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STABILITY ANALYSIS AND BEST APPROXIMATION ERROR ESTIMATES OF

DISCONTINUOUS TIME-STEPPING SCHEMES FOR THE ALLEN-CAHN

EQUATION

Konstantinos Chrysafinos1

Abstract. Fully-discrete approximations of the Allen-Cahn equation are considered. In particular,
we consider schemes of arbitrary order based on a discontinuous Galerkin (in time) approach combined
with standard conforming finite elements (in space). We prove that these schemes are unconditionally
stable under minimal regularity assumptions on the given data.We also prove best approximation a-
priori error estimates, with constants depending polynomially upon (1/ε) by circumventing Gronwall
Lemma arguments. The key feature of our approach is a carefully constructed duality argument,
combined with a boot-strap technique.

2000 Mathematics Subject Classification. Primary 65M12, 65M60;

.

1. Introduction

The Allen-Cahn equation is a parameter dependent parabolic semi-linear PDE of the form
ut −∆u+

1

ε2
(u3 − u) = f in (0, T )× Ω,

∂u

∂n
= 0 on (0, T )× Γ,

u(0, x) = u0 in Ω;

(1.1)

here, Ω denotes a bounded domain in Rd, d = 2, 3 with Lipschitz boundary Γ, u0 and f denote the initial
data and the forcing term, respectively. The principal difficulty involved, concerns the parameter 0 < ε < 1
which is very small and, typically comparable to the size of the time and space discretization parameters, τ , h
respectively. The Allen-Cahn equation was introduced in [2] as the simplest phase field model.

The numerical analysis of any potential scheme is also significantly complicated due to the structrural prop-
erties involved. For instance, we note that the natural norms ‖.‖L∞[0,T ;L2(Ω)], ‖.‖L2[0,T ;H1(Ω)] associated to
the weak solution of our problem and imposed by its structure, scale differently in terms of the parameter ε,
compared to the ‖.‖L4[0,T ;L4(Ω)] norm that naturally arises from the nonlinear term. In addition, the pres-

ence of L2[0, T ;L2(Ω)] norm with the “wrong sign” poses a substantial difficulty in the analysis as well as
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in the numerical analysis of fully-discrete schemes for such problem. Classical techniques based on Gron-
wall’s type inequalities typically fail, since they introduce constants depending on quantities of exp(1/ε). This
problem was first circumvented in the works [3, 10, 17] through the development of uniform bounds of the
principal eigenvalue of the linearized Allen-Cahn operator (spectral estimate), i.e., bounds for the quantity

inf0 6=v∈H1(Ω)

‖∇v‖2
L2(Ω)

+ε−2((3u2−1)v,v)
‖v‖2

L2(Ω)

which are available when the Allen-Cahn equation describes a smooth

evolution of a developing interface.
Based on the above idea, for the numerical analysis of the implicit Euler scheme, in [25], the first a-priori

bounds were established in various norms with constants that depend upon (1/ε) in a polynomial fashion. For
instance, for a discrete analog of the energy norm, an estimate of order τ + h with constant depending upon
1/ε3, when the data ‖∇u0‖L2(Ω), ‖∆u0‖L2(Ω), lims→0+ ‖∇ut(s)‖L2(Ω) ≤ C and the spacial and the temporal

discretization parameters satisfy τ + h2 ≤ Cε7 and h| lnh|1/2 ≤ ε3 when d = 2 and τ + h2 ≤ ε13, and h ≤ ε6,
when d = 3 repsectively. One key idea involved, among others, in the numerical analysis of [25], was the
construction of a discrete approximation of the spectral estimate.

Ideas based on the spectral estimate and its approximation, were further used in order to obtain a-posterioi
error bounds in [32], and [26], while various a-priori and a-posteriori estimates also based on discretized versions
of the principal eigenvalue operator where obtained in the works of [8], [9], and [27]. In [24] a fully-implicit
scheme using the symmetric interior penalty discontinuous Galerkin (in space) method was considered and error
estimates were established with sharp polynomial dependence upon 1/ε. The key idea involved in [24] was the
construction of a suitable discrete approximation of the spectral estimate in presence of discontinuous (in space)
spaces.

In [37], semi-implicit schemes of first order were studied, and conditional stability estimates were presented
for semi-discrete (in time) approximations. In addition, in [37], a second order semi-implicit, semi-discrete in
time scheme which is conditionally stable was also considered. In [4] a second order convergent in time scheme
for the Cahn-Hilliard equation with a source term, was studied. We refer the reader to [7,16] and [6] for earlier
works regarding numerical analysis of the Cahn-Hilliard equation and of the coupled Allen-Cahn, Cahn-Hilliard
system respectively. Finally in the earlier work of [11] convergence of numerical solutions of a discretized
Allen-Cahn equation was established. An overwiew of available a-priori and a-posteriori error bounds related
to the Allen-Cahn equation can be found in [5]. Extensive numerical studies of various numerical schemes for
the Allen-Cahn equation are presented in [31, 44]. For various results regarding discountinuous time-stepping
schemes for nonlinear parabolic PDEs, we refer the reader to [20–22,40,41].

1.1. Main Results

Our goal is to provide rigorous stability analysis and convergence for a general class of fully-discrete schemes
under minimal regularity assumptions for any choice of τ, h, ε as well as to prove best approximation a-priori
error estimates, in a suitable neigborhood of convergence, when τ, h, ε are chosen appopriately. The schemes
considered here are discontinuous (in time) and conforming in space. In particular, for quasi-uniform in time
partition, {ti}i=0,...,N of [0, T ], and for conforming finite element subspace Uh ⊂ H1(Ω), we seek fully-discrete
solution (here denoted by uh) such that

uh ∈ Uh ≡ {wh ∈ L2[0, T ;H1(Ω)] : wh|(tn−1,tn] ∈ Pk[tn−1, tn;Uh]}.

Here Pk[tn−1, tn;Uh] denotes the space of polynomials of degree k or less having values in Uh. Our analysis
includes high order schemes in both space and time. The motivation for using the discontinuous (in time)
Galerkin approach relies in its robust performance in a vast area of problems. The key feature of discontinuous
time stepping Galerkin schemes is their ability to mimic the stability properties of the corresponding continuous
system without requiring additional regularity on the given data. Indeed, we prove that the fully-discrete
solution, computed by using discontinuous Galerkin (in time) and conforming finite elements in space of arbitrary
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order (in time and space), denoted by uh, satisfies the following unconditional stability estimates:

‖uh‖L2[0,T ;L2(Ω)] ≤ C, and ‖uh‖L∞[0,T ;L2(Ω)] + ‖uh‖L2[0,T ;H1(Ω)] ≤
C

ε
,

where C denotes a constant depending on the domain Ω, the norms of ‖u0‖L2(Ω) and ‖f‖L2[0,T ;(H1(Ω))∗] and
the polynomial degree in time, but it is independent of τ, h, ε. The above stability estimates and a compactness
argument tailored for discontinuous Galerkin time-stepping schemes by Walkington [41], allows us to deduce
the strong convergence in Lp[0, T ;L2(Ω)] norms, for 1 ≤ p < ∞, which implies convergence of such schemes
without using discrete variations / approximations of the spectral estimate.

In addition, using the stability estimates, and within a neigborhood of the established convergence, we prove
the following best approximation error estimate,

‖error‖X ≤
C

ε3
(‖u‖2L∞[0,T ;H1(Ω)] + ‖u‖2L2[0,T ;H2(Ω)])‖best approximation error‖X ,

where X = L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)], and C denotes an algebraic constant depending only upon data,
and it is independent of τ, h, ε. For the above best approximation error estimate we require that

• if u ∈ L4[0, T ;H2(Ω)], ut ∈ L4[0, T ;L2(Ω)] then τ, h satisfy

(1) ln(Tτ )(τ + h2) ≤ Cε4

(‖u‖L4[0,T ;H2(Ω)]+‖ut‖L4[0,T ;L2(Ω)])
, when d = 3,

(2) ln(Tτ )(τ + h2) ≤ Cε7/2

(‖u‖L4[0,T ;H2(Ω)]+‖ut‖L4[0,T ;L2(Ω)])
, when d = 2,

(3) ln(Tτ )(τ + h2) ≤ Cε3

(‖u‖L4[0,T ;H2(Ω)]+‖ut‖L4[0,T ;L2(Ω)])
, when d = 2, k = 0, 1,

or

• if u ∈ L2[0, T ;H2(Ω)], ut ∈ L2[0, T ;L2(Ω)], then τ, h satisfy,

(1) (τ1/2 + h)3/2 ≤ Cε4

(‖u‖L2[0,T ;H2(Ω)]+‖ut‖L2[0,T ;L2(Ω)])
, when d = 3,

(2) (τ1/2 + h)3/2 ≤ Cε7/2

(‖u‖L2[0,T ;H2(Ω)]+‖ut‖L2[0,T ;L2(Ω)])
, when d = 2,

(3) (τ1/2 + h)3/2 ≤ Cε3

(‖u‖L2[0,T ;H2(Ω)]+‖ut‖L2[0,T ;L2(Ω)])
, when d = 2, k = 0, 1.

In both cases C depends only upon the domain (independent of ε, h, τ). The above estimate states that within
the neigborgood of convergence the error is as good as the approximation properties of the underlying subspaces,
and the regularity of the solution will allow it to be.

1.2. Our approach

For the stability analysis, instead of focusing on the uniform bounds of the principle eigenvalue of the
linearized elliptic part of the Allen-Cahn operator, we define the following auxiliary (almost dual) linearized
pde, with appropriate scaling (and positive sign) in the L2[0, T ;L2(Ω)]-norm. In particular, with right-hand side
u ∈ L2[0, T ;L2(Ω)], and zero terminal data φ(T ) = 0, we seek φ ∈ L2[0, T ;H1(Ω)] ∩ L∞[0, T ;L2(Ω)] satisfying

−φt −∆φ+
1

ε2
u2φ+

1

ε2
φ = u, in (0, T )× Ω,

∂φ

∂n
= 0 on (0, T )× Γ.

The key ingredient in our stability analysis is the construction of the fully-discrete space-time approximation
of the above linearized equation with an appropriately scaled L2[0, T ;L2(Ω)] part, based on the discontinu-
ous time-stepping Galerkin formulation. This auxiliary space-time projection effectively allows the applica-
tion of a duality argument, to recover first the unconditional stability with respect to L2[0, T ;L2(Ω)] norm,
and then a boot-strap argument to recover the unconditional stability in L2[0, T ;H1(Ω)], L4[0, T ;L4(Ω)], and
L∞[0, T ;L2(Ω)] norms. For the later we employ the techniques developed by [12,13,41], in a way to avoid the use
of Gronwall’s type arguments. The discrete compactness argument of Walkington [41], then allows to rigorously
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pass to the limit to prove convergence. We note that the case of zero Dirichlet boundary data can be also con-
sidered in an identical way. The use of parabolic duality was initiated in [35], for the derivation of semi-discrete
in space estimates for general linear parabolic PDEs, using the smoothing property (see also [40, Chapter 12]
and references within for related results in the context of discontinuous time-stepping methods).

For the best approximation error estimate, within a neighborhood of the established convergence, we employ
a similar strategy and the stability estimates in crucial way. To separate the difficulties due to the nonlinear
structure from the ones involving the different scaling (in terms of ε) of various norms, we derive estimates in
three steps:

1. We define an auxiliary space-time linear parabolic projection that exhibits best approximation error
estimates. The auxiliarly space-time parabolic projection up is defined as the discnotinuous time stepping
solution of a linear parabolic pde with right hand side ut − ∆u, and appropriate initial data, and using the
result of [12, Section 2] and a proper duality argument we obtain best approximation estimates for the difference
between u − up. In addition, we employ a crucial optimal estimate in L4[0, T ;L2(Ω)] by Leykekham and
Vexler [34, Corollary 4], which is applicable when u ∈ L4[0, T ;H2(Ω)] and ut ∈ L4[0, T ;L2(Ω)].

2. We use a duality argument, combined with the previously developed stability estimates to obtain the
key preliminary estimate for the L2[0, T ;L2(Ω)] norm without using Gronwall type arguments, with constants
depending polynomially upon 1/ε. To achieve this, first we employ the discrete compactness argument of
Walkington [41] to recover strong convergence in L4[0, T ;L2(Ω)] to guarantee that the error uh − u is small
enough, for small enough discretization parameters τ, h. Then, we define the space-time discontinuous Galerkin
approximation ψh of the weak solution of the problem,

−ψt −∆ψ +
1

ε2
(3u2 − 1)ψ = uh − up, ψ(T ) = 0,

∂ψ

∂n
|(0,T )×Γ = 0

and we prove various key stability estimates for ψh, with the help of the spectral estimate. We note that unlike
previous works, we do not contruct an explicit discrete approximation of the spectral estimate.

3. Then, we recover the full rate in the L2[0, T ;H1(Ω)] norm via a boot-strap argument and the estimate
at arbitrary time-points via the techniques developed by [12, 13, 41] to obtain the symmetric structure of the
best-approximation error estimate. The boot-stap argument is performed in a way to avoid the use of Gronwall
type arguments.

The remaining of the paper is organized as follows: in section 2, we present the necessary notation, and
some preliminary estimates for weak solutions of the Allen-Cahn equation. In Section 3, after defining the fully-
discrete discontinuous Galerkin scheme, we present the basic stability estimates, which allow us to establish
unconditional estimates in L∞[0, T ;L2(Ω)] and to prove strong convergence in Section 4. Finally in Section
5, we prove best-approximation estimates with constants depending polynomially upon 1/ε and apply these
results to obtain convergence rates.

2. Preliminaries

2.1. Notation

Let U denote a Banach space. Typically, U ≡ Hs(Ω), 0 < s ∈ R, where Hs(Ω) denotes the standard Sobolev
(Hilbert) spaces (see for instance [23,43]). We denote by H0(Ω) ≡ L2(Ω). Finally, we use the notation 〈., .〉 for
the duality pairing of (H1(Ω))∗, H1(Ω) and (., .) for the standard L2 inner product, where (H1(Ω))∗ is the dual
space of H1(Ω). We denote the time-space spaces by Lp[0, T ;U ], L∞[0, T ;U ], endowed with norms:

‖w‖Lp[0,T ;U ] =
(∫ T

0

‖w‖pUdt
) 1
p

, ‖w‖L∞[0,T ;U ] = esssupt∈[0,T ] ‖w‖U .

