
categories, for which [14] is a standard reference. Throughout the paper, the tensor product
and unit object of monoidal categories will be denoted by ⊗ and I, and the associativity and
unit constraints will be omitted in many occasions (something that is allowed by the coherence
theorem for monoidal categories). A left closed monoidal category V will be one for which
the functor (−⊗X) has a right adjoint [X,−], for all objects X; the resulting functor [−,−]
is called the left internal hom. Symmetrically, a right closed monoidal category is one for
which each (X ⊗−) has a right adjoint [X,−]′, called the right internal hom. Braidings will
be denoted by the letter c, and they induce a biclosed monoidal structure on V, should it be
right or left closed.

A dual pair in a monoidal category is a pair of objects X, X∨ with two morphisms ev : X∨ ⊗
X → I and coev : I → X ⊗X∨, satisfying two ‘triangular equalities’; X∨ is said to be a left
dual of X, and, reciprocally, X a right dual of X∨. A dual pair induces an adjunction (−⊗X) �
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(−⊗X∨), and Y ⊗X∨ is the left internal hom from X to Y . When the monoidal category
is braided, right duals can be obtained from left duals, via the braiding, and the adjectives
‘left’ and ‘right’ may be dropped. For example, a k-module X has a dual if and only if it is
projective and finitely presentable, in which case the dual is the usual linear dual X∗.

An object of a braided monoidal category V is dualizable if it has a dual (left dual, or
equivalently, right dual). Given a functor U : C → V, an object X ∈ C is U -dualizable, or simply
dualizable when U is implicit, if U(X) is dualizable in V.

A monoidal functor between monoidal categories V and W will be a functor F : V → W
equipped with a transformation F2,X,Y : F (X) ⊗ F (Y ) → F (X ⊗ Y ) and a morphism F0 : I →
F (I) satisfying coherence axioms; see, for example, [14, § 1]. Other names in use for this notion
are tensor functor or lax monoidal functor. The dual notion will be called an opmonoidal
functor, that is, F is equipped with a transformation F2,X,Y : F (X ⊗ Y ) → F (X) ⊗ F (Y ) and
a morphism F0 : F (I) → I, satisfying coherence axioms. Other names in use for this notion
are colax monoidal functor and oplax monoidal functor. If F2,X,Y and F0 are isomorphisms
(respectively, identities), F is a strong (respectively, strict) monoidal functor, and it is moreover
braided monoidal when it preserves the braiding in the appropriate sense.

Throughout the paper, we employ the well-known fact that the right adjoint of a strong
monoidal functor between monoidal categories has a unique monoidal structure such that the
unit and counit of the adjunction become monoidal natural transformations. This generalises
to the case of parametrised adjoints; a higher dimension version of the following proposition
appeared in [8, Proposition 2].

Proposition 2.1. Suppose F : B × C → D and G : Cop ×D → B are parametrised adjoints,
that is, F (−, C) � G(C,−) for all C, and all the categories are monoidal. Then there is a
bijection between opmonoidal structures on F and monoidal structures on G.

Let V be a braided monoidal closed category. Recall from [14, § 5] that the braiding endows
⊗ : V × V → V with a strong monoidal structure, given by

1 ⊗ cY⊗Z⊗W : X ⊗ Y ⊗ Z ⊗W
∼−−→ X ⊗ Z ⊗ Y ⊗W and I ∼= I ⊗ I. (2)

By definition, the internal hom is a parametrised right adjoint to (−⊗A) ∼= (A⊗−). As a
result, the bifunctor [−,−] : Vop × V → V has a monoidal structure, by Proposition 2.1. In
the case that the braiding is a symmetry, both the tensor product and internal hom become
braided monoidal functors.

2.1. Monoids, comonoids and bimonoids

A monoid in a monoidal category V is an object A equipped with a multiplication and unit
morphisms μ : H ⊗H → H ← I : ι that satisfy the usual associativity and unit axioms, that
we depict.

(3)

A morphism of monoids (A, ι, μ) → (A′, ι′, μ′) is a morphism f : A → A′ in V compatible with
multiplication and unit; that is, such that μ′ · (f ⊗ f) = f · μ and f · ι = ι′.

A comonoid in V is a monoid in the opposite monoidal category Vop; it consists of an object
C with a comultiplication Δ: C → C ⊗ C and a counit ε : C → I satisfying axioms dual to
those of a monoid. Morphisms of comonoids are defined in a dual fashion to morphisms of
monoids.
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The categories of monoids and comonoids in a monoidal category V will be denoted,
respectively, by Mon(V) and Comon(V). For V braided, these categories are monoidal: if
A and A′ are monoids, then A⊗A′ has a monoid structure with multiplication (μ⊗ μ′) · (A⊗
cA′,A ⊗A′). The respective forgetful functors into V are strict monoidal. These categories need
not support a braiding unless V is symmetric, as explained below.

Remark 2.2. The monoidal category Comon(V) on a braided monoidal category V has
a braiding given by cAB : A⊗B → B ⊗A, that is, cAB is a morphism of comonoids, if c is a
symmetry. The analogous result holds for Mon(V).

Monoidal functors preserve monoids, in the sense that, given a monoid A and a monoidal
functor F : V → W, then F (A) is a monoid with multiplication F (μ) · F2,A,A and unit F (ι) · F0.
We denote the induced functor between the categories of monoids by Mon(F ) : Mon(V) →
Mon(W). Dually, opmonoidal functors preserve comonoids.

As an example, the monoidal structure of Mon(V) and Comon(V) can be deduced from ⊗
being strong monoidal. Also, the internal hom functor induces

Mon[−,−] : Comon(V)op × Mon(V) −→ Mon(V) (C,A) �→ [C,A]. (4)

In particular, whenever C is a comonoid and A a monoid, the object [C,A] is endowed with
the structure of a monoid, sometimes called the convolution monoid structure. We record for
later reference:

Lemma 2.3. The internal hom functor [−,−] of a braided monoidal closed category
V induces a functor Comon(V)op × Mon(V) → Mon(V). When the braiding is a sym-
metry, the domain and codomain are symmetric monoidal categories and this functor is
braided.

In any braided monoidal category V, the braiding allows us to define opposite monoids and
comonoids. In contrast to the case of a symmetric monoidal category (that is, when c−1

X,Y =
cY,X), there are two choices of opposite, one that employs c and the other that employs c−1. If
(A, ι, μ) is a monoid, we denote by Aop,c and Aop,c−1

the monoids with multiplication μ · cA,A

and μ · c−1
A,A respectively. Similarly, if (C, ε,Δ) is a comonoid, we denote by Ccop,c and Ccop,c−1

the comonoids with comultiplication cC,C · Δ and c−1
C,C · Δ. If c is a symmetry, we clearly only

have Aop and Ccop. A monoid A is then called commutative if A = Aop, and dually for a
cocommutative comonoid C = Ccop.

Definition 2.4. (1) A bimonoid in a braided V is an object B with a monoid structure
(ι, μ) and a comonoid structure (ε,Δ) such that ε : B → I and Δ: B → B ⊗B are monoid
morphisms, where B ⊗B is a monoid with the structure described earlier.

(2) An antipode for a bimonoid (H, ι, μ, ε,Δ) is a morphism s : H → H for which μ · (s⊗
1H) · Δ = ι · ε = μ · (1H ⊗ s) · Δ. In other words, it is an inverse for 1H in the convolution
monoid induced by the bimonoid H. A bimonoid is called a Hopf monoid if it has an antipode.

(3) An opantipode is an inverse for 1H in the convolution monoid induced by the comonoid
Hcop,c−1

and the monoid H; see [7, § 5.2]. The bimonoid H is called an op-Hopf monoid if it
has an opantipode.

(4) Finally, for any monoid A in a monoidal category V, we shall denote its category of left
modules by ModV(A); its objects are pairs (M,ν) where M is an object of V and ν : A⊗M →
M is an action of A, by which we mean that it satisfies the usual module axioms. Dually, we
denote the category of left comodules over a comonoid C by ComodV(C).
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2.2. Accessible and locally presentable monoidal categories

This section compiles some facts about accessible and locally presentable monoidal categories,
present in [25], that will be useful later. We refer the reader to [21] or [3] for the theory of
accessible and locally presentable categories. We limit ourselves here to mentioning only a few
facts. An object X of a category C is κ-presentable if the representable C(X,−) preserves κ-
filtered colimits; here κ is a regular cardinal. The category C is κ-accessible if it has κ-filtered
colimits, there is, up to isomorphism, a small set of κ-presentable objects, and each object of C is
the colimit of a κ-filtered diagram of κ-presentable objects. In particular, κ-presentable objects
form a small dense subcategory of C. If C is cocomplete, one says that it is locally κ-presentable.
A category is accessible or locally presentable if it is κ-accessible or locally κ-presentable for
some regular cardinal κ. Locally presentable categories are automatically complete. Also, if C
is accessible or locally presentable, then so is the functor category [A, C] for any small A.

A functor between κ-accessible categories is κ-accessible if it preserves κ-filtered colimits. A
functor between two accessible categories is said to be accessible if it is κ-accessible for some
κ. This makes sense because given two (or a small set L of) accessible categories, there exists
a regular cardinal κ such that both (all the elements of L) are κ-accessible (see [21, 2.4.9]).
Clearly, if F is κ-accessible and κ � μ, then F is μ-accessible.

Remark 2.5. The following two facts about functors between locally presentable categories
will be needed in later sections.

(1) Any cocontinuous functor between locally presentable categories is a left adjoint. In
fact, by [18, 5.33], any cocontinuous functor between cocomplete categories whose domain has
a small dense category is a left adjoint.

(2) Any continuous accessible functor between locally presentable categories is a right
adjoint, by [9, Satz 14.6].

Definition 2.6. A κ-accessible monoidal category is a monoidal category V that satisfies
the following: it is a κ-accessible category; the tensor product is a κ-accessible functor; the
unit object is κ-presentable; and, κ-presentable objects are closed under the tensor product. A
locally presentable monoidal category is an accessible monoidal category that is cocomplete.

Locally presentable monoidal categories that are symmetric are called admissible monoidal
categories in [25]. Examples include the monoidal category of modules over a commutative ring;
the monoidal category of chain complexes over a commutative ring; any locally presentable
cartesian closed category, such as for example Grothendieck toposes. In fact, the results
obtained in the current paper require more relaxed conditions on the base monoidal category
V, that is, local presentability of its underlying category, as we explain below.

