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Abstract

An optimal Robin boundary control problem associated with semilinear parabolic partial differential
equations is considered. Existence of an optimal solution is proved and an optimality system of equations is
derived. Semidiscrete finite element approximations of the optimality system are defined and error estimates
are obtained.
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1. Introduction

We consider an optimal boundary control problem for the semilinear parabolic partial differ-
ential equation (PDE)

∂tu − div
[
A(x)∇u

] + φ(u) + b(t,x)u = f in (0, T ) × Ω (1.1)
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with the initial condition

u(0) = u0 in Ω (1.2)

and the Robin boundary condition

u + λ−1[A(x)∇u
] · n = g on (0, T ) × ∂Ω. (1.3)

Here, Ω is a two-dimensional convex polygon with a boundary ∂Ω , λ a positive constant, [0, T ]
a time interval, f a function in L2(0, T ;H 1(Ω)∗), u0 a function in L2(Ω), b(t,x) a continuous
function on [0, T ] × Ω , and A(x) a C1(Ω), symmetric-matrix-valued function that is uniformly
positive definite. Also, φ ∈ C2(R) satisfies the following monotonicity and growth conditions:

φ′(s) � 0 ∀s ∈ R,
∣∣φ′(s)

∣∣ � C3
(
1 + |s|r2−1) ∀s ∈ R,

sφ(s) � C1|s|r1 and
∣∣φ(s)

∣∣ � C2
(
1 + |s|r2

) ∀s ∈ R, (1.4)

where r1 ∈ (2,4) and r2 ∈ (1,3). The Robin boundary control g belongs to L2((0, T ) × ∂Ω)

and the control objective is to track a global target state U(t,x) in (0, T ) × Ω . We formulate the
control problem as follows: minimize the cost functional

J (u, g) = 1

2

T∫
0

∫
Ω

|u − U |2 dxdt + γ

2

T∫
0

∫
∂Ω

|g|2 ds dt (1.5)

subject to the initial boundary value problem (1.1)–(1.3).
In Section 2, we prove the existence of a solution for (1.1)–(1.3), establish the existence of

an optimal solution, and derive an optimality system of equations which the optimal solution
must satisfy. In Section 3, we define semidiscrete finite element approximations of the optimal-
ity system, quote the Brezzi–Rappaz–Raviart (BRR) theory for the approximation of a class of
nonlinear problems, and apply that theory to derive error estimates for the semidiscrete approxi-
mations of the optimality system.

Some remarks about the literature are in order. Extremal problems for linear parabolic PDE
with nonsmooth Dirichlet boundary control were analyzed mathematically and numerically
in [18]. In [17], a Robin boundary control problem for a linear parabolic PDE is studied. The
objective of the control problem in [17] was to determine the minimal time for the controlled
state to reach within a specified distance from the desired state. The convergence and error es-
timates for semidiscrete finite element approximations were studied in [17]. The Robin control
used in [17] was of the separation of variable type and the domain was assumed to be of class C∞
as required by elliptic regularity results. Several results are proposed and analyzed in the contin-
uous setting for a conjugate gradient method for solving an optimal control problem constrained
by a linear parabolic PDE in [28]. The problem studied in [28] involved a terminal-state tracking
functional and a Neumann boundary control. A key idea of [28] is to formulate the optimal solu-
tion as a solution to a system of two sequentially-coupled initial value problems; as a result, the
methods of [28] applies only to terminal-state functionals tracking functionals. In [23], error es-
timates for the fully-discrete approximation of a Neumann boundary control problem associated
to a homogeneous linear parabolic equation are presented.

In [19] (see also relevant work in [18]), Dirichlet and Neumann control problems are con-
sidered for linear homogeneous parabolic PDEs. Several results concerning analysis and finite
element approximations are presented based on semigroup techniques. In [26,27], nonlinear
boundary controls are used to minimize a general functional that can handle terminal, normal,
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and matching norms. The size of the control is constrained and additional regularity on the con-
trols is needed. A nonstandard weak form for the PDE is used for which mild solutions are
defined as Bochner integral solutions.

For boundary optimal control problems having states constrained by elliptic partial differen-
tial equations, there has been much progress with respect to both analyses and the finite element
approximations; see, e.g., [7,12–16,19]. Finally, a posteriori error estimates for a distributed op-
timal control problems governed by parabolic PDEs are studied in [20]. For an overview of
theoretical results in control theory, we refer the reader to [8,19], while for related references and
applications of flow control see [11].

It appears that little work has been done in case of semidiscrete error estimates for the optimal-
ity system arising from boundary optimal control problems for semilinear parabolic PDEs. The
main difficulty consists of the lack of sufficient techniques to “uncouple” the optimality system,
in particular in presence nonlinearities.

The optimality systems arising from boundary optimal control problems are usually coupled
and in order to uncouple the primal and dual variable, we will use the theory of Brezzi–Rappaz–
Raviart (BRR theory) which requires the availability of error estimates under minimal regularity
assumptions. The main advantage of this methodology is that it enables the derivation of esti-
mates of arbitrary order in the natural energy norms for all involved variables (primal, dual and
control) and it can handle nonlinearities as well as nonhomogeneous data. In addition, using the
BRR theory, we will be able to avoid the semigroup machinery.

Furthermore, the use of a Robin-type boundary control may alleviate the difficulties arising
from the nonhomogeneous boundary condition.

We note that although we confine our study to Robin-type boundary controls, semidiscrete
approximations of Neumann and distributed control problems can be treated in a similarly, and
in the latter case, more easily.

2. Existence of an optimal solution and an optimality system of equations

In this section we formulate and analyze the control problem in an appropriate mathematical
framework.

Throughout, C denotes a generic constant whose value changes with context. We freely make
use of the standard Sobolev spaces Hs(Ω) and Hs(∂Ω) for s ∈ R with norms ‖ ·‖s and ‖ ·‖s,∂Ω ,
respectively.

For p ∈ [1,∞], an interval (a, b) ⊂ R, and a Banach space B with norm ‖ · ‖B , we denote
by Lp(a, b;B) the set of measurable functions v : (a, b) → B such that

∫ b

a
‖v(t)‖p

B dt < ∞. The
norm on Lp(a, b;B) for p ∈ [1,∞) is defined by

‖v‖Lp(a,b;B) =
( b∫

a

∥∥v(t)
∥∥p

B
dt

)1/p

∀v ∈ Lp(a, b;B),

and for p = ∞ by

‖v‖L∞(a,b;B) = ess sup
∥∥v(t)

∥∥
B

∀v ∈ L∞(a, b;B).

(a,b)
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We denote by C([a, b];B) the set of all continuous functions v : [a, b] → B with the norm
‖v‖C([a,b];B) = maxt∈[a,b] ‖v(t)‖B . For real numbers s � 0 and p � 1, the space Hs(a, b;B)

is defined as follows. First,

Hs(R;B) = {
v ∈ L2(R;B): |τ |s v̂ ∈ L2(R;B)

}
endowed with the norm

‖v‖Hs(R;B) =
(∫

R

∥∥v(t)
∥∥2

B
dt +

∫
R

|τ |2s
∥∥v̂(τ )

∥∥2
B

dτ

)1/2

,

where v̂ is the temporal Fourier transform of v:

v̂(τ ) =
∫
R

e−2iπtτ v(t) dt.

Then, we set

Hs(a, b;B) = {
v = ṽ|[a,b]: ṽ ∈ Hs(R;B)

}
with the norm

‖v‖Hs(a,b;B) = inf
ṽ∈Hs(R;B)
ṽ|[a,b]=v

‖ṽ‖Hs(R;B) ∀v ∈ Hs(a, b;B).

A function v = v(t,x) ∈ Hs(a, b;B) for some spatial function space B is often simply writ-
ten as v(t). Further discussions of the Banach-space-valued Sobolev spaces Hs(a, b;B) may
be found in [6,22,24]. In particular, we will use the following function spaces involving time:
Hr(0, T ;Hs(Ω)) and Hr(0, T ;Hs(∂Ω)) for r, s ∈ R.