The set of all continuous functions v : [0, T ]→ U , is denoted by C[0, T ;U ] with norm ‖w‖C[0,T ;U ] = maxt∈[0,T ] ‖w(t)‖U .
For the definition of spaces Hs[0, T ;U ], we refer the reader to [23, 43]. Throughout this work we will use the



TITLE WILL BE SET BY THE PUBLISHER 5

following space for the solution u of (1.1),

X = L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)]

with associated norm ‖w‖2X = ‖w‖2L∞[0,T ;L2((Ω)] + ‖w‖2L2[0,T ;H1(Ω)]. The bilinear form related to our problem is

defined by

a(w1, w2) =

∫
Ω

∇w1∇w2dx ∀w1, w2 ∈ H1(Ω),

which implies the corresponding coercivity condition

a(w,w) = ‖∇w‖2L2(Ω) ∀w ∈ H1(Ω).

We close this preliminary section, by recalling Young’s inequality and Landyzeskaya-Gagliardo-Nirenberg inter-
polation inequalities.
Young’s Inequality: For any a, b ≥ 0 any δ > 0, and s1, s2 > 1

ab ≤ δas1 + C(s1, s2)δ−
s2
s1 bs2 , where (1/s1) + (1/s2) = 1.

Landyzeshkayka-Gagliardo-Nirenberg Interpolation Inequalities: There exist constant C > 0 depending only
upon the domain such that, for all u ∈ H1(Ω),

‖u‖L4(Ω) ≤ C‖u‖
1/2
L2(Ω)‖u‖

1/2
H1(Ω), when d = 2,

‖u‖L3(Ω) ≤ C‖u‖
1/2
L2(Ω)‖u‖

1/2
H1(Ω), when d = 3,

‖u‖L4(Ω) ≤ C‖u‖
1/4
L2(Ω)‖u‖

3/4
H1(Ω), when d = 3.

2.2. Weak formulation and regularity of the Allen-Cahn equation

The following weak formulation of (1.1) will be used subsequently. Let f ∈ L2[0, T ; (H1(Ω))∗] and u0 ∈ L2(Ω).
Then, for all w ∈ H1(Ω) and for a.e. t ∈ (0, T ], we seek u ∈ L2[0, T ;H1(Ω)] ∩H1[0, T ; (H1(Ω))∗] such that

〈ut, w〉+ a(u,w) + (1/ε2)〈u3 − u,w〉 = 〈f, w〉, and (u(0), w) = (u0, w).

Since, our schemes are based on the discontinuous time-stepping framework, a suitable space-time weak formu-
lation can be written as follows: we seek u ∈ L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)], satisfying,

(u(T ), w(T )) +

∫ T

0

(
− 〈u,wt〉+ a(u,w) +

1

ε2
(u3 − u,w)

)
dt

= (u0, w(0)) +

∫ T

0

〈f, w〉dt (2.1)

for all w ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ; (H1(Ω))∗). It is clear that, using straightforward techniques, (see
for instance [39, 43]), one can easily prove the existence of a weak solution solution u ∈ L∞[0, T ;L2(Ω)] ∩
L2[0, T ;H1(Ω)] which satisfies the following estimate

‖u‖X ≤ Cε
(
‖f‖L2[0,T ;(H1(Ω))∗] + ‖u0‖L2(Ω)

)
,

where Cε depends on Ω, and the parameters ε and T .
The following Lemma quantifies the dependence upon ε of various norms.
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Lemma 2.1. Suppose that f ∈ L2[0, T ; (H1(Ω))∗] and u0 ∈ L2(Ω). Then, there exists a constant C, indepen-
dent of ε, such that:

‖u‖L2[0,T ;L2(Ω)] + ‖u‖2L4[0,T ;L4(Ω)] ≤ C
(
T 1/2 + ε(‖u0‖L2(Ω) + ‖f‖L2[0,T ;(H1(Ω))∗])

)
,

‖u‖L∞[0,T ;L2(Ω)] + ‖u‖L2[0,T ;H1(Ω)] ≤
C

ε
.

Suppose that for any σ ≥ 0,

‖f‖2L2[0,T ;L2(Ω)] and ‖∇u0‖2L2(Ω) +
1

4ε2
‖(u2

0 − 1)2‖L1(Ω) ≤
C

ε2σ
. (2.2)

Then, there exists a constant C (indpendent of ε) such that:

‖u‖L2[0,T ;H2(Ω)] ≤
C

εσ+1
, ‖u‖L∞[0,T ;H1(Ω)] + ‖ut‖L2[0,T ;L2(Ω)] ≤

C

εσ
. (2.3)

Proof. For the first estimate, we use the following auxiliary backward in time linear parabolic pde. Let u be the
solution of (2.1). Given, right hand side u ∈ L2[0, T ;L2(Ω)], boundary data ∂φ

∂n = 0, and terminal data φ(T ) = 0,

we seek φ ∈ L2[0, T ;H1(Ω)] ∩H1[0, T ; (H1(Ω))∗] such that, for all w ∈ L2[0, T ;H1(Ω)] ∩H1[0, T ; (H1(Ω))∗],

∫ T

0

(
(φ,wt) + a(φ,w) +

1

ε2
(u2φ,w) +

1

ε2
(φ,w)

)
dt+ (φ(0), w(0)) =

∫ T

0

(u,w)dt. (2.4)

It is clear that setting w = φ in (2.4) we obtain the following bound:

1

2
‖φ(0)‖L2(Ω)] + ‖∇φ‖L2[0,T ;L2(Ω)] +

1

ε
‖φu‖L2[0,T ;L2(Ω)] +

1

2ε
‖φ‖L2[0,T ;L2(Ω)]

≤ ε

2
‖u‖L2[0,T ;L2(Ω)]. (2.5)

Note that the above estimate easily implies ‖φ‖L2[0,T ;H1(Ω)] ≤ Cε‖u‖L2[0,T ;L2(Ω)], with C an algebraic constant
independent of ε. Now, we employ a “duality” argument. Integrating by parts in time (2.1), and setting w = φ
into the resulting equation, we obtain:

∫ T

0

(
〈ut, φ〉+ a(u, φ) +

1

ε2
(u3 − u, φ)

)
dt =

∫ T

0

〈f, φ〉dt. (2.6)

Setting w = u into (2.4) and subtracting the resulting equality from (2.6) we derive:

∫ T

0

‖u‖2L2(Ω)dt =
2

ε2

∫ T

0

(φ, u)dt+

∫ T

0

〈f, φ〉dt+ (φ(0), u(0)). (2.7)
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Note that using Hölder’s inequality, and the stability estimates, equation (2.7) implies that

‖u‖2L2[0,T ;L2(Ω)] ≤
2

ε2

∫ T

0

|Ω|1/2‖φu‖L2(Ω)dt

+‖f‖L2[0,T ;(H1(Ω))∗]‖φ‖L2[0,T ;H1(Ω)] + ‖φ(0)‖L2(Ω)‖u(0)‖L2(Ω)

≤ 2

ε2
|Ω|1/2T 1/2‖φu‖L2[0,T ;L2(Ω)]

+C(‖f‖L2[0,T ;(H1(Ω))∗] + ‖u(0)‖L2(Ω)

)
ε‖u‖L2[0,T ;L2(Ω)]

≤ 2

ε2
|Ω|1/2T 1/2 ε

2

2
‖u‖L2[0,T ;L2(Ω)]

+C(‖f‖L2[0,T ;(H1(Ω))∗] + ‖u(0)‖L2(Ω)

)
ε‖u‖L2[0,T ;L2(Ω)],

which implies the desired estimate on ‖u‖L2[0,T ;L2(Ω)]. Returning back to (2.1), setting w = u, and using the
bound on ‖u‖L2[0,T ;L2(Ω)], we obtain the first estimate. For the second estimate, we set w = ut, and we observe,∫ T

0

(
‖ut‖2L2(Ω) +

d

dt

(
1

2
‖∇u‖2L2(Ω) +

1

4ε2
‖(u2 − 1)2‖L1(Ω)

))
dt =

∫ T

0

(f, ut)dt.

The estimate now follows by standard algebra. The estimate on ‖∆u‖L2[0,T ;L2(Ω)] follows using standard tech-
niques. �

Remark 2.2. 1) If more regularity is available, then we can quantify the dependence upon 1/ε in other norms
(see for instance [25, Proposition 1]). In addition to (2.2), if the initial data satisfy, for some σ̃ ≥ 0, ‖∆u0 −
1
ε2 (u3

0 − u0)‖L2(Ω) ≤ Cε−σ̃ with constant C independent of ε, then,

‖u‖L∞[0,T ;H2(Ω)] + ‖ut‖L∞[0,T ;L2(Ω)] ≤ Cεmin{−σ−1,−σ̃},

‖∇ut‖L2[0,T ;L2(Ω)] ≤ Cεmin{−σ−1,−σ̃}.

2) We point out that the regularity bound on 1
4ε2 ‖(u

2
0 − 1)2‖L1(Ω) ≤ C

ε2σ , for σ ≥ 0, is essential in order to

obtain (2.3). For example, if only ‖u0‖H1(Ω) ≤ C is assumed then the dependence upon 1
ε deteriorates to:

‖u‖L∞[0,T ;H1(Ω)] + ‖ut‖L2[0,T ;L2(Ω)] + ‖u‖L2[0,T ;H2(Ω)] ≤
C

ε2
.

For the stability analysis of the fully-discrete schemes, enhanced regularity assumptions, such as u ∈
L∞[0, T ;H2(Ω)] ∩H1[0, T ;H1(Ω)] are not necessary. For the error estimates, the constants will depend upon
the norms of ‖u‖L∞[0,T ;H1(Ω)], ‖ut‖L2[0,T ;L2(Ω)] and ‖u‖L2[0,T ;H2(Ω)].

3. The fully-discrete scheme

3.1. Discontinuous Galerkin time-stepping

For the discretization of the Allen-Cahn model we employ a discontinuous Galerkin time-stepping approach,
combined with standard conforming finite elements in space. Approximations will be constructed on a partition
0 = t0 < t1 < . . . < tN = T of [0, T ]. On each interval of the form (tn−1, tn] of length τn = tn− tn−1, a subspace
Uh of H1(Ω) is specified for all n = 1, .., N and it is assumed that each Uh satisfies the classical approximation
theory results (see e.g. [14]), on regular meshes. In particular, we assume that there exists an integer ` ≥ 1 and
a constant c > 0 (independent of the mesh-size parameter h) such that if w ∈ H l+1(Ω),

inf
wh∈Uh

‖w − wh‖Hs(Ω) ≤ Chl+1−s‖w‖Hl+1(Ω), 0 ≤ l ≤ `, s = −1, 0, 1.
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We also assume that the partition is quasi-uniform in time, i.e., there exists a constant 0 < θ ≤ 1 such that
θτ ≤ minn=1,...N τn, where τ = maxn=1,...,N τn. We seek approximate solutions which belong to the space

Uh = {wh ∈ L2[0, T ;H1(Ω)] : wh|(tn−1,tn] ∈ Pk[tn−1, tn;Uh]}.

Here Pk[tn−1, tn;Uh] denotes the space of polynomials of degree k or less, having values in Uh. By convention,
the functions of Uh are left continuous with right limits and hence we will subsequently write wnh− for wh(tn) =
wh(tn−), and wnh+ for wh(tn+). Note that, we have also used the following notational abbreviation, wh ≡ wh,τ ,
Uh ≡ Uh,τ etc, since for the stability analysis we will not impose any restriction involving τ , and h. The jump
at tn will be denoted as [wnh ] = wnh+ − wnh−. The fully discrete system is defined as follows: We seek uh ∈ Uh
such that for every wh ∈ Uh and for n = 1, ..., N ,

(unh−, w
n
h−) +

∫ tn

tn−1

(
− 〈uh, wht〉+ a(uh, wh) + (1/ε2)(u3

h − uh, wh)
)
dt

= (un−1
h− , wn−1

h+ ) +

∫ tn

tn−1

〈f, wh〉dt. (3.1)

Recall that f, u0 are given data, and u0 denotes approximations of u0. In our case, we will define u0 = Phu
0,

where Ph denotes the standard L2 projection, i.e., Ph : L2(Ω)→ Uh, defined by (Phv− v, wh) = 0, ∀wh ∈ Uh.

Remark 3.1. For any ε > 0, existence and uniqueness of discontinuous Galerkin approximations of (3.1) can be
proved easily (even for more complicated nonlinearities) due to finite dimensionality of the problem. For several
results regarding discontinuous time-stepping schemes, with linear and semi-linear terms, we refer [1,15,18–20,
30,36,40,41] and the references within.

3.2. The basic estimate using duality

We begin by developing a stability estimate via duality for the L2[0, T ;L2(Ω)] norm. For this purpose,
we define a backward in time parabolic problem with right hand side uh ∈ L2[0, T ;L2(Ω)] with an enhanced
L2[0, T ;L2(Ω] term and zero terminal data. In particular, for right hand side uh ∈ L2[0, T ;L2(Ω)], and terminal
data φNh+ = 0, we seek φh ∈ Uh such that for all wh ∈ Pk[tn−1, tn;Uh], and for n = N, ..., 1,

−(φnh+, w
n
h−) +

∫ tn

tn−1

(
(φh, wht) + a(φh, wh) + (1/ε2)〈u2

hφh, wh〉
)

+

∫ tn

tn−1

(1/ε2)(φh, wh)dt+ (φn−1
h+ , wn−1

h+ ) =

∫ tn

tn−1

(uh, wh)dt. (3.2)

Note that is easy to prove existence at partition points as well as in L2[0, T ;H1(Ω)], due to the signs of the
inner products (1/ε2)(u2

hφh, wh) and (1/ε2)(φh, wh). Given, uh ∈ Uh, it is obvious that φh ∈ Uh is unique. In
Section 4.2, we will also prove that uh ∈ L∞[0, T ;L2(Ω)].

Lemma 3.2. Let f ∈ L2[0, T ; (H1(Ω))∗], u0 ∈ L2(Ω), and uh ∈ Uh are the solutions of (3.1)-(3.2) respectively.
Then, there exists a constant C > 0, depending only upon the domain Ω, T , but is independent of ε, such that:

‖uh‖L2[0,T ;L2(Ω)] ≤ C
(
T 1/2 + ε(‖u0‖L2(Ω) + ‖f‖L2[0,T ;(H1(Ω))∗])

)
In addition, the following estimates hold: for all n = 1, ..., N

‖unh−‖2L2(Ω) + ‖uh‖2L2[0,T ;H1(Ω)] + (1/ε2)‖uh‖4L4[0,T ;L4(Ω)] +

N∑
i=1

‖[uih]‖2L2(Ω)

≤ (C/ε2)
(
‖u0‖2L2(Ω) + ‖f‖2L2[0,T ;(H1(Ω))∗]

)
.
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where C is a constant depending only upon Ω, T .

