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Abstract

This work concerns analysis and error estimates for optimal control problems related to
implicit parabolic equations. The minimization of the tracking functional subject to implicit
parabolic equations is examined. Existence of an optimal solution is proved and an optimality
system of equations is derived. Semi-discrete (in space) error estimates for the finite element
approximations of the optimality system are presented. These estimates are symmetric and
applicable for higher order discretizations. Finally, fully-discrete error estimates of arbitrarily
high-order are presented based on a discontinuous Galerkin (in time) and conforming (in space)
scheme. Two examples related to the Lagrangian-moving mesh Galerkin formulation for the
convection diffusion equation are described.
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1 Introduction

We consider an optimal control problem related to implicit parabolic equations of the form

(M(t)u)t + A(t)u = F (t), u|∂Ω = 0, u(0) = u0. (1.1)

Here, Ω is an open, bounded domain of Rd, d = 2, 3, with Lipschitz boundary ∂Ω. In the above
context, H,U are Hilbert spaces related to the standard pivot construction U ⊂ H ≈ H∗ ⊂ U∗,
with continuous and dense embedding (say e.g. H = L2(Ω), U = H1

0 (Ω)), U∗ denotes the dual of U ,
M(.) : H → H is a self-adjoint positive definite operator, A(.) : U → U∗ is a linear and continuous
map, F (.) ∈ U∗ and u0 ∈ H.

The main distinction between equation (1.1) and standard parabolic equations is that the time-
derivative of the solution is not given explicitly. However, under suitable assumptions on the oper-
ators M(.), A(.) the above equations are typically equivalent to “regular” equations of the form

M(t)ut + Ã(t)u = F (t), u|∂Ω = 0, u(0) = u0. (1.2)

The equivalence of problems (1.1)-(1.2) is studied in detail into the books of [26, 27] (see also
references within).

There are many physical examples of implicit parabolic equations (see e.g. [16, 26, 27]), including
several examples related to degenerate parabolic equations. Classical parabolic equations also take
the form of (1.1) when a time-dependent change of variables is applied. Typical examples are the
diffusion on surfaces which are in motion, and the Lagrange or characteristic Galerkin formulation
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of the convection diffusion equation (see e.g. [5, 7, 18]), which is the main motivation for studying
approximations of the above type of equations.

The natural setting for implicit parabolic equations, involves time-dependent norms, often called
Hilbert scales (see e.g. [26, 27]). We will be using spaces of the form H(t) = (H, ‖.‖H(t)), U(t) =
(U, ‖.‖U(t)). Here, ‖.‖H(t), ‖.‖U(t) denote time-dependent norms, and in most cases can be viewed as
“weighted” norms of L2(Ω) and H1

0 (Ω) respectively. The temporal regularity of functions with
values in H(.), U(.), U∗(.) are denoted in a standard fashion, i.e., L2[0, T ; U(.)], H1[0.T ;U∗(.)],
L2[0, T ;H(.)] etc.

The optimal control problem considered here is to minimize a tracking type functional,

K(u, g) = (1/2)
∫ T

0

‖u− z‖2H(.)dt + (α/2)
∫ T

0

‖g‖2H(.)dt (1.3)

subject to equation (1.1), with F (.) = f(.) + g(.), i.e., minimize the functional (1.3) subject to,

(M(t)u)t + A(t)u = f + g, u|∂Ω = 0, u(0) = u0. (1.4)

Here g denotes the control variable, z is the target, and f, u0 are given forcing and initial data terms.
The physical meaning of the tracking optimal control problem under consideration, is to influence
the behavior of the system in order to match the solution u of equation (1.4) to a given target z, by
using a control function g which acts as a distributed body force. The cost (objective functional) is
a quadratic functional which measures the distance between the solution u and the target z, while
α > 0 can be viewed as a penalty parameter. The second term of (1.3) is used to obtain a bounded
control function.