Any monoidal biclosed structure (⊗, I, [−,−]) on an accessible category V is automatically an
accessible monoidal category. Indeed, I is κ-presentable for some κ, by [21, 2.3.12]. If X, Y are
κ-presentable objects, then so is X ⊗ Y , since V(X ⊗ Y,−) ∼= V(X, [Y,−]) is the composition
of two κ-accessible functors: V(X,−) by hypothesis, and [Y,−] as a right adjoint [21, 2.4.8].
Clearly, the tensor product preserves all colimits, as it has a right adjoint.

Later we will use the following easy lemma. Recall that a left adjoint U � R is of codescent
type if the components ηX : X → RU(X) of the unit are equalisers. If this is the case, ηX is
necessarily the equaliser of the pair of morphisms ηRU(X), RUηX : RU(X) ⇒ RURU(X).

Lemma 2.7. Let U � R : B → A be an adjunction of codescent type between accessible
categories. Then X ∈ A is presentable if and only if U(X) ∈ B is presentable. Furthermore,
the presentability degree of X is at least the maximum of presentability degree of U(X) and
the accessibility degree of RU .
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Proof. The functor B(U(X),−) ∼= A(X,R−) is accessible if X is presentable, being the
composition of the accessible functors A(X,−) and R, so the direct implication is obvious.
For the converse, suppose that U(X) is presentable, so A(X,R−) is accessible. There is an
equaliser, natural in Y , by the hypothesis that the adjunction is of codescent type:

A(X,Y ) � A(X,RU(Y )) ⇒ A(X,RURU(Y )). (5)

Thus, A(X,−) is an equaliser of accessible functors A → Set, and, therefore, it is κ-accessible
by [21, Proposition 2.4.5], where κ can be taken as the maximum of the accessibility degree of
A(X,−) and RU . �

Corollary 2.8. If G is an accessible comonad on an accessible category C, then:

(1) the category CG of Eilenberg–Moore coalgebras is accessible;
(2) the forgetful functor U : CG → C is accessible;
(3) the presentable G-coalgebras are those whose underlying object is presentable in C.

Furthermore, the presentability degree of a G-coalgebra M is at least the maximum of
the presentability degree of U(M) and the accessibility degree of G.

Proof. The first two claims hold by [21, 5.1.6], while the last is an instance of Lemma 2.7,
as comonadic functors are of codescent type. �

Compare the following result with [25, § 2].

Proposition 2.9. Suppose V is an accessible (respectively, locally presentable) monoidal
category. Then both Mon(V) and Comon(V) are accessible (respectively, locally presentable)
categories, and the respective forgetful functors are accessible.

Proof. Both the category of monoids and comonoids can be constructed from V by using
products, inserters and equifiers; see [19] for a description of these limits. Then, [21, 5.1.6]
implies that the categories of monoids and comonoids, and the respective forgetful functors,
are accessible. Now suppose that V is locally presentable. In that case, Comon(V) is cocomplete
and Mon(V) is complete, and therefore both are locally presentable (see [21, 6.1.4]). �

As an application, consider the category Comon(V) for a locally presentable braided
monoidal closed category V. Then the functor (−⊗ C) with domain a locally presentable
category is cocontinuous, by the commutative diagram below, thus it has a right adjoint by
Remark 2.5. The same argument holds for (C ⊗−), so Comon(V) is a locally presentable
monoidal biclosed category (see also [25, 3.2]).

Example 2.10. The category gVectZ of Z-graded k-vector spaces, being equivalent to the
category of functors from the discrete category Z into Vect, is locally finitely presentable.
Furthermore, it is locally finitely presentable as a monoidal category, with the tensor product
(V ⊗W )n =

∑
n=i+j Vi ⊗Wj and unit I equal to k concentrated in degree 0. There is a

symmetry on gVectZ, given on homogeneous elements x ∈ Va, y ∈ Wb by sV,W (x⊗ y) =
(−1)aby ⊗ x. The internal hom is [V,W ]n =

∏
i Homk(Vi,Wi+n). The category gVectN of

N-graded k-vector spaces is a locally presentable monoidal subcategory of gVectZ.
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Example 2.11. Let dgVectZ be the category of chain complexes of vector spaces, or
differential graded vector spaces. This is a locally finitely presentable category; the finitely
presentable objects are the bounded chain complexes of finite-dimensional vector spaces. There
exists an obvious forgetful functor dgVectZ → gVectZ that forgets the differential, which
preserves limits and colimits and is conservative. It is a classical fact that this is a symmetric
monoidal closed category and the said forgetful functor is strict monoidal; in other words,
if V and W are dg vector spaces, then their graded tensor product can be equipped with
differentials, which are compatible with the relevant natural transformations: the associativity
and unit constraints and the symmetry. Explicit formulas for these differentials can be found
in any homological algebra textbook.

The full monoidal subcategory dgVectN of non-negatively graded chain complexes is locally
presentable too.

2.3. Enriched categories

It might be helpful to recall the definitions of enriched categories, functors, and so on, that
will be used in the article. We only give an outline; detailed definitions can be found in [18].
The base of enrichment will be a monoidal category (V, I,⊗), that in many instances will be
assumed to be braided, closed, cocomplete or even finitely presentable. A V-category C consists
of objects X,Y , etc., and objects C(X,Y ) of V, for each pair of object X,Y . It is equipped with
composition morphisms C(Y, Z) ⊗ C(X,Y ) → C(X,Z) and identity morphisms I → C(X,X)
that satisfy associativity and identity axioms. A V-functor F : C → D sends objects of C to
objects of D, and is given on enriched homs by morphisms FX,Y : C(X,Y ) → D(FX,FY ) in
V, that are compatible with composition and identities. A V-natural transformation τ from F
to another V-functor G consists of a family of morphisms τX : I → D(FX,GX) that satisfy
naturality axioms.

When the monoidal category V has a braiding cX,Y : X ⊗ Y → Y ⊗X, one can consider
the tensor product of two V-categories C and D. This is a V-category C ⊗ D with objects
obC × obD, and enriched homs

(C ⊗ D) ((C,D), (C ′, D′)) = C(C,C ′) ⊗D(D,D′). (6)

The braiding is used to define the composition of C ⊗ D by

C(C ′, C ′′) ⊗D(D′, D′′) ⊗ C(C,C ′) ⊗D(D,D′)

1⊗c⊗1−−−−→ C(C ′, C ′′) ⊗ C(C,C ′) ⊗D(D′, D′′) ⊗D(D,D′) −→ C(C,C ′′) ⊗D(D,D′′). (7)

2.4. Kleisli categories

In this section, we will describe some known facts regarding Kleisli categories for monoidal and
enriched monads. We gather these facts here, in order to refer to them later.

In general, if (T, η, μ) is a monad on an ordinary category V, its Kleisli category—denoted by
VT or Kl(T)—has the same objects as V and homs Kl(T)(X,Y ) = V(X,TY ); the composition
uses the multiplication μ of T and the identity morphism of an object X is the unit ηX : X →
TX; for more details see [20, §VI.5]. There is a bijective on objects functor FT : V → Kl(T)
that sends a morphism f : X → Y to ηY · f .

If V is a monoidal category and (T, η, μ) has a monoidal monad structure, that is, it is a
(lax) monoidal endofunctor on V with η, μ monoidal, then Kl(T) carries a monoidal structure
that makes FT a strict monoidal functor; in other words, we can tensor objects of the Kleisli
category as we do in V. If V has a braiding c and the functor T is braided monoidal, then there
exists a braiding on Kl(T) that makes FT a braided monoidal functor.
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We will now consider V-enriched monads on a braided monoidal closed category V. In other
words, V is regarded as a V-category, with enriched hom-objects [A,B]. A V-monad T =
(T, η, μ) on V consists of a endo-V-functor T and unit η and multiplication μ that are V-natural
transformations, and that form a monad on the ordinary category V. The Kleisli V-category
VT of T has the same objects as V, and enriched homs VT(X,Y ) = [X,TY ]. Composition and
identities are given by

[Y, TZ] ⊗ [X,TY ] T⊗1−−−→ [TY, T 2Z] ⊗ [X,TY ]
comp−−−→ [X,T 2Z]

[X,μZ ]−−−−→ [X,TZ] (8)

I
id−→ [X,X]

[X,ηX ]−−−−→ [X,TX]. (9)

On the other hand, the V-category of T-algebras, denoted by VT, has objects the usual
T-algebras, and enriched homs VT ((A, a), (B, b)) the equaliser of the morphisms

[A,B] T−→ [TA, TB]
[TA,b]−−−−→ [TA,B] and [A,B]

[a,B]−−−→ [TA,B] (10)

with composition induced by that of the V-category V. There is a full and faithful ‘comparison’
V-functor

K : VT −→ VT (11)

given on objects by X �→ TX and on homs by the isos [X,TY ] ∼= VT (TX, TY ) induced by the
the morphisms

[X,TY ] T−→ [TX, T 2Y ]
[TX,μY ]−−−−−→ [TX, TY ]. (12)

As is the case for any V-functor, K gives monoid morphisms between endo-homs

VT (X,X) = [X,TX] ∼= VT (TX, TX) � [TX, TX]; (13)

the multiplication is composition, which in the case of VT (X,X) was described in (8).

3. Actions of monoidal categories and enrichment

Recall that a left action of a monoidal category V = (V,⊗, I, a, l, r) on a category D is given
by a functor ∗ : V × D → D, a natural isomorphism with components αXYD : X ∗ (Y ∗D) ∼−→
(X ⊗ Y ) ∗D and a natural isomorphism with components λD : I ∗D ∼−→ D, satisfying the
commutativity of diagrams similar to those of a monoidal category; see [13, § 1] for a full
description. Another way of describing a left action of V is by a strong monoidal functor
V → End(D) into the strict monoidal category of endofunctors of D, whose tensor product is
given by composition.

The most important fact here for us, explained in detail in [13], is that to give a category
D and a left action of a monoidal category V with a right adjoint for each (− ∗D) is to give a
V-category D.

Proposition 3.1. Suppose ∗ : V × D → D is a left action of the monoidal category V with
the property that (− ∗D) has a right adjoint H(D,−), for each D ∈ D;

D(X ∗D,E) ∼= V(X,H(D,E)). (14)

Then, there exists a V-enriched category D with underlying category D and hom-objects
D(D,E) = H(D,E). When V is left closed, this establishes an equivalence between left actions
of V and tensored V-categories.
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The proof of the existence of the composition H(B,C) ⊗H(A,B) → H(A,C) and the
identity morphisms I → H(A,A) satisfying the usual axioms of enriched categories is easily
deduced from the correspondence of arrows under the adjunction (14) and the action axioms.

