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Résumé. Nous introduisons la notion de fibration enrichie, à savoir une fi-
bration dont la catégorie totale et la catégorie de base sont enrichies d’une
manière appropriée dans celles d’une fibration. De plus, nous proposons
un moyen d’obtenir une telle structure, à partir des actions de catégories
monoı̈dales avec des adjoints paramétrés. L’objectif est de capturer certaines
classes d’ exemples, comme la fibration des modules sur des algèbres en-
richie dans l’opfibration de comodules sur des coalgèbres.
Abstract. We introduce the notion of an enriched fibration, i.e. a fibration
whose total category and base category are enriched in those of a monoidal
fibration in an appropriate way. Furthermore, we provide a way to obtain such
a structure, starting from actions of monoidal categories with parameterized
adjoints. The motivating goal is to capture certain example cases, like the
fibration of modules over algebras enriched in the opfibration of comodules
over coalgebras.
Keywords. monoidal category, fibration, enriched category, parameterized
adjunction.
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1. Introduction

Enriched category theory [Kel05], as well as the theory of fibrations [Gro61],
have both been of central importance to developments in many contexts.
Both are classical theories for formal category theory; however, they do not
seem to ‘go together’ in some evident way.
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The goal of the present work is to introduce a notion of an enriched fi-
bration. This should combine elements of both concepts in an appropriate
and natural way; the enriched structure of a category cannot really be inter-
nalized in order to provide a definite answer. In any case, ‘being enriched
in’ and ‘being internal to’ are two major but separate generalizations of or-
dinary category theory, whereas ‘being fibred over’ is often considered as a
third one.

More explicitly, we would like to characterize a fibration as being en-
riched in some special kind of fibration, serving similar purposes as the
monoidal base of usual enriched categories; this has already been identified
as a monoidal fibration [Shu08]. For the desired enriched fibration defini-
tion, there are two main factors that determine its relevance. First of all, it
should be able to adequately capture certain cases that first arose in [Vas14]
and furthermore studied in [HLFV17a, HLFV17b, Vas17], and in fact mo-
tivated these explorations. Further details of these examples and how they
ultimately fit in the described framework can be found in Section 4. The
original driving example case is the enrichment of algebras in coalgebras via
Sweedler’s measuring coalgebra construction [Swe69], together with the en-
richment of a global category of modules in comodules; the latter categories
are respectively fibred and opfibred over algebras and coalgebras. This also
extends to their many-object generalizations, namely (enriched) categories
and cocategories and their (enriched) modules and comodules. These cases
can be roughly depicted as

Mod enriched //

fibred

��

Comod

opfibred

��
Alg(V)

enriched
// Coalg(V)

V-Mod enriched //

fibred

��

V-Comod

opfibred

��
V-Cat

enriched
// V-Cocat.

Secondly, the introduced enriched fibration concept should theoretically
constitute an as-close-as-possible fibred analogue of the usual enrichment of
categories. In order to initiate such an effort, we provide a theorem which
under certain assumptions ensures the existence of such a structure. This
theorem lifts a standard result, which combines the theory of actions of
monoidal categories and parameterized adjunctions to produce an enrich-
ment [GP97, JK02], to the fibred context.
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Notably, a strongly related notion called enriched indexed category has
been studied, from a slightly different point of view, originally in [Bun13]
and also independently in [Shu13]. However, the main definitions and con-
structions diverge from the ones presented here. We postpone a short discus-
sion on these differences until the very end of the paper, Section 4.3.

Finally, it should be indicated that this paper deliberately includes only
what is necessary to first of all sufficiently describe the examples at hand. It
elaborates on and extends a sketched narrative from [Vas14, §8.1], and pro-
vides the first steps in such a research direction. Future work may build on
the current development, towards a theory of enriched fibrations and related
structures.
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2. Background

In this section, we recall some basic definitions and known results which
serve as background material in what follows, and we also fix terminology.

2.1 Monoidal categories, actions and enrichment

We assume familiarity with the basics of monoidal categories, see [JS93,
ML98]. A monoidal category is denoted by (V ,⊗, I) with associator and
left and right unit constraints a, `, r. A lax monoidal structure on a functor
F : V → W between monoidal categories is denoted by (φ, φ0), with com-
ponents φAB : FX ⊗ FY → F (X ⊗ Y ) and φ0 : I → FI satisfying usual
axioms. If these are isomorphisms/identities, this is a strong/strict monoidal
structure.

A (left) monoidal closed category is one where the functor (−⊗X) has a
right adjoint [X,−], for all objects X . This induces the internal hom functor
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[−,−] : Vop × V → V , as a result of the classic parameterized adjunctions
theorem [ML98, §IV.7.3]:

Theorem 2.1. Suppose that, for a functor of two variables F : A× B → C,
there exists an adjunction

A
F (−,B) //
⊥ C

G(B,−)
oo

for each B ∈ B, with an isomorphism C(F (A,B), C) ∼= A(A,G(B,C))
natural in A and C. Then, there is a unique way to make G into a functor of
two variables Bop×C → A for which the isomorphism is natural also in B.

The functor G is called the (right) parameterized adjoint of F , and we
denote this as F ap G. In particular,⊗ ap [−,−] in any monoidal (left) closed
category. We could also decide to fix the other parameter, and have that
F (A,−) a H(A,−) for H : Aop × C → B. For a 2-categorical proof and
generalizations, see [CGR14].

We now recall some basics of the theory of actions of monoidal cate-
gories, [JK02].

Definition 2.2. A (left) action of a monoidal category V on a category D is
given by a functor ∗ : V×D → D along with two natural isomorphisms χ, ν
with components

χXYD : (X ⊗ Y ) ∗D ∼−→ X ∗ (Y ∗D), νD : I ∗D ∼−→ D (1)

satisfying the commutativity of

((X ⊗ Y )⊗ Z) ∗D χ //

a∗1
��

(X ⊗ Y ) ∗ (Z ∗D)
χ // X ∗ (Y ∗ (Z ∗D))

(X ⊗ (Y ⊗ Z)) ∗D χ
// X ∗ ((Y ⊗ Z) ∗D)

1∗χ

OO
(2)

(I ⊗X) ∗D χ //

l∗1 $$

I ∗ (X ∗D)

ν{{
X ∗D

(X ⊗ I) ∗D χ //

r∗1 $$

X ∗ (I ∗D)

1∗ν{{
X ∗D

The category D is called a V-representation, or a V-actegory [McC00].
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For example, every monoidal category has a canonical action on itself
via its tensor product, ⊗ = ∗ : V ×V → V , and χ = a, ν = `; it is called the
regular V-representation. Moreover, for any monoidal closed category, its
internal hom constitutes an action of the monoidal Vop (with the same tensor
product ⊗op) on V , via the standard natural isomorphisms

χXY Z : [X ⊗ Y,D]
∼−→ [X, [Y, Z]], νD : [I,D]

∼−→ D

which satisfy (2) using the transpose diagrams under the tensor-hom adjunc-
tion.