Proof. Setting wh = φh, into (3.2), using Young’s inequality to bound

∫ tn

tn−1

(uh, φh)dt ≤ (1/2ε2)

∫ tn

tn−1

‖φh‖2L2(Ω)dt+ (ε2/2)

∫ tn

tn−1

‖uh‖2L2(Ω)dt,

and adding the resulting terms, we derive the following estimate: for all n = N, ..., 1

‖φn−1
h+ ‖

2
L2(Ω) + ‖∇φh‖2L2[0,T ;L2(Ω)] + (1/ε2)‖φhuh‖2L2[0,T ;L2(Ω)]

+(1/2ε2)‖φh‖2L2[0,T ;L2(Ω)] ≤ (ε2/2)‖uh‖2L2[0,T ;L2(Ω)]. (3.3)

The above estimate also implies that ‖φh‖L2[0,T ;H1(Ω)] ≤ ε√
2
‖uh‖L2[0,T ;L2(Ω)], when ε < 1/2. Now, setting

wh = uh into (3.2), we have

−(φnh+, u
n
h−) +

∫ tn

tn−1

(
(φh, uht) + a(uh, φh) + (1/ε2)〈u2

hφh, uh〉+ (1/ε2)(φh, uh)
)
dt

+(φn−1
h+ , un−1

h+ ) =

∫ tn

tn−1

‖uh‖2L2(Ω)dt.

Integrating by parts in time, we deduce,

−(φnh+, u
n
h−) + (φnh−, u

n
h−) +

∫ tn

tn−1

(−〈φht, uh〉+ a(φh, uh)) dt

+

∫ tn

tn−1

(
(1/ε2)〈u2

hφh, uh〉+ (1/ε2)(φh, uh)
)
dt =

∫ tn

tn−1

‖uh‖2L2(Ω)dt. (3.4)

Setting wh = φh into (3.1), we obtain,

(unh−, φ
n
h−) +

∫ tn

tn−1

(
−〈uh, φht〉+ a(uh, φh) + (1/ε2)〈u3

h − uh, φh〉
)
dt

= (un−1
h− , φn−1

h+ ) +

∫ tn

tn−1

〈f, φh〉dt. (3.5)

Subtracting (3.5) from (3.4), and noting that the terms (1/ε2)
∫ tn
tn−1

∫
Ω
u3
hφhdxdt cancel, we arrive at

(φnh+, u
n
h−)− (un−1

h− , φn−1
h+ ) +

∫ tn

tn−1

‖uh‖2L2(Ω)dt

= (1/ε2)

∫ tn

tn−1

(φh, uh)dt−
∫ tn

tn−1

〈f, φh〉dt+ (1/ε2)

∫ tn

tn−1

(uh, φh)dt. (3.6)
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First, we treat the terms involving (1/ε2) constants. Using Young’s inequality with appropriate δ1 > 0 (to be
determined later), we deduce,

(2/ε2)

∫ tn

tn−1

|(φh, uh)| dt ≤ (2/ε2)

∫ tn

tn−1

|Ω|1/2‖φhuh‖L2(Ω)dt

≤ (2/ε2)τ1/2
n |Ω|1/2

(∫ tn

tn−1

‖φhuh‖2L2(Ω)dt

)1/2

≤ (2δ1/ε
2)τn|Ω|+ (1/2δ1ε

2)

∫ tn

tn−1

‖φhuh‖2L2(Ω)dt.

Similarly, using Young’s inequality with appropriate δ2 > 0, we obtain∫ tn

tn−1

|〈f, φh〉|dt ≤ (δ2/ε
2)

∫ tn

tn−1

‖φh‖2H1(Ω)dt+ (ε2/4δ2)

∫ tn

tn−1

‖f‖2(H1(Ω))∗dt.

Substituting the last two inequalities into (3.6), summing the resulting inequalities, using that φN+ ≡ 0 by
definition, and rearranging terms, we obtain

‖uh‖2L2[0,T ;L2(Ω)] ≤ ‖u
0
h‖L2(Ω)‖φ0

h+‖L2(Ω) + (δ2/ε
2)‖φh‖2L2[0,T ;H1(Ω)]

+(ε2/4δ2)‖f‖2L2[0,T ;(H1(Ω))∗] + (2δ1/ε
2)

N∑
n=1

τn|Ω|+ (1/2δ1ε
2)‖φhuh‖2L2[0,T ;L2(Ω)]

≤ (δ3/ε
2)‖φ0

h+‖2L2(Ω) + (ε2/4δ3)‖u0
h‖2L2(Ω) + (δ2/ε

2)‖φh‖2L2[0,T ;H1(Ω)]

+(ε2/4δ2)‖f‖2L2[0,T ;(H1(Ω))∗] + (2δ1/ε
2)

N∑
n=1

τn|Ω|+ (1/2δ1ε
2)‖φhuh‖2L2[0,T ;L2(Ω)].

Using the previous bounds on ‖φ0
h+‖L2(Ω), ‖φh‖L2[0,T ;H1(Ω)], (1/ε)‖φh‖L2[0,T ;L2(Ω)], and (1/ε)‖φhuh‖L2[0,T ;L2(Ω)],

in terms of ‖uh‖L2[0,T ;L2(Ω)] via (3.3) and choosing δ1 = 2ε2, δ2 = δ3 = 1/4, to hide the resulting terms on the
left, we obtain

‖uh‖L2(0,T ;L2(Ω)] ≤ C
(
T 1/2 + ε

(
‖u0

h‖L2(Ω) + ‖f‖L2[0,T ;(H1(Ω))∗]

))
,

with C an algebraic constant, depending only upon |Ω|. Setting wh = uh, in (3.1) respectively and using Young’s
inequalities we obtain:

(1/2)‖unh−‖2L2(Ω) − (1/2)‖un−1
h− ‖

2
L2(Ω) + (1/2)‖[un−1

h ]‖2L2(Ω)

+

∫ tn

tn−1

(
‖∇uh‖2L2(Ω) + (1/ε2)‖uh‖4L4(Ω)

)
dt

≤ (1/ε2)

∫ tn

tn−1

‖uh‖2L2(Ω)dt+

∫ tn

tn−1

(1/C)‖f‖2(H1(Ω))∗dt. (3.7)

The second estimate follows by summation and the previously developed estimate on L2[0, T ;L2(Ω)]. �

Remark 3.3. It is evident that the key estimate with respect the dependence upon (1/ε) concerns the term

(1/ε2)
∫ tn
tn−1

∫
Ω
uhwhdxdt which has the wrong sign and not the term (1/ε2)

∫ tn
tn−1

∫
Ω
u3
hwhdxdt which is positive

when setting wh = uh. For this reason the estimate of (3.1) does not lead to an estimate, with bounds
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independent of exp(1/ε) when using Gronwall type arguments even for the lowest order scheme. To the contrary,
the duality argument of Lemma 3.2, leads to polynomial dependence upon (1/ε), without imposing any condition
between τ, h, and under minimal regularity assumptions. The key question regarding the stability at arbitrary
time-points, i.e. in L∞[0, T ;L2(Ω)], will be considered next.

4. Estimates at arbitrary time-points and convergence under minimal
regularity

We will employ the theory of the approximation of discrete characteristic functions (see e.g. [12,13,41]), which
was used to develop estimates at arbitrary time points for linear and nonlinear parabolic PDEs, including the
Navier-Stokes equations. The main advantage of this approach is that the proof does not require any additional
regularity, apart from the one needed to guarantee the existence of a weak solution. In addition, we will be
able to obtain stability estimates without assuming any explicit dependence upon τ and h. A key feature of
our analysis is that we are able to include high order time-stepping schemes.

4.1. Preliminaries: Approximation of discrete characteristic functions

Ideally, to obtain a stability estimate at arbitrary t ∈ (tn−1, tn], we would like to substitute uh = χ[tn−1,t)uh
into the discrete equations (3.1). However, this choice is not available in the discrete setting, since χ[tn−1,t)uh
is not a member of Uh, unless t coincides with a partition point. Therefore, approximations of such functions
need to be constructed; this is done in [12, Section 2.3]. For completeness, we state the main results. The
approximations are constructed on the interval (0, τ), and they are invariant under translations. For fixed
(but arbitrary) t ∈ (0, τ) let p ∈ Pk(0, τ), and denote the discrete approximation of χ[0,t)p by the polynomial
p̃ ∈ Pk(0, τ) with, p̃(0) = p(0) which satisfies∫ τ

0

p̃q =

∫ t

0

pq ∀ q ∈ Pk−1(0, τ).

To motivate the above construction we simply observe that for q = p′ we obtain
∫ τ

0
p′p̃ =

∫ t
0
pp′ = 1

2 (p2(t)−
p2(0)).

It is clear that this construction can be extended to approximations of χ[0,t)u for u ∈ Pk[0, τ ;U ] where U is

a linear space. Note that if u ∈ Pk[0, τ ;U ] then it can be written as u =
∑k
i=0 pi(t)ui where pi ∈ Pk[0, τ ] and

ui ∈ U . The discrete approximation of χ[0,t)u in Pk[0, τ ;U ] is then defined by ũ =
∑k
i=0 p̃i(t)ui, and if U is a

semi-inner product space, we deduce,

ũ(0) = u(0), and

∫ τ

0

(ũ, w)U =

∫ t

0

(u,w)U ∀w ∈ Pk−1[0, τ ;U ].

It remains to quote the main results from [12,13,41].

Proposition 4.1. Suppose that U is a (semi) inner product space. Then, the mapping
∑k
i=0 pi(t)ui →∑k

i=0 p̃i(t)ui on Pk[0, τ ;U ] is continuous in ‖.‖L2[0,τ ;U ]. In particular,

‖ũ‖L2[0,τ ;U ] ≤ Ck‖u‖L2[0,τ ;U ], ‖ũ− χ[0,t)u‖L2[0,τ ;U ] ≤ Ck‖u‖L2[0,τ ;U ]

where Ck is a constant depending on k.

A standard calculation gives an explicit formula of ũ = ρ(s)z, when we choose u(s) = z ∈ U to be constant
(see e.g. [13]).
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Lemma 4.2. Fix t ∈ [0, τ ] and let ρ ∈ Pk[0, τ ] characterized by

ρ(0) = 1,

∫ τ

0

ρq =

∫ t

0

q, q ∈ Pk−1[0, τ ].

Then,

ρ(s) = 1 + (s/τ)

k−1∑
i=0

cip̂i(s/τ), ci =

∫ 1

t/τ

p̂i(η)dη,

where {p̂i}k−1
i=0 is an orthonormal basis of Pk−1[0, 1] in the (weighted) space L2

w[0, 1] having inner product

(p̂, q̂) =

∫ 1

0

ηp̂(η)q̂(η)dη.

In particular, ‖ρ‖L∞(0,τ) ≤ Ck, where Ck is independent of t ∈ [0, τ ].

4.2. The main stability estimate at arbitrary time points

Now, we are ready to state the main stability result at arbitrary time points which plays a key role to the
derivation of the best approximation estimates below. We emphasize that the time-discretization parameter τ
is chosen independent of h and the dependence of the stability constant upon 1/ε is polynomial.

Proposition 4.3. Suppose that f ∈ L2[0, T ; (H1(Ω))∗], u0 ∈ L2(Ω), and let uh be the approximate solution
by the discontinuous time-stepping scheme. Then, there exists constant C > 0 depending on Ω, Ck and T , but
not ε, such that

‖uh‖L∞[0,T ;L2(Ω)] ≤ (C/ε).

Proof. Recall that setting wh = uh, in (3.1), adding the term
∫ tn
tn−1 ‖uh‖2L2(Ω)dt on both sides, using Young’s

inequality to bound
∫ tn
tn−1 |〈f, uh〉|dt ≤ (1/2)

∫ tn
tn−1(‖f‖2(H1(Ω))∗+‖uh‖2H1(Ω))dt, and the fact that ε < 1, we easily

obtain

(1/2)‖unh−‖2L2(Ω) − (1/2)‖un−1
h− ‖

2
L2(Ω) + (1/2)‖[un−1

h ]‖2L2(Ω)

+

∫ tn

tn−1

(
‖uh‖2H1(Ω) + (1/ε2)‖uh‖4L4(Ω)

)
dt

≤ (2/ε2)

∫ tn

tn−1

‖uh‖2L2(Ω)dt+ (1/2)

∫ tn

tn−1

‖f‖2(H1(Ω))∗dt. (4.1)

In order to avoid the use of a Gronwall type argument, we will need to estimate the term (1/ε2)
∫ tn
tn−1 ‖uh‖2L2(Ω)

using the approximation of the discrete characteristic. We employ properties of the discrete characteristic
and its approximation by following the technique of [13] and the stability estimates of Lemma 3.2. For fixed
t ∈ [tn−1, tn) and zh ∈ Uh we substitute wh(s) = zhρ(s) into (3.1), where ρ(s) ∈ Pk[tn−1, tn] is constructed
similarly to Lemma 4.2, i.e.,

ρ(tn−1) = 1,

∫ tn

tn−1

ρq =

∫ t

tn−1

q, q ∈ Pk−1[tn−1, tn].
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Now, it is easy to see that with this particular choice of wh,∫ tn

tn−1

(uht, wh)ds+ (un−1
h+ − un−1

h− , wn−1
h+ )

=

∫ t

tn−1

(uht, zh)ds+ (un−1
h+ − un−1

h− , ρ(tn−1)zh) = (uh(t)− un−1
h− , zh).

Hence, integration by parts in time of (3.1), and the above computation imply

(uh(t)− un−1
h− , zh)

= −
∫ tn

tn−1

(
a(uh, zhρ) + (1/ε2)(u3

h − uh, zhρ)
)
ds+

∫ tn

tn−1

〈f, zhρ〉ds

≤ Ck
[ ∫ tn

tn−1

‖∇uh‖L2(Ω)‖∇zh‖L2(Ω)ds+

∫ tn

tn−1

‖f‖(H1(Ω))∗‖zh‖H1(Ω)ds

+(1/ε2)

∫ tn

tn−1

(
‖u3

h‖L4/3(Ω)‖zh‖L4(Ω) + ‖uh‖L2(Ω)‖zh‖L2(Ω)

)
ds
]
,

where we have used Lemma 4.2 to bound ‖ρ‖L∞(tn−1,tn) ≤ Ck with Ck denoting a constant depending only on
k, Ω. Note also that zh ∈ Uh and is independent of s, hence the above inequality leads to

(uh(t)− un−1
h− , zh) ≤ Ck

[∫ tn

tn−1

(
‖uh‖H1(Ω) + ‖f‖(H1(Ω))∗

)
ds

]
‖zh‖H1(Ω)

+Ck(1/ε2)
([∫ tn

tn−1

‖uh‖3L4(Ω)ds

]
‖zh‖L4(Ω) +

[∫ tn

tn−1

‖uh‖L2(Ω)ds

]
‖zh‖L2(Ω)

)
.