Moreover, when the monoidal category V is symmetric, then the opposite of a V-category
can be defined in the usual way, so we have that Dop is also enriched in V, with the same
objects and hom-objects Dop(B,A) = D(A,B). Note that if V is braided but not symmetric,
there are two different choices of opposite V-category, one using the braiding and the other
using its inverse.

Remark 3.2. The statement of Proposition 3.1 mentions tensored V-categories over a left
closed monoidal category V. These are V-categories C for which V-natural isomorphisms C(X ∗
C,D) ∼= [X, C(C,D)], where [−,−] is the left internal hom of V, X ∈ V and C,D ∈ C.

Example 3.3. In addition to the tensored V-categories mentioned above, examples of
actions of a monoidal left closed category V are provided by the cotensored V-categories,
or rather, by a V-categories A with chosen cotensor products. Dually to tensors, a cotensor
product of A ∈ A by X ∈ V is an object {X,A} ∈ A with a morphism X → A({X,A}, A)
that induces isomorphisms A(B, {X,A}) ∼= [X,A(B,A)]. Then, the canonical isomorphisms
{X, {Y,A}} ∼= {X ⊗ Y,A} and {I, A} ∼= A make the functor {−,−}op into a left action of V on
Aop

◦ , the opposite of the underlying category of A. For example, the left internal hom [−,−]op

is a left action of V on Vop.

In Theorem 3.6 we shall give a monoidal version of Proposition 3.1, but before that we need
the following easy theorem. First recall that given a braided monoidal category V, a V-enriched
monoidal structure on a V-category A consists of a V-functor ⊗ : A⊗A → A, an object I ∈ A
and V-natural isomorphisms (X ⊗ Y ) ⊗ Z ∼= X ⊗ (Y ⊗ Z), I ⊗X ∼= X ∼= X ⊗ I, such that the
underlying functor ⊗◦ together with I and these isomorphisms form a monoidal structure on
the ordinary category A◦. One says that A is a monoidal V-category. It is not hard to see how
this definition establishes the following equivalence.

Theorem 3.4. Let V be a braided monoidal category. Suppose A is a V-category equipped
with a V-functor T : A⊗A → A and an object J . There is a bijection between:

(1) monoidal V-category structures on A with tensor product T and unit J ;
(2) extensions of (A◦, T◦, J) to a monoidal category such that the morphisms

TABCD : A(A,C) ⊗A(B,D) → A(T (A,B), T (C,D)) and id : I → A(J, J) make the
enriched-hom functor A(−,−) : Aop

◦ ×A◦ → V into a monoidal functor.

Furthermore, if A0 is braided, with braiding c, the monoidal V-category of (1) is braided with
braiding c if and only if A(−,−) is a braided monoidal functor from (Aop

◦ ×A◦, c−1 × c) to
(A, c).

Definition 3.5. Let ∗ : V ×A → A be a left action of the braided monoidal category V. If
(A, 
, J) is a monoidal category, by an opmonoidal structure on the action we shall mean an
opmonoidal structure on the functor ∗, where its domain has the product monoidal structure,
that makes the natural isomorphisms α and λ opmonoidal natural transformations. We speak
of an opmonoidal action of V.

In more explicit terms, an opmonoidal structure on the action ∗ consists of a morphism and
a natural transformation

ξ0 : I ∗ J −→ J ξXYAB : (X ⊗ Y ) ∗ (A 
B) −→ (X ∗A) 
 (Y ∗B) (15)
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that make the diagrams in (16)–(20) commute (the associativity constraints of both ⊗ and 

are omitted); the first three diagrams exhibit (∗, ξ, ξ0) as an opmonoidal functor, while the last
four diagrams exhibit α and λ as opmonoidal transformations.

(16)

(17)

(18)

(19)

(20)

Theorem 3.6. Suppose given a left action ∗ : V ×A → A of a braided monoidal category V
such that (− ∗A) has a right adjoint for all A, and let A be the associated V-category. Then,
each opmonoidal structure on the action induces a monoidal V-category structure on A with
underlying monoidal category A.

Proof. We will first construct a functor T : A⊗A → A. On objects it will be given by
T (A,B) = A 
B; on homs it is given by the morphisms TABCD : A(A,C) ⊗A(B,D) → A(A 

B,C 
D) that are transpose to the composition

(A(A,C) ⊗A(B,D)) ∗ (A 
B)
ξ−→ (A(A,C) ∗A) 
 (A(B,D) ∗B) ε�ε−−→ C 
D. (21)

The preservation of composition for the V-functor T is expressed by the commutativity of
the diagram in (22), which can be deduced from the commutativity of the diagram in (18)
(expressing the monoidality of α) by setting X = A(C,E), X ′ = A(D,G), Y = A(A,C), Y ′ =
A(B,D), A = A 
B and A′ = E 
G:
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(22)

(23)

The preservation of identities for the V-functor T is the commutativity of the diagram in (23),
which once translated under the adjunction (− ∗ (A 
B)) � A(A 
B,−), can be easily seen to
hold by naturality of ξ.

We can now use Theorem 3.4 to complete the proof. We must show that the morphisms
TABCD and idJ : I → A(J, J) form a monoidal structure on functor A(−,−) : Aop ×A → V.
This is precisely the case, by Proposition 2.1, since TABCD and idJ are the transpose
of the opmonoidal structure of the action ∗ under the parametrised adjunctions (− ∗A) �
A(A,−). �

In the case of a right closed monoidal category V acting on itself via the tensor product,
Theorem 3.6 says that V is a monoidal V-category, provided that it is equipped with a braiding.

Example 3.7. If in Example 3.3 the monoidal right closed category V is braided, then
[−,−]op is an opmonoidal action of V on Vop. The opmonoidal structure is given by morphisms
of the form (15) but in Vop. These are the canonical isomorphism I ∼= [I, I] and the morphism
[X,Y ] ⊗ [Z,W ] → [X ⊗ Z, Y ⊗W ] that makes [−,−] a monoidal functor.

Definition 3.8. Suppose given an opmonoidal action as in Definition 3.5 and suppose that
the monoidal category A braided. We say that the opmonoidal action is braided when the
opmonoidal functor ∗ is so.

In more explicit terms, the opmonoidal action is braided when the following diagram
commutes, where both the braiding of V and A are denoted by c:

(24)

Example 3.9. Continuing with Example 3.7, the action of V on Vop given by the internal
hom is braided if V is symmetric. The diagram (24) in this case looks as follows (where we use
that c−1 = c):

(25)
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Theorem 3.10. Suppose that in Theorem 3.6 A is braided. Then the opmonoidal action is
braided if and only if the braiding of A is V-natural. In this situation A is braided.

Proof. The commutativity of (24) is equivalent to the commutativity of

(26)

where we used the notation of the proof of Theorem 3.6. This is the condition that A(−,−) is
braided monoidal, required by Theorem 3.4. �

4. The universal measuring comonoid

The notion of the universal measuring coalgebra P (A,B) over a field k appeared in Sweedler’s
book [29]. The elements of P (A,B) can be thought of as generalised maps from A to B, and
examples of this point of view are given in [5]. The natural isomorphism that defines the object
P (A,B) is

Algk(A,Homk(C,B)) ∼= Coalgk(C,P (A,B)). (27)

Note that the plain algebra morphisms A → B correspond to the group-like elements of
P (A,B).

Our aim in this section is to prove the existence of P (A,B) in a broader context, identifying
the underlying categorical ideas. In that direction, consider an arbitrary braided monoidal
closed category V.

We remind the reader that in Section 2 we saw how the internal hom induces a functor
[−,−] : Comon(V)op × Mon(V) → Mon(V).

Theorem 4.1. Suppose that V is a locally presentable braided monoidal closed category.
Then the functor [−, B]op : Comon(V) → Mon(V)op has a right adjoint P (−, B); that is, there
is a natural isomorphism

Mon(V)(A, [C,B]) ∼= Comon(V)(C,P (A,B)). (28)

Proof. By Proposition 2.9, the category Comon(V) is locally presentable. The diagram

(29)

commutes, where U and V are the forgetful functors, and since [−, U(B)]op is cocontinuous, so is
the composition [U−, U(B)]op. Therefore, the functor at the top of the diagram is cocontinuous,
since V creates colimits. The existence of the adjoint P (−, B) now follows from the locally
presentability of Comon(V) (Remark 2.5). �

The object P (A,B) for monoids A and B is called the universal measuring comonoid, and
the parametrised adjoint of [−,−]op, namely

P : Mon(V)op × Mon(V) → Comon(V) (30)

is called the Sweedler hom in [4].
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Corollary 4.2. The functor P (−,−) : Mon(V)op × Mon(V) → Comon(V) is continuous
in each variable.

Proof. By definition, P (−, B) is a right adjoint, thus continuous. In the other variable,
P (A,−) preserves limits if and only if Comon(V)(C,P (A,−)) does for all C, if and only if
Mon(V)(A, [C,−]) does, by Theorem 4.1; this last condition is clearly true. �

Example 4.3. Since the category Modk of modules over a commutative ring k is locally
presentable symmetric monoidal closed, we recover the classical situation: the existence, of
each pair of k-algebras A, B, of a universal measuring coalgebra P (A,B) with a natural
isomorphism (28). See also [24, Proposition 4].

When k is a field, P (A, k) is usually denoted by A◦ and called the finite or Sweedler dual of
the k-algebra A. It can be presented as the subspace of A∗

A◦ = {α ∈ A∗| kerα contains a cofinite ideal} = {α ∈ A∗|dim(A ⇀ α) < ∞}
where ⇀ denotes the left action of A on A∗ given by (a ⇀ α)(x) = α(xa).

Example 4.4. The locally presentable braided monoidal closed category gVectN of
N-graded vector spaces was described in Example 2.10. Monoids and comonoids in gVectN
are, respectively, graded k-algebras and graded k-coalgebras.

The full inclusion (−)[0] : Vect → gVectN that takes a space V to the graded space V
concentrated in degree 0 is a left and a right adjoint to the functor that takes the homogeneous
component of degree 0. All three functors are strong monoidal. These adjunctions induce
adjunctions on the respective categories of monoids as the ones depicted vertically in the
following diagram. Given a commutative algebra B, there are adjunctions depicted horizontally.

(31)

The square of left adjoints commute, since [V,B[0]]n =
∏

i[Vi, B[0]i+n] is trivial unless n = 0,
in which case it is isomorphic to [V0, B]. It follows that the square of right functors commute
up to isomorphism, that is,

P (A,B[0])0 ∼= P (A0, B). (32)

Example 4.5. Recall from Example 2.11 the locally finitely presentable monoidal category
dgVectZ of chain complexes. Monoids and comonoids in dgVectZ are usually called dg
algebras and dg coalgebras, and the categories they form dgAlgZ and dgCoalgZ. The universal
measuring comonoid of two dg algebras is the Sweedler hom considered in [4, § 4.1.5].