Familiarity with enrichment theory is also assumed, see [Kel05]. We
denote the 2-category of V-enriched categories, along with enriched functors
and enriched natural transformations, V-Cat; we call V the monoidal base of
the enrichment. If A is a V-enriched category with hom-objects A(A,B) ∈
V , we will write jA : I → A(A,A) for its identites and MABC : A(B,C) ⊗
A(A,B) → A(B,C) for the composition. Its underlying category A0 has
the same objects, while morphisms f : A → B in A0 are just ‘elements’
f : I → A(A,B) in V , i.e. A0(A,B) = V(I,A(A,B)) as sets. In fact, we
can define a functor

A(−,−) : Aop
0 ×A0 → V (3)

called the enriched hom-functor, which maps (A,B) to A(A,B), and a pair
of arrows (A′

f−→ A,B
g−→ B′) in Aop

0 ×A0 to the top arrow

A(A,B)
A(f,g) //

r−1

��

A(A′, B′)

A(A,B)⊗ I
1⊗f
��

A(B,B′)⊗A(A′, B)

M

OO

A(A,B)⊗A(A′, A)
M
// A(A′, B)

l−1
// I ⊗A(A′, B)

g⊗1

OO

Speaking loosely, we say that an ordinary category C is enriched in a
monoidal category V when we have a V-enriched categoryA (often denoted
C) and an isomorphism A0

∼= C. Consequently, to be enriched in V is not a
property, but additional structure. Of course, a given ordinary category may
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be enriched in more than one monoidal category; this is evident in view of
Proposition 2.3. But also, a category C may be enriched in V in more than
one way.

Proposition 2.3 (Change of Base). Suppose F : V → W is a lax monoidal
functor between two monoidal categories. There is an induced 2-functor

F̃ : V-Cat −→W-Cat

between the 2-categories of V andW-enriched categories, which maps any
V-category A to aW-category with the same objects as A and hom-objects
FA(A,B).

Sketch of proof. On the level of objects, the composition and identities are
given by

FA(B,C)⊗ FA(A,B)

φA(B,C),A(A,B)

��

// FA(A,C)

F (A(B,C)⊗A(A,B))

FMABC

55
IW

φ0

��

// FA(A,A)

FIV

FjA

99

A crucial result for what follows is that given a categoryD with an action
from a monoidal category V with a parameterized adjoint, we obtain a V-
enriched category.

Theorem 2.4. Suppose that V is a monoidal category which acts on a cate-
gory D via a functor ∗ : V × D → D, such that − ∗ D has a right adjoint
F (D,−) for every D ∈ D. Then we can enrich D in V , with hom-objects
D(A,B) = F (A,B).

The proof and further details can be found in [JK02] or [Vas14, § 4.3].
Briefly, due to the adjunction − ∗ D a F (D,−), we have natural isomor-
phisms

D(X ∗D,E) ∼= V(X,F (D,E)) (4)

which give rise to a functor F : Dop ×D → V by Theorem 2.1. This serves
as the enriched hom-functor of the induced enrichment of D in V: we can
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define a composition law F (B,C)⊗ F (A,B)→ F (A,C) as the adjunct of
the composite

(F (B,C)⊗ F (A,B)) ∗ A F (B,C) ∗ (F (A,B) ∗ A)

F (B,C) ∗B

C

χ

1∗εB

εC

(5)

and identities I → F (A,A) as the adjuncts of

I ∗ A ν−→ A (6)

where χ and ν give the action structure (1) and ε is the counit of the ad-
junction. The associativity and identity axioms for the enrichment can be
established using the action axioms. Finally, D0

∼= D since they have the
same objects, and

D0(A,B) = V(I, F (A,B))
(4)∼= D(I ∗ A,B)

ν∼= D(A,B).

In fact, Theorem 2.4 gives part of one direction of an equivalence

V-Repcl ' V-Cat⊗

between closed V-representations (those with action equipped with a para-
meterized adjoint) and tensored V-categories (those with specific weighted
limits), for V a monoidal closed category. This equivalence, discussed in
[JK02, §6], is a special case of the much more general [GP97, Theorem 3.7]
for bicategory-enriched categories.

Remark 2.5. When V is monoidal closed, the regular action⊗ : V×V → V
has a parameterized adjoint [−,−] : Vop × V → V . We thus re-discover
the well-known enrichment of a monoidal closed category in itself via the
internal hom, as a direct application of Theorem 2.4.
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2.2 Pseudomonoids and pseudomodules

Recall that a monoidal 2-category (K,⊗, I) is a 2-category equipped with a
pseudofunctor ⊗ : K × K → K and a unit I : 1 → K which are associative
and unital up to coherence equivalence, see [GPS95].

Definition 2.6. [DS97, §3] A pseudomonoid A in K is an object equipped
with multiplication m : A⊗A→ A and unit j : I → A along with invertible
2-cells satisfying coherence conditions.

A⊗ A⊗ A A⊗ A A⊗ I A⊗ A I ⊗ A

A⊗ A A A

1⊗m

m⊗1 a∼=
m

1⊗j

∼
m

`∼=
r∼=

j⊗1

∼

m

(7)

The notion of a pseudomodule for a pseudomonoid in a monoidal 2-
category (or bicategory) can be found in similar contexts [Mar97, Lac00];
conceptually, as it is the case for modules for monoids in a monoidal cate-
gory, it arises as a pseudoalgebra for the pseudomonad (A⊗−) induced by
a pseudomonoid A in K.

Definition 2.7. A (left) A-pseudomodule is an object M in (K,⊗, I) equip-
ped with µ : A⊗M →M (the pseudoaction) and invertible 2-cells

A⊗ A⊗M A⊗M I ⊗M A⊗M

A⊗M A A

1⊗µ

m⊗1 χ∼=
µ

j⊗1

∼
µ

ν∼=

µ

(8)

satisfying coherence conditions.

Example 2.8. As a fundamental example of a (cartesian) monoidal 2-catego-
ry, consider Cat equipped with the 2-functor × : Cat × Cat → Cat
and I the unit category. It is a standard fact that a pseudomonoid therein
is precisely a monoidal category (V ,⊗, I, a, `, r). Moreover, an action of
a monoidal category V on an ordinary category A as defined in Defini-
tion 2.2 is precisely a V-pseudoaction inside (Cat,×, I), exhibiting A as
a V-pseudomodule.
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2.3 Fibrations and adjunctions

We now briefly recall some basic concepts and constructions from the the-
ory of fibred categories. Relevant references for what follows are [Bor94,
Her94].

