@E Ω PHMATA $\Sigma Y T K \Lambda I \Sigma H \Sigma$
 THエ ГENIKHะ EMANAAHITTIKHE ME@OAOY

 $\delta \dot{\alpha} \sigma \tau \eta \mu \alpha$ A: $=(c, d), \pi \alpha \rho \alpha \gamma \omega \gamma i \sigma \mu \eta \sigma \varepsilon \mu \iota \alpha$ גv́oŋ $\bar{x} \in A \quad \tau \eta \varsigma \varepsilon \xi i \sigma \omega \sigma \eta \varsigma \quad x=g(x)$, к $\alpha \imath$ ótน เఠชण์ยะ

$$
\bar{\alpha}:=\left|g^{\prime}(\bar{x})\right|<1 .
$$

 $\sigma \tau 0$ I $\kappa \alpha \imath v \alpha$ оטүк $\lambda i ́ v \varepsilon \imath \sigma \tau \eta \lambda v ́ \sigma \eta \bar{x}$.

$$
\lim _{x \rightarrow \bar{x}}\left|\frac{g(x)-g(\bar{x})}{x-\bar{x}}\right|=\left|g^{\prime}(\bar{x})\right|=\bar{\alpha}<1 .
$$

$$
I:=[\bar{x}-\delta, \bar{x}+\delta] \subset A \quad(\alpha \varphi \circ \text { и́ то } A \text { عival avoıктó }) .
$$

$\kappa \alpha \downarrow$

$$
\left|\frac{g(x)-g(\bar{x})}{x-\bar{x}}\right| \leq \alpha<1, \quad \gamma \alpha \alpha \kappa \alpha ́ \theta \varepsilon \quad x \in I
$$

Av $x_{0} \in I$, $\sigma \mu \mu \pi \varepsilon$ ра́vov $\mu \varepsilon \varepsilon \pi \alpha \gamma \omega \gamma \iota \kappa \alpha ́$ ó $\tau, \gamma \downarrow \alpha \kappa \alpha ́ \theta \varepsilon k$

$$
\alpha_{k}:=\left|\frac{x_{k+1}-\bar{x}}{x_{k}-\bar{x}}\right|=\left|\frac{g\left(x_{k}\right)-g(\bar{x})}{x_{k}-\bar{x}}\right| \leq \alpha<1 \quad \text { к } \alpha \imath \quad x_{k} \in I .
$$

$\mathrm{E} \pi \circ \mu \varepsilon ́ v \omega \varsigma$

$$
\left|x_{k+1}-\bar{x}\right| \leq \alpha\left|x_{k}-\bar{x}\right| \leq \ldots \leq \alpha^{k+1}\left|x_{0}-\bar{x}\right| \rightarrow 0 .
$$

$\Sigma v \vee \varepsilon \pi \tau^{\prime} \varsigma, x_{k} \rightarrow \bar{x} \gamma \downarrow \alpha \kappa \alpha ́ \theta \varepsilon x_{0} \in I$.

$$
\left|x_{k+1}-\bar{x}\right| \leq \alpha_{k}\left|x_{k}-\bar{x}\right| \leq \alpha\left|x_{k}-\bar{x}\right|,
$$

 $g(x) \in I \quad \gamma 1 \alpha \kappa \alpha ́ \theta \varepsilon x \in I$. Tó $\tau \varepsilon$

ү) $\mathrm{H} \lambda$ v́ণๆ \bar{x} sival μ оva $\delta ı \kappa \eta$,

i) $\left|x_{k}-\bar{x}\right| \leq \alpha^{k} \max \left(x_{0}-c, d-x_{0}\right)$,
ii) $\quad\left|x_{k}-\bar{x}\right| \leq \frac{\alpha}{1-\alpha}\left|x_{k-1}-x_{k}\right|$,
iii) $\quad\left|x_{k}-\bar{x}\right| \leq \frac{\alpha^{k}}{1-\alpha}\left|x_{1}-x_{0}\right|$.

