ΘΕΩΡΗΜΑΤΑ ΣΥΓΚΛΙΣΗΣ ΤΗΣ ΓΕΝΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΜΕΘΟΔΟΥ

Θεώρημα 1 (Τοπική Σύγκλιση). Υποθέτουμε ότι η g είναι ορισμένη στο ανοικτό διάστημα A:=(c,d), παραγωγίσιμη σε μια λύση $\overline{x}\in A$ της εξίσωσης x=g(x), και ότι ισχύει

$$\overline{\alpha} := |g'(\overline{x})| < 1$$
.

Τότε υπάρχει ένα διάστημα $I\!:=\![\overline{x}-\delta,\overline{x}+\delta]\subset A,\ \delta>0$, τέτοιο ώστε, για κάθε αρχικό $x_0\in I$, η ακολουθία (x_k) της γενικής επαναληπτικής μεθόδου να περιέχεται στο I και να συγκλίνει στη λύση \overline{x} .

Απόδειξη. Από τον ορισμό της παραγώγου, έχουμε

$$\lim_{x\to \overline{x}}\left|\frac{g(x)-g(\overline{x})}{x-\overline{x}}\right|=\left|g'(\overline{x})\right|=\overline{\alpha}<1.$$

Επιλέγοντας ένα α , με $\overline{\alpha} < \alpha < 1$, υπάρχει άρα $\delta > 0$ τέτοιο ώστε

$$I:=[\bar{x}-\delta,\bar{x}+\delta]\subset A$$
 (αφού το A είναι ανοικτό).

και

$$\left| \frac{g(x) - g(\overline{x})}{x - \overline{x}} \right| \le \alpha < 1, \ \, \text{gia kábe} \, \, x \in I.$$

Αν $x_0 \in I$, συμπεραίνουμε επαγωγικά ότι, για κάθε k

$$\alpha_k := \left| \frac{x_{k+1} - \overline{x}}{x_k - \overline{x}} \right| = \left| \frac{g(x_k) - g(\overline{x})}{x_k - \overline{x}} \right| \le \alpha < 1 \quad \text{kat} \quad x_k \in I.$$

Επομένως

$$\left|x_{k+1} - \overline{x}\right| \le \alpha \left|x_k - \overline{x}\right| \le \dots \le \alpha^{k+1} \left|x_0 - \overline{x}\right| \to 0.$$

Συνεπώς, $x_k \to \overline{x}$ για κάθε $x_0 \in I$.

Από την παραπάνω απόδειξη, προκύπτουν οι ανισότητες

$$|x_{k+1} - \overline{x}| \le \alpha_k |x_k - \overline{x}| \le \alpha |x_k - \overline{x}|,$$

όπου $\alpha_k \to \overline{\alpha} < 1$, $\alpha_k < \alpha$, και $\alpha \in (\overline{\alpha}, 1)$, που ισχύουν αν το x_0 επιλεγεί αρκετά κοντά στο \overline{x} . Αυτό δείχνει ότι, όσο μικρότερο το $\overline{\alpha} = \left| g'(\overline{x}) \right|$, τόσο ταχύτερη θα είναι σύγκλιση της μεθόδου. Κατά πολύ ταχύτερη θα είναι βέβαια αν $\overline{\alpha} = \left| g'(\overline{x}) \right| = 0$.

Θεώρημα 2 (Περιορισμένη Σύγκλιση). Υποθέτουμε ότι η g είναι συστολική, με σταθερά $0<\alpha<1$, στο κλειστό διάστημα I=[c,d] και ότι $g(I)\subset I$, δηλαδή $g(x)\in I$ για κάθε $x\in I$. Τότε

- α) $x_k \in I$ για κάθε k, και αυτό για κάθε αρχικό $x_0 \in I$,
- β) Η εξίσωση x = g(x) έχει μία λύση \bar{x} στο I,
- γ) Η λύση \bar{x} είναι μοναδική,
- δ) Η ακολουθία (x_k) συγκλίνει στο \bar{x} , για κάθε αρχικό $x_0 \in I$,
- ε) Ισχύουν οι τρεις ακόλουθες εκτιμήσεις σφάλματος:
- i) $|x_k \overline{x}| \le \alpha^k \max(x_0 c, d x_0)$,

ii)
$$|x_k - \overline{x}| \le \frac{\alpha}{1 - \alpha} |x_{k-1} - x_k|,$$

iii)
$$\left|x_{k}-\overline{x}\right| \leq \frac{\alpha^{k}}{1-\alpha}\left|x_{1}-x_{0}\right|.$$