Consider a functor P : A → X. A morphism φ : A → B in A over a
morphism f = P (φ) : X → Y in X is called cartesian if and only if, for
all g : X ′ → X in X and θ : A′ → B in A with Pθ = f ◦ g, there exists a
unique arrow ψ : A′ → A such that Pψ = g and θ = φ ◦ ψ:

A′
θ

,,∃!ψ ))

��
A

φ
//

��

B

��

in A

X ′ f◦g=Pθ

,,g )) X
f=Pφ

// Y in X

For X ∈ obX, the fibre of P over X written AX , is the subcategory of A
which consists of objects A such that P (A) = X and morphisms φ with
P (φ) = 1X , called vertical morphisms. The functor P : A → X is called
a fibration if and only if, for all f : X → Y in X and B ∈ AY , there is
a cartesian morphism φ with codomain B above f ; it is called a cartesian
lifting of B along f . The category X is then called the base of the fibration,
and A its total category.

Dually, the functor U : C → X is an opfibration if Uop is a fibration, i.e.
for every C ∈ CX and g : X → Y in X, there is a cocartesian morphism
with domain C above g, the cocartesian lifting of C along g.

If P : A → X is a fibration, assuming the axiom of choice we may
select a cartesian arrow over each f : X → Y in X and B ∈ AY , denoted
by Cart(f,B) : f ∗(B) → B. Such a choice of cartesian liftings is called
a cleavage for P , which is then called a cloven fibration; any fibration is
henceforth assumed to be cloven. Dually, if U is an opfibration, for any
C ∈ CX and g : X → Y in X we can choose a cocartesian lifting of C
along g, Cocart(g, C) : C −→ g!(C). The choice of (co)cartesian liftings
in an (op)fibration induces a so-called reindexing functor between the fibre
categories

f ∗ : AY → AX and g! : CX → CY
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respectively, for each morphism f : X → Y and g : X → Y in the base
category, mapping each object to the (co)domain of its lifting.

An oplax morphism of fibrations (or oplax fibred 1-cell) (S, F ) between
P : A → X and Q : B → Y is given by a commutative square of categories
and functors

A S //

P

��

B
Q

��
X

F
// Y

(9)

as in [Shu08, Def. 3.5]. If moreover S preserves cartesian arrows, meaning
that if φ is P -cartesian then Sφ is Q-cartesian, the pair (S, F ) is called a
fibred 1-cell or strong morphism of fibrations. Dually, we have the notion of
an lax morphism of opfibrations (K,F ), and opfibred 1-cell when K is co-
cartesian. Notice that any oplax fibred 1-cell (S, F ) determines a collection
of functors between the fibres SX : AX → BFX as the restriction of S to the
corresponding subcategories.

A fibred 2-cell between oplax fibred 1-cells (S, F ) and (T,G) is a pair
of natural transformations (α : S ⇒ T, β : F ⇒ G) with α above β, i.e.
Q(αA) = βPA for all A ∈ A, displayed

A
S

))

T

55�� α

P

��

B

Q

��
X

F
))

G

55�� β Y.

(10)

Notice that if the 1-cells are strong, the definition of a 2-cell between them
remains the same. Dually, we have the notion of an opfibred 2-cell between
(lax) opfibred 1-cells.

We obtain 2-categories Fibopl and Fib of fibrations over arbitrary base
categories, (oplax) fibred 1-cells and fibred 2-cells. Evidently, these are
both subcategories of Cat2. Fibopl is a full sub-2-category of those objects
which are fibrations, and Fib is the non-full sub-2-category whose mor-
phism are commutative squares where the top functor is cartesian. Dually,
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OpFib ⊂ OpFiblax ⊂full Cat2. These 2-categories are monoidal, inherit-
ing the tensor product from Cat2: the cartesian product of two fibrations is
still a fibration. The unit is 1I : I → I, the identity on the terminal category.

Notice that the terminology for oplax morphisms of fibrations and lax
morphisms of opfibrations is justified by a relaxed version of the fundamen-
tal equivalence between fibrations and pseudofunctors (Grothendieck con-
struction). For more details, see [Shu08, Prop. 3.6].

We now turn to notions of adjunctions between fibrations, internally to
any of the above 2-categories of (op)fibrations.

Definition 2.9. Given fibrations P : A → X and Q : B → Y, a general
(oplax) fibred adjunction (L, F ) a (R,G) is given by a pair of (oplax) fibred
1-cells (L, F ) : P → Q and (R,G) : Q → P together with fibred 2-cells
(ζ, η) : (1A, 1X) ⇒ (RL,GF ) and (ξ, ε) : (LR,FG) ⇒ (1B, 1Y) such that
L a R via ζ, ξ and F a G via η, ε. This is displayed as

A
P

��

L //
⊥ B
R

oo

Q

��
X

F //
⊥ Y
G

oo

Notice that by definition, ζ is above η and ξ is above ε, hence (P,Q) is
an ordinary map between adjunctions. Dually, we have the notion of general
(lax) opfibred adjunction in OpFib(lax).

The following result establishes certain (co)cartesian properties of ad-
joints.

Lemma 2.10. [Win90, 4.5] Right adjoints in the 2-category Cat2 preserve
cartesian morphisms; dually left adjoints preserve cocartesian morphisms.

Finally, in [HLFV17b, §3.2], conditions under which a fibred 1-cell has
an adjoint are investigated in detail, and that proves very useful in determin-
ing enrichment relations in conjunction with Theorem 2.4. Here we recall a
main result providing a general lax opfibred adjunction, with regards to the
applications of Section 4.
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Theorem 2.11. Suppose (K,F ) : U → V is an opfibred 1-cell and F a G
is an adjunction with counit ε between the bases of the opfibrations, as in

C K //

U
��

D
V
��

X
F //
⊥ Y.
G

oo

If, for each Y ∈ Y, the composite functor CGY
KGY−−−→ DFGY

(εY )!−−−→ DY
between the fibres has a right adjoint for each Y ∈ Y, then K has a right
adjoint R between the total categories and (K,F ) a (R,G) is an general
oplax adjunction.

3. Enriched fibrations

This section’s goal is to introduce a notion of an enriched fibration. It will do
so in a way that an adjusted version of Theorem 2.4, instead of providing an
enrichment of an ordinary category in a monoidal category, will give an en-
richment of an ordinary fibration in a monoidal one. The key idea is to shift
all necessary structure (Example 2.8) from the context of categories to fibra-
tions, moving from (Cat,×, I) to the monoidal 2-category (Fib,×, 1I).