We also introduce the solution space W(0, T ) for (1.1)–(1.3) as

W(0, T ) ≡ L2(0, T ;H 1(Ω)
) ∩ H 1(0, T ;H 1(Ω)∗

)
with the norm defined by

‖v‖2
W(0,T ) = ‖v‖2

L2(0,T ;H 1(Ω))
+ ‖∂tv‖2

L2(0,T ;H 1(Ω)∗) ∀v ∈W(0, T ).

Given an f ∈ L2(0, T ;H 1(Ω)∗) and a g ∈ L2(0, T ;H−1/2(∂Ω)), a function u ∈ W(0, T ) is
said to be a (weak) solution of (1.1)–(1.3) if〈

∂tu(t), v
〉 + a

(
u(t), v

) + λ
[
u(t), v

]
∂Ω

= 〈
f (t), v

〉 + λ
〈
g(t), v

〉
∂Ω

∀v ∈ H 1(Ω), a.e. t, (2.1)

and

u(0) = u0 in L2(Ω), (2.2)

where 〈·,·〉 denotes the duality pairing between H 1(Ω)∗ and H 1(Ω) and 〈·,·〉∂Ω the duality
pairing between H−1/2(∂Ω) and H 1/2(∂Ω), see [6]. Equation (2.2) makes sense thanks to the
following lemma.

Lemma 2.1. Suppose v ∈ L2(0, T ;H 1(Ω)) ∩ H 1(0, T ;H 1(Ω)∗). Then,

v ∈ C
([0, T ];L2(Ω)

)
and

d

dt

∥∥v(t)
∥∥2

0 = 2
〈
v′(t), v(t)

〉
a.e. t ∈ (0, T ). (2.3)
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The proofs for Lemma 2.1 and the next lemma are identical to that of [6, Theorem 3, pp. 287–
288] and are omitted.

Lemma 2.2. Suppose v ∈ L2(0, T ;H 1/2(∂Ω)) ∩ H 1(0, T ;H−1/2(∂Ω)). Then,

v ∈ C
([0, T ];L2(∂Ω)

)
and

d

dt

∥∥v(t)
∥∥2

0,∂Ω
= 2

〈
v′(t), v(t)

〉
∂Ω

a.e. t ∈ (0, T ). (2.4)

The solution of (2.1)–(2.2) should be sought in L2(0, T ;H 1(Ω)) ∩ H 1(0, T ;H 1(Ω)∗) ∩
Lr2(0, T × Ω). The following lemma indicates that the requirement for the solution to belong to
Lr2(0, T × Ω) is redundant.

Lemma 2.3. The embedding

L2(0, T ;H 1(Ω)
) ∩ H 1(0, T ;H 1(Ω)∗

)
↪→ L4(0, T ;L4(Ω)

)
is continuous.

Proof. Using Sobolev embedding theorems and interpolation theory, we have∥∥w(t)
∥∥

L4(Ω)
� C

∥∥w(t)
∥∥

1/2 � C
∥∥w(t)

∥∥1/2
0

∥∥w(t)
∥∥1/2

1 .

Thus,

T∫
0

∥∥w(t)
∥∥4

L4(Ω)
dt � C

T∫
0

∥∥w(t)
∥∥2

0

∥∥w(t)
∥∥2

1 dt � C‖w‖2
L∞(0,T ;L2(Ω))

T∫
0

∥∥w(t)
∥∥2

1 dt

so that by virtue of Lemma 2.1 we obtain

T∫
0

∥∥w(t)
∥∥4

L4(Ω)
dt � C‖w‖4

W(0,T ).

This completes the proof. �
The optimal control problem described in Section 1 can now be stated precisely as follows:

seek a pair (u, g) ∈ W(0, T ) × L2(0, T ;L2(∂Ω)
)

such that

functional (1.5) is minimized subject to (2.1)–(2.2). (2.5)

We will prove the existence of a solution for the PDE problem (2.1)–(2.2), establish the exis-
tence of an optimal solution for (2.5), and derive an optimality system of equations.

2.1. Existence and uniqueness of solutions of the PDE problem

Theorem 2.4. Suppose f ∈ L2(0, T ;H 1(Ω)∗), u0 ∈ L2(Ω), and g ∈ L2(0, T ;H−1/2(∂Ω)).
Then, there exists a unique u ∈ L2(0, T ;H 1(Ω)) ∩ H 1(0, T ;H 1(Ω)∗) satisfying (2.1)–(2.2)
and

‖u‖L2(0,T ;H 1(Ω)) + ‖∂tu‖L2(0,T ;H 1(Ω)∗)
� C

(‖f ‖L2(0,T ;H 1(Ω)∗) + ‖u0‖0 + ‖g‖L2(0,T ;H−1/2(∂Ω))

)
. (2.6)
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Proof. The proof follows standard Galerkin techniques, see, e.g., [6,21]. We choose an orthogo-
nal basis {ek}∞k=1 of H 1(Ω) such that {ek}∞k=1 is orthonormal in L2(Ω). For each m = 1,2, . . . ,

we set Vm = span{e1, . . . , em} and let um = ∑m
k=1 d

(m)
k ek ∈ H 1(0, T ;Vm) be a solution of〈

u′
m,v

〉 + a[um,v] + λ[um,v]∂Ω + [
φ(um), v

] + [
b(t,x)um, v

] = 〈f, v〉 + λ〈g, v〉∂Ω

∀v ∈ Vm, a.e. t ∈ (0, T ),[
um(0), v

] = [u0, v] ∀v ∈ Vm. (2.7)

The existence of such um can be easily proved based on the assumptions on φ. Using Gronwall’s
inequality, we obtain the following energy estimate:

max
[0,T ]

∥∥um(t)
∥∥

0 + ‖um‖L2(0,T ;H 1(Ω)) + ∥∥u′
m

∥∥
L2(0,T ;H 1(Ω)∗)

� C
(‖f ‖L2(0,T ;H 1(Ω)∗) + ‖g‖L2(0,T ;H−1/2(∂Ω))

)
(2.8)

for m = 1,2, . . . . Thus, we may extract a subsequence of {um}∞m=1, still denoted by {um}∞m=1,
such that

um ⇀ u weakly in L2(0, T ;H 1(Ω)
)
,

u′
m ⇀ ∂tu weakly in L2(0, T ;H 1(Ω)∗

)
,

um|∂Ω ⇀ u|∂Ω weakly in L2(0, T ;H 1/2(∂Ω)
)
,

and

um → u strongly in L2(0, T ;L2(Ω)
)
,

where the strong convergence result follows directly from a well-known compact embedding
result; see, e.g., [24]. Also, Lemma 2.3 and (2.8) imply that {‖um‖L4(0,T ;L4(Ω))} is uniformly
bounded. Thus, by passing to the limit in (2.7), we see that u satisfies (2.1)–(2.2). Moreover, the
solution of (2.1)–(2.2) is unique. Passing to the limit in (2.8) yields (2.6). �
2.2. Existence of a solution to the optimal Robin control problem

Theorem 2.5. There exists a pair (u, g) ∈ W(0, T ) × L2(0, T ;L2(∂Ω)) that minimizes (1.5)
subject to (2.1)–(2.2).

Proof. Set Uad = {(ũ, g̃) ∈ W(0, T ) × L2(0, T ;L2(∂Ω)): (ũ, g̃) satisfies (2.1)–(2.2)}. Uad is
obviously nonempty because of Theorem 2.4.

Let {(un, gn)} ⊂ Uad be a minimizing sequence, i.e.,

lim
n→∞J (un, gn) = inf

(ũ,g̃)∈Uad

J (ũ, g̃), (2.9)

〈∂tun, v〉 + a[un, v] + λ[un, v]∂Ω + [
φ(un), v

] + [
b(t,x)un, v

] = 〈f, v〉 + λ[gn, v]∂Ω

∀v ∈ H 1(Ω), a.e. t, (2.10)

and

un(0) = u0 in Ω. (2.11)
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Equation (2.9) implies that ‖gn‖L2(0,T ;L2(∂Ω)) � C for all n. Then, using the estimate (2.6),
we deduce ‖un‖W(0,T ) � C for all n. Hence, we may extract a subsequence, still denoted by
{(un, gn)}, that satisfies the following convergence properties:

gn ⇀ g weakly in L2(0, T ;L2(∂Ω)
)
,

un ⇀ u weakly in L2(0, T ;H 1(Ω)
)
,

∂tun ⇀ ∂tu weakly in L2(0, T ;H 1(Ω)∗
)
,

un|∂Ω ⇀ u|∂Ω weakly in L2(0, T ;H 1/2(∂Ω)
)
,

and

un → u strongly in L2(0, T ;L2(Ω)
)

and a.e.