Here we have used the fact ‖u3
h‖L4/3(Ω) = ‖uh‖3L4(Ω). Setting zh = uh(t) (for the previously fixed t ∈ [tn−1, tn)),

using Hölder’s inequality, and integrating in time the resulting inequality, we obtain,∫ tn

tn−1

‖uh(t)‖2L2(Ω)dt ≤ ‖u
n−1
h− ‖L2(Ω)τ

1/2
n ‖uh(t)‖L2[tn−1,tn;L2(Ω)]

+Ckτ
1/2
n

(
‖uh‖L2[tn−1,tn;H1(Ω)] + ‖f‖L2[tn−1,tn;(H1(Ω))∗]

)∫ tn

tn−1

‖uh(t)‖H1(Ω)dt

+Ckτ
1/4
n (1/ε2)

(
‖uh‖3L4[tn−1,tn;L4(Ω)]

)∫ tn

tn−1

‖uh(t)‖L4(Ω)dt

+Ckτ
1/2
n (1/ε2)‖uh‖L2[tn−1,tn;L2(Ω)]

∫ tn

tn−1

‖uh(t)‖L2(Ω)dt. (4.2)

Using appropriately Hölder’s inequalities, we obtain that
∫ tn
tn−1 ‖uh‖L4(Ω)dt ≤ τ

3/4
n ‖uh‖L4[tn−1,tn;L4(Ω)], and∫ tn

tn−1 ‖uh‖H1(Ω)dt ≤ τ
1/2
n ‖uh‖L2[tn−1,tn;H1(Ω)]. Thus, using Young’s inequalities we deduce (with different Ck),

(1/2)

∫ tn

tn−1

‖uh(t)‖2L2(Ω)dt ≤ (τn/2)‖un−1
h− ‖

2
L2(Ω)

+Ckτn

(
‖uh‖2L2[tn−1,tn;H1(Ω)] + ‖f‖2L2[tn−1,tn;(H1(Ω))∗]

)
+Ckτn(1/ε2)

(
‖uh‖4L4[tn−1,tn;L4(Ω)] + ‖uh‖2L2[tn−1,tn;L2(Ω)]

)
. (4.3)
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Now, using an inverse estimate, ‖uh‖2L∞[tn−1,tn;L2(Ω)] ≤ (Ck/τn)
∫ tn
tn−1 ‖uh‖2L2(Ω), we obtain,

‖uh‖2L∞[tn−1,tn;L2(Ω)] ≤ Ck
[
‖un−1

h− ‖
2
L2(Ω) + ‖uh‖2L2[tn−1,tn;H1(Ω)] + ‖f‖2L2[tn−1,tn;(H1(Ω))∗]

+(1/ε2)
(
‖uh‖4L4[tn−1,tn;L4(Ω)] + ‖uh‖2L2[tn−1,tn;L2(Ω)]

) ]
.

The proof now follows by simply substituting the bounds of (3.2). �

Remark 4.4. The above theorem states that the discontinuous Galerkin discretization inherits the stability
estimates of the weak formulation under minimal regularity assumptions on the given data. This is an important
asset related to the discontinuous (in time) Galerkin formulation. We emphasize that we do not assume that
‖u0‖L∞(Ω) ≤ 1.

4.3. Convergence under minimal regularity assumptions

We quote a discrete compactness argument of Walkington (see [41, Theorem 3.1]) which allows to recover
strong convergence in an appropriate norm, and pass the limit through the nonlinear term. The compactness
argument combined with the stability estimates of Lemma 3.2 and Proposition 4.3, imply the convergence of
the space-time approximations under minimal regularity assumptions.

The compactness argument concerns numerical approximations of solutions u : [0, T ]→ U of general evolution
equations of the form

ut +A(u) = f(u), u(0) = u0, (4.4)

where U is a Banach space and each term of the equation takes values in U∗. Both A(u) = A(t, u) and f(u) =
f(t, u) may depend upon t and are allowed to be nonlinear, however, in our setting only f(u) ≡ −(1/ε2)(u3−u)
contains nonlinear terms. Suppose that U ⊂ H ⊂ U∗ (with continuous embeddings) form the standard evolution
triple, i.e., the pivot space H is a Hilbert space. The numerical schemes approximate the weak form of (4.4),
i.e.,

〈ut, w〉+ a(u,w) = 〈f(u), w〉, ∀w ∈ U (4.5)

where a : U × U → R is defined by a(u,w) = (A(u), w). Set F (u) ≡ f(u) − A(u). Then the following
theorem [41, Theorem 3.1] establishes the compactness property of the discrete approximation.

Theorem 4.5. Let H be a Hilbert space, U be a Banach space and U ⊂ H ⊂ U∗ be dense and compact
embeddings. Fix an integer k ≥ 0 and let 1 ≤ p, q < ∞. Let h > 0 be the mesh parameter, and let {ti}Ni=0

denote a quasi-uniform partition of [0, T ]. Let Uh ⊂ U denote standard finite element spaces. Assume that

(1) For each h, τ > 0, uh ∈ {uh ∈ Lp[0, T ;U ] | uh|(tn−1,tn) ∈ Pk[tn−1, tn;Uh]} and on each interval,
satisfies ∫ tn

tn−1

〈uht, wh〉dt+ (un−1
h+ − un−1

h− , wn−1
h+ ) =

∫ tn

tn−1

〈F (uh), wh〉dt

for every wh ∈ Pk[tn−1, tn;Uh].
(2) {uh}h>0 is bounded in Lp[0, T ;U ] and {‖F (uh)‖Lq [0,T ;U∗]}h>0 is also bounded.

Then,

(1) If p > 1 then {uh}h>0 is compact in Lr[0, T ;H] for 1 ≤ r < 2p.

(2) If 1 ≤ (1/p) + (1/q) < 2, and
∑N
i=1 ‖[uih]‖2H < C is bounded independent of h, then {uh}h>0 is compact

in Lr[0, T ;H] for 1 ≤ r < 2/((1/p) + (1/q)− 1).

Proof. See [41, Theorem 3.1]. �

We will use the above result to obtain strong convergence of the discrete Allen-Cahn equation to the con-
tinuous one. The lack of any meaningful regularity for the discrete time derivative due to the presence of
discontinuities, requires special attention since the Aubin-Lions compactness argument is not directly applica-
ble.
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Theorem 4.6. Let f ∈ L2[0, T ; (H1(Ω))∗], u0 ∈ L2(Ω), and ε < 1 be a given parameter. Let {ti}Ni=0 denote a
quasi-uniform partition of [0, T ]. Suppose that the assumptions of Proposition 4.3 hold, and let τ, h→ 0. Then,
the following convergence results hold:

uh → u weakly in L2[0, T ;H1(Ω)], uh → u weakly-* in L∞[0, T ;L2(Ω)],

and
uh → u strongly in Lr[0, T ;L2(Ω)], for every 1 ≤ r <∞.

In addition u is a weak solution of the Allen-Cahn equation.

Proof. We follow a similar line of argument with [41, Section 6]. The stability estimates of Lemma 3.2 and
Proposition 4.3, imply (passing to a subsequence if necessary) there exists u such that uh → u weakly in
L2[0, T ;H1(Ω)] and weakly-* in L∞[0, T ;L2(Ω)]. We note that {uh}h,τ is bounded independent of τ, h, ε in
L2[0, T ;L2(Ω)] and L4[0, T ;L4(Ω)]. It remains to obtain strong convergence. For this purpose, fix U = H1(Ω),
H = L2(Ω), and F (u) = ∆u−(1/ε2)

(
u3 − u

)
−f . It is easy to show that F (uh) ∈ L4/3[0, T ; (H1(Ω))∗]. Indeed,

uh ∈ L2[0, T ;H1(Ω)]∩L4[0, T ;L4(Ω)], and uh ∈ L∞[0, T ;L2(Ω)] clearly imply that u3
h ∈ L4/3[0, T ; (H1(Ω))∗] by

standard interpolation theorems. The remaining terms can be handled easily. Note also that
∑N
i=1 ‖[uih]‖2L2(Ω) ≤

C/ε where C is independent of τ, h. Therefore, using the Theorem 4.5, we obtain the desired strong convergence.
Choose wh ∈ C[0, T ;Uh] ∩ Uh, with wh(T ) = 0. Then, summing equations (3.1) from n = 1 to n = N , we
deduce that

(uh(T ), wh(T )) +

∫ T

0

(
−〈uh, wht〉+ a(uh, wh) + (1/ε2)〈u3

h − uh, wh〉
)
dt

=

∫ T

0

〈f, wh〉dt+ (u0, wh(0)).

Note that we may pass the limit through the linear terms due to the stability estimates on uh and the fact that
wh ∈ C[0, T ;Uh] ∩ Uh. The semi-linear term can be treated by the strong convergence. Indeed, using Holder’s
inequality, Landyzeskaya-Gagliardo-Nirenberg interpolation inequality,∫ T

0

∣∣〈u3
h − u3, wh〉

∣∣ dt ≤ ∫ T

0

∣∣〈(uh − u)(u2
h + u2 + uhu), wh〉

∣∣ dt
≤ C

∫ T

0

‖uh − u‖L3(Ω)(‖uh‖2L4(Ω) + ‖u‖2L4(Ω))‖wh‖L6(Ω)dt

≤ C‖wh‖C[0,T ;H1(Ω)]

∫ T

0

‖uh − u‖1/2L2(Ω)‖uh − u‖
1/2
H1(Ω)(‖uh‖

2
L4(Ω) + ‖u‖2L4(Ω))dt

≤ C‖wh‖C[0,T ;H1(Ω)]‖uh − u‖
1/2
L2[0,T ;L2(Ω)]‖uh − u‖

1/2
L2[0,T ;H1(Ω)]

×(‖uh‖L4[0,T ;L4(Ω)] + ‖u‖L4[0,T ;L4(Ω)])
2.

A standard density argument, now completes the proof. �

The unconditional stability estimates and the above convergence result, validate the use of discontinuous
Galerkin time-stepping schemes of order k ≥ 1. In particular, for any α > 0 there exist h̃, τ̃ such that, for every
τ ≤ τ̃ and h ≤ h̃, we obtain, ‖uh− u‖L4[0,T ;L2(Ω)] ≤ α. For the error estimates, we will choose to work with τ, h

(chosen independently) such that, for (τ, h) satisfying τ ≤ τ̃ , h ≤ h̃
‖uh − u‖L4[0,T ;L2(Ω)] ≤ δε4, when d = 3,
‖uh − u‖L4[0,T ;L2(Ω)] ≤ δε7/2, when d = 2,
‖uh − u‖L4[0,T ;L2(Ω)] ≤ δε3, when d = 2, k = 0, 1,

(4.6)
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where δ > 0 (to be chosen later) is independent of ε. Note that due to the unconditional stability in

L4[0, T ;L4(Ω)] with bounds independent of ε, τ̃ , h̃ can be chosen independent of ε. We conclude this Sec-
tion by a short remark regarding the computation of such discrete solution.

Remark 4.7. It is expected, that at least for moderate values of the papemeter ε, even when τ ≈ h, the
computation of the fully-discrete solution follows by standard techniques. However, when using high order
schemes, due to the large and non-symmetric structure of the associated system, special attention is necessary.
For specialized preconditioners for high-order discontinuous Galerkin schemes, we refer the reader to the recent
work [38].

5. Error estimates

5.1. Preliminary Estimates

The following projections related to discontinuous Galerkin time-stepping schemes will be used.

Definition 5.1. (1) The projection P locn : C[tn−1, tn;L2(Ω)] → Pk[tn−1, tn;Uh] satisfies (P locn w)n = Phw(tn),
and ∫ tn

tn−1

(w − P locn w,wh) = 0, ∀wh ∈ Pk−1[tn−1, tn;Uh].

In the above definition, we have used the convention (P locn w)n ≡ (P locn w)(tn), and Ph : L2(Ω) → Uh is the
orthogonal L2 projection operator onto Uh ⊂ H1(Ω).

(2) The projection P loch : C[0, T ;L2(Ω)]→ Uh satisfies

P loch w ∈ Uh and (P loch w)|(tn−1,tn] = P locn (w|[tn−1,tn]).

In the following Lemma, we collect several results regarding optimal rates of convergence for the above
projection (see e.g. [13]).

Lemma 5.2. Let Uh ⊂ H1(Ω), and P loch defined in Definition 5.1 respectively. Then, for all w ∈ L2[0, T ;H l+1(Ω)]∩
Hk+1[0, T ;L2(Ω)] there exists constant C ≥ 0 independent of h, τ such that

‖w − P loch w‖L2[0,T ;L2(Ω)] ≤ C
(
hl+1‖w‖L2[0,T ;Hl+1(Ω)] + τk+1‖w(k+1)‖L2[0,T ;L2(Ω)]

)
,

‖w − P loch w‖L2[0,T ;H1(Ω)] ≤ C
(
hl‖w‖L2[0,T ;Hl+1(Ω)] + (τk+1/h)‖w(k+1)‖L2[0,T ;L2(Ω)]

)
,

‖w − P loch w‖L∞[0,T ;L2(Ω)] ≤ C
(
hl+1‖w‖L∞[0,T ;Hl+1(Ω)] + τk+1‖w(k+1)‖L∞[0,T ;L2(Ω)]

)
.

Let k = 0, l = 1, and w ∈ L2[0, T ;H2(Ω)] ∩H1[0, T ;L2(Ω)]. Then, there exists constant C ≥ 0 independent of
h, τ such that,

‖w − P loch w‖L∞[0,T ;L2(Ω)] + ‖w − P loch w‖L2[0,T ;H1(Ω)] ≤ C
(
h‖w‖L2[0,T ;H2(Ω)]

+τ1/2(‖wt‖L2[0,T ;L2(Ω)] + ‖w‖L2[0,T ;H2(Ω)])
)
.