5. Enrichment of monoids in comonoids

Now that we have established the existence of the universal measuring comonoid P (A,B) under
certain hypotheses, we may combine this construction with the theory of actions of monoidal
categories of Section 3 in order to exhibit an enrichment of monoids over comonoids. In this
section, V will denote a locally presentable braided monoidal closed category, with braiding
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c. Recall that the internal hom functor [−,−] is monoidal, and that the monoidal category of
comonoids Comon(V) is symmetric when V is.

Lemma 5.1. The functor [−,−]op : Comon(V) × Mon(V)op → Mon(V)op (4) is an action
of the monoidal category Comon(V) on Mon(V)op. If the braiding of V is a symmetry, then
this is a braided opmonoidal action of the symmetric monoidal category of comonoids.

Proof. The functor of the statement is obtained by taking comonoid categories on
[−,−]op : V × Vop → Vop. The latter is an opmonoidal left action of the braided monoidal
V (Example 3.7) upon which Mon[−,−]op inherits the structure of a left action.

If V is symmetric, the internal hom is a braided opmonoidal action of V on Vop, by
Example 3.9. Taking categories of monoids, we obtain a braided opmonoidal action of the
symmetric category of comonoids on Mon(V)op. �

We can now apply Proposition 3.1, Theorem 3.6 and Theorem 3.10 to C = Comon(V)
and A = Mon(V)op. The functor [−, B]op of Lemma 5.1 has a right adjoint P (−, B) by
Theorem 4.1, and Comon(V) is monoidal closed as explained in Section 2.2.

Theorem 5.2. Let V be a locally presentable braided monoidal closed category. Then:

(1) the category Mon(V)op is enriched in Comon(V) and tensored, with enriched hom
objects Mon(V)op(A,B) = P (B,A).

If V is moreover symmetric, then:

(2) Mon(V)op also carries a structure of a symmetric monoidal Comon(V)-enriched
category;

(3) Mon(V) is a symmetric monoidal and cotensored Comon(V)-category, with hom objects
Mon(V)(A,B) = P (A,B).

Assume for the rest of the section that the braiding of V is a symmetry. By Lemma 2.3, the
functor of Lemma 5.1 is a symmetric opmonoidal functor. Hence, by Proposition 2.1 we get
the following result.

Corollary 5.3. The Sweedler hom functor P : Mon(V)op × Mon(V) → Comon(V) is a
braided monoidal functor.

Finally, since P is a monoidal functor, it induces a functor

MonP : Bimon(V)op × CommMon(V) → Bimon(V) (33)

where CommMon(V) = Mon(Mon(V)) is the category of commutative monoids, and of
course Mon(Comon(V)) = Bimon(V) is the category of bimonoids. This is still a braided
monoidal functor by Remark 2.2 and so, since Mon(Bimon(V)) = CommBimon(V), we get
the following result.

Corollary 5.4. Suppose V is a locally presentable symmetric monoidal closed category. If
B is a (cocommutative) bimonoid and A a commutative monoid, then P (B,A) has a canonical
structure of a (commutative) bimonoid. In particular, the finite dual B◦ is a (commutative)
bimonoid.

Note that the second part is also proved, in a much different way, in [12] for the case
V = ModR.
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Remark 5.5. When (B, ι, μ) is a commutative monoid in V, [−, B] : Comon(V) →
Mon(V)op is an opmonoidal functor; its structure is given by the morphisms in V

χ : [A,B] ⊗ [A′, B] −→ [A⊗A′, B ⊗B]
[1,μ]−−−→ [A⊗A′, B] χ0 : I ∼= [I, I]

[I,ι]−−→ [I,B]. (34)

If we denote the counit of the adjunction [−, B] � P (−, B) by the morphism in Mon(V)

ηA : A −→ [P (A,B), B], (35)

then the monoidal structure on the right adjoint P (−, B) is given by the morphisms

ψ : P (A,B) ⊗ P (A′, B) −→ P (A⊗A′, B) ψ0 : I → P (I,B) (36)

defined as the unique ones that make the following diagrams commute:

(37)

6. Comodules of universal measuring coalgebras

Having established the enrichment of the category of monoids in the category of comonoids
via the universal measuring comonoid, in this section we study these objects primarily from
the point of view of their comodules or corepresentations, exhibiting further properties along
the way.

6.1. The finite dual as a subobject of a cofree comonoid

If V is a locally presentable monoidal category, it is not hard to show that free monoids exist
in V, and then, Mon(V) becomes monadic over V. We say only a few words about the proof.
Since both Mon(V) and V are locally presentable (Proposition 2.9), it suffices to know that the
forgetful functor from the former to the latter is continuous and accessible (by Remark 2.5); see
also [18, Theorem 5.32] for a more general result. The fact that the forgetful functor preserves
κ-filtered colimits, for some regular cardinal κ, can be easily verified using the fact that the
tensor product of V does so. This concludes our sketch of a proof.

Easier still is to prove the fact that cofree comonoids exist in any locally presentable monoidal
category V; for, the forgetful functor from Comon(V) to V is cocontinuous, and thus a left
adjoint again by Remark 2.5.

We shall denote the free monoid on X ∈ V by T (X). As the notation suggests, the free
monoid in the category of k-modules, for a commutative ring k, is the tensor algebra. The
cofree comonoid on X we shall denote by S(X).

In this section V will be a locally presentable braided monoidal closed category.

Lemma 6.1. For any monoid B and any object X ∈ V, P (T (X), B) ∼= S([X,B]). In
particular, T (X)◦ ∼= S([X, I]).

Proof. Consider the commutative diagram (29). All four functors have a right adjoint,
thus the diagram formed by the right adjoints commutes up to natural isomorphism, whose
component at X has domain and codomain those of the statement. �
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Let V be the forgetful Mon(V) → V. The functor P (−, B) sends colimits in Mon(V) to
limits in Comon(V) by adjointness. In particular, it sends the canonical diagram T 2V (A) ⇒
TV (A) → A that exhibits a monoid A as coequaliser of free monoids, into an equaliser

P (A,B) � S[V (A), V (B)] ⇒ S[V T (A), V (B)]. (38)

In the case when V is the category of k-vector spaces and B = k, this equaliser exhibits A◦ as
a subcoalgebra of the cofree coalgebra on A∗. Composing with the counit S ⇒ 1 of the cofree
coalgebra comonad, we obtain a morphism

A◦ −→ A∗ (39)

that is the classical injection of the finite dual into the dual space [29].

6.2. Coendomorphism comonoids

Recall from the background Section 2 the notion of a dual object. The coendomorphism
comonoid of an object X with left dual X∨ is the object X∨ ⊗X, with comultiplication
X ⊗ coev ⊗X and counit ev. We shall denote it by coend(X). These comonoids are useful
to us because C-comodule structures X → X ⊗ C are in bijection with comonoid morphisms
coend(X) → C. In particular, the coendomorphism coalgebras offer a reinterpretation of the
so-called fundamental theorem of coalgebras below.

Recall that a set of objects G ⊂ ob C is strongly generating if, the functors {C(G,−) : C →
Set}G∈G are jointly conservative, that is, if a morphism f is invertible whenever C(G, f) is an
invertible for all G ∈ G. See [18, § 3.6].

Lemma 6.2. When V is the category of k-vector spaces, the family of coendomorphism
coalgebras {coend(kn)}n�1 is strongly generating in Coalgk.

Proof. If X is a finite-dimensional C-comodule, the image of the associated X∗ ⊗X → C is
called the coefficient space or coalgebra of coefficients of X, denoted by cf(X). It is the smallest
subcoalgebra of C for which X is a comodule; see [11, § 1.2].

By the fundamental theorem of coalgebras [29, Theorem. 2.2.1], C is union of finite-
dimensional subcoalgebras. It is not hard to see that, if D ⊂ C is a finite dimensional
subcoalgebra regarded as a C-comodule, then cf(D) = D (for, evaluating D∗ ⊗D → C on
εD ⊗ d gives back d). Therefore, the morphism of coalgebras

∑
D coend(D) → C induced by

the morphisms coend(D) → C, for each finite dimensional subcoalgebra D ⊂ C, is surjective.
Hence, the following morphism is surjective (where S · E, for a set S and a coalgebra E, denotes
the copower, that is, the coproduct of S-copies of E).∑

n

Coalgk(coend(kn), C) · coend(kn) −→ C (40)

In particular, (40) is an extremal epimorphism, that is, it does not factor through any non-
trivial subobject of C; for more information see the paragraph previous to [15, Proposition 4.6],
or [17, § 8.7]. This is equivalent to saying that the coalgebras coend(kn) form a strong generator
(see [17, § 8.7]). �

6.3. Comodules over the universal measuring coalgebra

Recall from Section 2.4, the Kleisli construction for an enriched monad on a braided monoidal
closed V. We will be interested in the enriched monad T = (−⊗B) induced by tensoring with
a monoid B; in this case we will abbreviate the categories of Kleisli and of Eilenberg–Moore
algebras by VB and VB . The former always has tensor products by objects of V (in the sense
of [18, § 3.7]), since the universal V → VB is a left adjoint; the tensor product of X ∈ VB by
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Z ∈ V is Z ⊗X. As is always the case, the base category V acts on VB on the left by tensor
products. The V-monad (A⊗−) extends to a V-monad on VB and lifts to a V-monad on VB

thanks to the isomorphism (A⊗X) ⊗B ∼= A⊗ (X ⊗B).

Proposition 6.3. Let A, B be two monoids in the locally presentable braided monoidal
closed category V and X an object. There is a bijection between:

(1) algebra structures on X, for the monad (A⊗−) on VB ;
(2) monoid morphisms A → VB(X,X) = [X,X ⊗B];
(3) algebra structures on X ⊗B, for the monad (A⊗−) on VB ;
(4) monoid morphisms A → VB(X ⊗B,X ⊗B).

If X has a dual, then the above data are equivalent to:

(5) right P (A,B)-comodule structures on X.