These convergence relations allow us to pass to the limit in (2.10)–(2.11) to show that (u, g)

satisfies (2.1)–(2.2).
Using the weak lower semicontinuity of the functional J , we have

J (u, g) � lim
n→∞J (un, gn) = inf

(ũ,g̃)∈Uad

J (ũ, g̃)

so that

J (u, g) = inf
(ũ,g̃)∈Uad

J (ũ, g̃).

This shows that (u, g) is an optimal solution. �
2.3. An optimality system of equations

We will use the Lagrange multiplier principle to derive an optimality system of equations that
the optimal solutions must satisfy.

We consider an abstract minimization problem. Let X1 and X2 be two Banach spaces. Let
J :X1 → R be a functional and F :X1 → X2 be a mapping. We seek a z ∈ X1 such that

J (z) = inf
u∈Uad

J (u), (2.12)

where

Uad = {
u ∈ X1: F(u) = 0

}
.

The Lagrange functional for the minimization problem (2.12) is defined by

L(z, q,λ0) = λ0J (z) + 〈
F(z), q

〉
(2.13)

for all z ∈ X1, λ0 ∈ R, and q ∈ X∗
2 , where X∗

2 is the dual space of X2 and 〈·,·〉 denotes the duality
pairing between X2 and X∗

2 . We quote a standard abstract Lagrange principle in the following
particular form (see [1,8]).

Theorem 2.6. Let z be a solution of (2.12). Assume that the mappings J and F are continuously
differentiable and that the image of the operator F ′(z) :X1 → X2 is closed. Then, there exist
q ∈ X∗

2 and λ0 ∈ R such that (q,λ0) �= (0,0), i.e., q and λ0 do not vanish simultaneously,〈
Lz(z, q,λ0), η

〉 = 0 ∀η ∈ X1, (2.14)



898 K. Chrysafinos et al. / J. Math. Anal. Appl. 323 (2006) 891–912
and

λ0 � 0, (2.15)

where Lz(·, · ,·) denotes the Fréchet derivative of L with respect to the first argument. Further-
more, if F ′(z) :X1 → X2 is an epimorphism, then λ0 �= 0 and λ0 can be taken as 1.

Theorem 2.7. Let (u, g) ∈ W(0, T ) × L2(0, T ;L2(∂Ω)) denote an optimal solution for (2.5).
Then, there exists ξ ∈W(0, T ) such that

−〈∂t ξ, η〉 + a[ξ, η] + λ[ξ, η]∂Ω + [
φ′(u)ξ, η

] + [
b(t,x)ξ, η

] = 〈u − U,η〉
∀η ∈ H 1(Ω), a.e. t, (2.16)

ξ(T ) = 0 in Ω, (2.17)

and

λξ + γg = 0 on (0, T ) × ∂Ω. (2.18)

Proof (Sketch). We define

X1 = W(0, T ) × L2(0, T ;L2(∂Ω)
)
,

X2 = L2(0, T ;H 1(Ω)∗
) × L2(Ω) × L2(0, T ;H−1/2(∂Ω)

)
.

The variable z is understood as the pair z = (u, g), the functional J (z) is defined as

J (z) ≡ 1

2

T∫
0

∫
Ω

|u − U |2 dxdt + γ

2

T∫
0

∫
∂Ω

|g|2 ds dt

and the operator F :X1 → X2 as the operator related to the constraint equations (1.1)–(1.3), i.e.,

F(u,g)

= (
∂tu − div

[
A(x)∇u

] + φ(u) + b(t,x)u,u(0) − u0, u|∂Ω + λ−1[A(x)∇u
] · n − g

)
.

The operator F ′(u) : X1 → X2 can be defined as

F ′(u)(ū, ḡ)

= (
∂t ū − div

[
A(x)∇ū

] + φ′(u)ū + b(t,x)ū, ū(0) − ū0, ū|∂Ω + λ−1[A(x)∇ū
] · n − ḡ

)
.

Note that the constraints can be expressed as F(u,g) = (f,0,0). The range of operator F ′(u)

is closed. It remains to show that it is also an epimorphism. First, observe that the operator is
continuous due to the embedding W(0, T ) ⊂ C(0, T ;L2(Ω)) and a well-known trace theorem
(see, e.g., [22]). Then, for each (f̄ , ū0, ḡ1) ∈ X2 we need to show that there exists a solution
(ū,0) ∈ X1 of system

∂t ū − div
[
A(x)∇ū

] + φ′(u)ū + b(t,x)ū = f̄ , ū(0) = ū0,

ū|∂Ω + λ−1[A(x)∇ū
] · n = ḡ1.

This is true due to growth assumptions on φ′(u), the linearity of the equation and the (chosen)
boundary condition (see, e.g., Theorem 2.4). Therefore, we may apply Theorem 2.6 to conclude
that there exist q ∈ L2(0, T ;H 1(Ω)), λ0 ∈ R, such that q,λ0 do not vanish simultaneously and〈

Lz(z, q,λ0), η
〉 = 0 ∀η ∈ X1,



K. Chrysafinos et al. / J. Math. Anal. Appl. 323 (2006) 891–912 899
where the Lagrangian is defined as

L
(
(u, g), ξ

)
= 1

2

T∫
0

∫
Ω

|u − U |2 dxdt + γ

2

T∫
0

∫
∂Ω

|g|2 ds dt

+
T∫

0

(〈u, ∂t ξ 〉 − a[u, ξ ] − [
φ(u), ξ

] − λ
[
u(t), ξ

]
∂Ω

+ 〈f, ξ 〉 + λ〈g, ξ 〉∂Ω

)
dt

− [
u(T ), ξ(T )

] + [
u0, ξ(0)

]
.

Note that we denote by ξ the multiplier q and that λ0 can be taken as 1 in the above defin-
ition. Combining the last two equalities, taking the derivative of the Lagrangian with respect
to the first argument and using standard techniques from Calculus of Variations (see, e.g., [8,
Section 2]), we conclude that there exists ξ ∈ W(0, T ) such that (2.16)–(2.18) hold. (The fact
∂t ξ ∈ L2(0, T ;H 1(Ω)∗) can be easily deduced by the linearity of our equation.) �

Theorem 2.7 implies that an optimal solution (u, g) must satisfy the system formed by
(2.1)–(2.2) and (2.16)–(2.18). Using (2.18), we can eliminate g in (2.1) and obtain the reduced
optimality system of equations:

〈∂tu, v〉 + a[u,v] + λ[u,v]∂Ω + [
φ(u), v

] + [
b(t,x)u, v

] = 〈f, v〉 − λ2γ −1[g, v]∂Ω

∀v ∈ H 1(Ω), a.e. t, (2.19)

(2.2), and (2.16)–(2.17).

3. Semidiscrete approximations of the optimality system

Let Vh be a family of finite element subspaces of H 1(Ω) defined over a family of regular
triangulations of Ω . The parameter h denotes the largest grid size for a given triangulation. We
assume that Vh satisfies the following approximation properties:

(i) for every v ∈ Hs(Ω),

inf
vh∈Vh

‖v − vh‖s → 0 as h → 0, s = −1,0,1; (3.1)

(ii) there exists a constant C > 0 such that for every v ∈ Hr+1(Ω) and every r ∈ [s − 1, k],
inf

vh∈Vh

‖v − vh‖s � Chr+1−s‖v‖r+1, s = −1,0,1, (3.2)

where k � 1 is a positive integer that is usually determined by the order of the piecewise polyno-
mials used to define Vh.

We also assume that finite element triangulations are uniformly regular so that the following
inverse inequality holds:

‖vh‖1 � Ch−1‖vh‖0 ∀vh ∈ Vh. (3.3)
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For detailed discussions of the properties (3.1)–(3.3) and constructions of the finite element
spaces with these properties, see, e.g., [4].