Ειδικά, αν η g είναι συστολική σε ένα διάστημα της μορφής $I=[\overline{x}-\delta,\overline{x}+\delta]$, όπου \overline{x} μία λύση της εξίσωσης x=g(x), τότε $g(I)\subset I$, και άρα ισχύουν τα παραπάνω συμπεράσματα (α)-(ε).

Απόδειξη. α) Προφανές.

β) Η συνάρτηση g είναι συνεχής αφού είναι συστολική. Εστω η συνεχής συνάρτηση h(x)=g(x)-x. Επειδή $g(I)\subset I=[c,d]$, έχουμε $g(c)\geq c$ και $g(d)\leq d$, δηλαδή $h(c)\geq 0$ και $h(d)\leq 0$. Από το θεώρημα Bolzano, υπάρχει άρα $\overline{x}\in I$ τέτοιο ώστε $h(\overline{x})=0$, δηλαδή $\overline{x}=g(\overline{x})$.

 γ) Εστω \overline{x} και \widetilde{x} δύο ενδεχόμενες λύσεις. Επειδή η g είναι συστολική, έχουμε $|\overline{x}-\widetilde{x}|=|g(\overline{x})-g(\widetilde{x})|\leq \alpha|\overline{x}-\widetilde{x}|\,,$

όπου $0 < \alpha < 1$, άρα αναγκαστικά $\overline{x} = \widetilde{x}$.

δ) Αν $x_0 \in I$, έχουμε $x_k \in I$, για κάθε k, και

$$\left|x_{k} - \overline{x}\right| = \left|g(x_{k-1}) - g(\overline{x})\right| \le \alpha \left|x_{k-1} - \overline{x}\right| \le \dots \le \alpha^{k} \left|x_{0} - \overline{x}\right| \to 0,$$

άρα $x_k \to \overline{x}$.

ε) (i) Προκύπτει άμεσα από την παραπάνω τελευταία ανισότητα.

(ii) Εχουμε

$$\begin{aligned} |x_{k-1} - \overline{x}| &\leq |x_{k-1} - x_k| + |x_k - \overline{x}| \\ &\leq |x_{k-1} - x_k| + \alpha |x_{k-1} - \overline{x}|, \end{aligned}$$

άρα

$$\left|x_{k-1} - \overline{x}\right| \le \frac{1}{1-\alpha} \left|x_{k-1} - x_k\right|.$$

Συνεπώς

$$\left|x_{k} - \overline{x}\right| \le \alpha \left|x_{k-1} - \overline{x}\right| \le \frac{\alpha}{1 - \alpha} \left|x_{k-1} - x_{k}\right|.$$

(iii) Προκύπτει άμεσα από την ανισότητα

$$|x_{k-1} - x_k| \le \alpha |x_{k-2} - x_{k-1}| \le \dots \le \alpha^{k-1} |x_0 - x_1|.$$

Τέλος, αν η g είναι συστολική σε ένα διάστημα $I:=[\overline{x}-\delta,\overline{x}+\delta]$, όπου \overline{x} μια λύση της εξίσωσης x=g(x), τότε, για κάθε $x\in I$

$$|g(x) - \overline{x}| = |g(x) - g(\overline{x})| \le \alpha |x - \overline{x}| \le \alpha \delta < \delta$$
,

δηλαδή έχουμε $g(I) \subset I$, και άρα ισχύουν τα συμπεράσματα (α)-(ε).

Οι εκτιμήσεις σφάλματος (i) και (iii) δεν προϋποθέτουν τον υπολογισμό του x_k . Η δε εκτίμηση (ii) τον προϋποθέτει, αλλά είναι ισχυρότερη των (i) και (iii) (γιατί; βλ. απόδειξη).