It may be instructive to spell out the properties that a morphism A⊗X → X has to satisfy
in order to be an algebra structure on X ∈ VB for the monad (A⊗−), as in the item 1 of the
above proposition. It is a morphism ψ : A⊗X → X ⊗B in V that makes the following pair of
diagrams commute:

(41)

Proof. Morphisms ξ : A⊗X → X in VB are in bijection with morphisms ξ̂ : A → VT (X,X)
in V, by the universal property of the tensor product with objects of V. Under this
correspondence, ξ is an algebra structure for X if and only if ξ̂ is a monoid morphism in
V, where the multiplication in its codomain is composition. This proves the equivalence of
(1) and (2). The equivalence between (3) and (4) holds for precisely the same reason, while
the equivalence of (2) and (4) is a consequence of the full and faithful comparison V-functor
VB � VB .

If X has a (left) dual X∨, the isomorphism [X,X ⊗B] ∼= [X∨ ⊗X,B] becomes an isomor-
phism of monoids when the domain has the composition of VB as multiplication and the
codomain has the convolution multiplication induced by the comonoid coend(X) = X∨ ⊗X
as in Section 6.2, and the monoid B. Thus, a monoid morphism as in (2) can equally be
given by a monoid morphism A → [coend(X), B], and therefore by a comonoid morphism
coend(X) → P (A,B). This corresponds to a morphism X → X ⊗ P (A,B) satisfying the
comodule axioms. �

Definition 6.4. Given two monoids A and B, the category AVB has objects pairs (X,ψ),
where X ∈ V and ψ : A⊗X → X ⊗B satisfies the two axioms depicted in the previous
paragraph; it has morphisms (X,ψ) → (X ′, ψ′) morphisms f : X → X ′ in V that satisfy
(f ⊗B) · ψ = ψ′ · (A⊗ f). Composition and identities are the obvious ones, so there is a faithful
forgetful functor AVB → V.

The category just defined fits in the following pullback diagram, where (VB)(A⊗−) is the
category of algebras of the monad (A⊗−) on VB , and the bottom arrow is the universal
Kleisli functor:
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(42)

If we recall the notion of a dualizable object from the background Section 2, we obtain the
following result.

Corollary 6.5. There is an isomorphism between the categories of dualizable right
P (A,B)-comodules and that of dualizable objects of AVB ; furthermore, the isomorphism
commutes with the respective forgetful functors into V.

The isomorphism of the previous corollary is given on objects by Proposition 6.3. The rest
of the details are left to the reader. When B = I we have:

Corollary 6.6. For a monoid A in V, the category of dualizable right A◦-comodules is
isomorphic to the category of dualizable left A-modules.

Proof. Setting B = I in Proposition 6.3, the Kleisli V-category VB becomes just V, and the
data in the item (1) of the said proposition just an A-module structure on X. �

In the example when V is the category of vector spaces, Corollary 6.5 gives an alternative
description of the category of finite-dimensional right P (A,B)-comodules, for any pair of
algebras A, B.

Corollary 6.7. If A, B are algebras over a field k, then

P (A,B) ∼=
∫ (X,ψ)

X∗ ⊗X (43)

where (X,ψ) runs over all the objects of AVB with dimk X < ∞.

Proof. The forgetful functor (AVB)d → V from the category of dualizable objects of AVB

is, up to composing with an isomorphism, the forgetful functor from the category of dualizable
P (A,B)-comodules. Then, the coalgebra can be reconstructed by the coend (43); the ideas
behind this reconstruction go back to [27], but see for example [28] for a paper where coends
are explicitly used. �

The corollary above holds for more general categories V, as shown in [22], but we do not
pursue that point.

Corollary 6.8. There is a bijection between right P (A,B)-comodule structures on kn

and algebra morphisms A → Mn×n(B). There is a bijection between isomorphism classes of
n-dimensional P (A,B)-comodules and the quotient of the set Algk(A,Mn×n(B)) by the action
of GLn(k) on Mn×n(B) by conjugation.

Proof. The result is an easy consequence of Proposition 6.3. The canonical isomorphism
between [kn, kn ⊗B] and Bn×n is compatible with the Kleisli multiplication on the former and
the matrix multiplication on the latter. Given two algebra morphisms σ, τ : A → [kn, kn ⊗B],
an invertible matrix M ∈ GLn(k) represents an isomorphism of P (A,B)-comodules if and only
if (M ⊗B) · σ(a) = τ(a) ·M , which in terms of Mn×n(B) means that Mσ(a) = τ(a)M , for all
a ∈ A. �
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The following examples for V = Vectk provide applications of the measuring coalgebra
corepresentations point of view.

Example 6.9. Given a k-algebra A, there is an isomorphism of algebras A◦ ∼= k if and only
if A satisfies:

(1) it has an augmentation A → k, that is, k is an A-module;
(2) all the finite-dimensional modules are direct sums of the module k.

This is a consequence of Corollary 6.5. For, A◦ ∼= k if and only if the forgetful functor from
the category of finite-dimensional A◦-comodules into the category of finite dimensional vector
spaces is an isomorphism. But this category is isomorphic to the category of finite-dimensional
A-modules.

An example is the group algebra k[G] for a infinite simple group of cardinality larger than
that of the field k; any finite-dimensional representation of k[G] is given by a group morphism
G → Autk(kn), which cannot be injective by the cardinality assumptions, thus it must be trivial
by simplicity of G. An example of such a group G is PSL(2,K) for an infinite field k ⊂ K of
cardinality larger than that of k. This example was introduced in [6, Lemma 2.7].

Example 6.10. The coalgebra A◦ can be zero, as pointed out in [29, p. 114], for example,
if A is an infinite-dimensional division k-algebra. It can be instructive to deduce this from
the universal property of the finite dual. The set Algk(A,C∗) is empty for all non-zero
finite-dimensional coalgebras C. Therefore, Coalgk(C,A◦) has this same property, and the
functions

Coalgk(C, 0) −→ Coalgk(C,A
◦) (44)

induced by the unique morphism of coalgebras 0 → A◦ are isomorphisms, for C of finite
dimension. We conclude that 0 → A◦ is an isomorphism, by Lemma 6.2.

Example 6.11. If B has an augmentation ε : B → k, there is an induced coalgebra morphism
P (A, ε) : P (A,B) → P (A, k) = A◦. In these circumstances, the equality P (A, ε) · P (A, ι) =
P (A, ε · ι) = P (A, 1k) = 1A◦ , induces functors on the categories of comodules

1 =
(
Comod(A◦)

P (A,ι)∗−−−−−→ Comod(P (A,B))
P (A,ε)∗−−−−−→ Comod(A◦)

)
(45)

that exhibit the category of A◦-comodules as a retract of that of P (A,B)-comodules. These
functors are given by corestriction of scalars, so they commute with the respective forgetful
functors into Vectk, and are conservative.

An A◦-comodule X is simple if and only if P (A, ι)∗(X) is a simple P (A,B)-comodule. The
proof of this claim is elementary. Both functors in (45) preserve monomorphisms and are
conservative, so they induce a retraction

1 = (Sub(X) −→ Sub(P (A, ι)∗(X)) −→ Sub(X)) (46)

where both functions reflect equalities of comparable subobjects (that is, if S ⊆ T are sent to
the same subobject, then S = T ). Therefore, Sub(X) has only bottom and top element if and
only if Sub(P (A, ι)∗(X)) satisfies the same property.

As a consequence, P (A,B) has simple comodules of dimension n if A has simple modules of
dimension n. For example, if B is augmented (for example, B = k[G] for a monoid G), then
P (Mn×n(k), B) has simple comodules of dimension n.

Another example is P (U(sl(2,C)), B), which we show to be infinite-dimensional. By the
above comments, this coalgebra has P (U(sl(2,C)), k) = U(sl(2,C))◦ as a retraction. The finite-
dimensional comodules over the latter coalgebra can be identified with finite-dimensional
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sl(2,C)-representations; in particular, U(sl(2,C))◦ has simple comodules of all dimensions,
and therefore it is an infinite-dimensional coalgebra. This last claim can be deduced from
[1, Corollary 4.5], which exhibits a bijection between isomorphism classes of simple comodules
and simple subcoalgebras of a given coalgebra; therefore U(sl(2,C))◦ has infinitely many
non-isomorphic simple subcoalgebras, and hence it is infinite-dimensional.

6.4. Tambara’s coendomorphism algebra

Tambara introduced in [30] an algebra a(A,B) for each pair of algebras A, B over a field k,
called the coendomorphism algebra, with the property that there is a bijection

Algk(a(A,B), A′) ∼= Algk(B,A⊗A′) (47)

natural in C. The a(A,B)-modules are described in [30, § 2] in a way similar to our
Proposition 6.3. More precisely, finite dimensional a(A,B)-modules can be identified with finite
dimensional P (B,A)-comodules.

Proposition 6.12. For all algebras A and B over a field k, there is a canonical isomorphism
a(A,B)◦ ∼= P (B,A).

Proof. There is a function, natural in C ∈ Coalgk, which, by Yoneda’s lemma is induced
by a unique morphism of coalgebras f : a(A,B)◦ → P (B,A).

Coalgk(C, a(A,B)◦) ∼= Algk(a(A,B), C∗)

∼= Algk(B,A⊗ C∗) −→ Algk(B, [C,A])

∼= Coalgk(C,P (B,A)) (48)

Here we used that the canonical inclusion A⊗ C∗ ↪→ [C,A] is a morphism of algebras, as
it can be readily verified. We can now use that this inclusion is an isomorphism if C is
finite-dimensional, so the function (48) is an isomorphism in that case. Using the fact that
finite-dimensional coalgebras are strong generating (Lemma 6.2), we deduce that f is an
isomorphism. �

7. Monoidal structures

There are two natural ways in which the universal measuring comonoid acquires a bimonoid
structure, and two ways in which the category of dualizable comodules acquires a monoidal
structure. In this section we take these two ways in turn, and give an explicit description of
the associated monoidal structures.

First, we have seen in Corollary 5.4 that, when V is a symmetric monoidal closed category,
the comonoid P (A,B) has a bimonoid structure if A is a bimonoid and B a commutative
monoid. Then, the category Comodd(P (A,B)) of dualizable right P (A,B)-comodules has a
monoidal structure, that can be transferred to the equivalent category (AVB)d of dualizable
objects of AVB , see Definition 6.4. The resulting monoidal structure on (AVB)d is given in the
following way.

Corollary 7.1. Given a bimonoid (A,μ, ι) and a commutative monoid (B,Δ, ε) in
a symmetric monoidal closed locally presentable category V, the isomorphism between
Comodd(P (A,B)) and (AVB)d is a monoidal isomorphism when we equip:

(1) Comodd(P (A,B)) with the monoidal structure associated to the induced bimonoid
structure on P (A,B);
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(2) (AVB)d with the monoidal structure defined as follows:
(a) if (X,ϕ) and (Y, ψ) are two objects, their tensor product is X ⊗ Y equipped with

AXY
ΔXY−−−→ AAXY

AcY−−−→ AXAY
ϕψ−−→ XBY B

XcB−−−→ XY BB
XY μ−−−→ XY B

where ⊗ is omitted,
(b) the monoidal unit is I equipped with

A⊗ I
ε⊗I−−→ I ⊗ I

I⊗ι−−→ I ⊗B,

(c) the forgetful functor (AVB)d → V is strict monoidal.