We denote by Ph the L2(Ω) projection from L2(Ω) onto Vh, namely, for each v ∈ L2(Ω),(
Phv − v,wh

) = 0 ∀wh ∈ Vh. (3.4)

As a consequence of (3.3), we have

‖Phv‖1 � C‖v‖1 ∀v ∈ H 1
0 (Ω); (3.5)

see [3,25].
The semidiscrete finite element approximations of the optimality system (2.19), (2.2) and

(2.16)–(2.17) are defined as follows: seek uh ∈ H 1(0, T ;Vh) and ξh ∈ H 1(0, T ;Vh) such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

〈∂tuh(t), v〉 + a[uh(t), vh] + λ[uh(t), vh]∂Ω + [φ(uh(t)), vh] + [b(t,x)uh(t), vh]
= 〈f (t), vh〉 − λ2γ −1〈ξh(t), vh〉∂Ω ∀vh ∈ Vh, a.e. t ∈ [0, T ],

uh(0) = Phu0,

−〈∂t ξh(t), ηh〉 + a[ξh(t), vh] + λ[ξh(t), ηh]∂Ω + [φ′(uh(t))ξh(t), ηh]
+ [b(t,x)ξh(t), ηh] = [u(t) − U(t), ηh] ∀ηh ∈ Vh, a.e. t ∈ [0, T ],

ξh(T ) = 0,

(3.6)

where Ph is the L2(Ω) projection onto Vh defined by (3.4).
The goal of this section is to prove the following error estimate for the semidiscrete approxi-

mations of the optimality system:

‖u − uh‖W(0,T ) + ‖ξ − ξh‖W(0,T ) � Chr
(‖u‖L2(0,T ;Hr+1(Ω)) + ‖ξ‖L2(0,T ;Hr+1(Ω))

+ ‖∂tu‖L2(0,T ;Hr−1(Ω)) + ‖∂tu‖L2(0,T ;Hr−1(Ω))

)
provided u, ξ ∈ L2(0, T ;Hr+1(Ω)) ∩ H 1(0, T ;Hr−1(Ω)) for some r ∈ [0, k].

We will use the approximation theory of Brezzi–Rappaz–Raviart (BRR) to prove this error
estimate.

3.1. Quotation of the Brezzi–Rappaz–Raviart theory for a class of nonlinear problems

The Brezzi–Rappaz–Raviart theory [2,5,9] implies that the error of approximations of solu-
tions of certain classes of nonlinear problem is basically the same as the error of approximations
of related linear problems. We quote the relevant results here.

Consider the following type of nonlinear problems on a Banach space X : we seek a ψ ∈ X
such that

ψ + T G(ψ) = 0, (3.7)

where Y is another Banach space, T ∈ L(Y;X ), and G is a C2 mapping from X into Y . We
say that ψ ∈ X is a regular solution of (3.7) if (3.7) holds and ψ + T Gψ(ψ) is an isomorphism
from X into X . Here, Gψ(·) denotes the Fréchet derivative of G(·). We assume that there exists
another Banach space Z , contained in Y , with continuous imbedding, such that

Gψ(ψ) ∈ L(X ;Z) ∀ψ ∈ X . (3.8)

Approximations are defined by introducing a subspace X h ⊂ X and an approximating opera-
tor T h ∈ L(Y;X h): we seek ψh ∈X h such that
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ψh + T hG
(
ψh

) = 0. (3.9)

Concerning the linear operator T h, we assume the approximation properties

lim
h→0

∥∥(
T h − T

)
ω

∥∥
X = 0 ∀ω ∈ Y, (3.10)

and

lim
h→0

∥∥T h − T
∥∥
L(Z;X )

= 0. (3.11)

Note that whenever the imbedding Z ↪→ Y is compact, (3.11) follows from (3.10) and moreover,
(3.8) implies that the operator T Gψ(ψ) ∈ L(X ;X ) is compact.

One of the results in [2] is the following theorem. In the statement, D2G represents the second
Fréchet derivatives of G.

Theorem 3.1. Let X and Y be Banach spaces. Assume that G is a C2 mapping from X into Y
and that D2G is bounded on all bounded sets of X . Assume that (3.8), (3.10), and (3.11) hold and
that ψ ∈ X is a regular solution of (3.7). Then, for h � h0 small enough, there exists a unique
ψh ∈ X h such that ψh is a regular solution of (3.9). Moreover, there exists a positive constant
C independent of h such that∥∥ψh − ψ

∥∥
X � C

∥∥(
T h − T

)
G(ψ)

∥∥
X . (3.12)

3.2. Recasting the optimality system and its semidiscrete approximations into the BRR
framework

We set X = W(0, T ) × W(0, T ) and Y = L2(0, T ;H 1(Ω)∗) × L2(0, T ;H−1/2(∂Ω)) ×
L2(Ω) × L2(0, T ;H 1(Ω)∗) × L2(Ω). We define the linear operator T :Y → X as follows:
(ũ, ξ̃ ) = T (f̃ , g̃, ũ0, ζ̃ , ξ̃T ) for (ũ, ξ̃ ) ∈ X and (f̃ , g̃, ũ0, ζ̃ , ξ̃T ) ∈ Y if and only if⎧⎪⎪⎪⎨⎪⎪⎪⎩

〈∂t ũ(t), v〉 + a[ũ(t), v] = 〈f̃ (t), v〉 + λ〈g̃(t), v〉∂Ω ∀v ∈ H 1
0 (Ω), a.e. t ∈ [0, T ],

ũ(0) = ũ0 in L2(Ω),

−〈∂t ξ̃ (t), η〉 + a[ξ̃ (t), η] = 〈ζ̃ (t), η〉 ∀η ∈ H 1
0 (Ω), a.e. t ∈ [0, T ],

ξ̃ (T ) = ξ̃T in L2(Ω).

We define the nonlinear operator G :X → Y by

G(ũ, ξ̃ ) = (−f + φ(ũ) + b(t,x)ũ, λ2γ ξ̃ , u0, ũ − U,0
) ∀(ũ, ξ̃ ) ∈ X ,

where f ∈ L2(0, T ;H 1(Ω)∗), u0 ∈ L2(Ω) and U ∈ L2(0, T ;L2(Ω)) are the prescribed (fixed)
data in (2.1). Clearly, the optimality system (2.19), (2.2) and (2.16)–(2.17) may be written as

(u, ξ) = −T G(u, ξ),

i.e., the optimality system is recast into the form of (3.7).
We set

Xh = H 1(0, T ;Vh) × H 1(0, T ;Vh)

and define the discrete operator Th :Y → Xh as follows: (ũh, ξ̃h) = Th(f̃ , g̃, ũ0, ζ̃ , ξ̃T ) for
(ũh, ξ̃ )h ∈X and (f̃ , g̃, ũ0, ζ̃ , ξ̃T ) ∈ Y if and only if
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈∂t ũh(t), vh〉 + a[ũh(t), vh] = 〈f̃ (t), vh〉 + λ〈g̃(t), vh〉∂Ω ∀vh ∈ Vh, a.e. t ∈ [0, T ],
ũh(0) = Phũ0,

−〈∂t ξ̃h(t), ηh〉 + a[ξ̃h(t), ηh] = 〈ζ̃ (t), ηh〉 ∀ηh ∈ Vh, a.e. t ∈ [0, T ],
ξ̃h(T ) = Phξ̃T ,

where Ph :L2(Ω) → Vh is the L2(Ω) projection. Comparing the definitions of Th and G with
(3.6), we see that (3.6) can be written as

(uh, ξh) = −ThG(uh, ξh),

i.e., the semidiscrete optimality system is recast into the form of (3.9).
In order to apply BRR theory to derive error estimates for the semidiscrete approximations of

the optimality system, we study in Section 3.3 the semidiscrete approximations of the associated
linear problem. Then, in Section 3.4, we establish some embedding and trace results that will
help us to choose an appropriate space Z in Theorem 3.1.

