
CATEGORY THEORY EXAMPLES 1

1. Let C be a category and I ∈ C0 an object. Show that C/I as defined in Example 1.2.5 indeed forms a
category, the category of arrows over I or slice category.

2. Prove the interchange law for categories, functors and natural transformations:
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(δ ∗ β) ◦ (γ ∗ α) = (δ ◦ γ) ∗ (β ◦ α).

3. A morphism e : A → A in a category C is called idempotent if e ◦ e = e. Denote by dome = code the
domain and codomain of e.

(i) Suppose F : C → D, G : D → C are functors, and α : 1C ⇒ G ◦ F , β : F ◦ G ⇒ 1D are natural
transformations such that Gβ ◦αG : G⇒ GFG⇒ G is the identity. Show that βF ◦Fα : F ⇒ F
is an idempotent in the category Fun(C,D), for C small.

(ii) If E is a class of idempotents in a category C, show that there exists a category C[Ě ] whose objects
are members of E , whose morphisms e→ d are those morphisms f : dome→ codd in C for which
d ◦ f ◦ e = f , and whose composition coincides with composition in C (hint: the identity is not
the same as in C!)

4. Use Yoneda to prove that α : F ⇒ G is a monomorphism in Fun(C,Set) if and only if its components
αA : FA→ GA are injective functions.

5. (i) Viewing a group G as an one-object category, show that natural transformations 1G ⇒ 1G
correspond to elements in the centre of the group.

(ii) Deduce Cayley’s embedding theorem using the Yoneda embedding theorem.

6. Show that there exist functors ob,mor: Cat → Set picking the set of objects and morphisms of
categories. Are they full? Are they faithful?

7. Prove the following:

(i) any retraction is an epimorphism, and faithful functors reflect them;

(ii) an isomorphism is a mono and an epi, and the converse is not always true;

(iii) (two-out-of-three property) for A
f−→ B

g−→ C, if two out of f, g, g ◦ f are isos then so is the third;

(iv) all functors preserve isos and fully faithful functors reflect them.

8. Show that any functor F : C → D can be factorized as

C L−−→ E R−−→ D

where L is bijective-on-objects and R is fully faithful. Also, show that for any commutative square
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where L is b.o.b. and R is ff, there exists a unique functor H : C → D such that H ◦ L = F and
R ◦H = G.



9. By an automorphism of a small category C we mean an endofunctor F : C → C which has a (2-sided)
inverse. We say an automorphism is inner if it is naturally isomorphic to the identity functor.

(i) Show that inner C-automorphisms form a normal subgroup of all C-automorphisms, viewed as a
group with composition as multiplication.

(ii) If F is a C-automorphism and 1 is a terminal object in C, show that F (1) is also a terminal object
in C (hence isomorphic to 1).

10. (i) Express the universal property of a coproduct of a family of objects (FZ)Z∈Z , for a functor
F : Z → C from a discrete category Z.

(ii) (Exercise 3.2.3) Consider a poset (P,≤). Let (xi)i∈I be a family of elements in P , what is the
product and coproduct of (xi)i∈I considered as a family of objects in the poset category?

11. (Proposition 3.2.10) Consider the pullback
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Then if g is a monomorphism (respectively, isomorphism), then pA is a monomorphism (respectively,
isomorphism) as well.

12. Consider the following commutative squares:

A B C

V U W
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Prove the following statements:

(i) if both small rectangles are pullbacks, then so is the large one;

(ii) if the large rectangle and the small right one are pullbacks, then so is the left one.

13. (Theorem 3.3.5) For a category C, the following are equivalent:

(i) C is finitely complete;

(ii) C has a terminal object, binary products and equalizers;

(iii) C has a terminal object and pullbacks.

14. We say that a functor G : C → D creates limits of shape Z if, given F : Z → C and a limit (M,µZ) for
G ◦F , there exist a cone (L, λZ) over F in C whose image is isomorphic to (M,µZ); and any such cone
is a limit in C.

(i) If D has and G creates limits of shape Z, then C has and G preserves them.

(ii) If G creates limits of shape Z, then G reflects them.