The second way in which P (A,B) has a bimonoid structure is when A = B. The
multiplication P (A,A)⊗2 → P (A,A) is the morphism of comonoids that corresponds to

A
η−→ [P (A,A), A]

[1,η]−−−→ [P (A,A), [P (A,A), A]] ∼= [P (A,A)⊗2, A] (49)

where η denotes the unit of the adjunction between P (−, A) and [−, A]. The unit I → P (A,A)
is the morphism of coalgebras that corresponds to the identity A → A.

Corollary 7.2. Given a monoid A in a locally presentable monoidal category V, the
isomorphism between Comodd(P (A,A)) and (AVB)d becomes an isomorphism of monoidal
categories when we equip:

(1) Comodd(P (A,A)) with the monoidal structure associated to the bimonoid structure
on P (A,A);

(2) (AVB)d with the monoidal structure defined as follows:
(a) if (X,ϕ) and (Y, ψ) are two of its objects, their tensor product is X ⊗ Y equipped

with

A⊗X ⊗ Y
ϕ⊗Y−−−→ X ⊗A⊗ Y

X⊗ψ−−−→ X ⊗ Y ⊗A,

(b) the monoidal unit is I equipped with A⊗ I ∼= A ∼= I ⊗A,
(c) the forgetful functor (AVB)d → V is strict monoidal.

8. Universal measuring coalgebras and cocommutativity

We now return to the more general case of monoids and comonoids in a symmetric monoidal
closed category V. Recall from Section 2.1 the opposite (co)monoids.

Lemma 8.1. If V is symmetric monoidal closed, there is a natural isomorphism P (A,B)cop ∼=
P (Aop, Bop).

Proof. First, we show that the monoid [Ccop, B] equals [C,Bop]op, by showing that the
multiplications ν and ν′ of these monoids—which coincide as objects in V—are equal. The
multiplication ν corresponds under the tensor–hom adjunction to

[C,B]⊗2 ⊗ C
1⊗1⊗(c·Δ)−−−−−−−→ [C,B]⊗2 ⊗ C⊗2 1⊗c⊗1−−−−→ ([C,B] ⊗ C)⊗2 ev⊗2

−−−→ B⊗2 μ−→ B, (50)

where c denotes the braiding, while ν′ corresponds to

[C,B]⊗2 ⊗ C
c⊗Δ−−−→ [C,B]⊗2 ⊗ C⊗2 1⊗c⊗1−−−−→ ([C,B] ⊗ C)⊗2 ev⊗2

−−−→ B⊗2 μ·c−−→ B. (51)

Verifying that both composite morphisms are equal provided that the braiding c which is a
symmetry is now routine.
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We complete the proof by exhibiting the following string of natural isomorphisms

C(C,P (A,B)cop) ∼= C(Ccop, P (A,B)) ∼= A(A, [Ccop, B]) ∼= A(A, [C,Bop]op)

∼= A(Aop, [C,Bop]) ∼= C(C,P (Aop, Bop)) (52)

where we abbreviated C = Comon(V) and A = Mon(V). �

Corollary 8.2. In the situation of Lemma 8.1, P (A,B) is a cocommutative comonoid
provided that A and B are commutative monoids. In particular, A◦ is cocommutative if A is
commutative.

9. Universal measuring comonoids of cocommutative Hopf monoids

In the classical case of k-vector spaces, the finite dual A◦ = P (A, k) of a k-algebra A is
constructed as a subspace of the linear dual A∗ (39), and this is used to endow A◦ with an
antipode if A has an antipode s. The argument consists of showing that, if α ∈ A◦ ⊂ A∗, the
functional α · s also belongs to A◦, so the linear map given by precomposing with the antipode
s restricts to A◦. Exactly the same argument is carried over to the case of a Noetherian
commutative ring k in [2], with the additional hypothesis that A◦ should be a pure sub-k-
module of kA. In this section we prove that all restrictions on the base commutative ring k can
be lifted, as long as the Hopf algebra A is cocommutative. More precisely, we prove:

Theorem 9.1. If H is a cocommutative Hopf monoid in a locally presentable symmetric
monoidal closed category V, then P (H,B) is a Hopf monoid, for any commutative monoid B.

Proof. The cocommutativity of H will be used in the fact that the comultiplication
Δ: H → H ⊗H is a morphism of comonoids. Denote by s the antipode of H; it is a monoid
morphism Hop → H, so P (s,B) is a comonoid morphism P (H,B) → P (Hop, B) ∼= P (H,B)cop,
by Lemma 8.1 and commutativity of B. We will show that the underlying arrow of P (s,B) in
V is an antipode for the bimonoid P (H,B).

In Remark 5.5 we exhibit the relationship between the opmonoidal structure of [−, B] and
the monoidal structure of P (−, B), via the unit of the adjunction. In this proof we shall use
the same notations as in the said remark.

To keep the notation simple, we shall denote all the multiplications by μ when no confusion
is possible. The multiplication of P (H,B) arises from the monoidal structure of P (−, B) and
the comonoid structure of H. Explicitly, it is the composition P (Δ, B) · ψH,H : P (H,B)⊗2 →
P (H,B). It is easy to verify that the corresponding morphism of monoids H → [P (H,B)⊗2, B]
is

[ψH,H , B] · ηH⊗H · Δ = χP (H,B),P (H,B) · (ηH ⊗ ηH) · Δ (53)

where the equality uses one of the diagrams displayed in (37).
Denote the antipode of H by s. We are to show the following equality:(

P (H,B) Δ−→ P (H,B)⊗2 P (s,B)⊗1−−−−−−→ P (H,B)⊗2 μ−→ P (H,B)
)

=
(
P (H,B)

P (ι,B)−−−−→ P (I,B) ∼= I
P (ε,B)−−−−→ P (H,B)

)
; (54)

in order to do so, we shall show that the two compositions have equal transposes under [−, B] �
P (−, B). These transposes are calculated by first applying [−, B] and then pre-composing with
the unit ηH .
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We have already calculated the transpose of μ (53), from where it follows that the transpose
of μ · (P (s,B) ⊗ 1) · Δ is the first composition in the following chain of equalities.

[Δ, B] · [P (s,B) ⊗ 1, B] · χP (H,B),P (H,B) · (ηH ⊗ ηH) · ΔH

= [Δ, B] · χP (H,B),P (H,B) · ([P (s, 1), B] ⊗ 1) · (ηH ⊗ ηH) · ΔH

= [Δ, B] · χP (H,B),P (H,B) · (ηH ⊗ ηH) · (s⊗H) · ΔH

= μ[P (H,B),B] · (ηH ⊗ ηH) · (s⊗H) · ΔH

= ηH · μH · (s⊗H) · ΔH = ηH · ιH · εH (55)

The first equality uses the naturality of χ, the second uses the naturality of η, the third
holds since μ[P (H,B),B] = [Δ, B] · χP (H,B),P (H,B) is the convolution product of [P (H,B), B];
the fourth equality is the fact that ηH is a monoid morphism, and the last is one of the two
antipode axioms.

On the other hand, the transpose of P (εH , B) · P (ιH , B) is precisely ηH · ιH · εH , by
naturality of η. Therefore, we have proved the equality (54). The other antipode axiom for
P (s,B) is symmetric to the one just verified, and holds by the same argument, concluding the
proof. �

Example 9.2. Let k be a commutative ring and H be any cocommutative Hopf k-algebra.
Then P (H, k) = H◦ is a Hopf algebra. In this general case, there is no obvious reason why H◦

should be a sub-k-module of H∗.

Example 9.3. This is a good place to examine the meaning of the results so far when the
base category V is the category Set of sets, with its monoidal structure given by cartesian
product. Each set has a unique (cocommutative) comonoid structure (where the multiplication
is the diagonal function), that is, the forgetful functor Comon(Set) → Set is an isomorphism.
The universal measuring set P (A,B) of a pair of monoids A and B is the set Mon(Set)(A,B)
of monoid morphisms A → B.

Any monoid A is automatically a cocommutative bimonoid. If B is a commutative monoid,
point-wise multiplication endows Mon(Set)(A,B) with a monoid structure; compare with
Corollary 5.4. A Hopf algebra H in Set is just a group; the antipode s : H → H is given by
s(x) = x−1. Theorem 9.1, then, says that Mon(Set)(H,B) is a group if B is commutative and
H is a group. The inverse of a monoid map is, of course, (f−1)(x) = f(x−1).

10. Universal measuring comonoids of Hopf monoids

Having shown that the universal measuring comonoid P (A,B) is a Hopf monoid when A is a
cocommutative Hopf monoid and B is a commutative monoid, we now investigate the case of a
general, not necessarily cocommutative, Hopf monoid A. In order to do so, we first need some
basic notions and facts about Hopf monads and Hopf comonads and Hopf monoids. The main
result of the section, Theorem 10.11, is powerful enough to encompass the examples of vector
spaces and dg vector spaces.

10.1. Hopf monads

In this section we briefly recall the notion of Hopf monad. More details can be found in [7].
Let C be a monoidal category and T = (T, η, μ) a monad on it. An opmonoidal structure
on T consists of a natural transformation T2,X,Y : T (X ⊗ Y ) → T (X) ⊗ T (Y ) and a morphism
T0 : T (I) → I satisfying various axioms that make the following result of [23] hold: the category
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CT of Eilenberg–Moore algebras has a monoidal structure that makes the forgetful functor into
C strict monoidal.

We will later be interested in the case of the monad T = (A⊗−) induced by a bimonoid A
in a braided tensor category C. The opmonoidal structure is given by

T2,X,Y : A⊗X ⊗ Y
Δ⊗1⊗1−−−−−→ A⊗A⊗X ⊗ Y

1⊗cA,X⊗1−−−−−−−→ A⊗X ⊗A⊗ Y (56)

and T0 = ε⊗ 1: A⊗ I → I ⊗ I ∼= I.
Given an opmonoidal monad T as above, its left and right fusion operators or Hopf maps

are the displayed compositions:

H�
X,Y : T (X ⊗ TY )

T2,X,TY−−−−−→ TX ⊗ T 2Y
1⊗μY−−−−→ TX ⊗ TY (57)

Hr
X,Y : T (TX ⊗ Y )

T2,TX,Y−−−−−→ T 2X ⊗ TY
μX⊗1−−−−→ TX ⊗ TY. (58)

The opmonoidal monad T is left (respectively, right) Hopf if H� (respectively, Hr) is invertible.
One of the main results of [7] states that, if C is left (respectively right) closed, T is left

(respectively, right) Hopf if and only if the monoidal category CT is left (respectively, right)
closed and the forgetful functor is strong closed (that is, it preserves internal homs up to
isomorphism).