3.3. The linear boundary value problem and its semidiscrete approximations

We consider semidiscrete approximations of the linear Robin boundary value problem:

∂tu − div
[
A(x)∇u

] = f in Q ≡ (0, T ) × Ω,

u(0) = u0 in Ω,

and

u + λ−1[A(x)∇u
] · n = g on (0, T ) × ∂Ω.

We will work with the following weak formulation: seek u ∈W(0, T ) such that〈
∂tu(t), v

〉 + a
[
u(t), v

] + λ
[
u(t), v

]
∂Ω

= 〈
f (t), v

〉 + λ
〈
g(t), v

〉
∂Ω

∀v ∈ H 1(Ω), a.e. t, (3.13)

and

u(0) = u0 in L2(Ω). (3.14)

Lemma 3.2. The integration by parts formula

t∫
0

[
g(s), ∂t v(s)

]
∂Ω

ds = [
g(s), v(s)

]∣∣t
0 −

t∫
0

〈
∂tg(s), v(s)

〉
ds

holds for g ∈ L2(0, T ;H 1/2(∂Ω)) ∩ H 1(0, T ;H−1/2(∂Ω)) and v ∈ H 1(0, T ;H 1/2(∂Ω)).

Proof. The formula obviously holds for g, v ∈ H 1(0, T ;H 1/2(∂Ω)). Using the denseness of
H 1(0, T ;H 1/2(∂Ω)) in L2(0, T ;H 1/2(∂Ω)) ∩ H 1(0, T ;H−1/2(∂Ω)), we easily complete the
proof. �
Theorem 3.3. Suppose g ∈ L2(0, T ;H−1/2+θ (∂Ω)) ∩ Hθ(0, T ;H−1/2(∂Ω)), u0 ∈ Hθ(Ω),
and f ∈ L2(0, T ;H 1−θ (Ω)∗) for some θ ∈ [0,1]. Then, there exists a unique u ∈ L2(0, T ;
H 1+θ (Ω)) ∩ H 1(0, T ;H 1−θ (Ω)∗) satisfying (3.13)–(3.14) and
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‖u‖L2(0,T ;H 1+θ (Ω)) + ‖∂tu‖L2(0,T ;H 1−θ (Ω)∗)
� C

(‖f ‖L2(0,T ;H 1−θ (Ω)∗) + ‖u0‖θ + ‖g‖L2(0,T ;H−1/2+θ (∂Ω)) + ‖g‖Hθ (0,T ;H−1/2(∂Ω))

)
.

(3.15)

Proof. We only need to examine the cases θ = 0 and θ = 1, thanks to interpolation theorems.
For the case θ = 0, we state without proof the following results (this case may be treated in

a way similar to [6, §7.1.2, Theorems 1–3], thus detailed justifications are omitted). We choose
an orthogonal basis {ek}∞k=1 of H 1(Ω) such that {ek}∞k=1 is orthonormal in L2(Ω). For each

m = 1,2, . . . , we set Vm = span{e1, . . . , em} and let um = ∑m
k=1 d

(m)
k ek ∈ C([0, T ];Vm) be the

unique solution of[
u′

m,v
] + a[um,v] + λ[um,v]∂Ω = 〈f, v〉 + λ[g, v]∂Ω ∀v ∈ Vm, a.e. t ∈ (0, T ),[

um(0), v
] = [u0, v] ∀v ∈ Vm. (3.16)

The following energy estimates hold:

max
[0,T ]

∥∥um(t)
∥∥

0 + ‖um‖L2(0,T ;H 1(Ω)) + ∥∥u′
m

∥∥
L2(0,T ;H 1(Ω)∗)

� C
(‖f ‖L2(0,T ;H 1(Ω)∗) + ‖u0,m‖0 + ‖g‖L2(0,T ;H−1/2(∂Ω))

)
(3.17)

for m = 1,2, . . . . Thus, we may extract a subsequence of {um}∞m=1, still denoted by {um}∞m=1,
such that

um ⇀ u weakly in L2(0, T ;H 1(Ω)
)

and

u′
m ⇀ u′ weakly in L2(0, T ;H 1(Ω)∗

)
. (3.18)

By passage to the limits in (3.16) we see that u satisfies (3.13)–(3.14). Moreover, the solution to
(3.13)–(3.14) is unique. Also, passage to the limits in (3.17) yields

‖u‖L2(0,T ;H 1(Ω)) + ‖∂tu‖L2(0,T ;H 1(Ω)∗)
� C

(‖f ‖L2(0,T ;H 1(Ω)∗) + ‖u0‖0 + ‖g‖L2(0,T ;H−1/2(∂Ω))

)
. (3.19)

For the case θ = 1, we have g ∈ L2(0, T ;H 1/2(∂Ω)) ∩ H 1(0, T ;H−1/2(∂Ω)), u0 ∈ H 1(Ω)

and f ∈ L2(0, T ;L2(Ω)). Let {um}∞m=1 be the sequence defined in the case of θ = 0 and u

denotes the weak limit of um in the sense of (3.18). Setting v = u′
m(t) in (3.16), we obtain∥∥u′

m(t)
∥∥2

0 + 1

2

d

dt
a
[
um(t), um(t)

] + λ

2

d

dt

∥∥um(t)
∥∥2

0,∂Ω

= [
f (t), u′

m(t)
] + λ

[
g(t), u′

m(t)
]
∂Ω

� 1

2

∥∥f (t)
∥∥2

0 + 1

2

∥∥u′
m(t)

∥∥2
0 + λ

[
g(t), u′

m(t)
]
∂Ω

. (3.20)

Transferring the ‖u′
m(t)‖2

0/2 term on the right-hand side to the left-hand side and integrating
from 0 to t , we are led to

1

2

t∫
0

∥∥u′
m(s)

∥∥2
0 ds + 1

2
a
[
um(t), um(t)

] − 1

2
a
[
um(0), um(0)

] + λ

2

∥∥um(t)
∥∥2

0,∂Ω

− λ∥∥um(0)
∥∥2

0,∂Ω
2



904 K. Chrysafinos et al. / J. Math. Anal. Appl. 323 (2006) 891–912
� 1

2

t∫
0

∥∥f (s)
∥∥2

0 ds + λ

t∫
0

[
g(s), u′

m(s)
]
∂Ω

ds

= 1

2

t∫
0

∥∥f (s)
∥∥2

0 ds + λ
[
g(t), um(t)

]
∂Ω

− λ
[
g(0), um(0)

]
∂Ω

− λ

t∫
0

〈
∂tg(s), um(s)

〉
∂Ω

ds

� 1

2

t∫
0

∥∥f (s)
∥∥2

0 ds + C

ε

∥∥g(t)
∥∥2

−1/2,∂Ω
+ ε

∥∥um(t)
∥∥2

1/2,∂Ω
+ C

∥∥g(0)
∥∥2

−1/2,∂Ω

+ C
∥∥um(0)

∥∥2
1/2,∂Ω

+ C

t∫
0

∥∥g′(s)
∥∥2

−1/2,∂Ω
ds + C

t∫
0

∥∥um(s)
∥∥2

1/2,∂Ω
ds. (3.21)

Since ‖um(t)‖1/2,∂Ω � C‖um(t)‖1 and a[um(t), um(t)] � Ca‖um(t)‖2
1, we may fix an ε such

that

ε
∥∥um(t)

∥∥2
1/2,∂Ω

� Ca

4

∥∥um(t)
∥∥2

1 � 1

4
a
[
um(t), um(t)

]
.

By [6, Theorem 2, p. 286], we have H 1(0, T ;H−1/2(∂Ω)) ↪→ C([0, T ];H−1/2(∂Ω)) with the
estimate∥∥g(t)

∥∥−1/2,∂Ω
� C‖g‖L2(0,T ;H−1/2(∂Ω)) + C‖∂tg‖L2(0,T ;H−1/2(∂Ω)) ∀t ∈ [0, T ].

Also, ∥∥um(0)
∥∥

0,∂Ω
�

∥∥um(0)
∥∥

1/2,∂Ω
� C

∥∥um(0)
∥∥

1 � C‖u0‖1.

