Enrichment of V-categories in \mathcal{V} -cocategories

Enrichment of V-Cat in V-Cocat

Christina Vasilakopoulou

University of Cambridge

CT2013 - Macquarie University, Sydney

- The bicategory V-Mat
- ② \mathcal{V} -categories and \mathcal{V} -cocategories
- **3** Enrichment of V-Cat in V-Cocat
- General Pattern

 ${\cal V}$ is a cocomplete symmetric monoidal closed category.

The bicategory V-Mat of V-matrices:

- \rightarrow objects are sets X, Y
- \rightarrow morphisms $X \stackrel{S}{\longrightarrow} Y$ are functors $S: Y \times X \rightarrow \mathcal{V}$
- \rightarrow 2-cells X $\downarrow \downarrow \sigma$ Y are natural transformations

The composite $X \xrightarrow{S} Y \xrightarrow{T} Z$ is given by

$$(S \circ T)(z,x) = \sum_{y \in Y} T(z,y) \otimes S(y,x).$$

• \mathcal{V} -Mat(X,X) is cocomplete, monoidal with \circ (which commutes with colimits) and locally presentable when \mathcal{V} is.

The category of \mathcal{V} -graphs

A function $X \xrightarrow{f} Y$ determines $X \xrightarrow{f_*} Y$, $Y \xrightarrow{f^*} X$ with $f_*(y,x) = f^*(x,y) = \begin{cases} I & \text{if } f(x) = y \\ 0 & \text{otherwise} \end{cases}$ and $f_* \dashv f^*$ in \mathcal{V} -Mat.

The category
$$\mathcal{V}$$
-**Grph** has objects $G \in \mathcal{V}$ -**Mat** (X, X) and arrows $G_X \xrightarrow{F} H_Y$ pairs
$$\begin{cases} \bar{F} : G \Rightarrow f^*Hf_* & \text{in } \mathcal{V}\text{-Mat}(X, X) \\ f : X \to Y & \text{in Set} \end{cases}$$

• V-Grph is cocomplete, symmetric monoidal closed with

$$\operatorname{Hom}(G_X,H_Y)(k,l) := \prod_{x,x' \in X} [G(x,x'),H(kx,lx')]$$

for any $k, l \in Y^X$, and locally presentable when V is.

2) V-categories and V-cocategories

• A (small) V-category is a monad in V-**Mat**, i.e.

$$A_X \in \mathsf{Mon}(\mathcal{V}\text{-}\mathsf{Mat}(X,X))$$

and a V-functor $F: A_X \to B_Y$ is a pair

$$\begin{cases} \bar{F} : A \Rightarrow f^*Bf_* & \text{in } \mathsf{Mon}(\mathcal{V}\text{-}\mathsf{Mat}(X,X)) \\ f : X \to Y & \text{in } \mathsf{Set} \end{cases}$$

• A (small) V-cocategory is a comonad in V-**Mat**, i.e.

$$C_X \in \mathsf{Comon}(\mathcal{V}\text{-}\mathsf{Mat}(X,X))$$

and a \mathcal{V} -cofunctor $F: \mathcal{C}_X \to \mathcal{D}_Y$ is a pair

$$\begin{cases} \hat{F} : f_*Cf^* \Rightarrow D & \text{in } \mathbf{Comon}(\mathcal{V}\text{-}\mathbf{Mat}(Y,Y)) \\ f : X \to Y & \text{in } \mathbf{Set} \end{cases}$$

Enrichment of V-Cat in V-Cocat

Proposition

- 1) $\mathcal V\text{-Cat}$ is a symmetric monoidal category, monadic over $\mathcal V\text{-Grph}$ and locally presentable when $\mathcal V$ is.
- 2) $\mathcal{V}\text{-}\mathbf{Cocat}$ is a symmetric monoidal category, cocomplete and the forgetful functor to $\mathcal{V}\text{-}\mathbf{Grph}$ has a right adjoint.

The internal hom in V-**Grph** induces a functor

$$\operatorname{Hom}: \mathcal{V}\text{-}\mathbf{Cocat}^{\operatorname{op}} \times \mathcal{V}\text{-}\mathbf{Cat} \to \mathcal{V}\text{-}\mathbf{Cat}.$$

Concretely: for a \mathcal{V} -cocategory $\mathcal{C} \in \mathbf{Comon}(\mathcal{V}\text{-}\mathbf{Mat}(X,X))$ and a \mathcal{V} -category $\mathcal{B} \in \mathbf{Mon}(\mathcal{V}\text{-}\mathbf{Mat}(Y,Y))$, the \mathcal{V} -graph

$$Y^X \xrightarrow{\operatorname{Hom}(\mathcal{C}_X,\mathcal{B}_Y)} Y^X$$

obtains the structure of a V-category.