10.2. Hopf comonads

In the interest of completeness, and since [7] gives full descriptions only for the case of monads,
we shall provide some details about the theory of Hopf comonads. One difference with the case
of monads is that, although there is an abundance of examples of closed categories, even the
basic examples of the category of sets or the category of vector spaces are not coclosed categories
(categories whose opposite categories are closed). In examples, when tensoring with an object
M has a left adjoint, it does so because M has a dual. Below we briefly treat the relationship
between the Hopf condition for comonads and the existence of duals.

A monoidal structure on a comonad G = (G, ε, δ) consists of natural transformations
G2,X,Y : GX ⊗GY → G(X ⊗ Y ) and a morphism G0 : I → G(I) satisfying certain axioms that
imply that its category CG of Eilenberg–Moore coalgebras is monoidal and the forgetful functor
U : CG → C is strict monoidal.

Given a monoidal comonad as in the previous paragraph, the right and left fusion operators
are defined in the following way:

Hr
X,Y : G(X) ⊗G(Y ) 1⊗δY−−−→ G(X) ⊗G2(Y )

G2,X,G(Y )−−−−−−→ G(X ⊗G(Y )) (59)

H�
X,Y : G(X) ⊗G(Y ) δX⊗1−−−−→ G2(X) ⊗G(Y )

G2,G(X),Y−−−−−−→ G(G(X) ⊗ Y ) (60)

One says that the comonad G is right (respectively, left) Hopf if Hr (respectively, H�) is
invertible.

Similarly, there are morphisms as displayed below, natural in G-coalgebras (M,χ) and X ∈
C:

H̄r
X,M : G(X) ⊗M

1⊗χ−−−→ G(X) ⊗G(M)
G2,X,M−−−−−→ G(X ⊗M) (61)

H̄�
M,Y : M ⊗G(Y )

χ⊗1−−−→ G(M) ⊗G(Y )
G2,M,Y−−−−−→ G(M ⊗ Y ). (62)

Clearly, H̄r is invertible if and only if Hr is invertible; for, each G-coalgebra is a U -split equaliser
of cofree coalgebras [20, §VI].
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Let (M,χ) be a G-coalgebra and consider the situation when (−⊗M) has a left adjoint L;
typically, L is given by tensoring with a right dual of M .

(63)

A lifting of the adjunction L � (−⊗M) to CG is a left adjoint to L̂ � (−⊗ (M,χ)) that makes
(U,U) a strict morphism of adjunctions; this means that the square formed by the left adjoints
commutes and the unit and counit of the respective adjunctions are compatible with U in an
obvious way (see [20, § IV.7]).

Lemma 10.1. The adjunction L � (−⊗M) as above lifts to CG, for all G-coalgebras (M,χ),
if and only if G is right Hopf. Symmetrically, an adjunction L � (M ⊗−) lifts to CG, for all
G-coalgebras (M,χ), if and only if G is left Hopf.

Proof. This is dual to part of [7, Theorem 3.6]; in fact, it is dual to Theorem 3.13 together
with Example 3.12 of op. cit. �

Remark 10.2. Let X be an object in the monoidal category A, and suppose given an
adjunction (L, (−⊗X), η, ε). Consider the canonical left action of the monoidal category A on
itself, and note that the right adjoint is a strong morphism with respect to it, with structure
given by the associativity and unit constraints

A⊗ (B ⊗X) ∼= (A⊗B) ⊗X (64)

and I ⊗X ∼= X. By doctrinal adjunction [16], the left adjoint L carries a unique opmorphism
structure that makes η and ε compatible with the action. Then X has a right dual if and only
if the opmorphism L is a strong morphism; in which case, the right dual is L(I).

Lemma 10.3. Suppose given a monoidal comonad on the monoidal category C and
adjunctions as in (63), so that (U,U) is a strict morphism of adjunctions. Then (M,χ) has a
right dual in CG provided that M has a right dual in C.

Proof. Let M∨ be the right dual of M . By Remark 10.2, the left adjoint L̂ is an opmorphism
with respect to the left action of CG on itself, with structure given by morphisms λ : L̂((N, ν) ⊗
(N ′, ν′)) → (N, ν) ⊗ L̂(N ′, ν′) whose image under U are the isomorphisms (N ⊗N ′) ⊗M∨ ∼=
N ⊗ (N ′ ⊗M∨). Thus λ is an isomorphism, and L̂ is isomorphic to (−⊗ L̂(I)), so (M,χ) has
a right adjoint. �

Proposition 10.4. Let (M,χ) be a G-coalgebra. If G is right (respectively, left) Hopf, then
(M,χ) has a right (respectively, left) dual in CG provided that M have a right (respectively,
left) dual in C.

Proof. Suppose that M∨ is a right dual to M , so L = (−⊗M∨) is a left adjoint to (−⊗M).
This adjunction lifts to an adjunction L̂ � (−⊗ (M,χ)) on CG by Lemma 10.1. The result can
now be deduced from Lemma 10.3. �

Lemma 10.5. Let G be a κ-accessible monoidal comonad on an accessible monoidal category
V. Then VG is an accessible monoidal category, and locally presentable if V is so. Dualizable
G-coalgebras are κ-presentable.
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Proof. It was mentioned in Corollary 2.8 that VG is an accessible category, with accessible
forgetful functor U to V. It remains to be shown that the functor ((M,χ) ⊗−) is accessible
for any G-coalgebra (M,χ), and similarly tensoring on the other side. This is a consequence
of [21, Proposition 2.4.10], since U is conservative and accessible, and U((M,χ) ⊗−) is the
accessible M ⊗ U(−). Therefore VG is accessible monoidal as in Definition 2.6.

The hypotheses that G is κ-accessible and that V is accessible as a monoidal category tell
us that V is κ-accessible and its unit object I is κ-presentable. If M is an object of V with
a left dual, then V(M,−) ∼= V(I,−⊗M∨) is accessible, so M is κ-presentable. If (M,χ) is a
G-coalgebra, then (M,χ) is presentable with presentability degree at least that of M and that
of G, that is, at least κ, by Corollary 2.8. �

Proposition 10.6. Let G be a κ-accessible monoidal comonad on the accessible monoidal
category V. Assume that each G-coalgebra is a κ-filtered colimit of right (respectively, left)
dualizable G-coalgebras. Then G is right (respectively, left) Hopf if and only if each right
(respectively, left) dualizable G-coalgebra has a right (respectively, left) dual in CG.

Proof. We briefly deal with the case of right dualizable G-coalgebras. The direct implication
holds by Proposition 10.4. For the converse, dualizable objects of VG are κ-presentable, by
Lemma 10.5. By the κ-accessibility of G, the domain and codomain of H̄r (see (61)) preserve
κ-filtered colimits, so H̄r is an isomorphism if it is so on dualizable objects. �

10.3. Hopf (co)monads induced by Hopf monoids

Let C be a braided monoidal category and (H,Δ, ε, μ, ι) bimonoid in it. There are eight
questions that we may naturally ask ourselves about H:

Is the monad (H ⊗−) left or right Hopf?
Is the monad (−⊗H) left or right Hopf?
Is the comonad (H ⊗−) left or right Hopf?
Is the comonad (−⊗H) left or right Hopf?

In this section, we give the answers to the above questions in terms of the Hopf maps of H.
There are four such operators—see Sections 10.1 and 10.2—depicted in diagrams (72)–(75).
We call the first two maps fusion operators and the last two opfusion operators. The contents
of this section derive from [7, Lemma 5.1]; our contribution consists in the inclusion of the
dual statements—that is, those for right Hopf monads—and a condensed proof.

Proposition 10.7. (1) The following are equivalent for a bimonoid H.
(a) H is a Hopf monoid.
(b) The two fusion operators of diagrams (72)–(75) are invertible.
(c) Any one of the two fusion operators in diagrams (72)–(75) is invertible.
(d) The opmonoidal monad (H ⊗−) is left Hopf.
(e) The opmonoidal monad (−⊗H) is right Hopf.
(f) The monoidal comonad (H ⊗−) is right Hopf.
(g) The monoidal comonad (−⊗H) is left Hopf.

(2) The following are equivalent for a bimonoid H:
(h) H is an op-Hopf monoid.
(i) The two opfusion operators of diagrams (72)–(75) are invertible.
(j) Any one of the two opfusion operators in diagrams (72)–(75) is invertible.
(k) The opmonoidal monad (H ⊗−) is right Hopf.
(l) The opmonoidal monad (−⊗H) is left Hopf.

(m) The monoidal comonad (H ⊗−) is left Hopf.
(n) The monoidal comonad (−⊗H) is right Hopf.
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Proof. We prove the equivalences of the statements in (1), leaving the proof of the
equivalences in (2) for the reader. Consider the function

Φ: V(H,H) −→ V(H⊗2, H⊗2), f �→ (H ⊗ μ) · (H ⊗ f ⊗H) · (Δ ⊗H). (65)

It is easy to verify that Φ is a monoid morphism if the domain has the convolution product
induced by the bimonoid H, and the codomain has the product given by composition. In fact, Φ
is an isomorphism onto the monoid consisting of those endomorphisms that are simultaneously:
endomorphisms of left H-comodules on the cofree left H-comodule H⊗2; and, endomorphisms
of free right H-modules on the free left H-module H⊗2. From these considerations it follows
that 1H has a convolution inverse, that is, there exists an antipode, if and only if Φ(1H), the
first fusion operator in diagrams (72)–(75) is invertible.

Now consider the function

Φ′ : V(H,H) −→ V(H⊗2, H⊗2), f �→ (μ⊗H) · (H ⊗ f ⊗H) · (H ⊗ Δ). (66)

Again, it is easy to verify that Φ′ is an anti-morphism of monoids when the domain is equipped
with convolution and the codomain with composition. Furthermore, it is an isomorphism onto
the submonoid of those endomorphisms of H⊗2 that are simultaneously: right H-comodule
endomorphisms on the cofree H-comodule H⊗2; and, left H-module endomorphisms on the
free left H-module H⊗2. Therefore, there exists an antipode for H if and only if Φ′(1H), which
is the second fusion operator in diagrams (72)–(75), is invertible. These first two paragraphs
of the proof show the equivalence among the conditions (a), (b) and (c).