First of all, a pseudomonoid (Definition 2.6) in the 2-category of fibra-
tions, which will serve as the base of the enrichment, is a fibration T : V →
W equipped with a multiplication m : T × T → T and unit j : 1I → T ,
along with 2-isomorphisms a, `, r as in (7). More explicitly, the multipli-
cation and unit are fibred 1-cells m = (⊗V ,⊗W) and j = (IV , IW) (9),
displayed as

V × V ⊗V //

T×T
��

V
T
��

W×W ⊗W
//W

and I IV //

1
��

V
T
��

I
IW

//W

(11)

where ⊗V and IV are cartesian, and invertible fibred 2-cells a = (aV , aW),

- 365 -



C. VASILAKOPOULOU ON ENRICHED FIBRATIONS

r = (rV , rW), ` = (`V , `W) (10), displayed as

V × V × V
⊗(⊗×1)

++

⊗(1×⊗)

33�� aV

T×T×T

��

V

T

��
W×W×W

⊗(⊗×1)
++

⊗(1×⊗)

33�� aW W

V × 1
⊗(1×I)

**

∼
44�� rV

T×1

��

V

T

��
W× 1

⊗(1×I)
**

∼
44�� rW W

1× V
⊗(I×1)

**

∼
44�� `V

1×T
��

V

T

��
1×W

⊗(I×1)
**

∼
44�� `W W

where by definition aV , rV , lV lie above aW, rW, lW. The coherence axioms
they satisfy turn out to give the usual axioms which make (V ,⊗V , IV) and
(W,⊗W, IW) into monoidal categories with the respective associativity, left
and right unit constraints.

Remark 3.1. The latter can be deduced also by the fact that the domain and
codomain 2-functors dom, cod : Fib ⊂ Cat2 → Cat are in fact strict
monoidal, i.e. preserve the cartesian structure on the nose. In other words,
the equality of pasted diagrams of 2-cells in Fib breaks down into equalities
Cat for the two (ordinary) natural transformations they consist of.

Moreover, the strict commutativity of the diagrams (11) implies that T
strictly preserves the tensor product and the unit object between V and W,
i.e.

TA⊗W TB = T (A⊗V B), IW = T (IV).

Along with the conditions that T (aV) = aW, T (lV) = lW and T (rV) = rW,
these data define a strict monoidal structure on T ; we obtain the following
definition, which coincides with [Shu08, 12.1].

Definition 3.2. A monoidal fibration is a fibration T : V →W such that

(i) V and W are monoidal categories,
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(ii) T is a strict monoidal functor,

(iii) the tensor product ⊗V of V preserves cartesian arrows.

If V and W are symmetric monoidal categories and T is a symmetric
strict monoidal functor, we call T a symmetric monoidal fibration. In a dual
way, we can define a (symmetric) monoidal opfibration to be an opfibration
which is a (symmetric) strict monoidal functor, where the tensor product
of the total category preserves cocartesian arrows. Notice that a monoidal
opfibration is still a pseudomonoid (and not a pseudocomonoid), this time in
OpFib. Finally, a monoidal bifibration is one where the tensor product of
the total category preserves both cartesian and cocartesian liftings.

We now describe a pseudomodule for a pseudomonoid in (Fib,×, 1I);
in analogy to Theorem 2.4, this will be the object which will eventually
have the enriched structure. According to Definition 2.7, a pseudoaction of
a monoidal fibration T : V → W on an ordinary fibration P : A → X is a
fibred 1-cell µ = (µA, µX) : T × P → P

V ×A µA //

T×P
��

A
P
��

W× X
µX

// X

(12)

where µA is cartesian, along with 2-isomorphisms χ, ν as in (8) in Fib.
Explicitly, these are invertible fibred 2-cells χ = (χA, χX), ν = (νA, νX)
represented by

V ×A µ

%%
V × V ×A

M×1 //

1×µ
//
�� χA

T×T×P

��

A

P

��

V ×A µ

99

W× X µ

%%W×W× X

M×1 00

1×µ ..
�� χX X
W× X µ

99

V ×A µ

%%
1×A

I×1 00

∼

66�� νA

1×P

��

A

P

��W× X µ

%%
1× X

I×1 00

∼

66�� νX X

where χA, νA are above χX, νX with respect to the appropriate fibrations.
These data are subject to certain axioms, which in fact again split up in
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two sets of commutative diagrams for the the two natural isomorphisms that
χ and ν consist of; these coincide with the action of a monoidal category
axioms (Definition 2.2).

Definition 3.3. A T -representation for a monoidal fibration T : V →W is a
fibration P : A → X equipped with a T -pseudoaction µ = (µA, µX). This
amounts to two actions

µA = ∗ : V ×A −→ A
µX = � : W× X −→ X

of the monoidal categories V , W on the categories A and X respectively,
satisfying the commutativity of (12) where µA preserves cartesian arrows,
such that for all X, Y ∈ V and A ∈ A the following conditions hold:

PχAXY A = χX
(TX)(TY )(PA), PνAA = νXPA. (13)

The compatibility conditions of the above definition are natural, since by
(12)

P (X ∗ A) = TX � PA

for any X∈V , A∈A, hence the isomorphisms χAXY A : X ∗ (Y ∗A) ∼= (X⊗V
Y ) ∗ A in A lie above certain isomorphisms

PχAXY A : TX � (TY � PA)
∼−→ (TX ⊗W TY ) � PA (14)

in X, due to the strict monoidality of T . Similarly, νAA : I ∗A ∼= A is mapped
to

PνAA : IX � PA
∼−→ PA (15)

since P (IV ∗ A) = T (IV) � PA = IW � PA. Thus (13) demand that
(14) and (15) coincide with the components of χX and νX, from the W-
representation X.

The last step in modifying Theorem 2.4 to obtain a correspondence be-
tween representations of a monoidal fibration and the desired enriched fibra-
tions, is to introduce a notion of a parameterized adjunction in Fib. For that,
we first re-formulate the ‘adjunctions with a parameter’ Theorem 2.1 in the
context of Cat2.
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Theorem 3.4. Suppose we have a morphism (F,G) of two variables in
Cat2, given by a commutative square of categories and functors

A× B F //

H×J
��

C

K

��
X× Y

G
// Z.

(16)

Assume that, for everyB ∈ B and Y ∈ Y, there exist adjunctions F (−, B) a
R(B,−) and G(−, Y ) a S(Y,−), such that (F (−, B), G(−, JB)) has a
right adjoint (R(B,−), S(JB,−)) in Cat2. This is represented by

A

H

��

F (−,B) //
⊥ C

K

��

R(B,−)
oo

X
G(−,JB) //
⊥ Z

S(JB,−)
oo

(17)

where (H,K) is a map of adjunctions (both squares commute and εK =
Kε, Hη = ηH). Then, there is a unique way to define a morphism of two
variables

Bop × C R //

Jop×K
��

A

H

��
Yop × Z

S
// X

(18)

in Cat2, for which C(F (A,B), C) ∼= A(A,R(B,C)),Z(G(X, Y ), Z) ∼=
X(X,S(Y, Z)) are natural in all three variables.