There is an abundant literature concerning the analysis of various optimal control problems hav-
ing states constrained to evolutionary PDE’s. We refer the reader to the books of [9, 11, 16, 17, 24]
and the references within, for various theoretical and numerical aspects of distributed optimal control
problems. However, there are only few results concerning error estimates for finite element approx-
imations of related optimal control problems. Fully-discrete estimates for a distributed optimal
control problem related to the heat equation were given in [23, 25]. In [29], a fully discretized opti-
mal control problem is defined and rigorously analyzed in the context of a general state constrained
convex control problem, related to linear parabolic PDE’s with possible non-selfadjoint elliptic part.
In an earlier work [22], a distributed optimal control problem related to a quasilinear parabolic PDE
was studied. Some results related to a-posteriori analysis of optimal control problems constrained to
linear parabolic PDE’s are developed in [20, 19]. Results related to other type of controls, in partic-
ular Neumann and Robin type of controls, are also applicable in case of distributed controls. In [31]
a Neumann boundary control is used to minimize the terminal-state tracking functional constrained
to linear homogeneous parabolic PDE’s, while in [21], a variety of estimates for Neumann boundary
control problem having states constrained to linear homogeneous parabolic PDE’s are shown. In
[15] (see also [16]), a semigroup approach is developed to study various optimal control problems,
having states constrained to linear homogeneous parabolic PDE’s, and error estimates are presented
for finite element approximations. Finally, error estimates of arbitrary order for the semi-discrete
approximation of Robin boundary control problems having states constrained to semilinear parabolic
PDE’s are presented in [3].

The scope of this work is the analysis and finite element approximation of distributed optimal
control problems having states constrained to implicit parabolic equations. In particular, we prove
the existence of an optimality system of equations, under the assumption that equation (1.4) possess
parabolic structure. Then a semi-discrete (in space) approximation scheme and a fully discrete
scheme which is discontinuous in time, and conforming in space are formulated and analyzed. The
main goal is to show that under certain structural hypotheses on the operators, the error estimates
of the corresponding optimality system have the same structure to the estimates of the uncontrolled
implicit parabolic equations (see e.g. [4]). The main features of these estimates can be summarized
as follows:
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• The error estimates are derived under minimal regularity assumptions on the given data, on
the energy norm for both state and adjoint variables. For the state variable, we also obtain
estimates at arbitrary time-points. These estimates are applicable when higher order elements
are being used, provided that the natural parabolic regularity is valid for the solutions of the
optimality system.

• The operators A(.) are not assumed to be self-adjoint, contrary to many previous works.
For the semi-discrete (in space) approximation the operators A(.) do not need to be strictly
coercive. The dependence of various constants appearing in the estimates, on the coercivity
and continuity constants are being tracked.

• The fully-discrete scheme is based on the discontinuous (in time) Galerkin approach which
allows the use of different subspaces at each (or at every few other) time-steps. In the examples
presented here, re-meshing is also necessary in order avoid the degeneracy of the parabolic PDE.

• The parameter α is carefully tracked and does not appear at any exponential.

The rest of the paper is organized as follows. After, introducing the necessary notation and struc-
tural assumptions on the operators due to the presence of time-dependent norms, inner-products,
etc., we present two examples of implicit parabolic equations in section 2. In section 3, the continuous
optimal control problem is analyzed and an optimality system of equations is obtained. In section
4, the semi-discrete (in space) scheme is presented. The estimate of section 4, generalizes the error
estimates of [1] to implicit parabolic equations of the form (1.1). In section 5, fully-discrete error
estimates are obtained for the optimality system by using techniques of [4] (which were developed for
the uncontrolled problem) and a bootstrap argument. The result of section 5, extends to the implicit
parabolic case, the previously developed estimate for optimal control problems related to abstract
linear parabolic equations (see e.g. [2] and references within). Finally, we present convergence rates
for two examples which fall into this category. To our best knowledge these estimates are new.

2 An overview of implicit parabolic equations

For an excellent overview of implicit parabolic equations, we refer the reader to [26, 27] and references
within. To formulate the weak problem associated to the implicit parabolic equation (1.1), we
introduce time-dependent norms. In particular, the time-dependent (non-selfajdoint) nature of
operator A(t), is characterized by introducing equivalent (time-dependent) norms on U , of the form
‖u‖2U(t) = |u|2U(t)+|u|2H(t). Here, |u|U(t) denotes a seminorm on U (the principal part), while |u|H(t) =
(M(t)u, u)H is a norm on H, endowed by the symmetric positive operator M(t). Occasionally we
adopt the notation, |u|H(t) = ‖u‖H(t). The bilinear forms induced by A(t) and A∗(t) are denoted by
a(t; u, v) and a∗(t; u, v) respectively, where A∗(t) is the adjoint operator of A(t). The notation of the
above operators, bilinear forms, norms will be abbreviated to A(.), A∗(.), a(.; ., .), ‖.‖H(.), ‖.‖U(.) etc.
We will also assume that the following dense and continuous embeddings hold: U(t) ⊂ H(t) ⊂ U∗(t).
The embedding constants are also assumed to be independent of time. The following structural
hypotheses on operators M(.), A(.), are needed.

Assumption 2.1. The operators M(t) are assumed to satisfy:

1. The operators M(t) are nonnegative, self-adjoint and there exist constants c(t) > 0 such that
(M(t)u, u)H ≥ c(t)|u|2H .