Remark 5.3. If more regularity (in time) is available then the above estimates can be improved. In particular,
if w ∈ L2[0, T ;H l+1(Ω)] ∩Hk+1[0, T ;H1(Ω)], then we obtain,

‖w − P loch w‖L2[0,T ;H1(Ω)] ≤ C
(
hl‖w‖L2[0,T ;Hl+1(Ω)] + τk+1‖w(k+1)‖L2[0,T ;H1(Ω)]

)
.
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The fully-discrete Galerkin orthogonality can be written as follows: Subtracting (3.1) from (2.1), we obtain
for every wh ∈ Uh and for n = 1, ..., N ,

(en−, w
n
h−) +

∫ tn

tn−1

(−〈e, wht〉+ a(e, wh)) dt (5.1)

+(1/ε2)

∫ tn

tn−1

(
(u3
h − u3, wh)− (uh − u,wh)

)
dt = (en−1

− , wn−1
h+ )

where e = uh − u denotes the error. We will split the error as e = (uh − up) + (up − u) ≡ eh + ep, where up
is the discontinuous Galerkin solution of a linear parabolic pde with right hand side ut −∆u, and initial data
up0 = Phu0, i.e., for every wh ∈ Uh and for n = 1, ..., N , up ∈ Uh is the solution of,

(unp−, w
n
h−) +

∫ tn

tn−1

(
− 〈up, wht〉+ a(up, wh)

)
dt (5.2)

= (un−1
p+ , wn−1

+ ) +

∫ tn

tn−1

〈ut −∆u,wh〉dt.

Integrating by parts the last term on the right-hand side, using the fact that ∂u
∂n = 0, we obtain the orthogality

condition: for n = 1, ..., N , and wh ∈ Uh

(enp−, w
n
h−) +

∫ tn

tn−1

(
− 〈ep, wht〉+ a(ep, wh)

)
dt = (en−1

p+ , wn−1
+ ). (5.3)

The following best approximation estimate under minimal regularity assumptions that bound the error ep =
up − u in terms of the local projections of Definition 5.1 is straightforward application of [12, Theorem 2.2 and
Theorem 2.3]):

‖ep‖L∞[0,T ;L2(Ω)] + ‖ep‖L2[0,T ;H1(Ω)] ≤ C
(
‖Phu(0)− u(0)‖L2(Ω) (5.4)

+‖u− P loch u‖L∞[0,T ;L2(Ω)] + ‖u− P loch u‖L2[0,T ;H1(Ω)]

)
,

where C is a constant depending upon Ω and the constant Ck of Proposition 4.1. In addition,

‖up‖L∞[0,T ;H1(Ω)] ≤ C(‖u0‖H1(Ω) + ‖ut −∆u‖L2[0,T ;L2(Ω)]). (5.5)

by [13, Theorem 4.10]. Another key ingredient will be an optimal estimate in L4[0, T ;L2(Ω)] by Leykekham
and Vexler (see [34, Corollary 4]), which states that if the solution u satisfies u ∈ L4[0, T ;H2(Ω)], ut ∈
L4[0, T ;L2(Ω)], then there exists a constant C independent of τ , h such that,

‖ep‖L4[0,T ;L2(Ω)] ≤ C ln

(
T

τ

)(
τ + h2

) (
‖ut‖L4[0,T ;L2(Ω)] + ‖u‖L4[0,T ;H2(Ω)]

)
. (5.6)

Returning back to the orthogonality condition (5.1) and using (5.3) we obtain, the following relation for
eh = uh − up: For all wh ∈ Uh and for n = 1, ..., N ,

(enh−, w
n
h−) +

∫ tn

tn−1

(−〈eh, wht〉+ a(eh, wh)) dt (5.7)

+(1/ε2)

∫ tn

tn−1

(
(u3
h − u3, wh)− (uh − u,wh)

)
dt = (en−1

h− , wn−1
h+ ).
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Adding and subtracting the term u3
p in the nonlinear term, we equivalently obtain,

(enh−, w
n
h−) +

∫ tn

tn−1

(−〈eh, wht〉+ a(eh, wh)) dt− (en−1
h− , wn−1

h+ )

+(1/ε2)

∫ tn

tn−1

(
(u3
h − u3

p, wh)− (eh, wh)
)
dt

+(1/ε2)

∫ tn

tn−1

(
u3
p − u3, wh)− (ep, wh)

)
dt = 0. (5.8)

Our focus is to bound eh in terms of ep without introducing constants that depend exponentially upon 1/ε.
To simplify the presentation, we will denote by C∞ = ‖u‖L∞[0,T ;L∞(Ω)], and we note that if in addition to

(2.2), u0 ∈ L∞(Ω), with norm bounded independent of ε then C∞ is also bounded independent of ε.
We first recall the spectral estimate of [17], which states that if u is solution of (1.1) then there exists a

positive constant Cs independent of ε such that,

inf
φ∈H1(Ω),φ 6=0

‖∇φ‖2L2(Ω) + (1/ε2)
(
(3u2 − 1)φ, φ

)
‖φ‖2L2(Ω)

≥ −Cs. (5.9)

We follow the approach presented in Section 3. In particular, given right hand side eh ∈ L∞[0, T ;L2(Ω)],
and terminal data ψNh+ = 0, we seek ψh ∈ Uh such that for all wh ∈ Pk[tn−1, tn;Uh], and for all n = N, ..., 1,

−(ψnh+, w
n
h−) +

∫ tn

tn−1

(
(ψh, wht) + a(ψh, wh)

)
dt+ (ψn−1

h+ , wn−1
h+ )

+
1

ε2

∫ tn

tn−1

(
3u2ψh, wh

)
dt− 1

ε2

∫ tn

tn−1

(ψh, wh)dt =

∫ tn

tn−1

(eh, wh)dt. (5.10)

Note that despite the fact that the above pde is a linearized analog of the Allen-Cahn equation, the spectral
estimate can be applied directly to obtain a preliminary bound on the ‖.‖L2[0,T ;H1(Ω)] norm and at arbitrary
time-points, when k = 0, 1.

Lemma 5.4. Let eh ∈ L2[0, T ;L2(Ω)], and u ∈ L4[0, T ;L4(Ω)] with bounds independent of ε. Then, for

τn ≤ Ck ε2

‖u‖2
L∞[0,T ;L∞(Ω)]

, ψh ∈ Uh satisfies for all n = N, ..., 1,

‖ψn−1
h+ ‖L2(Ω) + ‖ψh‖L2[0,T ;L2(Ω)] + ‖uψh‖L2[0,T ;L2(Ω)] + ε‖ψh‖L2[0,T ;H1(Ω)] ≤ C‖eh‖L2[0,T ;L2(Ω)],

‖ψh‖L∞[0,T ;L2(Ω)] ≤
C

ε
‖eh‖L2[0,T ;L2(Ω)].

where the constants C depend only upon Cs, the domain, the constant Ck of Lemma 4.2 and the data f, u0

(through the norms of ‖u‖L4[0,T ;L4(Ω)]), and are independent of τ, h, ε. In addition, there exists a costant C
depending upon Cs, the domain, the constant Ck of Lemma 4.2, and the norm ‖u‖L∞[0,T ;L∞(Ω)] such that,

‖ψh‖L∞[0,T ;H1(Ω)] + ‖∆hψh‖L2[0,T ;L2(Ω)] ≤
C∞
ε2
‖eh‖L2[0,T ;L2(Ω)].

Here ∆hψh ∈ Uh denotes a discrete approximation of ∆ψ, defined by,
(∆hψh(.), wh) = a(ψh(.), wh) + (ψh(.), wh), for all wh ∈ Uh and for every t ∈ (tn−1, tn].
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Proof. Step 1: Stability estimates in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)]: We rewrite (5.10) as follows:

−(ψnh+, w
n
h−) +

∫ tn

tn−1

(
(ψh, wht) + ε2a(ψh, wh)

)
dt+ (ψn−1

h+ , wn−1
h+ )

+(1− ε2)

(∫ tn

tn−1

a(ψh, wh)dt+
1

ε2

∫ tn

tn−1

(
3(u2 − 1)ψh, wh

)
dt

)

+

∫ tn

tn−1

((3u2 − 1)ψh, wh)dt =

∫ tn

tn−1

(eh, wh)dt. (5.11)

Setting wh = ψh into (5.11) and using the spectral estimate (5.9) we deduce,

1

2
‖ψn−1

h+ ‖
2
L2(Ω) −

1

2
‖ψnh+‖2L2(Ω) +

1

2
‖[ψnh ]‖2L2(Ω) + ε2

∫ tn

tn−1

‖∇ψh‖2L2(Ω)dt

−(1− ε2)Cs

∫ tn

tn−1

‖ψh‖2L2(Ω)dt+ 3

∫ tn

tn−1

‖uψh‖2L2(Ω)dt

≤ 3

2

∫ tn

tn−1

‖ψh‖2L2(Ω)dt+
1

2

∫ tn

tn−1

‖eh‖2L2(Ω)dt.

Hence, using standard algebra we obtain,

1

2
‖ψn−1

h+ ‖
2
L2(Ω) −

1

2
‖ψnh+‖2L2(Ω) +

1

2
‖[ψnh ]‖2L2(Ω) + ε2

∫ tn

tn−1

‖∇ψh‖2L2(Ω)dt

+3

∫ tn

tn−1

‖uψh‖2L2(Ω)dt ≤ C(Cs)

∫ tn

tn−1

‖ψh‖2L2(Ω)dt+
1

2

∫ tn

tn−1

‖eh‖2L2(Ω)dt. (5.12)

where the constant C(Cs) depends on Cs but it is independent of ε. For low order schemes k = 0, 1, a standard
Gronwall Lemma provides the estimates at arbitrary time points, as well as the estimate for ‖∇ψh‖2L2[0,T ;L2(Ω)].

For higher order schemes, we proceed using the technique of Section 4, based on the approximation of the discrete
characteristic. Hence, following exactly the same approach as in Proposition 4.3, for fixed t ∈ (tn−1, tn), we
obtain with zh ∈ Uh independent of t, and ρ defined as in Lemma 4.2 (suitably modified to handle the backwards
in time problem)

(ψh(t)− ψnh+, zh)

= −
∫ tn

tn−1

(
a(ψh, zhρ) + (1/ε2)((3u2 − 1)ψh, zhρ)

)
ds+

∫ tn

tn−1

(eh, zhρ)ds

≤ Ck
[ ∫ tn

tn−1

‖∇ψh‖L2(Ω)‖∇zh‖L2(Ω)ds+

∫ tn

tn−1

‖eh‖L2(Ω)‖zh‖L2(Ω)ds

+(1/ε2)

∫ tn

tn−1

(
‖uψh‖L2(Ω)‖u‖L∞(Ω)‖zh‖L2(Ω) + ‖ψh‖L2(Ω)‖zh‖L2(Ω)

)
ds
]
,

where Ck is the constant of Lemma 4.2. Since, zh ∈ Uh is independent of t, we deduce,

(ψh(t)− ψnh+, zh) ≤ Ck
[
‖∇zh‖L2(Ω)

∫ tn

tn−1

‖∇ψh‖L2(Ω)ds+ ‖zh‖L2(Ω)

∫ tn

tn−1

‖eh‖L2(Ω)ds

+‖u‖L∞[0,T ;L∞(Ω)]
1

ε2
‖zh‖L2(Ω)

∫ tn

tn−1

‖uψh‖L2(Ω)ds+
1

ε2
‖zh‖L2(Ω)

∫ tn

tn−1

‖ψh‖L2(Ω)ds
]
.
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Therefore, setting zh = ψh(t) (for the previously fixed t), integrating with respect to time, and using Hölder’s
and Young’s inequalities, we deduce (with different Ck),

∫ tn

tn−1

‖ψh(t)‖2L2(Ω)dt ≤ Ckτn‖ψ
n
h+‖2L2(Ω) + Ckτn‖∇ψh‖2L2[tn−1,tn;L2(Ω)] + Ckτn‖eh‖L2[tn−1,tn;L2(Ω)]‖ψh‖L2[tn−1,tn;L2(Ω)]

+‖u‖L∞[0,T ;L∞(Ω)]
Ckτn
ε2
‖uψh‖L2[tn−1,tn;L2(Ω)]‖ψh‖L2[tn−1,tn;L2(Ω)]

+
Ck
ε2
τn‖ψh‖L2[tn−1,tn;L2(Ω)]‖ψh‖L2[tn−1,tn;L2(Ω)].

≤ Ckτn‖ψnh+‖2L2(Ω) + Ckτn(‖∇ψh‖2L2[tn−1,tn;L2(Ω)] + ‖ψh‖2L2[tn−1,tn;L2(Ω)])

+
Ckτn
ε2
‖uψh‖2L2[tn−1,tn;L2(Ω)] + ‖u‖2L∞[0,T ;L∞(Ω)]

Ckτn
ε2
‖ψh‖2L2[tn−1,tn;L2(Ω)]

+
Ckτn
ε2
‖ψh‖2L2[tn−1,tn;L2(Ω)] + Ckτn‖eh‖2L2[tn−1,tn;L2(Ω)].

The proof is now completed using standard techniques. We choose τn small enough to hide the L2[tn−1, tn;L2(Ω)]-
norm on the left, i.e, τn ≤ (ε2/4Ck‖u‖2L∞[0,T ;L∞(Ω)]), and τn ≤ (ε2/4Ck) to obtain,

(1/4)

∫ tn

tn−1

‖ψh(t)‖2L2(Ω)dt ≤ Ckτn‖ψ
n
h+‖2L2(Ω) + Ckτn‖∇ψh‖2L2[tn−1,tn;L2(Ω)]

+
Ckτn
ε2
‖uψh‖2L2[tn−1,tn;L2(Ω)] + Ckτn‖eh‖2L2[tn−1,tn;:2(Ω)]. (5.13)

Then we substitute the resulting bound into (5.12), and hide the terms involving ‖uψh‖L2[tn−1,tn;L2(Ω)] and

‖∇ψh‖L2[0,T ;L2(Ω)] on the left. We note that the worst dependence on ε, is τn ≤ ε2

Ck‖u‖2L∞[0,T ;L∞(Ω)]

. Summing

the resulting inequalities using a standard Gronwall Lemma, we obtain the first estimate. Returning back to

(5.13), diving by τn and using an inverse in time estimate, ‖ψ‖2L∞[tn−1,tn;L2(Ω)] ≤
Ck
τn

∫ tn
tn−1 ‖ψh(t)‖2L2(Ω)dt we

obtain the second estimate.
Step 2: Stability estimates in L∞[0, T ;H1(Ω)]: The proof is essentially contained in [13, Theorem 4.10]. For
completeness we describe the main arguments. By definition of ∆hψh, and since ψh ∈ Pk[tn−1, tn;Uh], we also
have that ∆hψh ∈ Pk[tn−1, tn;Uh]. Setting wh = ψht, and wh = ∆hψh we deduce,

1

2

d

dt
(‖∇ψh‖2L2(Ω) + ‖ψh‖2L2(Ω)) = (∆hψh, ψht), and

a(ψh,∆hψh) + (ψh,∆hψh) = ‖∆hψh‖2L2(Ω).