Proof. The result clearly follows from ordinary parameterized adjunctions.
The fact that (R(B,−), S(JB,−)) is an arrow in Cat2 for all B’s ensures
that the diagram (18) commutes on the second variable, and also on the first
variable on objects, since HR(B,C) = S(JB,KC). On arrows, commuta-
tivity follows from the unique way of defining R(h, 1) and S(Jh, 1) for any
h : B → B′ under these assumptions.

We call (R, S) the parameterized adjoint of (F,G) in Cat2, written
(F,G) ap (R, S).
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Remark 3.5. Although the notion of an adjunction can be internalized in any
bicategory, its parameterized version seems to be much more involved. In
any monoidal bicategory with duals, we could ask for 1-cellsA ∼= A⊗I 1×b−−→
A ⊗ B

t−→ C to have adjoints gb : C → A, for every b : I → B. For the
cartesian 2-monoidal case at least, with ‘category-like’ objects like in Fib,
the 2-categorical approach of [CGR14, Thm. 2.4] clarifies things.

Restricting to fibrations, consider a morphism of two variables in Fib ⊂
Cat2 i.e. a fibred 1-cell (F,G) as in (16) with F cartesian, with the property
that (17) is a general fibred adjunction as in Definition 2.9, i.e. the partial
right adjointR(B,−) is also cartesian. Dually, in OpFib we request both F
and R(B,−) to be cocartesian. Notice that in both cases, the parameterized
adjoint of two variables (R, S) can neither be a fibred nor an opfibred 1-cell
‘wholly’, since at (18) the vertical Jop × K is a product of a fibration with
an opfibration, hence neither of the two.

If we lift the (co)cartesian requirements, we end up with the (op)lax ver-
sion of these adjunctions. Since those cases are the most relevant to our
examples, we abuse notation as to call (op)fibred parameterized adjunctions
the (op)lax ones. Based on the remark that follows, this abuse is in fact only
fractional.

Remark 3.6. There exists an interesting asymmetry regarding the (co)carte-
sianness requirement of the left/right partial adjoints, due to Lemma 2.10.
Since right adjoints always preserve cartesian arrows in Cat2 and dually
left adjoints always preserve cocartesian ones, we can deduce that any fibred
1-cell (F,G) has a (right) fibred parameterized adjoint as long as it has a
Cat2-parameterized adjoint. Dually, an opfibred 1-cell has a (left) opfibred
parameterized adjoint as long as it has it in Cat2.

Definition 3.7. Suppose H , K are fibrations. A fibred parameterized ad-
junction is a parameterized adjunction (F,G) ap (R, S) in Cat2, between
two 1-cells

A× B F //

H×J
��

C

K

��
X× Y

G
// Z

Bop × C R //

Jop×K
��

A

H

��
Yop × Z

S
// X
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where R(B,−) is by default cartesian. Dually, an opfibred parameterized
adjunction is as above, where F (−, B) is by default cocartesian.

The proposed definition of an enriched fibration is justified by the sub-
sequent Theorem 3.11 which fulfills our initial goal, i.e. to generalize Theo-
rem 2.4 to the context of (op)fibrations. In Remark 3.9 we give an equivalent
formulation in terms of enriched functors. The enriched hom-functor is de-
fined as in (3), writing A for both the enriched and the underlying category.

Definition 3.8 (Enriched Fibration). Suppose T : V → W is a monoidal
fibration. A fibration P : A → X is enriched in T when the following
conditions are satisfied:

• the total category A is enriched in the total monoidal category V and
the base category X is enriched in the base monoidal category W, in
such a way that the following commutes:

Aop ×A A(−,−) //

P op×P

��

V

T

��
Xop × X

X(−,−)
//W

(19)

• the composition law and the identities of the enrichments are compat-
ible, in the sense that

TMA
A,B,C = MX

PA,PB,PC (20)

TjAA = jXPA

The compatibilities (20) only state that the composition and identities

MA
A,B,C : A(B,C)⊗V A(A,B)→ A(A,C), jAA : IV → A(A,A)

of the V-enrichedA are mapped, under T , exactly to those of the W-enriched
X:

MX
PA,PB,PC : X(PB, PC)⊗W X(PA, PB)→ X(PA, PC)

jXPA : IW → X(PA, PA)
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where the domains and codomains already coincide by strict monoidality of
T and the commutativity of (19).

For the above definition, it could be argued that some sort of cartesian
condition for the enriched hom-functor A(−,−) should be asked; notice
however that for P a fibration, the product P op × P has neither a fibra-
tion not an opfibration structure. If we required that the partial functor
A(A,−) : A → V is cartesian, all results below would still be valid with
minor adjustments. Since the examples (Section 4) so far do not seem to
satisfy this extra condition, for the moment we adhere to this more general
definition.

Remark 3.9 (Enriched fibrations as enriched functors). For a T -enriched fi-
bration P as above, the strict monoidal structure of T induces a 2-functor
T̃ : V-Cat → W-Cat by Proposition 2.3. Hence we can make the V-
category A into a W-category T̃A, with the same set of objects obA and
hom-objects TA(A,B) = X(PA, PB). Then P : A → X can be verified
to have the structure of a W-enriched functor between the W-categories T̃A
and X, with hom-objects mapping TA(A,B)

=−→ X(PA, PB). The com-
patibility with the composition and the identities is ensured by (20).

From this perspective, the definition of a (T : V →W)-enriched fibration
between a V-category A and a W-category X could be reformulated as a
strictly fully faithful W-enriched functor P : T̃A → X, whose underlying
ordinary functor P0 : A0 → X0 is a fibration (the commutativity of (19)
follows).

Dually, we have the notion of an enriched opfibration, as well as the
following combined version.

Definition 3.10. Suppose that T : V →W is a symmetric monoidal opfibra-
tion. We say that a fibration P : A → X is enriched in T if the opfibration
P op : Aop → Xop is an enriched T -opfibration.

Finally, we prove that to give a fibration with an action (∗, �) of a monoi-
dal fibration T (Definition 3.3) with a fibred parameterized adjoint (Defini-
tion 3.7), is to give a T -enriched fibration (Definition 3.8).