2. (Smoothness) For every t > 0 there exists a symmetric bilinear form µ(t; ., .) satisfying

d

dt
(u, v)H(t) = (ut, v)H(t) + (u, vt)H(t) + µ(t;u, v), ∀u, v ∈ H1[0, T ; H].
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In addition, there exists Cµ (independent of time) such that

µ(t;u, v) ≤ Cµ|u|H(t)|v|H(t).

Remark 2.2. The assumption 2.1.1 guarantees that for t ≥ 0, (M(t)u, v)H is actually an inner-
product, which is denoted by (., .)H(t). Hence, H(t) is a Hilbert space with underlying set H and
denoted by (u, v)H(t) = (M(t)u, v)H . The assumption 2.1.2 implies that equation (1.1) is parabolic
in nature. Note that if u, v ∈ U the weighted inner-product should be replaced by the weighted duality
〈., .〉U∗(.),U(.) in assumption 2.1.2.

A consequence of the structural hypothesis on M(.), is that the norms on H(t) vary continuously
with respect to t. In particular, we quote the following lemma from [4, Lemma 2.2].

Lemma 2.3. Let v1, v2 ∈ H and s ≤ t then, eCµ(s−t) ≤ |v1|2H(t)/|v1|2H(s) ≤ eCµ(t−s) and

|(v1, v2)H(t) − (v1, v2)H(s)| ≤ (t− s)CµeCµ(t−s)|v1|H(t1)|v2|H(t2), t1, t2 ∈ [s, t].

An assumption on the equivalence of norms in U(t) follows.

Assumption 2.4. For every 0 ≤ τ ≤ T there exists Cu > 0 such that for all s, t ≥ 0 with |t−s| < τ ,

1/Cu ≤
‖u‖U(t)

‖u‖U(s)
≤ Cu ∀u ∈ U.

Finally, we quote the basic continuity and coercivity assumptions on the bilinear form and data.

Assumption 2.5. 1. Continuity of bilinear form: There exist 0 ≤ ca ≤ Ca such that
∣∣∣a(t;u, v)

∣∣∣ ≤
(
ca|u|2U(t) + Ca|u|2H(t)

)1/2(
ca|v|2U(t) + Ca|v|2H(t)

)1/2

, ∀u, v ∈ U

2. There exists a weighted dual norm of U(.) (denoted by U∗(.)) such that
∣∣∣〈F (t), v〉

∣∣∣ ≤ ‖F (t)‖∗
(
ca|u|2U(t) + Ca|u|2H(t)

)1/2

.

3. Coercivity: There exist constants cγ > 0 and Cγ ∈ R such that

a(t;u, u) ≥ cγ |u|2U(.) − Cγ |u|2H(.), ∀u ∈ U.

The bilinear form associated to the adjoint operator, will be also assumed to satisfy similar
continuity and coercivity properties and in particular that corresponding constants c∗a, C∗a , c∗γ , C∗γ
are comparable to ca, Ca, cγ , Cγ respectively. In particular, for the examples examined here, the
important quantity is the ratio ca/cγ , and the following relation holds ca/cγ ≈ c∗a/c∗γ .

Utilizing the above notation and assumptions, the natural weak formulation of (1.4) can be stated
as follows: Given, f ∈ L2[0, T ; U∗(.)], g ∈ L2[0, T ; H(.)], u0 ∈ H, we seek a function

u ∈ U ≡ L2[0, T ; U(.)] ∩H1[0, T ;U∗(.)]

such that

(u(T ), v(T ))H(T ) +
∫ T

0

(
− (u, vt)H(.) + a(.; u, v)

)
= (u0, v(0))H(0) +

∫ T

0

〈F (.), v〉 ∀ v ∈ U . (2.1)

A few remarks with respect to the unique solvability of 2.1 in U follow. Under the above
hypotheses on the operators, it is not evident that ut ∈ L2[0, T ; U∗(.)] (it is however true that
(M(.)u(.))t ∈ L2[0, T ; U∗(.)]). Therefore, to formulate the optimal control problem but especially to
derive error estimates, we will assume that the PDE has the expected parabolic structure in terms
of regularity.
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Assumption 2.6. (Parabolic regularity)

• Let f ∈ L2[0, T ; U∗(.)], g ∈ L2[0, T ; H(.)], u0 ∈ H there exists unique u ∈ U satisfying 2.1.

• If u0 ∈ U , f, g ∈ L2[0, T ;H(.)] then u ∈ H1[0, T ;H(.)].