The left fusion operator of the opmonoidal monad (H ⊗−), the right fusion operator of the
opmonoidal monad (−⊗H), the right fusion operator of the monoidal comonad (H ⊗−) and
the left fusion operator of the monoidal comonad (−⊗H), have components depicted in the
respective order in diagrams (67)–(70):

HXHY
ΔXHY−−−−−→ HHXHY

HcH,XHY−−−−−−−→ HXHHY
HXμY−−−−→ HXHY (67)

XHYH
XHY Δ−−−−−→ XHYHH

XHcY HH−−−−−−→ XHHYH
XμYH−−−−→ XHYH (68)

HXHY
HXΔY−−−−−→ HXHHY

HcX,HHY−−−−−−−→ HHXHY
μXHY−−−−→ HXHY (69)

XHYH
XΔY H−−−−−→ XHHYH

XHcH,Y H−−−−−−−→ XHYHH
XHY μ−−−−→ XHYH. (70)

Setting X = Y = I in these fusion operators we obtain, respectively, h, h′, h′ and h. In fact,
the general components can be easily obtained from h and h′ by tensoring with X and Y and
composing with the braiding; for example, the first composite is obtained as

(H ⊗ cH,X ⊗ Y ) · (h⊗X ⊗ Y ) · (H ⊗ c−1
X,H ⊗ Y ). (71)

Therefore, any one of the four fusion operators depicted above is invertible if and only if either
h or h′ is invertible, completing the proof of 1.

h : H⊗2 Δ⊗1−−−→ H⊗3 1⊗μ−−−→ H⊗2 (72)

h′ : H⊗2 1⊗Δ−−−→ H⊗3 μ⊗1−−−→ H⊗2 (73)

h̄ : H⊗2 Δ⊗1−−−→ H⊗3 1⊗cH,H−−−−−→ H⊗3 μ⊗1−−−→ H⊗2 (74)

h̄′ : H⊗2 1⊗Δ−−−→ H⊗3 cH,H⊗1−−−−−→ H⊗3 1⊗μ−−−→ H⊗2. (75)

�
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10.4. Universal measuring comonoids and Hopf monoids

Recall from Section 2.4 the Kleisli category for a monoidal monad on a monoidal category, and
from Definition 6.4 the category AVB , for a pair of monoids A, B: it is the pullback (42) of
the forgetful (VB)(A⊗−) → VB along the universal Kleisli functor FB : V → VB . Here VB is the
Kleisli category of the monad (−⊗B). The monad (−⊗B) is monoidal if the monoid B is
commutative. Furthermore, it is an easy calculation to verify that if V is a symmetric monoidal
category, then (−⊗B) is a braided monoidal functor when B is commutative, see Lemma 2.3;
then VB is a symmetric monoidal category.

Proposition 10.8. Let V be a symmetric monoidal closed category and B a commutative
monoid in it. Suppose that A is a Hopf (respectively, op-Hopf) monoid in V. Then AVB is
monoidal and an object (X,ψ) ∈ AVB has a left (respectively, right) dual if and only if X has
a dual in V.

Proof. The category VB is symmetric monoidal and the Kleisli functor FB : V → VB is
braided and strict monoidal; see Section 2.4. Thus, A = FB(A) is a Hopf (respectively, op-
Hopf) monoid in VB , so the category (VB)(A⊗−) of left A-modules in VB is monoidal and the
forgetful functor (VB)(A⊗−) → VB strict monoidal. Then, the pullback AVB defined in (42) is
a monoidal category and the forgetful AVB → V is strict monoidal. Suppose that an object
(X,ψ) of AVB is dualizable, that is, X has a dual in V. Then FB(X) has a dual in VB , by the
strict monoidality of FB, so the projection (X,ϕ) of (X,ψ) to (VB)(A⊗−) is dualizable. By the
hypothesis of being Hopf (respectively, op-Hopf), we have that (X,ϕ) has a left (respectively,
right) dual and the forgetful functor into VB preserves evaluation and coevaluation. It
follows that (X,ψ) ∈ AVB has a left (respectively, right) dual by the definition of AVB as a
pullback. �

Definition 10.9. A braided monoidal category V is said to satisfy the fundamental theorem
of comodules if, for each comonoid C in V, each C-comodule is a filtered colimit of dualizable
C-comodules.

Remark 10.10. The previous definition elicits a number of comments. First, it seems
possible to drop the assumption that the monoidal category be braided, distinguishing between
left and right dualizable objects. We prefer to keep the definition more readable by retaining
the braiding assumption.

Secondly, [22] says that V satisfies the fundamental theorem of comodules if, for each
comonoid C, each C-comodule is filtered colimit of dualizable strong subobjects. We do not
require the colimit to be one of subobjects.

Thirdly, one might think that there is a certain ambiguity in our definition with respect
to left and right C-comodules. It is not a real one, however, since left C-comodules are right
comodules over the opposite comonoid.

Theorem 10.11. Let V be a locally presentable symmetric monoidal closed category that
satisfies the fundamental theorem of comodules, A a Hopf (respectively, op-Hopf) monoid and
B a commutative monoid. Then P (A,B) is a Hopf (respectively, op-Hopf) monoid.

Proof. The category of dualizable right P (A,B)-comodules is monoidally isomorphic over
V to the category of dualizable objects in AVB , by Corollary 6.5 and Corollary 7.1, and the
latter category is left (respectively, right) autonomous by Proposition 10.8. So, any dualizable
comodule has a left (respectively, right) dual. By the fundamental theorem of comodules,
each P (A,B)-comodule is a colimit of dualizable ones, so the comonad (−⊗ P (A,B)) is left
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(respectively, right) Hopf by Proposition 10.6. This is equivalent to saying that P (A,B) is a
Hopf (respectively, op-Hopf) monoid, by Proposition 10.7. �

Example 10.12. If A is a Hopf algebra over a field k, then P (A,B) is a Hopf algebra
for any commutative k-algebra B. Let Aop be the bialgebra obtained by taking the opposite
multiplication but leaving the comultiplication intact. If Aop is a Hopf algebra, then P (A,B)
is op-Hopf. The example of graded (co)algebras is explored in the next section.

11. Example: graded (co)algebras

Recall from Example 2.10 that the category gVectZ of Z-graded vector spaces is a locally
finitely presentable symmetric monoidal closed category. In what follows, graded (co)algebra
(Example 4.4) and graded (co)module mean (co)monoid and (co)module in the said monoidal
category.

Lemma 11.1. Let M be a (right) graded comodule over a graded coalgebra C. Any
homogeneous finite-dimensional space of M is contained in a finite-dimensional sub graded
comodule.

Proof. The proof is identical to that of [10, Lemma 1.1], except that we admit negative
grading. �

The above lemma immediately yields:

Corollary 11.2. The category gVectZ of graded vector spaces satisfies the fundamental
theorem of comodules.

Proof. The category of graded vector spaces has an internal hom given by

Hom(X,Y )n =
∏
i∈Z

[Xi, Yi+n] (76)

and unit object I = k[0] the base field k concentrated on degree 0, as mentioned in Exam-
ple 2.10. We have to show that finite-dimensional graded spaces have a dual object in gVectZ;
for this suppose that X is finite-dimensional, that is, it is 0 except in finitely many degrees,
say between −n and n. If X had a dual, it should be Hom(X, k[0])

Hom(X, k[0])m = [X−m, k]. (77)

By general considerations on duals and internal homs, X has a dual if and only if the comparison
morphism Hom(X, k[0]) ⊗ Y → Hom(X,Y ), with m-component

n∑
i=−n

[X−i, k] ⊗ Ym−i −→
n∏

j=−n

[Xj , Yj+m] (78)

is an isomorphism. Since the product in the codomain is finite, it can be replaced by a sum, and
reindexing, it is isomorphic to

∑n
�=−n[X−�, Ym−�]. It is now easy to see that (78) is the sum of

the isomorphisms of the type [V, k] ⊗W ∼= [V,W ] for V a finite-dimensional vector space. �

Remark 11.3. In the above corollary, it was important that the grading is over the group
of integers. For example, in the category of non-negatively (N-) graded spaces, very few objects
have a dual: they are all concentrated in degree 0.
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We can now describe the result of applying Theorem 10.11 to the base category V = gVectZ.

Proposition 11.4. Let H be a Z-graded bialgebra and B a commutative Z-graded algebra.
Then P (H,B) is a Z-graded bialgebra. If H is a Hopf (respectively, op-Hopf) graded algebra,
then P (H,B) is Hopf (respectively, op-Hopf) too.

If, instead of Z-graded spaces, we wanted to work with N-graded spaces, and obstacle presents
itself: gVectN does not have enough objects with duals to satisfy the fundamental theorem
of comodules—Definition 10.9. We can say something, however, if we admit the restriction to
(graded) (co)commutative algebras.

Proposition 11.5. Let H be a cocommutative N-graded Hopf algebra and B a commutative
N-graded algebra. Then P (H,B) is a N-graded Hopf algebra.

The proof of the proposition is an application of Theorem 9.1.
An N-graded vector space is connected if its component of degree 0 is one-dimensional. It is

well known that connected N-graded bialgebras automatically are Hopf algebras. Even if one is
only interested in connected spaces, Proposition 11.5 is not redundant, as P (H,B) may not be
connected even when H and B are so. For example, a morphism of N-graded coalgebras k[0] →
C is equivalently given by an element g ∈ C0 ,that is, a group-like element of C, that is, Δ(g) =
g ⊗ g and ε(g) = 1. If C is connected, there is at most one such element, as the restriction of
ε : C → k[0] to degree 0 is an isomorphism C0

∼= k. Therefore, if P (A,B) is connected, then
there exists at most one N-graded morphism of algebras A → B, by the definition of P (A,B).
An example where this does not happen, and therefore where P (A,B) is not connected, is that
of k = F2, the field of characteristic 2 (so −1 = 1 and graded (co)commutativity is just ordinary
(co)commutativity), and A = F2[x] is the polynomial algebra with the usual Hopf algebra
structure, whose cocomultiplication is given by Δ(x) = 1 ⊗ x + x⊗ 1. For any connected
F2-algebra B, a morphism of graded algebras F2[x] → B is defined by a unique element of
B1. In this way, any B for which B1 �= 0 provides an example in which P (F2[x], B) is not
connected.
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Ignacio López Franco
Department of Mathematics and

Applications
CURE – Universidad de la República
Tacuarembó s/n 20000
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