The forgetful functor \mathcal{V} -**Grph** \rightarrow **Set** is a bifibration.

Arises as the Grothendieck category for the pseudofunctors

$$\mathcal{M}: \mathbf{Set}^{\mathrm{op}} \longrightarrow \mathbf{Cat} \qquad \& \quad \mathcal{L}: \mathbf{Set} \longrightarrow \mathbf{Cat}$$

$$X \longmapsto \mathcal{V} - \mathbf{Mat}(X, X) \qquad \qquad X \longmapsto \mathcal{V} - \mathbf{Mat}(X, X)$$

$$f \downarrow \qquad \qquad \downarrow f_* \circ - \circ f_*$$

$$f \downarrow \qquad \qquad \downarrow f_* \circ - \circ f^*$$

$$Y \longmapsto \mathcal{V} - \mathbf{Mat}(Y, Y)$$

$$Y \longmapsto \mathcal{V} - \mathbf{Mat}(Y, Y)$$

V-Cat is fibred over **Set** and V-Cocat is opfibred over **Set**.

The functors $\mathcal{M}f$ and $\mathcal{L}f$ restrict to the categories of monoids and comonoids respectively.

The pair $(\text{Hom}(-,\mathcal{B}_Y)^{\text{op}},Y^{(-)^{\text{op}}})$ is an opfibred 1-cell between the opfibrations $U: \mathcal{V}\text{-}\mathbf{Cocat} \to \mathbf{Set}$ and $V^{\mathrm{op}}: \mathcal{V}\text{-}\mathbf{Cat}^{\mathrm{op}} \to \mathbf{Set}^{\mathrm{op}}$.

Theorem

The functor $\mathrm{Hom^{op}}$ between the total categories has a parametrised adjoint $Q: \mathcal{V}\text{-}\mathbf{Cat}^{\mathrm{op}} \times \mathcal{V}\text{-}\mathbf{Cat} \longrightarrow \mathcal{V}\text{-}\mathbf{Cocat}$ with $\operatorname{Hom}(-,\mathcal{B}_Y)^{\operatorname{op}} \dashv Q(-,\mathcal{B}_Y)$ for every \mathcal{V} -category \mathcal{B} .

Theorem (Janelidze, Kelly)

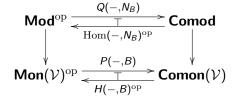
If $*: \mathcal{V} \times \mathcal{A} \to \mathcal{A}$ is an action and each -*A has a right adjoint F(A, -), then we can enrich A in V with hom-object functor F.

• $\operatorname{Hom^{op}}: \mathcal{V}\operatorname{-}\mathbf{Cocat} \times \mathcal{V}\operatorname{-}\mathbf{Cat^{op}} \to \mathcal{V}\operatorname{-}\mathbf{Cat^{op}}$ is an action.

The categories V-Cat are enriched in the symmetric monoidal category V-Cocat, with V-Cat(A, B) = Q(A, B).

4) General Pattern

Measuring coalgebras and comodules



• Enriched cocategories and categories

$$\begin{array}{c} \mathcal{V}\text{-}\mathbf{Cat}^{\mathrm{op}} \xrightarrow{Q(-,\mathcal{B}_{Y})} \mathcal{V}\text{-}\mathbf{Cocat} \\ \downarrow & \xrightarrow{\mathrm{Hom}(-,\mathcal{B}_{Y})^{\mathrm{op}}} \mathcal{V}\text{-}\mathbf{Cocat} \\ \mathbf{Set}^{\mathrm{op}} \xrightarrow{T} \mathbf{Set} \end{array}$$

Enriched fibration) $\rightarrow \mathcal{V}$ -(co)modules, \mathcal{V} -(co)operads

General Pattern

Thank you for your attention!

Renato Betti, Aurelio Carboni, Ross Street, and Robert Walters.

Variation through enrichment.

J. Pure Appl. Algebra, 29(2):109-127, 1983.

G. Janelidze and G. M. Kelly.

A note on actions of a monoidal category. Theory Appl. Categ., 9:61–91, 2001/02.

CT2000 Conference (Como).

G. M. Kelly and Stephen Lack.

V-Cat is locally presentable or locally bounded if v is so.

Theory Appl. Categ., 8:555-575, 2001.

Hans-E. Porst.

On categories of monoids, comonoids, and bimonoids.

Quaest. Math., 31(2):127-139, 2008.