Hence, setting ∆hψh into (5.10), substituting the last two equalities and using standard algebra we obtain,

(1/2)‖ψn−1
h+ ‖

2
H1(Ω) + (1/2)‖[ψn−1

h ]‖2H1(Ω)

+

∫ tn

tn−1

‖∆hψh‖2L2(Ω)dt−
∫ tn

tn−1

(ψh,∆hψh)dt

+
1

ε2

∫ tn

tn−1

(3u2ψh,∆hψh)dt− 1

ε2

∫ tn

tn−1

(ψh,∆hψh)dt

= (1/2)‖∇ψnh+‖2H1(Ω) +

∫ tn

tn−1

(eh,∆hψh)dt. (5.14)
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Note that
∫ tn
tn−1(ψh,∆hψh)dt ≤ 1

4

∫ tn
tn−1 ‖∆hψh‖2L2(Ω)dt+

∫ tn
tn−1 ‖ψh‖2L2(Ω)dt, and

∣∣∣ 1

ε2

∫ tn

tn−1

(3u2ψh,∆hψh)− (ψh,∆hψh)dt
∣∣∣

≤ (1/4)

∫ tn

tn−1

‖∆hψh‖2L2(Ω)dt+
C2
∞
ε4

∫ tn

tn−1

‖uψh‖2L2(Ω)dt+
1

ε4

∫ tn

tn−1

‖ψh‖2L2(Ω)dt.

Substituting the above inequality into (5.14) and summing the resulting inequalities, and using the bounds
‖uψh‖L2[0,T ;L2(Ω) ≤ C‖eh‖L2[0,T ;L2(Ω)] and ‖ψh‖L2[0,T ;L2(Ω)] ≤ C‖eh‖L2[0,T ;L2(Ω)], we deduce that,

‖ψn−1
h+ ‖

2
H1(Ω) + ‖∆hψh‖2L2[0,T ;L2(Ω)] ≤

C2
∞ + 1

ε4
‖eh‖2L2[0,T ;L2(Ω)],

which is the desired estimate. The stability bound in L∞[0, T ;H1(Ω)] follows directly from the above technique
when k = 0, 1. For higher order schemes we refer the reader to [13, Theorem 4.10]. �

Now, we are ready to prove the following bound, which will allow us to apply a bootstrap argument. Using
an appropriate duality argument, we avoid the use of Gronwall type inequalities. We note that the temporal /
spacial restriction in terms of ε is stated in terms of the available regularity. Applying the results of Lemma 2.1
and Remark 2.2 we can quantify this dependence only upon data.

Proposition 5.5. Let τ, h, ε, satisfy τ ≤ τ̃ , h ≤ h̃ (where τ̃ , h̃ defined in (4.6)) and let the assumptions of
Lemma 5.4 hold. In addition, suppose that

• if u ∈ L4[0, T ;H2(Ω)], ut ∈ L4[0, T ;L2(Ω)] then τ, h satisfy

(1) ln(Tτ )(τ + h2) ≤ δCε4

(‖u‖L4[0,T ;H2(Ω)]+‖ut‖L4[0,T ;L2(Ω)])
, when d = 3,

(2) ln(Tτ )(τ + h2) ≤ δCε7/2

(‖u‖L4[0,T ;H2(Ω)]+‖ut‖L4[0,T ;L2(Ω)])
, when d = 2,

(3) ln(Tτ )(τ + h2) ≤ δCε3

(‖u‖L4[0,T ;H2(Ω)]+‖ut‖L4[0,T ;L2(Ω)])
, when d = 2, k = 0, 1,

or

• if u ∈ L2[0, T ;H2(Ω)], ut ∈ L2[0, T ;L2(Ω)], then τ, h satisfy,

(1) (τ1/2 + h)3/2 ≤ δCε4

(‖u‖L2[0,T ;H2(Ω)]+‖ut‖L2[0,T ;L2(Ω)])
, when d = 3,

(2) (τ1/2 + h)3/2 ≤ δCε7/2

(‖u‖L2[0,T ;H2(Ω)]+‖ut‖L2[0,T ;L2(Ω)])
, when d = 2,

(3) (τ1/2 + h)3/2 ≤ δε3

(‖u‖L2[0,T ;H2(Ω)]+‖ut‖L2[0,T ;L2(Ω)])
, when d = 2, k = 0, 1,

where δ > 0 an algebraic constant (to be chosen later) with constant C depending only upon the domain
(independent of ε, h, τ). Then, there exists a constant C > 0 independent of τ, h, ε, such that the following
estimate holds:

‖eh‖L2[0,T ;L2(Ω)] ≤ C
( 1

ε2
(‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])‖ep‖L2[0,T ;H1(Ω)]

+
1

ε2
‖ep‖L2[0,T ;L2(Ω)] + ‖u‖L∞[0,T ;L∞(Ω)]‖ep‖L2[0,T ;L2(Ω)]

+ Cδ(‖ehuh‖L2[0,T ;L2(Ω)] + ‖ehup‖L2[0,T ;L2(Ω)])
)
.
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Proof. Setting wh = eh into (5.10), and using integration by parts in time, we obtain: for all n = N, ..., 1,

−(ψnh+, e
n
h−) + (ψnh−, e

n
h−) +

∫ tn

tn−1

−(ψht, eh)dt+

∫ tn

tn−1

a(ψh, eh)dt

+
1

ε2

∫ tn

tn−1

(
(3u2 − 1)ψh, eh

)
dt =

∫ tn

tn−1

‖eh‖2L2(Ω)dt. (5.15)

Setting wh = ψh into (5.8), we deduce for all n = 1, ..., N ,

(enh−, ψ
n
h−) +

∫ tn

tn−1

(−(eh, ψht) + a(eh, ψh)) dt− (en−1
h− , ψn−1

h+ )

+
1

ε2

∫ tn

tn−1

(
(eh(u2

h + u2
p + uhup), ψh)− (eh, ψh)

)
dt

+
1

ε2

∫ tn

tn−1

(
(ep(u

2
p + u2 + upu), ψh)− (ep, ψh)

)
dt = 0. (5.16)

Subtracting (5.16) from (5.15), and rearranging terms, we obtain, for each n = 1, ..., N ,∫ tn

tn−1

‖eh‖2L2(Ω)dt = −(ψnh+, e
n
h−) + (en−1

h− , ψn−1
h+ )

− 1

ε2

∫ tn

tn−1

(
(ep(u

2
p + u2 + upu), ψh)− (ep, ψh)

)
dt

− 1

ε2

∫ tn

tn−1

(
(u2
h + u2

p + uhup − 3u2)eh, ψh
)
dt,

or, equivalently, ∫ tn

tn−1

‖eh‖2L2(Ω)dt = −(ψnh+, e
n
h−) + (en−1

h− , ψn−1
h+ )

− 1

ε2

∫ tn

tn−1

(
(ep(u

2
p + u2 + upu), ψh)− (ep, ψh)

)
dt

− 1

ε2

∫ tn

tn−1

(
((u2

h − u2) + (u2
p − u2) + uhup − u2)eh, ψh

)
dt. (5.17)

First, note adding and subtracting u2
p in the term u2

h − u2, using the relation,

uhup − u2 = (uh − up + up)up − u2 ≡ (uh − up)up + u2
p − u2

and substituting the resulting relation into (5.17) we arrive at:∫ tn

tn−1

‖eh‖2L2(Ω)dt = −(ψnh+, e
n
h−) + (en−1

h− , ψn−1
h+ )

− 1

ε2

∫ tn

tn−1

(
(ep(u

2
p + u2 + upu), ψh)− (ep, ψh)

)
dt

− 1

ε2

∫ tn

tn−1

((
(u2
h − u2

p) + 3(u2
p − u2) + (uh − up)up

)
eh, ψh

)
dt. (5.18)
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Summing the equalities (5.18), noting that e0
h− = 0 = φNh+, and using Hölder’s and Young’s inequalities, and

the identity a2 − b2 = (a− b)(a+ b), we obtain,

∫ T

0

‖eh‖2L2(Ω)dt ≤
C

ε2

∫ T

0

‖ep‖L6(Ω)(‖u2
p‖L3(Ω) + ‖u2‖L3(Ω))‖ψh‖L2(Ω)dt

+
1

ε2

∫ T

0

‖ep‖L2(Ω)‖ψh‖L2(Ω)dt

+
2

ε2

∫ T

0

(‖ehuh‖L2(Ω) + ‖ehup‖L2(Ω))‖eh‖L2(Ω)‖ψh‖L∞(Ω)dt

+
3

ε2

∫ T

0

‖ep‖L2(Ω)‖ehup‖L2(Ω)‖ψh‖L∞(Ω)dt

+
3

ε2

∫ T

0

‖u‖L∞(Ω)‖ep‖L2(Ω)‖eh‖L2(Ω)‖ψh‖L∞(Ω)dt. (5.19)

For d = 3, we employ the inequality ‖ψh‖L∞(Ω) ≤ C‖∇ψh‖1/2L2(Ω)‖∆hψh‖1/2L2(Ω) (which can be proved in an

identical way as in [29, pp 298]) to get

∫ T

0

‖eh‖2L2(Ω)dt ≤
C

ε2

∫ T

0

‖ep‖L6(Ω)(‖u2
p‖L3(Ω) + ‖u2‖L3(Ω))‖ψh‖L2(Ω)dt

+
1

ε2

∫ T

0

‖ep‖L2(Ω)‖ψh‖L2(Ω)dt

+
2

ε2
‖ψh‖1/2L∞[0,T ;H1(Ω)]

∫ T

0

(‖ehuh‖L2(Ω) + ‖ehup‖L2(Ω))‖eh‖L2(Ω)‖∆hψh‖1/2L2(Ω)dt

+
3

ε2
‖ψh‖1/2L∞[0,T ;H1(Ω)]

∫ T

0

‖ep‖L2(Ω)‖ehup‖L2(Ω)‖∆hψh‖1/2L2(Ω)dt

+
3

ε2
‖ψh‖1/2L∞[0,T ;H1(Ω)]

∫ T

0

‖u‖L∞(Ω)‖ep‖L2(Ω)‖eh‖L2(Ω)‖∆hψh‖1/2L2(Ω)dt.

Therefore, using the stability bounds of ψh of Lemma 5.4, i.e., ‖ψh‖L2[0,T ;L2(Ω)] ≤ ‖eh‖L2[0,T ;L2(Ω)],

‖ψh‖L∞[0,T ;L6(Ω)] ≤ C
ε2 ‖eh‖L2[0,T ;L2(Ω)], and ‖∆hψh‖L2[0,T ;L2(Ω)] ≤ C

ε2 ‖eh‖L2[0,T ;L2(Ω)] to deduce,

∫ T

0

‖eh‖2L2(Ω)dt

≤ C

ε2
(‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])‖ep‖L2[0,T ;L6(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+
1

ε2
‖ep‖L2[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+
C

ε4
(‖ehuh‖L2[0,T ;L2(Ω)] + ‖ehup‖L2[0,T ;L2(Ω)])‖eh‖L4[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+
C

ε4
‖ep‖L4[0,T ;L2(Ω)]‖ehup‖L2[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+
C

ε4
‖u‖L∞[0,T ;L∞(Ω)]‖ep‖L2[0,T ;L2(Ω)]‖eh‖L4[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)].
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Note due to the Theorem 4.6 there exists τ̃ , h̃ such that ‖e‖L4[0,T ;L2(Ω)] ≤ δε4 for every τ ≤ τ̃ and h ≤ h̃.

Hence, using (5.4), and the improved estimate in L4[0, T ;L2(Ω)], (see e.g. [34]), we obtain that

‖eh‖L4[0,T ;L2(Ω)] ≤ δε4 + ‖ep‖L4[0,T ;L2(Ω)].

≤ δε4 + C ln

(
T

τ

)(
τ + h2

) (
‖u‖L4[0,T ;H2(Ω)] + ‖ut‖L4[0,T ;L2(Ω)]

)
≤ 2δε4,

provided that ln
(
T
τ

) (
τ + h2

)
≤ δCε4

(‖u‖L4[0,T ;H2(Ω)]+‖ut‖L4[0,T ;L2(Ω)])
. Substituting the above bound, we deduce,

∫ T

0

‖eh‖2L2(Ω)dt

≤ C

ε2
(‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])‖ep‖L2[0,T ;L6(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+
1

ε2
‖ep‖L2[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+δ(‖ehuh‖L2[0,T ;L2(Ω)] + ‖ehup‖L2[0,T ;L2(Ω)])‖eh‖L2[0,T ;L2(Ω)]

+‖u‖L∞[0,T ;L∞(Ω)]‖ep‖L2[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)].

The estimate for the three dimensional case now follows by standard algebra. For d = 2, we note that

‖ψh‖L∞(Ω) ≤ C‖ψh‖1/2L2(Ω)‖∆hψh‖1/2L2(Ω) (see [29]), hence using the stability bounds of Lemma 5.4, and in par-

ticular the fact that ‖ψh‖L∞[0,T ;L2(Ω)] ≤ C
ε ‖eh‖L2[0,T ;L2(Ω)], we deduce from (5.19),

∫ T

0

‖eh‖2L2(Ω)dt

≤ C

ε2
(‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])‖ep‖L2[0,T ;L6(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+
1

ε2
‖ep‖L2[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+
C

ε7/2
(‖ehuh‖L2[0,T ;L2(Ω)] + ‖ehup‖L2[0,T ;L2(Ω)])‖eh‖L4[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+
C

ε7/2
‖ep‖L4[0,T ;L2(Ω)]‖ehup‖L2[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+
C

ε7/2
‖u‖L∞[0,T ;L∞(Ω)]‖ep‖L2[0,T ;L2(Ω)]‖eh‖L4[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)].