Remark 2.7. The above regularity assumption is the minimal one to guarantee the presence of
time-derivative at the natural energy space and typically corresponds to additional assumptions on
the time-differentiation of the operators M(.), A(.). Note also that if in addition to assumption
2.5, the operators A(.) are regular and self-adjoint (see e.g. [27, Chapter 3] or [26, Chapter 5]
for related results), then there exists a unique solution u ∈ L∞[0, T ; H(.)] ∩ L2[0, T ; U(.)], with
(M(.)u(.))t ∈ L2[0, T ; U∗(.)], even dropping the assumption of strict positivity for operators M(.)
(the case of pseudoparabolic equations). However, in this work, we restrict ourselves to PDE’s that
possess at least the minimal parabolic regularity.

2.1 Examples of implicit parabolic equations

Finally, we close this preliminary section by stating examples of parabolic equations, which take the
form of implicit parabolic equations after a time-dependent change of variables, and are related with
dynamic moving mesh finite element methods.

2.1.1 The convection-diffusion equation in Lagrangian coordinates

Recall that the classical convection diffusion equation takes the form

ut + V.∇u− ε∆u = 0, u|Γ = 0, u(0, x) = u0.

In most interesting cases, the value of ε is small compared to the given velocity field V resulting
to many significant computational and analytical difficulties. A popular strategy to address these
problems is to consider the equation in a Lagrangian variable. In particular, let Ṽ denote a numerical
approximation of V, and assume that x = χ(t,X) describes the change of variables defined by the
flow map associated with Ṽ, i.e., ẋ(t,X) = Ṽ(t, x(t,X)) with initial data x(0, X) = X. Then, if
ū(t,X) = u(t, x(t,X)) the convection diffusion equation takes the form

ūt + (V − Ṽ).(F−T∇X ū)− ε(1/J)divX(JF−1F−T∇X ū) = 0

where Fij = ∂xi/∂Xi is the Jacobian of the mapping x = χ(t,X) and J = det(F ). Recall, that
J̇ = Jdiv(Ṽ) and hence

ūtJ = (Jū)t − Jdiv(Ṽ)ū.

Therefore, if div(Ṽ) 6= 0 we obtain that the Lagrangian description of the convection diffusion
equation takes the form of an implicit parabolic equation, with

M(.)ū = Jū,

and
A(.)ū = −div(Ṽ)ūJ + (V − Ṽ).(F−T∇X ū)− εdivX(JF−1F−T∇X ū).

The above description generalizes various characteristic Galerkin schemes (see e.g. [7, 18] and
references within). The variable X is typically referred as the referential or Lagrangian variable
while x denotes the Eulerian variable. Using the the ODE J̇ = Jdiv(Ṽ), it easy to show that if
0 < c0 ≤ J(0, .) ≤ C0 then c0e

−2‖divxṼ‖L∞ t ≤ J(t, .) ≤ C0e
2‖divxṼ‖L∞ t.

The above formulation is related to Lagrangian and dynamic moving-mesh finite element schemes
as follows (see e.g. [5, Section 2] and references within): Recall the classical finite element con-
struction uses a reference simplex, denoted by K̂ and a mapping χ : K̂ → K, determined by

5



x = χ(X) =
∑

i l̂i(X)xi, X ∈ K̂, where K is the arbitrary cell. Here {xi}i denote the nodes of
K, {Xi}i the nodes of K̂ and l̂i the Lagrange (referential) basis functions. Then, the finite element
approximation uh(t, x) is given by

uh(t, x(X)) =
∑

i

l̂i(X)ui(t) ≡
∑

i

li(x)ui(t), X ∈ K̂.

In the above relations, {ui(t)}i denote the values of uh at the nodes and li = l̂i ◦ χ−1 are the basis
functions on K.

When the grid points (nodes) are allowed to move, say xi = xi(t) then

x = χ(t,X) =
∑

i

l̂i(X)xi(t), and ẋ(t,X) =
∑

i

l̂i(X)vi(t)

where vi(t) = ẋi(t) denotes the velocity of the ith node. Assume that K(t) = χ(t, K̂) is the time-
evolved mesh cell, and let li(t, .) : K(t) → R be defined by li(t, .) = l̂i◦χ−1(t, .). Then, we may define
the approximate velocity Ṽ on K(t) by Ṽ = ẋ ◦ χ−1 which implies that Ṽ(t, x(t,X)) = ẋ(t,X).
This construction, states that when ẋi(t) = V(t, xi(t)), then χ is the flow map associated to Ṽ
and in addition, Ṽ is the isoparametric interpolant of V on K. In particular, we have Ṽ(t, x) =∑

i li(t, x)V(t, xi(t)).