- 372 -



C. VASILAKOPOULOU ON ENRICHED FIBRATIONS

Theorem 3.11. Suppose that T : V → W is a monoidal fibration, which
acts on an (ordinary) fibration P : A → X via the fibred 1-cell

V ×A ∗ //

T×P
��

A
P
��

W× X �
// X.

If this action has a parameterized adjoint (R, S) as in

Aop ×A R //

P op×P
��

V
T
��

Xop × X
S

//W

we can enrich the fibration P in the monoidal fibration T .

Proof. Recall by Definition 3.3 that the T -action in particular consists of two
actions ∗ and � of the monoidal categories V and W on the categoriesA and
X respectively. Since (∗, �) ap (R, S), by Theorem 3.4 we have two ordinary
adjunctions

V
−∗A //
⊥ A

R(A,−)
oo and W

−�X //
⊥ X

S(X,−)
oo

for all A ∈ A and X ∈ X. By Theorem 2.4, there exists a V-category A
with underlying category A and hom-objects A(A,B) = R(A,B) and also
a W-category X with underlying category X and hom-objects X(X, Y ) =
S(X, Y ). Also, the enriched hom-functors satisfy the required commutativ-
ity TS(−,−) = R(P−, P−) by (18).

Finally, we need to show that the composition and identity laws of the
enrichments are compatible as in (20), i.e. TMA

A,B,C = MX
PA,PB,PC and

TjAA = jXPA. For that, it is enough to confirm that their adjuncts under
(− � X) a S(X,−) coincide. The latter ones are explicitly given by (5)
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and (6), i.e.

(S(PB, PC)⊗ S(PA, PB)) � PA PC

S(PB, PC) � (S(PA, PB) � PA) S(PB, PC) � PB

χX

1�εPB

εPC

I � PA νX−→ PA

For the former ones, since (P, T ) is a map of adjunctions

V

T

��

−∗A //
⊥ A

P

��

R(A,−)
oo

W
−�PA //
⊥ X,

S(PA,−)
oo

taking the images of MA
A,B,C and jAA under T and translating under the ad-

junction (− �X) a S(X,−) is the same as first translating under (− ∗A) a
R(A,−) and then applying P . That produces

P (R(B,C)⊗R(A,B)) ∗ A) P (R(B,C) ∗R(A,B) ∗ A)

P (R(B,C) ∗B)

PC

PχA

P (1∗εB)

P (εC)

P (I ∗ A)
P (νA)−−−→ PA

Since PχA = χX and PνA = νX from (13), and also Pε = εP as a map of
adjunctions, the above composites coincide and the proof is complete.

An important first example that should fit this setting of an action-indu-
ced enrichment is that of a closed monoidal fibration. Just like a monoidal
closed category V is one where ⊗ : V × V → V has a (right) parameterized
adjoint via−⊗X a [X,−] for every objectX , we can consider the following
notion based on Definition 3.7.
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Definition 3.12. A monoidal fibration T : V →W is (right) closed when its
tensor product fibred 1-cell (11)

V × V ⊗V //

T×T
��

V
T
��

W×W ⊗W
//W

has a parameterized adjoint

Vop × V [−,−]V //

T op×T
��

V
T
��

Wop ×W
[−,−]W

//W

Equivalently, by Theorem 3.4, T is monoidal closed when

(i) V and W are monoidal closed categories,

(ii) T is a strict closed functor,

(iii) Tε = εT and ηT = Tη for the respective units and counits of the
adjunctions.

Notice that by Lemma 2.10, the right adjoint [V,−]V between the total
categories automatically preserves cartesian liftings. On the other hand, for
the dual notion of a monoidal closed opfibration, the right adjoint is not
cocartesian by default.

Remark 3.13. In [Shu08, §13], definitions of an internally closed monoidal
fibration over a cartesian monoidal base, as well as externally closed monoi-
dal fibration over an arbitrary monoidal base are given. These are equivalent
to each other under certain hypotheses; none, however, guarantee that the
total category is closed on its own right. The external definition gives some,
but not all, conditions in terms of the fibres and the reindexing functors for a
fibred adjoint to exist, in the spirit of results such as Theorem 2.11.

Applying Theorem 3.11 we can deduce the enrichment of a monoidal
closed fibration in itself, analogously to the ordinary case (Remark 2.5).
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Proposition 3.14. A monoidal closed fibration T : V → W is T -enriched.
Dually, a monoidal closed opfibration is enriched in itself.

Proof. All clauses of Definition 3.3 are satisfied, since the functor − ⊗V −
is cartesian in both variables by Definition 3.2, and also TaVXY Z = aWTXTY TZ
and T`VX = `WTX for the respective associator and the left unitor since T is a
strict monoidal functor. Therefore (⊗V ,⊗W) is indeed a T -action, just like
the regular representation of a monoidal category earlier. Since this action
has a parameterized adjoint, by definition of a monoidal closed fibration, the
result follows.

Finally, there is a dual version to Theorem 3.11, characterizing the en-
richment of an opfibration in a monoidal opfibration.

Theorem 3.15. Suppose that T : V → W is a monoidal opfibration, which
acts on an (ordinary) opfibration U : B → Y via the opfibred 1-cell

V × B ∗ //

T×U
��

B
U
��

W× Y �
// Y.

If this action has a parameterized adjoint (R, S) as in

Bop × B R //

Uop×U
��

V
T
��

Yop × Y
S

//W

we can enrich the opfibration U in the monoidal opfibration T .

Remark 3.16. The asymmetry between cartesian and cocartesian functors
with regards to fibred and opfibred adjunctions is still apparent when com-
paring Theorems 3.11 and 3.15. For the former, Lemma 2.10 ensures that
the right parameterized adjoint will be, at least partially as R(A,−), carte-
sian; as a result, the whole parameterized adjunction lifts from Cat2 to Fib.
On the other hand, for the latter dual theorem, the assumptions cannot ensure
that the enriched homRwill be partially cocartesian. One reason for this dis-
crepancy is that even if we change our setting from Fib(opl) to OpFib(lax),
the enrichment is given in both cases by the existence of a right adjoint (and
not of a left one in the dual setting).
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4. Applications

In this final chapter, we exhibit a few examples of the enriched fibration
notion. In these cases, Theorems 3.11 and 3.15 seem to be the easiest way
to deduce the enrichment, due to the fact that the enrichments on the level of
bases and total categories are themselves obtained by the similarly-flavored
Theorem 2.4. In what follows, we do not present all the relevant theory as
it would take up many pages; instead we provide the appropriate references,
in the hope that the interested reader will look for the details therein.