Substituting the last three relations into (3.21), we obtain

1

2

t∫
0

∥∥u′
m(s)

∥∥2
0 ds + Ca

4

∥∥um(t)
∥∥2

1 + λ

2

∥∥um(t)
∥∥2

0,∂Ω

� 1

2

t∫
0

∥∥f (s)
∥∥2

0 ds + C‖u0‖2
1 + C‖g‖2

L2(0,T ;H 1/2(∂Ω))
+ C‖∂tg‖2

L2(0,T ;H−1/2(∂Ω))

+ C

t∫
0

∥∥um(s)
∥∥2

1 ds. (3.22)

Applying Gronwall’s inequality to (3.22), we deduce

∥∥um(t)
∥∥2

1 � 1

2

t∫
0

∥∥f (s)
∥∥2

0 ds + C‖u0‖2
1 + C‖g‖2

L2(0,T ;H 1/2(∂Ω))
+ C‖g‖2

H 1(0,T ;H−1/2(∂Ω))
.

(3.23)

Combining (3.23) with (3.22), we obtain
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1

2

∥∥u′
m(t)

∥∥2
0 dt � 1

2

t∫
0

∥∥f (s)
∥∥2

0 ds + C‖u0‖2
1 + C‖g‖2

L2(0,T ;H 1/2(∂Ω))

+ C‖g‖2
H 1(0,T ;H−1/2(∂Ω))

. (3.24)

Equation (3.24) implies that for a subsequence we have u′
m ⇀ ∂tu in L2(Ω) so that u ∈

H 1(0, T ;L2(Ω)) and

1

2

∥∥u′(t)
∥∥2

0 ds � 1

2

t∫
0

∥∥f (s)
∥∥2

0 ds + C‖u0‖2
1 + C‖g‖2

L2(0,T ;H 1/2(∂Ω))

+ C‖g‖2
H 1(0,T ;H−1/2(∂Ω))

. (3.25)

Thus, for almost every t , u(t) is the solution of the elliptic problem

−div
[
A(x)∇u(t)

] = f (t) − ut (t) in Ω,[
A(x)∇u(t)

]∣∣
∂Ω

= λ
[
g(t) − u(t)

]
on ∂Ω.

Elliptic regularity for the Neumann boundary value problem on a convex polygon (see [9,10])
yields∥∥u(t)

∥∥
2 � C

(∥∥f (t)
∥∥

0 + ∥∥ut (t)
∥∥

0 + ∥∥g(t)
∥∥

1/2,∂Ω

)
.

Combining the last estimate with (3.25), we obtain

‖u‖2
L2(0,T ;H 2(Ω))

+ ‖u′‖2
L2(0,T ;L2(Ω))

� ‖f ‖L2(0,T ;L2(Ω)) + C‖u0‖2
1 + C‖g‖2

L2(0,T ;H 1/2(∂Ω))
+ C‖g‖2

H 1(0,T ;H−1/2(∂Ω))
.

(3.26)

Interpolations between (3.26) and (3.19) yield (3.15). �
We next derive error estimates for semidiscrete approximations of the linear boundary value

problem. Let Vh be a family of finite element subspaces of H 1(Ω) introduced in Section 2.1.
The semidiscrete finite element approximations of (3.13)–(3.14) are defined as follows: seek
uh ∈ H 1(0, T ;Vh) such that{ 〈∂tuh(t), v〉 + a[uh(t), vh] + λ[uh(t), vh]∂Ω = 〈f (t), vh〉 + λ〈g(t), vh〉∂Ω

∀vh ∈ Vh, a.e. t ∈ [0, T ],
uh(0) = Phu0,

(3.27)

where Ph is the L2(Ω) projection onto Vh. Similar to [3] we may prove:

Theorem 3.4. Assume that g ∈ L2(0, T ;H−1/2(∂Ω)), f ∈ L2(0, T ;H 1(Ω)∗) and u0 ∈ L2(Ω).
Let u ∈ W(0, T ) be the solution of (3.13)–(3.14) and let uh ∈ H 1(0, T ;Vh) be the solution of
(3.27). Then,

‖u − uh‖W(0,T ) → 0 as h → 0.

If, in addition, g ∈ L2(0, T ;H−1/2+θ (∂Ω)) ∩ Hθ(0, T ;H−1/2(∂Ω)), f ∈ L2(0, T ;H 1−θ (Ω)∗)
and u0 ∈ Hθ(Ω) for some θ ∈ [0,1], then
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‖u − uh‖W(0,T ) � Chθ
(‖u‖L2(0,T ;H 1+θ (Ω)) + ‖∂tu‖L2(0,T ;H 1−θ (Ω)∗)

)
� Chθ

(‖f ‖L2(0,T ;H 1−θ (Ω)∗) + ‖u0‖θ + ‖g‖L2(0,T ;H−1/2+θ (∂Ω))

+ ‖g‖Hθ(0,T ;H−1/2(∂Ω))

)
.

Moreover, if u ∈ L2(0, T ;Hr+1(Ω)) ∩ H 1(0, T ;Hr−1(Ω)) for some r ∈ [0, k], then

‖u − uh‖W(0,T ) � Chr
(‖u‖L2(0,T ;Hr+1(Ω)) + ‖∂tu‖L2(0,T ;Hr−1(Ω))

)
.

Remark 3.5. In the special case of θ = 1/2, Theorem 3.4 says that if g ∈ L2(0, T ;L2(∂Ω)) ∩
H 1/2(0, T ;H−1/2(∂Ω)), then u ∈ L2(0, T ;H 3/2(Ω)) ∩ H 1(0, T ;H 1/2(Ω)∗) and an O(h1/2)

error estimate holds. In other words, g ∈ L2(0, T ;L2(∂Ω)) alone is not sufficient to guarantee
an O(h1/2) error estimate in the norm of the solution space W(0, T ).

3.4. Embedding and trace theorems

We will establish embedding and trace theorems for W(0, T ) and an embedding-like result
for the product of functions in W(0, T ).

Lemma 3.6 (An embedding theorem for W(0, T )).

(i) For every ε > 0, the continuous embedding

W(0, T ) ↪→ H 1/2−ε
(
0, T ;L2(Ω)

)
holds and

‖w‖H 1/2−ε(0,T ;L2(Ω)) � C‖w‖W(0,T ),

where C may depend on ε.
(ii) For every σ ∈ (0,1/4), the continuous embedding

W(0, T ) ↪→ Hσ
(
0, T ;H 1/2+ε(Ω)

)
holds and

‖w‖Hσ (0,T ;H 1/2+ε (Ω)) � C‖w‖W(0,T ),

where 0 < ε < (1 − 4σ)/2 and C may depend on σ .

Proof. Let ε > 0 and w ∈ W(0, T ) be given. We define E0w to be the extension of w onto R

by zero outside (0, T ), i.e., E0w = w for t ∈ (0, T ) and E0w = 0 otherwise. Let Ê0w denote the
temporal Fourier transform of E0w. It is easily verified that

2iπτÊ0w(τ) = Ê0∂tw(τ) + w(0) − w(0)e−2iπτT

(a similar relation was used in [24, Theorem 2.3, Eq. (2.41), pp. 187–188].) By taking the
H 1(Ω)∗–H 1(Ω) duals against Ê0w(τ), we obtain

2πτ
∥∥Ê0w(τ)

∥∥2
0

�
∥∥Ê0∂tw(τ)

∥∥
H 1(Ω)∗

∥∥Ê0w(τ)
∥∥

1 + Cτ−1
∥∥w(0)

∥∥2
0 + Cτ−1

∥∥w(T )
∥∥2

0 + πτ
∥∥Ê0w(τ)

∥∥2
0.

By virtue of the continuous embedding W(0, T ) ↪→ C([0, T ];L2(Ω)) the last estimate reduces
to
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πτ
∥∥Ê0w(τ)

∥∥2
0 � C

∥∥Ê0∂tw(τ)
∥∥2

H 1(Ω)∗ + C
∥∥Ê0w(τ)

∥∥2
1 + Cτ−1‖w‖2

W(0,T ).