Remark 2.8. It is evident from the structure of the underlined PDE, that if Ṽ is a good approx-
imation of V then various constants arising during energy arguments will remain under control.
However, we emphasize that while the Jacobian of the transformation satisfies F (0, X) = I, its
condition number depends exponentially on various quantities of Ṽ and the numerical scheme needs
to be re-initialized every few time steps. This is also important in order to maintain the positivity
of J(t, .) and hence the parabolic structure of the PDE. Therefore, the re-initialization process im-
plies that different subspaces need to be used every few other steps which give rise to discontinuous
Galerkin approximations. For a detailed discussion and error estimates for the uncontrolled problem
related to above formulation we refer the reader to [5] (see also the references within).

2.1.2 Diffusion on manifolds

A more general example of diffusion on manifolds also falls into the category of implicit parabolic
equations. We consider the diffusion on a cell membrane, S(t) ⊂ R3, which is transported by
velocity V ≡ V(t,x) in an ambient fluid (see e.g. [4]). Standard finite element schemes need
to construct triangulations (meshes) in each time step, which is computationally expensive. An
alternative approach which avoids triangulating on S(t), is to construct a scheme which computes
on a reference configuration. Following the notation of [4], let Sr denote the reference configuration,
and let x(t, .) : Sr → S(t) ⊂ R3 denote a mapping which relates the reference configuration and
S(t). For example, we may take Sr to be S(0) or even the unit sphere S2. Assume that Sr is locally
parameterized by coordinates X ∈ U ⊂ R2, and let σ denote the diffusion constant. Then, the
diffusion equation takes the form,

ut − (1/J)divX(σJ(FT F )−1∇Xu) = 0,

where F denotes the 3 × 2 matrix with components Fia = ∂xi/∂Xa, and J =
√

det(FT F ) is the
determinant of the first fundamental form, which satisfies

Jt = J(I − n× n) · (∇xV)

where n(t,X) denotes the normal to S(t). The above equation is an implicit parabolic equation,
which can also take the form (1.1), with

M(.)u = Ju

6



and
A(.)u = −(I − n× n) · (∇xV)uJ − divX(σJ(FT F )−1∇Xu).

In this case, it is easy to see that if 0 < c1 ≤ J(0, .) ≤ C1 then c1e
−2‖∇xV‖L∞ t ≤ J(t, .) ≤

C1e
2‖∇xV‖L∞ t, which establishes the positivity of M(.) of assumption (2.1) and hence the parabolic

structure of our problem (the rest of assumptions will be checked in section 4).

3 The continuous optimal control problem

3.1 Existence of an optimal solution

First, we define the set of admissible solutions and the notion of the optimal pair (denoted by Aad

and (u, g) respectively).

Definition 3.1. Given Ω, T > 0, u0 ∈ H, f ∈ L2[0, T ;U∗(.)] and target z ∈ L2[0, T ;H(.)], z|Γ = 0,
the pair (u, g) ∈ Aad is called an admissible pair if u ∈ U , g ∈ L2[0, T ; H(.)] and (u, g) satisfy (2.1).

Definition 3.2. Let T > 0, u0 ∈ H, f ∈ L2[0, T ; U∗(.)], z ∈ L2[0, T ; H(.)]. Then (u, g) ∈ Aad is
called an optimal pair if K(u, g) ≤ K(v, h) ∀ (v, h) ∈ Aad.

The target z is typically smoother in many applications. For example z can be the solution of
another implicit parabolic equation, and hence to possess higher regularity. For example we may
assume that z ∈ U . Using standard techniques we may prove the existence of an optimal solution,
in the sense of Definition (3.2).

Theorem 3.3. Let T > 0, u0 ∈ H, z ∈ L2[0, T ; H(.)], f ∈ L2[0, T ;U∗(.)], and let U(.) ⊂ H ⊂ U∗(.)
be dense embedding of Hilbert spaces with embedding constants independent of time. Assume that
|.|U(.), |.|H(.) are equivalent to |.|U and |.|H respectively and let U ⊂ H with compact embedding.
Suppose that Assumptions 2.1,2.4,2.5,2.6 are satisfied, and let ũ ∈ U , be the solution of (1.4), when
g(.) ≡ 0. Then, there exists an optimal pair (u, g) ∈ Aad.