The proof now follows using similar arguments. Indeed, choosing τ̃ , h̃ to guarantee, ‖e‖L4[0,T ;L2(Ω)] ≤ δε7/2, for

τ ≤ τ̃ , h ≤ h̃, and noting that

‖ep‖L4[0,T ;L2(Ω)] ≤ C ln

(
T

τ

)(
τ + h2

) (
‖u‖L4[0,T ;H2(Ω)] + ‖ut‖L4[0,T ;L2(Ω)]

)
≤ Cδε7/2

provided that ln
(
T
τ

) (
τ + h2

)
≤ Cδε7/2

‖u‖L4[0,T ;H2(Ω)]+‖ut‖L4[0,T ;L2(Ω)]
, we derive the desired estimate. Finally, we

turn our attention to the case where k = 0, 1 and d = 2. Then, we note that Lemma 5.4, implies that
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‖ψh‖L∞[0,T ;L2(Ω)] ≤ C, where C is independent of ε, τ, h. As a consequense, we deduce from (5.19),

∫ T

0

‖eh‖2L2(Ω)dt

≤ C

ε2
(‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])‖ep‖L2[0,T ;L6(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+
1

ε2
‖ep‖L2[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+
C

ε3
(‖ehuh‖L2[0,T ;L2(Ω)] + ‖ehup‖L2[0,T ;L2(Ω)])‖eh‖L4[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+
C

ε3
‖ep‖L4[0,T ;L2(Ω)]‖ehup‖L2[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)]

+
C

ε3
‖u‖L∞[0,T ;L∞(Ω)]‖ep‖L2[0,T ;L2(Ω)]‖eh‖L4[0,T ;L2(Ω)]‖eh‖L2[0,T ;L2(Ω)].

Therefore, we derive the desired estimate, provided that τ̃ , h̃ are chosen to guarantee, ‖e‖L4[0,T ;L2(Ω)] ≤ δε3, for

τ ≤ τ̃ , h ≤ h̃, and similarly ln
(
T
τ

) (
τ + h2

)
≤ Cδε3

‖u‖L4[0,T ;H2(Ω)]+‖ut‖L4[0,T ;L2(Ω)]
.

Finally if less regularity is available, i.e., u ∈ L2[0, T ;H2(Ω)], ut ∈ L2[0, T ;L2(Ω)] then using the bound

‖ep‖L4[0,T ;L2(Ω)] ≤ C‖ep‖
1/2
L∞[0,T ;L2(Ω)]‖ep‖

1/2
L2[0,T ;L2(Ω)], we easily deduce the restrictions,

(1) (τ1/2 + h)3/2 ≤ δCε4

(‖u‖L2[0,T ;H2(Ω)]+‖ut‖L2[0,T ;L2(Ω)])
, when d = 3,

(2) (τ1/2 + h)3/2 ≤ δCε7/2

(‖u‖L2[0,T ;H2(Ω)]+‖ut‖L2[0,T ;L2(Ω)])
, when d = 2.

(3) (τ1/2 + h)3/2 ≤ δε3

(‖u‖L2[0,T ;H2(Ω)]+‖ut‖L2[0,T ;L2(Ω)])
, when d = 2, k = 0, 1,

which completes the proof �

Remark 5.6. There are many ways to further quantify the restriction between the temporal and the spatial
discretiation parameters. If we apply the results of Lemma 2.1 and Remark 2.2, with σ = 0, and σ̃ = 1, we
deduce that

‖u‖L4[0,T ;H2(Ω)] ≤ C‖u‖
1/2
L∞[0,T ;H2(Ω)]‖u‖

1/2
L2[0,T ;H2(Ω)] ≤ C/ε.

Therefore, the temporal and spatial parameter discretization restriction can be expressed as,

(1) ln(T/τ)(τ + h2) ≤ δCε5, when d = 3,
(2) ln(T/τ)(τ + h2) ≤ δCε9/2, when d = 2,
(3) ln(T/τ)(τ + h2) ≤ δCε4, when d = 2, k = 0, 1.

In a similar way, when u ∈ L2[0, T ;H2(Ω)], ut ∈ L2[0, T ;L2(Ω)] then using the results of Lemma 2.1, with
σ = 0, we deduce,

(1) (τ1/2 + h)3/2 ≤ δCε5, when d = 3,
(2) (τ1/2 + h)3/2 ≤ δCε9/2, when d = 2.
(3) (τ1/2 + h)3/2 ≤ δCε4, when d = 2, k = 0, 1.

where δ > 0 is a positive algebraic constant independent of τ, h, ε (to be chosen later).
We note also that the assumptions of Proposition 5.5 can be replaced by the more general assumption

‖ep‖L4[0,T ;L2(Ω)] ≤ Cδε4. Since ep = up − u refers to the standard error related to discontinuous Galerkin
approximation of a linear parabolic pde, with right hand side ut −∆u. Therefore, from (5.4) and Lemma 5.2,
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for instance, we may derive the following restriction when d = 3

‖ep‖L4[0,T ;L2(Ω)] ≤ C
(
τk+1

h
‖u(k+1)‖L2[0,T ;L2(Ω)] + hl‖u‖L2[0,T ;Hl+1(Ω)]

)1/2

×
(
τk+1‖u(k+1)‖L2[0,T ;L2(Ω)] + hl+1‖u‖L2[0,T ;Hl+1(Ω)]

)1/2

≤ Cδε4.

5.2. Best approximation error estimates

Now, we are ready to proceed with the main estimate, using a boot-strap argument.

Theorem 5.7. Let τ, h, ε, satisfy τ ≤ τ̃ , h ≤ h̃ (where τ̃ , h̃ defined in (4.6)) and let the assumptions of Lemma
5.4 hold. In addition, suppose that

• if u ∈ L4[0, T ;H2(Ω)], ut ∈ L4[0, T ;L2(Ω)] then τ, h satisfy

(1) ln(Tτ )(τ + h2) ≤ Cε4

(‖u‖L4[0,T ;H2(Ω)]+‖ut‖L4[0,T ;L2(Ω)])
, when d = 3,

(2) ln(Tτ )(τ + h2) ≤ Cε7/2

(‖u‖L4[0,T ;H2(Ω)]+‖ut‖L4[0,T ;L2(Ω)])
, when d = 2,

(3) ln(Tτ )(τ + h2) ≤ Cε3

(‖u‖L4[0,T ;H2(Ω)]+‖ut‖L4[0,T ;L2(Ω)])
, when d = 2, k = 0, 1,

or

• if u ∈ L2[0, T ;H2(Ω)], ut ∈ L2[0, T ;L2(Ω)], then τ, h satisfy,

(1) (τ1/2 + h)3/2 ≤ Cε4

(‖u‖L2[0,T ;H2(Ω)]+‖ut‖L2[0,T ;L2(Ω)])
, when d = 3,

(2) (τ1/2 + h)3/2 ≤ Cε7/2

(‖u‖L2[0,T ;H2(Ω)]+‖ut‖L2[0,T ;L2(Ω)])
, when d = 2,

(3) (τ1/2 + h)3/2 ≤ Cε3

(‖u‖L2[0,T ;H2(Ω)]+‖ut‖L2[0,T ;L2(Ω)])
, when d = 2, k = 0, 1,

where C depending only upon the domain (independent of ε, h, τ). Then, there exists a constant (still) denoted
by C depending only upon Ω, and Ck but independent of τ, h, ε, such that, for all n = 1, ..., N ,

‖eh‖2L2[0,T ;H1(Ω)] + (1/ε2)(‖ehuh‖2L2[0,T ;L2(Ω)] + ‖ehup‖2L2[0,T ;L2(Ω)]) + ‖enh−‖2L2(Ω)

+(1/ε2)‖eh‖4L4[0,T ;L4(Ω)] +

N−1∑
i=1

‖[eih]‖2L2(Ω)

≤ C(1/ε6)
(
‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])

2‖ep‖2L2[0,T ;H1(Ω)] + ‖ep‖2L2[0,T ;L2(Ω)]

)
.

Suppose also that (2.2) holds, with σ = 0 when k ≥ 1. Then, there exists a constant C depending only upon
Ω, and Ck such that

‖eh‖2L∞[0,T ;L2(Ω)] ≤ C(1/ε6)
(

(‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])
2‖ep‖2L2[0,T ;H1(Ω)]

+‖ep‖2L2[0,T ;L2(Ω)]

)
.

Proof. Step 1: Estimate at partition points and in L2[0, T ;H1(Ω)]. Since, we have already obtained a bound on
‖eh‖L2[0,T ;L2(Ω)] with constant depending polynomially upon 1/ε, we may return to the orthogonality condition
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(5.8) and set wh = eh. Then, for every n = 1, ..., N , we have:

1

2
‖enh−‖2L2(Ω) +

∫ tn

tn−1

‖∇eh‖2L2(Ω)dt+
1

2
‖[en−1

h ]‖2L2(Ω)

+
1

2ε2

∫ tn

tn−1

(‖ehuh‖2L2(Ω) + ‖ehup‖2L2(Ω))dt+ ‖[en−1
h ]‖2L2(Ω)

≤ 1

2
‖en−1
h− ‖

2
L2(Ω) +

1

ε2

∫ tn

tn−1

‖eh‖2L2(Ω)dt

+
1

ε2

∫ tn

tn−1

(
|(ep(u2

p + u2 + upu), eh)|+ |(ep, eh)|
)
dt. (5.20)

It remains to bound the last two terms: First, we note that Hölder’s and Young’s inequalities imply

1

ε2

∫ tn

tn−1

|(ep(u2
p + u2 + upu), eh)|dt

≤ C

ε2

∫ tn

tn−1

‖ep‖L6(Ω)(‖up‖2L6(Ω) + ‖u‖2L6(Ω))‖eh‖L2(Ω)dt

≤ C

ε2
(‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])

2

∫ tn

tn−1

‖ep‖2H1(Ω)dt+
C

ε2

∫ tn

tn−1

‖eh‖2L2(Ω)dt.

Substituting the last inequality into (5.20) and summing the resulting inequalities we obtain

1

2
‖eNh−‖2L2(Ω) +

∫ T

0

‖∇eh‖2L2(Ω)dt+
1

2

N∑
i=1

‖[ei−1
h ]‖2L2(Ω)

+(1/2ε2)

∫ T

0

(‖ehuh‖2L2(Ω) + ‖ehup‖2L2(Ω))dt

≤ C

ε2

∫ T

0

‖eh‖2L2(Ω)dt+
C

ε2

∫ T

0

‖ep‖2L2(Ωdt

+
C

ε2
(‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])

2

∫ T

0

‖ep‖2H1(Ω)dt

It remains to replace the term (1/ε2)
∫ T

0
‖eh‖2L2(Ω)dt using Proposition 5.5. First, note that the bound of

Proposition 5.5 implies that:

1

2
‖eNh−‖2L2(Ω) +

∫ T

0

‖∇eh‖2L2(Ω)dt+
1

2

N∑
i=1

‖[ei−1
h ]‖2L2(Ω)

+(1/2ε2)

∫ T

0

(‖ehuh‖2L2(Ω) + ‖ehup‖2L2(Ω))dt

≤ C

ε6
(‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])

2

∫ T

0

‖ep‖2H1(Ω)dt

+
δC

ε2

∫ T

0

(‖ehuh‖2L2(Ω) + ‖ehup‖2L2(Ω))dt

+C

(
1

ε6
+

1

ε2
‖u‖2L∞[0,T ;L∞(Ω)]

)∫ T

0

‖ep‖2L2(Ω)dt.
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Now, noting that we may choose δ aiming to hide the ‖ehuh‖L2[0,T ;L2(Ω)], and ‖ehup‖L2[0,T ;L2(Ω)] on the left

hand-side to get the first estimate. Note that the worst dependence upon 1/ε in front of ‖ep‖2L2[0,T ;L2(Ω)]

is C/ε6, since C
(

1
ε6 + 1

ε2 ‖u‖
2
L∞[0,T ;L∞(Ω)]

)
≤ C/ε6. It is clear that the bounds on ‖euuh‖L2[0,T ;L2(Ω) and on

‖ehup‖L2[0,T ;L2(Ω)] imply a similar estimate for ‖eh‖L4[0,T ;L4(Ω)], since

(1/ε2)

∫ T

0

‖eh‖4L4(Ω)dt ≤ (2/ε2)

∫ T

0

∫
Ω

|eh|2(|uh|2 + |up|2)dxdt

≤ (2/ε2)

∫ T

0

(‖ehuh‖2L2(Ω) + ‖ehup‖2L2(Ω))dt.

The estimate at partition points follows in standard way, summing the equations (5.20) from i = 1 to i = n,
and using the previous bounds.
Step 2: Estimates at arbitrary time points. We use similar ideas as in the proof of Proposition 4.3. For fixed
t ∈ [tn−1, tn) and zh ∈ Uh we set wh(s) = zhρ(s) into (5.8), with ρ(s) ∈ Pk[tn−1, tn] such that

ρ(tn−1) = 1,

∫ tn

tn−1

ρq =

∫ t

tn−1

q, q ∈ Pk−1[tn−1, tn].

From Lemma4.2 we deduce that ‖ρ‖L∞ ≤ Ck, with Ck independent of t, and

∫ tn

tn−1

〈eht, wh〉ds+ (en−1
h+ − en−1

h− , wn−1
h+ )

=

∫ t

tn−1

〈eht, zh〉ds+ (en−1
h+ − en−1

h− , ρ(tn−1)zh) = (eh(t)− en−1
h− , zh).