Thus, if |τ | � 1, we have

πτ 1−2ε
∥∥Ê0w(τ)

∥∥2
0 � C

∥∥Ê0∂tw(τ)
∥∥2

H 1(Ω)∗ + C
∥∥Ê0w(τ)

∥∥2
1 + Cτ−1−2ε‖w‖2

W(0,T )

so that ∫
|τ |�1

τ 1−2ε
∥∥Ê0w(τ)

∥∥2
0 dτ

� C

∫
|τ |�1

∥∥Ê0∂tw(τ)
∥∥2

H 1(Ω)∗ dτ + C

∫
|τ |�1

∥∥Ê0w(τ)
∥∥2

1 dτ + C‖w‖2
W(0,T ).

Also, it is evident that∫
|τ |<1

τ 1−2ε
∥∥Ê0w(τ)

∥∥2
0 dτ � C

∫
|τ |<1

∥∥Ê0w(τ)
∥∥2

0 dτ � C

∫
|τ |<1

∥∥Ê0w(τ)
∥∥2

1 dτ.

Combining the last two relations and using the Parseval equality, we obtain∫
R

τ 1−2ε
∥∥Ê0w(τ)

∥∥2
0 dτ

� C

∫
R

∥∥Ê0∂tw(τ)
∥∥2

H 1(Ω)∗ dτ + C

∫
R

∥∥Ê0w(τ)
∥∥2

1 dτ + C‖w‖2
W(0,T )

= C‖∂tw‖2
L2(0,T ;H 1(Ω)∗) + C‖w‖2

L2(0,T ;H 1(Ω))
+ C‖w‖2

W(0,T ) � C‖w‖2
W(0,T ).

Hence,

‖w‖2
H 1/2−ε(0,T ;L2(Ω))

�
∫
R

τ 1−2ε
∥∥Ê0w(τ)

∥∥2
0 dτ � C‖w‖2

W(0,T ). (3.28)

Let σ ∈ (0,1/4) and w ∈ W(0, T ) be given. We wish to prove w ∈ Hσ (0, T ;H 1/2+ε(Ω))

where 0 < ε < (1 − 4σ)/2. By interpolation, we have∥∥Ê0w(τ)
∥∥

1/2+ε
� C

∥∥Ê0w(τ)
∥∥1/2−ε

0

∥∥Ê0w(τ)
∥∥1/2+ε

1 , a.e. τ ∈ R,

so that∫
R

|τ |2σ
∥∥Ê0w(τ)

∥∥2
1/2+ε

dτ

� C

∫
R

|τ |2σ
∥∥Ê0w(τ)

∥∥1−2ε

0

∥∥Ê0w(τ)
∥∥1+2ε

1 dτ

� C

(∫
R

|τ |4σ/(1−2ε)
∥∥Ê0w(τ)

∥∥2
0 dτ

)(1−2ε)/2(∫
R

∥∥Ê0w(τ)
∥∥2

1 dτ

)(1+2ε)/2

.

Since 0 < 2σ/(1 − 2ε) < 1/2, it follows from (3.28) that∫
|τ |4σ/(1−2ε)

∥∥Ê0w(τ)
∥∥2

0 dτ � C‖w‖2
W(0,T ).
R
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Combining the last two estimates and applying the Parseval equality, we obtain∫
R

|τ |2σ
∥∥Ê0w(τ)

∥∥2
1/2+ε

dτ � C‖w‖(1−2ε)

W(0,T )
‖w‖(1+2ε)

L2(0,T ;H 1(Ω))
� C‖w‖2

W(0,T ).

Hence,

‖w‖2
Hσ (0,T ;H 1/2+ε (Ω))

�
∫
R

|τ |2σ
∥∥Ê0w(τ)

∥∥2
1/2+ε

dτ � C‖w‖2
W(0,T ).

This completes the proof. �
The following theorem concerning the trace of W(0, T ) is a direct consequence of the

continuous embedding W(0, T ) ↪→ Hs(0, T ;H 1/2+ε(Ω)) and the well-known trace estimate
‖w‖ε,∂Ω � C‖w‖1/2+ε for every ε > 0.

Theorem 3.7. For every σ ∈ (0,1/4), the continuous embedding

W(0, T )|∂Ω ↪→ Hσ
(
0, T ;Hε(∂Ω)

)
holds with

‖w‖Hσ (0,T ;Hε(∂Ω)) � C‖w‖W(0,T ) ∀w ∈W(0, T ),

where 0 < ε < (1 − 4σ)/2 and C may depend on σ .

Next we prove an embedding-like result for the product of functions in L4(0, T ;L4(Ω)). This
result also holds for functions in W(0, T ) since W(0, T ) ↪→ L4(0, T ;L4(Ω)).

Theorem 3.8. If 1 < p < 3 and w,v ∈ L4(0, T ;L4(Ω)), then there exists σ > 0 such that
(wp−1v) ∈ L2(0, T ;H 1−σ (Ω)∗) and∥∥wp−1v

∥∥
L2(0,T ;H 1−σ (Ω)∗) � C‖v‖W(0,T )‖w‖p−1

L4(0,T ;L4(Ω))
< ∞. (3.29)

Proof. The case p < 1 � 2 can be handled easily. Let 2 < p < 3, and note that∫
Ω

|w|p−1|vφ|dx �
∥∥|w|p−1

∥∥
Lq1 (Ω)

‖v‖Lq2 (Ω)‖φ‖Lq3 (Ω),

where 1/q1 + 1/q2 + 1/q3 = 1. Choose q2 = 2, q1 = (2 + ε), ε > 0. Then, 1/q3 = (1/2) −
1/(2 + ε), i.e., q3 = (2 + ε)/ε and∫

Ω

|w|p−1|vφ|dx �
∥∥|w|p−1

∥∥
L(2+ε)(Ω)

‖v‖L2(Ω)‖φ‖L(2+ε)/ε (Ω).

After integrating from 0 to T , standard algebraic manipulations lead to

T∫ ∫
|w|p−1|vφ|dx
0 Ω
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�
T∫

0

(∫
Ω

|w|(p−1)(2+ε)

)1/(2+ε)

‖v‖L2‖φ‖L(2+ε)/ε

=
T∫

0

‖w‖p−1
L(p−1)(2+ε)(Ω)

‖v‖L2(Ω)‖φ‖L(2+ε)/ε (Ω)

�
( T∫

0

‖w‖(p−1)k1

L(p−1)(2+ε)(Ω)

)1/k1
( T∫

0

‖v‖k2
L2(Ω)

)1/k2
( T∫

0

‖φ‖k3
L(2+ε)/ε (Ω)

)1/k3

,

where 1/k1 + 1/k2 + 1/k3 = 1. Choose k1 = k3 = 2 and k2 = ∞ to obtain

T∫
0

∫
Ω

|w|p−1|vφ|dx

� ‖w‖p−1
L2(p−1)(0,T ;L(p−1)(2+ε)(Ω))

‖v‖L∞(0,T ;L2(Ω))‖φ‖L2(0,T ;L(2+ε)/ε (Ω)).

Note that in R2 the following embedding is valid:

H 1−σ ⊂ L2/σ , 0 < σ.

Now, let σ, ε > 0 be chosen to satisfy

2

σ
= 2 + ε

ε
so that L2/σ (Ω) ≡ L(2+ε)/ε(Ω).

Therefore,

T∫
0

∫
Ω

|w|p−1|vφ|dx

� ‖w‖p−1
L2(p−1)(0,T ;L(p−1)(2+ε)(Ω))

‖v‖L∞(0,T ;L2(Ω))‖φ‖L2(0,T ;L2/σ (Ω)). (3.30)

Using 2
σ

= 2+ε
ε

, we compute

2ε = 2σ + σε or ε = (2σ)/(2 − σ).