Proof. (Sketch:) Note that Aad 6= 0, since (ũ, 0) ∈ Aad due to the solvability assumption, and that
K(u, g) is bounded below by 0. We denote by (un, gn) ∈ Aad a minimizing sequence for the optimal
control problem, and note that (un, gn) satisfy (2.1) and by definition, the tracking functional implies
that,

‖un‖2L2[0,T ;H(.)], α‖gn‖2L2[0,T ;H(.)] < C < ∞,

while the parabolic regularity assumption 2.6 (a) guarantees that

‖un‖L2[0,T ;U(.)], ‖unt‖L2[0,T ;U∗(.)] < C < ∞.

Hence, there exists a subsequence (still denoted by (un, gn) ∈ Aad) which converges to an element
(u, g), in the following sense:

un → u weakly in L2[0, T ; U(.)], gn → g weakly in L2[0, T ; H(.)]

unt → ut weakly in L2[0, T ;U∗(.)], un → u weakly * in L∞[0, T ; H(.)].

Recall, that U(t) ⊂ H(t) ⊂ U∗(t) with dense and continuous embeddings with constants independent
of time, and that the norms ‖.‖H(t) = |.|H(.) and semi-norms |.|U(t) are equivalent to the H norm and
U semi-norm respectively. Therefore, the compact embedding U ⊂ H and a well known compactness
result for L2[0, T ; B] spaces (see e.g. [28]), implies that

un → u strongly in L2[0, T ; H].

Therefore, we may pass the limit into (2.1), which proves that (u, g) ∈ Aad. The weak lower
semi-continuity of the functional finishes the proof.

7



3.2 An optimality system of equations

Adjusting the technique of [14] to the time-dependent norm framework of implicit parabolic equa-
tions, we prove that the optimal solution pair satisfies the first-order necessary conditions. First, we
show the existence of a Gâteaux derivative at any direction.

Theorem 3.4. Let u0 ∈ H ≡ H(0), z ∈ L2[0, T ;H(.)], f ∈ L2[0, T ;U∗(.)] be given and sup-
pose that the Assumptions 2.1-2.4-2.5-2.6 hold. Define a mapping g → u(g) from L2[0, T ;H(.)] to
L2[0, T ;U(.)], where u(g) denotes the solution of (1.4), with g ∈ L2[0, T ; H(.)] given. Then, there
exists a Gâteaux derivative

(
Du
Dg

)
· h in every direction h ∈ L2[0, T ; H(.)], denoted by w ≡ w(h) =(

Du
Dg

)
· h, satisfying

(M(t)w)t + A(t)w = h(t), w|Γ = 0, w(0, x) = 0. (3.1)

In addition, w ∈ H1[0, T ; H(.)].

Proof. The proof is standard due to the linearity of the operators.

Using standard techniques, we can show that the optimal solution (u, g) ∈ Aad can be located
by requiring the Gâteux derivative of Theorem 3.4, to be equal to zero. Next, we derive an explicit
formula of the first order necessary condition.

Theorem 3.5. Suppose the assumptions of Theorem 3.4 hold, and let w ≡ w(h) denote the Gâteaux
derivative of Theorem 3.4 at direction h ∈ L2[0, T ; H(.)]. Then, for every h2 ∈ L2[0, T ;H(.)],

∫ T

0

(h2, w)H(.) =
∫ T

0

(ψ, h)H(.)

where ψ ∈ U satisfies the weak formulation
∫ T

0

(
(ψ, vt)H(.) + µ(.;ψ, v) + a∗(.; ψ, v)

)
= −(ψ(0), v(0))H +

∫ T

0

(h2, v)H(.)

for every v ∈ L2[0, T ;U(.)] ∩H1[0, T ; U∗(.)]. In addition, ψ ∈ H1[0, T ; H(.)].

Proof. We begin by noting that the integral
∫ T

0
(ψ, h)H(.) can be formally computed from (3.1), by

using assumption 2.1 and in particular that M(.) is self-adjoint and w(0, x) = 0,

∫ T

0

(ψ, h)H(.) =
∫ T

0

(h, ψ)H(.)

= (w(T ), ψ(T ))H(T ) +
∫ T

0

(
− (w, ψt)H(.) + a(.; w, ψ)

)

= (w(T ), ψ(T ))H(T ) +
∫ T

0

(
− d

dt
(w, ψ)H(.) + (wt, ψ)H(.) + µ(.; w, ψ) + a(.; w, ψ)

)

=
∫ T

0

(
(wt, ψ)H(.) + µ(.; w, ψ) + a(.;w,ψ)

)
≡

∫ T

0

(h2, w)H(.).

Here we have used that once more assumption 2.1. The last equality establishes the desired result,
after noting that M(.) is self-adjoint, µ(.;w, ψ) = µ(.;ψ, w), and using integration by parts. Note
that all integration by parts performed are justified due to regularity properties of ψ,w.