4.1 (Co)modules over (co)monoids

In the context of a locally presentable symmetric monoidal closed category
V , previous work [HLFV17a] establishes an enrichment of the category
of monoids Mon(V) in the symmetric monoidal category of comonoids
Comon(V), via Theorem 2.4. The action of comonoids on monoids is in-
duced by the internal hom of V: for any coalgebra C and algebra B, [C,B]
has always the structure of an algebra via the convolution product. Its (right)
parametrized adjoint P : Mon(V)op×Mon(V)→ Comon(V) which is the
enriched hom-functor is called the Sweedler hom, since the original notion
of a measuring coalgebra P (A,B) goes back to [Swe69].

Furthermore, in [HLFV17b] a similarly action-induced enrichment is es-
tablished for the global category of modules in the symmetric monoidal
global category of comodules, i.e. the category of all (co)modules over
any (co)monoid in V . The action again comes from the internal hom of
the monoidal category, and its parametrized adjoint Q : Modop ×Mod →
Comod maps an A-module M and a B-comodule N to their measuring
comodule Q(M,N) [Bat00]. This parameterized adjunction is obtained it-
self using the theory of fibred adjunctions, since the functor U : Mod →
Mon(V) which gives the ‘underlying’ algebra of a module is a fibration and
dually V : Comod → Comon(V) is an opfibration. Therefore the very
enrichment on the level of the total categories is accomplished via Theo-
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rem 2.11, producing a general (lax) opfibred adjunction

Modop
Q(−,NB)

--
>

Uop

��

Comod
[−,NB ]op

mm

V

��
Mon(V)op

P (−,B)
..

> Comon(V)
[−,B]op

mm

(21)

To establish an enriched opfibration structure, we apply Theorem 3.15.
First of all, V : Comod → Comon(V) can be shown to be a monoidal
opfibration, by definition of the monoidal product in Comod. Moreover,
since both actions on the level of total and base categories are in fact the
internal hom of V restricted to the appropriate subcategories, compatibility
(13) also follows. Finally, the top action is cartesian [HLFV17b, (20)] hence
the opfibration Uop is enriched in V , as in Definition 3.10.

Proposition 4.1. Suppose V is a locally presentable symmetric monoidal
closed category. The fibration Mod→Mon(V) is enriched in the monoidal
opfibration Comod→ Comon(V).

An example of such a monoidal category V , which also motivated this
whole development, is the category of modules over a commutative ring,
ModR. Both enriching functors arise as adjoints to the linear maps space
functor ModR(−,−) restricted to the respective subcategories. In partic-
ular, for two arbitrary modules M and N over R-algebras A and B, the
measuring comodule Q(M,N) which provides the enrichment of modules
in comodules has its coaction over the Sweedler’s measuring R-coalgebra
P (A,B) which provides the enrichment of algebras in coalgebras. Similarly,
the comodule composition maps Q(N,S) ⊗R Q(M,N) → Q(M,S) are
above the coalgebra composition maps P (B,C) ⊗R P (A,B) → P (A,B).
This is a substantial step exhibiting the tight relations between these dual-
flavored, standard (op)fibrations.

Furthermore, the forgetful Comod→ Comon(V) is in fact an example
of a monoidal closed opfibration, Definition 3.12. First of all, it is the case
that the category of comonoids is monoidal closed, if V is locally presentable
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and symmetric monoidal closed, as was already proved in [Por08, 3.2]. In
[HLFV17b, 4.5], it is shown in detail how the opfibred 1-cell

Comod×Comod
(−⊗−) //

��

Comod

��
Comon(V)×Comon(V)

(−⊗−)
// Comon(V)

has a parameterized right adjoint, so the result follows by Proposition 3.14.

Proposition 4.2. Suppose V is a locally presentable symmetric monoidal
closed category. The monoidal opfibration Comod → Comon(V) is
closed, therefore enriched in itself.

Notice that this does not dualize for Mod→Mon(V), since in general
the category of monoids is not monoidal closed, e.g. rings or R-algebras.

4.2 Enriched (co)modules over enriched (co)categories

The above study on enrichment relations between monoids and comonoids,
as well as modules and comodules, can be appropriately extended to their
many-object generalizations, in the sense that a monoid can be thought of as
a one-object category.

For a detailed exposition of the notions and constructions that follow, see
[Vas14, §7] or from a double categorical perspective [Vas17]. Briefly, for a
symmetric monoidal category with colimits preserved by⊗, we can consider
the category of V-enriched categories V-Cat, whose objects are monads in
the bicategory of enriched matrices V-Mat [BCSW83]. In a dual way, con-
sidering comonads therein, we can construct the category V-Cocat of en-
riched cocategories, serving as a many object generalization of comonoids
in V . A V-cocategory CX with set of objects X comes equipped with co-
composition and coidentity arrows

∆x, z : C(x, z)→
∑
y∈X

C(x, y)⊗ C(y, z), εx : C(x, x)→ I

in V , satisfying coassociativity and counitality axioms. Both categories
V-Cat and V-Cocat are in fact fibred and opfibred, respectively, over the

- 379 -



C. VASILAKOPOULOU ON ENRICHED FIBRATIONS

category of sets, via the usual forgetful functors that give the set of objects
of the (co)categories. They also both live inside V-Grph, the category of
enriched graphs, which is bifibred over Set. All these (op)fibrations are
monoidal in the sense of Definition 3.2: for two V-graphs (or categories, co-
categories) GX and HY , their tensor product is a graph G ⊗ H with set of
objects X × Y , and (G⊗H) ((x, y), (z, w)) = G(x, z)⊗H(y, w).

When V is moreover monoidal closed with products and coproducts,
V-Grph is monoidal closed: for two graphs GX and HY , their internal hom
is the graph Hom(G,H) with set of objects Y X , given by the collection of
V-objects

Hom(G,H)(k, s) =
∏
x′,x

[G(x′, x), H(kx′, sx)] for k, s ∈ Y X

By definition of these structures, the following diagram

V-Grph

��

−⊗GX //
⊥ V-Grph

��

Hom(GX ,−)
oo

Set
−×X //
⊥ Set

(−)X
oo

is a map of adjunctions, therefore all three clauses of Definition 3.12 are
satisfied.

Proposition 4.3. Suppose V is a symmetric monoidal closed category with
products and coproducts. The bifibration V-Grph → Set mapping a V-
graph to its set of objects is monoidal closed, therefore it is enriched in
itself.

Similarly to how the internal hom of V was lifted to an action of como-
noids on monoids in Section 4.1, the internal hom of V-Grph induces an
action

K : V-Cocatop × V-Cat // V-Cat

( CX , BY ) � // Hom(C,B)Y X

Its opposite has a parameterized adjoint, again by Theorem 2.11,

T : V-Catop × V-Cat→ V-Cocat
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called the generalized Sweedler hom. We get the following (lax) opfibred
parameterized adjunction

V-Catop
T (−,BY )

--

��

> V-Cocat
K(−,BY )op

mm

��
Setop

Y (−)

--> Set
Y (−)op

mm

thus Theorem 3.15 applies again, see [Vas17, 4.38].