 $\sigma^{\sigma} \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha(\alpha)-(\varepsilon)$.
А $\pi o ́ \delta \varepsilon เ \xi ̄ \eta . ~ \alpha) ~ П р о \varphi \alpha \vee \varepsilon ́ \varsigma . ~$
 $\mathrm{h}(\mathrm{x})=\mathrm{g}(\mathrm{x})$-x. E $\pi \varepsilon \imath \delta \eta ́ \quad ~ g(I) \subset I=[c, d]$, غ́ $\chi \circ \cup \mu \varepsilon \quad g(c) \geq c \quad \kappa \alpha \imath \quad g(d) \leq d, \delta \eta \lambda \alpha \delta \eta ́$
 $h(\bar{x})=0, \delta \eta \lambda \alpha \delta \eta \dot{x}=g(\bar{x})$.

$$
|\bar{x}-\tilde{x}|=|g(\bar{x})-g(\tilde{x})| \leq \alpha|\bar{x}-\tilde{x}|,
$$

о́тоv $0<\alpha<1$, $\dot{\alpha} \rho \alpha \alpha v \alpha \gamma \kappa \alpha \sigma \tau$ ко́ $\bar{x}=\tilde{x}$.
8) Av $x_{0} \in I$, $\dot{\varepsilon} \chi О \cup \mu \varepsilon x_{k} \in I, \gamma \downarrow \alpha \kappa \alpha \dot{\alpha} \theta \varepsilon k, \kappa \alpha \imath$

$$
\left|x_{k}-\bar{x}\right|=\left|g\left(x_{k-1}\right)-g(\bar{x})\right| \leq \alpha\left|x_{k-1}-\bar{x}\right| \leq \ldots \leq \alpha^{k}\left|x_{0}-\bar{x}\right| \rightarrow 0
$$

$\alpha \quad \alpha \rho \alpha x_{k} \rightarrow \bar{x}$.
ع) (i) Прокर́ $\tau \tau \varepsilon \imath \alpha \dot{\alpha} \mu \varepsilon \sigma \alpha \alpha \pi o ́ ~ \tau \eta \vee \pi \alpha \rho \alpha \pi \alpha ́ v \omega \tau \varepsilon \lambda \varepsilon v \tau \alpha i ́ \alpha \alpha v \imath \sigma o ́ \tau \eta \tau \alpha$.
(ii) Exov $\mu \varepsilon$

$$
\begin{aligned}
\left|x_{k-1}-\bar{x}\right| & \leq\left|x_{k-1}-x_{k}\right|+\left|x_{k}-\bar{x}\right| \\
& \leq\left|x_{k-1}-x_{k}\right|+\alpha\left|x_{k-1}-\bar{x}\right|
\end{aligned}
$$

$\alpha \dot{\alpha} \rho \alpha$

$$
\left|x_{k-1}-\bar{x}\right| \leq \frac{1}{1-\alpha}\left|x_{k-1}-x_{k}\right| .
$$

$$
\left|x_{k}-\bar{x}\right| \leq \alpha\left|x_{k-1}-\bar{x}\right| \leq \frac{\alpha}{1-\alpha}\left|x_{k-1}-x_{k}\right|
$$

(iii) Прокv́лтєє $\alpha ́ \mu \varepsilon \sigma \alpha \alpha \pi o ́ ~ \tau \eta \nu ~ \alpha v ı \sigma o ́ \tau \eta \tau \alpha$

$$
\left|x_{k-1}-x_{k}\right| \leq \alpha\left|x_{k-2}-x_{k-1}\right| \leq \ldots \leq \alpha^{k-1}\left|x_{0}-x_{1}\right|
$$

 $\tau\rceil \varsigma \varepsilon \xi$ í $\omega \omega \sigma \eta \varsigma x=g(x)$, 兀ó $\tau \varepsilon, \gamma 1 \alpha \kappa \alpha ́ \theta \varepsilon x \in I$

$$
|g(x)-\bar{x}|=|g(x)-g(\bar{x})| \leq \alpha|x-\bar{x}| \leq \alpha \delta<\delta,
$$

 $\alpha \pi o ́ \delta \varepsilon ા \xi ̆ \eta)$.