Now we are ready to justify the existence of an optimality system of equations (first order
necessary conditions).
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Theorem 3.6. Given T > 0, u0 ∈ H, z ∈ L2[0, T ;H(.)], f ∈ L2[0, T ;U∗(.)], and let assumptions
of Theorem 3.4 hold. Let (u, g) denote an optimal pair (in the sense of Definition 3.2). Then,∫ T

0
(ψ + αg, h)H(.) = 0, for all h ∈ L2[0, T ; H(.)], and where ψ is the solution of:

∫ T

0

(
(ψ, vt)H(.) + µ(.;ψ, v) + a∗(.; ψ, v)

)
+ (ψ(0), v(0))H =

∫ T

0

(u− z, v)H(.),

for every v ∈ L2[0, T ;U(.)] ∩H1[0, T ; U∗(.)].

Proof. Suppose that (u, g) is an optimal pair, denote by
(

DK(u,g)
Dg

)
·h the Gâteaux derivative of the

functional K(u, g) on the direction h. Then, we easily compute

(DK(u(g), g)
Dg

)
· h =

∫ T

0

(
u− z,

(Du

Dg

)
· h

)

H(.)

+ α

∫ T

0

(g, h)H(.)

=
∫ T

0

(u− z, w)H(.) + α

∫ T

0

(g, h)H(.),

where w ≡ w(h) is defined in Theorem 3.4. Using Theorem 3.5, for h2 = u− z ∈ L2[0, T ; H(.)]
∫ T

0

(u− z, w)H(.) =
∫ T

0

(ψ, h)H(.)

Combining the last two equalities, we obtain

(DK(u(g), g)
Dg

)
· h =

∫ T

0

(ψ + αg, h)H(.),

which establishes the conclusion after noting that
(

DK(u(g),g)
Dg

)
· h = 0, ∀h ∈ L2[0, T ;H(.)].

Therefore, using the optimality condition to replace, the control from the state equation, the
optimality system takes the form, for all v ∈ L2[0, T ; U(.)] ∩H1[0, T ; U∗(.)],




(u(T ), v(t))H(T ) +
∫ T

0

(
− (u, vt)H(.) + a(.;u, v)

)
= (u0, v(0))H +

∫ T

0

〈f, v〉 − (1/α)(ψ, v)H(.)

∫ T

0

(
(ψ, vt)H(.) + µ(.; ψ, v) + a∗(.; ψ, v)

)
+ (ψ(0), v(0))H(0) =

∫ T

0

(u− z, v)H(.)

(3.2)
where u0, φ(T ) ≡ 0 are given initial and data terminal data, and f, z denote the forcing term and
target function respectively. The above system corresponds to the weak form of the following coupled
system of implicit parabolic equations:

{
(M(t)u)t + A(t)u = f − (1/α)ψ u(0, x) = u0

−(M(t)ψ)t + B(t)ψ = u− z ψ(T ) = 0 (3.3)

where the operator B(.) is induced by, 〈Bv1, v2〉 = a∗(, ; v1, v2) + µ(.; v1, v2), for all v1, v2 ∈ U . It
is evident that the choice of the L2 norms into the functional (1.3) leads essentially to an algebraic
optimality condition which results to a simpler and more computationally attractive system.

4 The semi-discrete (in space) optimality system

We prove the existence of semi-discrete (in space) approximations of arbitrary order and derive
semi-discrete (in space) error estimates for the optimality system based on the operator theoretic
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approach of Brezzi-Rappaz-Raviart (see e.g. [10]). Within the context of optimal control problems,
the Brezzi-Rappaz-Raviart theory was first used in [12] for a boundary control problem related to
the stationary Navier-Stokes equations. In order to apply this theory, we need to obtain estimates
for a model (uncoupled) implicit parabolic PDE. Contrary to the work of [3], an auxiliary term is
included to the model implicit parabolic PDE, in order to overcome the lack of “strict coercivity”
of the bilinear forms.

4.1 The discrete optimality system and projection estimates

To simplify the analysis, we set H(0) ≡ H = L2(Ω) and U(0) ≡ U = H1
0 (Ω). First, we introduce

the finite element subspaces Uh of U = H1
0 (Ω) which satisfy the standard approximation properties,

constructed over a triangulation Rh using piecewise polynomials of degree l ≥ 0. We emphasize that
Uh are constructed independent of time, and are subspaces of U = H1

0 (Ω), while the time-dependent
norms capture the structure of the time-dependent operators. Then, the semi-discrete (in space)
approximations of the optimality system (3.3) can be written as follows. Given, f ∈ L2[0, T ;U∗(.)],
u0 ∈ H ≡ H(0), we seek uh, ψh ∈ H1[0, T ; Uh] such that for every vh ∈ H1[0, T ; Uh],





(uh(T ), vh(T ))H(T ) +
∫ T

0

(
− (uh, vht)H(.) + a(.; uh, vh)

)

= (uh0, vh(0))H +
∫ T

0

〈f, vh〉 − (1/α)(ψh, vh)H(.)