Then, substituting this value of ε into (3.30), we obtain

T∫
0

∫
Ω

|w|p−1|vφ|dx

� ‖w‖p−1
L2(p−1)(0,T ;L(p−1)(4/(2−σ))(Ω))

‖v‖L∞(0,T ;L2(Ω))‖φ‖L2(0,T ;L2/σ (Ω)). (3.31)

Here, we have used 2 + ε = 2 + (2σ)/(2 − σ) = (4 − 2σ + 2σ)/(2 − σ) = 4/(2 − σ).
Note that the above relation indicates that if we choose σ → 0, then 4/(2 − σ) → 2 which,

for fixed p < 3, results in (p − 1)(4/(2 − σ)) → 2(p − 1) as σ → 0.
In particular, let 2 < p < 3 and choose σ0 such that (p − 1) × 4

2−σ0
= 4, i.e., p = 3 − σ0, and

note that 2(p − 1) = 2(2 − σ0). Therefore, (3.31) gives
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T∫
0

∫
Ω

|w|p−1|vφ|dx � ‖w‖p−1
L2(2−σ0)(0,T ;L4(Ω))

‖v‖L∞(0,T ;L2(Ω))‖φ‖L2(0,T ;L2/σ0 (Ω))

or, equivalently, using the embedding H 1−σ0 ⊂ L2/σ0 , we obtain

T∫
0

∫
Ω

|w|p−1|vφ|dx � ‖w‖p−1
L2(2−σ0)(0,T ;L4(Ω))

‖v‖L∞(0,T ;L2(Ω))‖φ‖L2(0,T ;H 1−σ0 (Ω)).

Taking the supremum over φ ∈ L2(0, T ;H 1−σ0(Ω)), we obtain the desired estimate. �
Remark 3.9. The embedding of Theorem 3.8 is also valid for every σ1 � σ and moreover,∥∥wp−1v

∥∥
L2(0,T ;H 1−σ1 (Ω)∗) � C

∥∥wp−1v
∥∥

L2(0,T ;H 1−σ (Ω)∗)

� C‖v‖W(0,T )‖w‖p−1
L4(0,T ;L4(Ω))

< ∞.

Therefore, combining the results of Theorems 3.7 and 3.8, we can always assume that 0 < σ <

(1/4).

3.5. Error estimates for semidiscrete approximations of the optimality system

Let X , Y , T , G, Xh, and Th be defined as in Section 3.2 where we recasted the optimality
system and its semidiscrete approximations into the abstract forms (3.7) and (3.9), respectively.
We now proceed to verify all assumptions of Theorem 3.1.

Given 1 < p < 3 we choose σ = σ0, such that p = 3 − σ0 similar to Theorem 3.8. Set

Z = L2(0, T ;H 1−σ0(Ω)∗
) × [

L2(0, T ;H−1/2+σ0(∂Ω)
) ∩ Hσ0

(
0, T ;H−1/2(∂Ω)

)]
× Hσ0(Ω) × L2(0, T ;H 1−σ0(Ω)∗

) × Hσ0(Ω)

with the obvious graph norm. We denote the Fréchet derivative of G(u, ξ) with respect to (u, ξ)

by DG(u, ξ); then we find that for (u, ξ) ∈ X ,

DG(ũ, ξ̃ ) · (v, η) = (
φ′(ũ)(v) + b(t,x)v,λ2γ η,0, v,0

) ∀(ũ, ξ̃ ) ∈X . (3.32)

Proposition 3.10 (Verification of (3.8)). Suppose that 1 < p < 3. Then, there exists C > 0 such
that ∥∥DG(ũ, ξ̃ )

∥∥
L(X ,Z)

� C
(
1 + ‖ũ‖p−1

W(0,T )

)∞. (3.33)

Proof. Let (ũ, ξ̃ ), (v, η) ∈ X = W(0, T ) × W(0, T ) be given. For any p such that 1 < p < 3,
we can choose σ0 as in Theorem 3.8. Therefore, for the pair p,σ0 using Theorems 3.7 and 3.8
we obtain:∥∥DG(ũ, ξ̃ ) · (v, η)

∥∥2
Z

= ∥∥(
φ′(ũ)(v) + b(t,x)v,λ2γ η,0, v,0

)∥∥2
Z

= ∥∥φ′(ũ)(v) + b(t,x)v
∥∥2

L2(0,T ;H 1−σ0 (Ω)∗) + ∥∥λ2γ η
∥∥2

L2(0,T ;H−1/2+σ0 (∂Ω))

+ ∥∥λ2γ η
∥∥2

σ0 −1/2 + ‖0‖Hσ0 (Ω) + ‖v‖2
2 1−σ ∗ + ‖0‖Hσ0 (Ω)
H (0,T ;H (∂Ω)) L (0,T ;H 0 (Ω) )
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� C
∥∥ũp−1v

∥∥2
L2(0,T ;H 1−σ0 (Ω)∗) + C‖η‖2

W(0,T ) + ‖0‖2
W(0,T )

� C
(
1 + ‖ũ‖2−σ0

W(0,T )

)(‖v‖2
W(0,T ) + ‖η‖2

W(0,T )

)
.

Taking the supremum over all (v, η) ∈ W(0, T ) × W(0, T ) with ‖v‖2
W + ‖η‖2

W(0,T )
= 1, we

arrive at (3.33). �
Proposition 3.11 (Verification of continuous differentiability of G). G is twice continuously dif-
ferentiable and D2G is bounded on all bounded sets of X .

Proof. The second Fréchet derivative of G is defined by

D2G(ũ, ξ̃ ) · ((v, η), (w, ζ )
) = (

φ′′(ũ)(v,w),0,0,0,0
)

∀(v, η), (w, ζ ) ∈ X = W(0, T ) ×W(0, T ).

Similar to the proof of Proposition 3.10 we may show that D2G is well defined, continuous and
bounded on every bounded set of X . �
Proposition 3.12 (Verification of (3.10) and (3.11)). For every (f̃ , g̃, ũ0, ζ̃ , ξ̃T ) ∈ Y ,

lim
h→0

∥∥(T − Th)(f̃ , g̃, ũ0, ζ̃ , ξ̃T )
∥∥
X → 0. (3.34)

Moreover,

‖T − Th‖L(Z,X ) → 0 as h → 0. (3.35)

Proof. Note that the definition of T consists of two uncoupled linear Robin boundary value
problems and the definition of Th consists of two uncoupled semidiscrete approximations of
linear Robin boundary value problems. An application of Theorem 3.4 yields (3.34) and the
error estimate

‖ũ − ũh‖W(0,T ) + ‖ũ − ũh‖W(0,T )

� Chσ0
(‖f̃ ‖L2(0,T ;H 1−σ0 (Ω)∗) + ‖g̃‖L2(0,T ;H−1/2+σ0 (∂Ω)) + ‖g̃‖Hσ0 (0,T ;H−1/2(∂Ω))

+ ‖ũ0‖σ0 + ‖ζ̃‖L2(0,T ;H 1−σ0 (Ω)∗) + ‖ξ̃T ‖σ0

)
� Chσ0

∥∥(f̃ , g̃, ũ0, ζ̃ , ξ̃T )
∥∥
Z

for every (f̃ , g̃, ũ0, ζ̃ , ξ̃T ) ∈ Z . Hence, (3.35) follows from the last error estimate. �
Through Propositions 3.10–3.12 we have verified all assumptions of Theorem 3.1. Thus, by

that theorem we obtain the following results.

Theorem 3.13. Assume that u0 ∈ L2(Ω), f ∈ L2(0, T ;H 1(Ω)∗), U ∈ L2((0, T ) × Ω)) and
Υ ∈ L2(Ω). Let (u, ξ) ∈W(0, T )×W(0, T ) be the solution of the optimality system (2.19), (2.2)
and (2.16)–(2.17). Let (uh, ξh) ∈ H 1(0, T ;Vh)×H 1(0, T ;Vh) be the solution of the semidiscrete
optimality system (3.6). Then

‖u − uh‖W(0,T ) + ‖ξ − ξh‖W(0,T ) → 0 as h → 0.

If, in addition, u, ξ ∈ L2(0, T ;Hr+1(Ω)) ∩ H 1(0, T ;Hr−1(Ω)) for some r ∈ [0, k], then
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‖u − uh‖W(0,T ) + ‖ξ − ξh‖W(0,T ) � Chr
(‖u‖L2(0,T ;Hr+1(Ω)) + ‖ξ‖L2(0,T ;Hr+1(Ω))

+ ‖∂tu‖L2(0,T ;Hr−1(Ω)) + ‖∂tu‖L2(0,T ;Hr−1(Ω))

)
.
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