Proposition 4.4. Suppose V is a locally presentable, monoidal closed cate-
gory. The fibration V-Cat → Set is enriched in the monoidal opfibration
V-Cocat→ Set, where both functors send the enriched structure to its set
of objects.

Finally, we can consider many object generalizations of modules and
comodules, namely V-modules for V-categories and V-comodules for V-
cocategories, see [Vas14, 7.6]. The former are quite standard: an AX-
module Ψ can also be thought as a V-profunctor Ψ: I A for I the unit
category. Objects are the same as A, and hom-objects are Ψ(x) ∈ V equip-
ped with (

∑
x,x′)A(x, x′) ⊗ Ψ(x′) → Ψ(x′) satisfying appropriate axioms.

The notion of comodules is dual, and these form global categories much like
before, V-Mod and V-Comod. The internal hom of enriched graphs fur-
ther restricts to these categories, giving an action of V-Comod on V-Mod
via a functor

K : V-Comodop × V-Mod // V-Mod

( ΦC , ΨB ) � // Hom(Φ,Ψ)Hom(C,B)

where Hom(Φ,Ψ)(t) =
∏

x[Φ(x),Ψ(tx)]. It has a parameterized adjoint

T : V-Modop × V-Mod→ V-Comod

by Theorem 2.11 which once more heavily relies on the fact that V-Mod is
fibred over V-Cat and V-Comod is opfibred V-Cocat, and there exists an
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adjunction between the base categories:

V-Modop
T (−,ΨB)

--

��

> V-Comod
K(−,ΨB)op

mm

��
V-Catop

T (−,BY )
--

> V-Cocat
K(−,BY )op

mm

(22)

Proposition 4.5. If V is a locally presentable symmetric monoidal closed
category, the fibration V-Mod → V-Cat is enriched in the opfibration
V-Comod→ V-Cocat.

Proof. Theorem 3.15 applies, to first establish the enrichment of the opfi-
bration V-Modop → V-Catop. First of all, V-Comod → V-Cocat is a
monoidal opfibration by definition of the respective products and cartesian-
ness of⊗V-Comod, [Vas14, 7.7.6]. The commutative square of categories and
functors

V-Comod× V-Modop K
op

//

��

V-Modop

��
V-Cocat× V-Catop

Kop
// V-Catop

constitutes an opfibred action, since both K and K are actions, K preserves
cartesian arrows by [Vas14, 7.7.3] and the action axioms are the one above
each other as per their definitions. Finally, this opfibred 1-cell has an oplax
opfibred parameterized adjoint by [Vas14, 7.7.5], and the proof is complete.

4.3 Comparison with existing notions

The above examples were the ones that motivated the proposed enriched
fibration notion – although more should be identified in future work. In this
final section, we would like to discuss why other existing approaches were
not applicable, due to the nature of these cases.

Recall that assuming the axiom of choice, one can construct an equiva-
lence between fibrations A → X and indexed categories, i.e. pseudofunc-
tors Xop → Cat via the classic Grothendieck construction [Gro61]. More
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recently [Shu08, MV18] this correspondence has been lifted between the re-
spective monoidal structures; we believe that a (global) enriched version of
the Grothendieck construction in the future, which in a fibrewise sense ap-
pears in [BW18], will shed more light to the tight connections between our
enriched fibration notion and the ones that follow. For the moment, we only
sketch some of the main relevant theory and differences.

M. Bunge in [Bun13] first introduced the notion of an S-indexed V -
category, for S an elementary topos and V an S-indexed monoidal category
V : Sop → MonCat. The goal of this work was to provide a general con-
text in order to compare as well as clarify certain misconceptions regarding
different completions on 2-categories, such as the Karoubi, Grothendieck,
Cauchy and Stack completion.

Independently, M. Shulman in [Shu13] also develops a theory of en-
riched indexed categories over base categories S with finite products. The
motivation in that paper was to capture and study ‘mixed’ fibred, indexed and
internal structures in various contexts, such as Parameterized and Equivari-
ant Homotopy Theory, abelian sheaves and many more.

Briefly, for S cartesian monoidal, take V to be an S-indexed monoidal
category, equivalently viewed as a monoidal fibration

∫
V : V → S. A V -

enriched indexed category A is simultaneously indexed (or fibred) over the
same S and also ‘fibrewise’ enriched in V: every category (or fiber) A(s)
for s ∈ S is V (s)-enriched, and the reindexing functors are fully faithful
enriched under the appropriate change of base. Although this formulation
employs the same notion of a monoidal fibration (Definition 3.2) as the base
of the enrichment, there are some crucial differences resulting in two sepa-
rate definitions, [Bun13, 2.4] - [Shu13, 4.1] and Definition 3.8.

First of all, Bunge’s and Shulman’s approach only concerns enrichment
in fibrations over monoidal categories whose tensor product is the cartesian
product. This is fundamental for the development and definitions, and not
a special case of something more general; of course this was relevant to
their examples at hand. On the contrary, for our examples this is evidently
not the case: in (21) and (22) the base monoidal categories of the monoidal
fibrations, Comon(V) and V-Cocat, are non-cartesian.

Moreover, the notion of an enriched indexed category roughly expressed
in the fibred world, essentially refers to a fibration ‘enriched’ in another fi-
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bration over the same base, approximately depicted as

A ‘fibrewise’ enriched //

fibred

&&

V

fibred

��
S.

In our examples, this fibrewise enrichment is certainly not the case: the fi-
bre categories of our monoidal fibrations, like ComodV(C), do not even
have a monoidal structure themselves in order to serve as enriching bases.
Furthermore, even if in [Shu13, §7] there is a short treatment of changing
the indexed monoidal enriching base, and the development in [Bun13] is a
special case of this via the identity functor on S, in our context the enriched
fibration concept involves simultaneous enrichments between both the total
and the base categories of the two fibrations as essential building blocks of
the structure:

A enriched //

fibred

��

V

fibred

��
X enriched //W

In conclusion, even if there are strong conceptual similarities between
the two definitions of an enriched fibration and indexed V-category, our def-
inition does not seem to even restrict in a straightforward way to the case
of fibrations over the same base, since the monoidal category W is not in
principle enriched over itself, nor via some sort of an identity or projection
functor. As mentioned earlier, future work would aim to clarify how these
two theories compare in more detail and depth. What is admittedly strik-
ing though is that several different goals and motivations have separately led
to the need for a theory that combines fibred structure over a base topos or
(cartesian) monoidal category, and enriched structure.
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