Therefore, integrating by parts (in time), (5.8), setting wh(s) = zhρ(s), using the above equality, and standard
algebra, we obtain:

(eh(t)− en−1
h− , zh) ≤ Ck

[ ∫ tn

tn−1

∫
Ω

|∇eh||∇zh|dxds

+
1

ε2

∫ tn

tn−1

∫
Ω

(
|eh|(|uh|2 + |up|2)|zh|+ |eh||zh|

)
dxds

+
1

ε2

∫ tn

tn−1

∫
Ω

(
|ep|(|up|2 + |u|2)|zh|+ |ep||zh|

)
dxds

]
. (5.21)

Adding and subtracting up, u, and using standard algebra, we may bound

∫ tn

tn−1

∫
Ω

|eh|(|uh|2 + |up|2)|zh|dxds ≤ C
∫ tn

tn−1

∫
Ω

(|eh|3 + |eh||up − u|2 + |eh||u|2)|zh|dxds.
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Hence, using Hölder’s inequality into (5.21) we derive

〈eh(t)− en−1
h− , zh〉

≤ Ck
[ ∫ tn

tn−1

‖∇eh‖L2(Ω)‖∇zh‖L2(Ω) +
1

ε2

∫ tn

tn−1

‖eh‖L2(Ω)‖zh‖L2(Ω)ds

+
1

ε2

∫ tn

tn−1

(
‖eh‖3L4(Ω)‖zh‖L4(Ω) + ‖eh‖L4(Ω)‖e2

p‖L2(Ω)‖zh‖L4(Ω)

)
dt

+
1

ε2

∫ tn

tn−1

‖eh‖L6(Ω)‖u2‖L3(Ω)‖zh‖L2(Ω)ds

+
1

ε2

∫ tn

tn−1

‖ep‖L6(Ω)‖u2
p + u2 + upu‖L3(Ω)‖zh‖L2(Ω)ds

+
1

ε2

∫ tn

tn−1

‖ep‖L2(Ω)‖zh‖L2(Ω)ds
]
. (5.22)

Noting that zh is independent of t, and standard algebra implies that

〈eh(t)− en−1
h− , zh〉

≤ Ck
[
‖∇zh‖L2(Ω)

∫ tn

tn−1

‖∇eh‖L2(Ω)ds+
1

ε2
‖zh‖L2(Ω)

∫ tn

tn−1

‖eh‖L2(Ω)ds

+
1

ε2
‖zh‖L4(Ω)

∫ tn

tn−1

‖eh‖3L4(Ω)ds+
1

ε2
‖zh‖L4(Ω)

∫ tn

tn−1

‖eh‖L4(Ω)‖ep‖2L4(Ω)ds

+
1

ε2
‖zh‖L2(Ω)

∫ tn

tn−1

‖eh‖L6(Ω)‖u‖2L6(Ω)ds

+
1

ε2
‖zh‖L2(Ω)

∫ tn

tn−1

‖ep‖L6(Ω)(‖up‖2L6(Ω) + ‖u‖2L6(Ω))ds

+
1

ε2
‖zh‖L2(Ω)

∫ tn

tn−1

‖ep‖L2(Ω)ds
]
. (5.23)

Using once more Hölder’s inequality and the fact that u, up ∈ L∞[0, T ;H1(Ω)], we deduce with different constant
Ck (independent of ε):

〈eh(t)− en−1
h− , zh〉 ≤ Ck

[
‖∇zh‖L2(Ω)τ

1/2
n ‖∇eh‖L2[tn−1,tn;L2(Ω)]

+
τ

1/2
n

ε2
‖zh‖L2(Ω)‖eh‖L2[tn−1;tn;L2(Ω)] +

τ
1/4
n

ε2
‖zh‖L4(Ω)‖eh‖3L4[tn−1,tn;L4(Ω)]

+
τ

1/4
n

ε2
‖zh‖L4(Ω)‖eh‖L4[tn−1,tn;L4(Ω)]‖ep‖2L4[0,T ;L4(Ω)]

+
τ

1/2
n

ε2
‖zh‖L2(Ω)‖eh‖L2[tn−1,tn;L6(Ω)]‖u‖2L∞[0,T ;L6(Ω)]

+
τ

1/2
n

ε2
‖zh‖L2(Ω)‖ep‖L2[tn−1;tn;H1(Ω)](‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])

+
τ

1/2
n

ε2
‖zh‖L2(Ω)‖ep‖L2[tn−1,tn;L2(Ω)]

]
.
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Setting zh = eh(t) and integrating with respect to time, using Hölder’s inequallity to bound
∫ tn
tn−1 ‖eh(t)‖L4(Ω)dt ≤

τ3/4‖eh‖L4[tn−1,tn;L4(Ω)], and standard calculations, we derive,

∫ tn

tn−1

‖eh(t)‖2L2(Ω)dt ≤ ‖e
n−1
h− ‖L2(Ω)τ

1/2
n ‖eh(t)‖L2[tn−1,tn;L2(Ω)] (5.24)

+ Ck

[
τn‖∇eh‖2L2[tn−1,tn;L2(Ω)] +

τn
ε2
‖eh‖4L4[tn−1,tn;L4(Ω)]

+
τn
ε2
‖eh‖2L4[tn−1;tn;L4(Ω)]‖ep‖

2
L4[tn−1,tn;L4(Ω)]

+
τn
ε2
‖eh‖L2[tn−1;tn;L2(Ω)]‖eh‖L2[tn−1,tn;H1(Ω)]‖u‖2L∞[0,T ;L6(Ω)]

+
τn
ε2
‖eh‖L2[tn−1,tn;L2(Ω)]‖ep‖L2[tn−1,tn;H1(Ω)](‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])

+
τn
ε2
‖eh‖L2[tn−1,tn;L2(Ω)]‖ep‖L2[tn−1,tn;L2(Ω)]

]
.

For the first term of the left hand side, using Young’s inequality, we obtain:

‖en−1
h− ‖L2(Ω)τ

1/2
n ‖eh(t)‖L2[tn−1,tn;L2(Ω)]

≤ 1

4
‖eh(t)‖2L2[tn−1,tn;lL2(Ω)] + Cτn‖en−1

h+ ‖
2
L2(Ω).

For the fourth term, we note that using Young’s inequality, we obtain

τn
ε2
‖eh‖2L4[tn−1,tn;L4(Ω)]‖ep‖

2
L4[tn−1,tn;L4(Ω)]

≤ τn
ε2
‖eh‖4L4[tn−1,tn;L4(Ω)] +

τn
ε2
‖ep‖4L4[tn−1,tn;L4(Ω)].

For the fifth term, we note that ‖u‖L∞[0,T ;H1(Ω)] ≤ C, where C is a constant independent of ε, due to assumption
(2.2) with σ = 0. Therefore,

τn
ε2
‖eh‖L2[tn−1,tn;L2(Ω)]‖eh‖L2[tn−1,tn;H1(Ω)]‖u‖2L∞[0,T ;L6(Ω)]

≤ τn
ε4
‖eh‖2L2[tn−1,tn;L2(Ω)] + τn‖eh‖2L2[tn−1,tn;H1(Ω)]

≤ τn
ε4
‖eh‖2L2[tn−1,tn;L2(Ω)] + τn(‖∇eh‖2L2[tn−1,tn;L2(Ω)] + ‖eh‖2L2[tn−1,tn;L2(Ω)]).

For the last two terms, using similar algebra, we deduce,

τn
ε2
‖eh‖L2[tn−1,tn;L2(Ω)]‖ep‖L2[tn−1,tn;H1(Ω)](‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])

≤ τn
ε4
‖eh‖2L2[tn−1,tn;L2(Ω)]

+ τn‖ep‖2L2[tn−1,tn;H1(Ω)] × (‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])
2,

τn
ε2
‖eh‖L2[tn−1,tn;L2(Ω)]‖ep‖L2[tn−1,tn;L2(Ω)]

≤ τn
ε4
‖eh‖2L2[tn−1,tn;L2(Ω)] + τn‖ep‖2L2[tn−1,tn;L2(Ω)].
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Note that choosing Ckτn
ε4 ≤ 1

8 , we may hide all ‖eh‖2L2[tn−1,tn;L2(Ω)] of (5.24) on the left. Hence, dividing by τn
the resulting inequality and using an inverse estimate in time, we arrive at,

‖eh‖2L∞[tn−1,tn;L2(Ω)] ≤ Ck
(
‖en−1
h+ ‖

2
L2(Ω) + ‖∇eh‖2L2[tn−1,tn;L2(Ω)] +

1

ε2
‖eh‖4L4[tn−1,tn;L4(Ω)]

+ ‖ep‖2L2[tn−1,tn;H1(Ω)](‖up‖
2
L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)])

2 + ‖ep‖2L2[tn−1,tn;L2(Ω)]

+
1

ε2
‖ep‖4L4[tn−1,tn;L4(Ω)]

)
.

Now, note that

‖ep‖4L4[tn−1,tn;L4(Ω)] ≤ (‖up‖2L∞[tn−1,tn;L4(Ω)] + ‖u‖2L∞[tn−1,tn;H1(Ω)])‖ep‖
2
L2[tn−1,tn;H1(Ω)].

Hence, the desired estimate follows by replacing the bounds of ‖en−1
h+ ‖2L2(Ω),

1
ε2 ‖eh‖

4
L4[0,T ;L4(Ω)], ‖∇eh‖

2
L2[0,T ;L2(Ω)].

�

Remark 5.8. The estimate at arbitrary time points results in a best-approximation result by using triangle
inequality. In addition, the dependence of the constant upon 1

ε doesn’t deteriorate further, despite the fact that

we treat schemes of arbitrary order, provided that the natural assumption 1
ε2 ‖(u

2
0− 1)2‖L1(Ω) ≤ C holds (which

corresponds to σ = 0 in (2.2)).

The best approximation estimate now follows by triangle inequality. In the remaining we present our results
by selecting σ = 0 in (2.2) and σ̃ = 1 (see Lemma 2.1 and Remark 2.2).

Theorem 5.9. Suppose that the assumptions of Theorem 5.7 hold. Then, there exists a constant C depending
only upon Ω, Ck and ‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)] but independent of ε, and the such that,

‖e‖L2[0,T ;H1(Ω)] + ‖e‖L∞[0,T ;L2(Ω)] ≤ C(1/ε3)
(
‖ep‖L2[0,T ;H1(Ω)] + ‖ep‖L∞[0,T ;L2(Ω)]

)
.

If in addition u ∈ L2[0, T ;H l+1(Ω)], u(k+1) ∈ L∞[0, T ;L2(Ω)] there exists a positive constant C that depends
only upon Ω, Ck and it is independent of h, τ, ε, such that

‖e‖L2[0,T ;H1(Ω)] + ‖e‖L∞[0,T ;L2(Ω)]

≤ C(1/ε5)
(
hl‖u‖L2[0,T ;Hl+1(Ω)] + τk+1‖u(k+1)‖L∞[0,T ;L2(Ω)]

)
.

Proof. Under the assumptions of Theorem 5.7 the rates of convergence follow by the estimates on ep in
L2[0, T ;H1(Ω)], and L∞[0, T ;L2(Ω)] norms using Lemma 5.2 in equation (5.4), since ‖up‖L∞[0,T ;H1(Ω)] +
‖u‖L∞[0,T ;H1(Ω)] ≤ C/ε by (5.5). �

Proposition 5.10. Let k = 0, l = 1. If u ∈ L2[0, T ;H2(Ω)] ∩ H1[0, T ;L2(Ω)] suppose that τ, h satisfy
τ1/2 + h ≤ Cε8/3 for d = 2, (see Remark 5.6) and τ1/2 + h ≤ Cε10/3 for d = 3 (see also Remark 5.6). Then
there exists a positive constant C depending only upon Ω, Ck and ‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)] but

independent of h, τ, ε such that,

‖e‖L2[0,T ;H1(Ω)] + ‖e‖L∞[0,T ;L2(Ω)] ≤ C(1/ε3)(τ1/2 + h).

If u ∈ L4[0, T ;H2(Ω)], ut ∈ L4[0, T ;L2(Ω)] suppose that τ, h satisfy ln(Tτ )(τ + h2) ≤ Cε4 when d = 2 (see

Remark 5.6) and ln(Tτ )(τ + h2) ≤ Cε5 when d = 3 (see Remark 5.6). Then, there exists a positive constant C

depending only upon Ω, Ck and ‖up‖2L∞[0,T ;L6(Ω)] + ‖u‖2L∞[0,T ;L6(Ω)] but independent of h, τ, ε such that,

‖e‖L2[0,T ;H1(Ω)] + ‖e‖L∞[0,T ;L2(Ω)] ≤ C(1/ε3)(τ1/2 + h).
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If in addition ut ∈ L2[0, T ;H1(Ω)], then we obtain, under the above assumption,

‖e‖L2[0,T ;H1(Ω)] + ‖e‖L∞[0,T ;L2(Ω)] ≤ C(1/ε3)(τ + h).

Proof. The estimates concerning the lowest order scheme follow directly from Theorem 5.7, and the approxima-
tion properties of ep in L2[0, T ;H1(Ω)] and L2[0, T ;L2(Ω)] norms, when u ∈ L2[0, T ;H2(Ω)]∩H1[0, T ;H1(Ω)].
When u ∈ L2[0, T ;H2(Ω)] ∩ H1[0, T ;L2(Ω)] then the time step and spacial discretization size restrictions are
replaced by the ones of Remark 5.6. �

A remark regarding a discrete analog of the energy conservation property follows.

Remark 5.11. Given initial data u0 ∈ H1(Ω), and zero forcing term f = 0, it is well known that the solution of
(1.1) satisfies, for any t ≥ 0,

d

dt
E(t) + ‖ut(t)‖2L2(Ω) = 0 (5.25)

where E(t) denotes the associated energy i.e., for a.e. t ∈ (0, T ],

E(t) =

∫
Ω

(
1

2
|∇u|2 +

1

4ε2
(u2 − 1)2

)
dx.

It is clear that the discrete solution of (3.1) does not possess any meangingful regularity for uht, due to the
discontinuities in time and hence (5.25) is not valid by simply replacing u by uh. However, for any t ∈ (tn−1, tn],
we may formally rewrite (5.25) as,

(t− tn−1)
d

dt
E(t) + (t− tn−1)‖ut(t)‖2L2(Ω) = 0

and hence integrating with respect to time and using integration parts in time,

τnE(tn)−
∫ tn

tn−1

E(t)dt+

∫ tn

tn−1

(t− tn−1)‖ut(t)‖2L2(Ω) = 0. (5.26)

It is clear now that the above equality (5.26) is well defined, for discontinuous (in time) schemes, and (at least
formally) we may replace u by any uh ∈ Pk[tn−1, tn;Uh].

We observe that integrating by parts (in time), (3.1) and setting vh = (t− tn−1)uht ∈ Pk[tn−1, tn;Uh], with
k ≥ 1, we obtain ∫ tn

tn−1

(t− tn−1)‖uht‖2L2(Ω)dt

+

∫ tn

tn−1

(
(t− tn−1)

d

dt

(
‖∇uh(t)‖2L2(Ω) +

1

4ε2
‖(u2

h − 1)2‖L1(Ω)

))
dt = 0,

which implies (after integration by parts in time for the second integral)∫ tn

tn−1

(t− tn−1)‖uht‖2L2(Ω)dt+ τn

(
‖∇unh−‖2L2(Ω) +

1

4ε2
‖((u2)nh− − 1)2‖L1(Ω)

)
−
∫ tn

tn−1

(
‖∇uh(t)‖2L2(Ω) +

1

4ε2
‖(u2

h − 1)2‖L1(Ω)

)
dt = 0.

Hence, we have shown that the discrete solution constructed by (3.1) actually satisfies a discrete local analog
of the energy equality. It remains to prove that ‖∇unh−‖L2(Ω) and ‖unh−‖L4(Ω) are also bounded, independent
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of τ, h, which is easily obtained by using the results of Theorem 5.7 and an inverse estimate. Indeed, recall
that under the assumptions of Theorem 5.7, we deduce, for any u ∈ L2[0, T ;H2(Ω)] ∩H1[0, T ;H1(Ω)] for any
τ ≤ Ch,

‖uh‖L∞[0,T ;H1(Ω)] ≤ C
1

h
‖uh − up‖L∞[0,T ;L2(Ω)] + C‖up‖L∞[0,T ;H1(Ω)] ≤ C(1/ε2)

( τ
h

+ 1
)
.
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