∫ T

0

(
(ψh, vht)H(.) + µ(.;ψh, vh) + a∗(.;ψh, vh)

)
+ (ψh(0), vh(0))H =

∫ T

0

(uh − z, vh)H(.),

(4.1)
where uh0 denotes a suitable approximation of the given initial data u0 and ψh(T ) = 0.

Remark 4.1. Note that finite element subspaces are constructed in a standard fashion, using stan-
dard finite element basis, while the underlying time-dependent subspaces are only implicitly defined
through the time-dependent norms and inner products.

Before proving the existence, stability properties and error estimates of the proposed discretiza-
tion (4.1), we define the L2 projections (with time-dependent) norms, which will play a crucial role
in the subsequent analysis. We denote the “weighted” projections Ph(t) : H → Uh by:

Ph(t)v ∈ Uh,
(
M(t)(v − Ph(t)v), vh

)
H

= 0 ∀ vh ∈ Uh. (4.2)

The generalized “weighted” L2 projections will be also needed in order to derive error estimates for
the time-derivative. We denote by Qh(t) : U∗ → Uh the projection which is defined by,

Qh(t)v ∈ Uh,
(
M(t)(Qh(t)v), vh

)
H

= 〈v, vh〉U∗,U ∀ vh ∈ Uh. (4.3)

Since U ⊂ H(t) ⊂ U∗ and H(t) is the weighted space with inner product (u, v)H(t) = (M(t)u, v)H ,
the projection Qh(t) can be viewed as an extension of Ph(t). Therefore, if u ∈ H then Ph(t)u =
Qh(t)u. In the presence of the structural hypotheses 2.1-2.6 and in particular of the norm and
semi-norm equation equivalences (see section 2), we obtain standard approximation properties for
the projections Ph, Qh.

Proposition 4.2. Let {Rh}h>0 be a quasi-regular family of triangulations of the domain Ω, and for
each h > 0 let Uh ⊂ U ≡ H1

0 (Ω) be a classical finite element space constructed over Rh, containing
piecewise polynomials of degree l ≥ 0, on each triangle K ∈ Rh. Suppose also that there exist
constants C0(t) > 0, C1(t) > 0 such that the following (semi)-norm and norm equivalences hold

‖u‖H(0)e
−C0(t) ≤ ‖u‖H(t) ≤ ‖u‖H(0)e

C0(t), and |u|U(0)e
−C1(t) ≤ |u|U(t) ≤ |u|U(0)e

C1(t).

Then,
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1. If u ∈ U ∩H l+1(Ω), there exists C = C(l), such that

‖u− Ph(t)u‖H(t) = ‖u−Qh(t)u‖H(t) ≤ CeC0(t)|u|Hl+1(Ω)h
l+1.

2. If the triangulations {Rh}h>0 are quasi-uniform then there exists C = C(l) such that the
following inverse inequality holds:

|uh|U(t) ≤ (C/h)eC0(t)+C1(t)‖uh‖H(t) ∀uh ∈ Uh.

3. If the triangulations {Rh}h>0 are quasi-uniform then there exists C = C(l) such that

|u− Ph(t)u|U(t) = |u−Qh(t)u|U(t) ≤ Ce2C0(t)+C1(t)|u|Hl+1(Ω)h
l, ∀ u ∈ U ∩H l+1(Ω).

Proof. The proof follows in a verbatim way [5, Lemma 3.4].

Remark 4.3. The Proposition 4.2 states that the classical approximation properties for the weighted
L2 projection hold in both weighted L2 and H1 norms, and various constants are quantified. The
constants C0(t), C1(t) can be explicitly computed in most interesting applications. Note also that
an estimate on the dual norm can be derived based on Proposition 4.2. In particular, recall that
U = U(0) = H1

0 (Ω), H = H(0) = L2(Ω). Then for u ∈ H l+1∩U and for v ∈ U∗, vh = Ph(t)v ∈ Uh,
using Proposition 4.2,

sup
0 6=v∈U

(u−Qh(t)u, v)H(t)

‖v‖U(t)
= sup

0 6=v∈U

(u−Qh(t)u, v − vh)H(t)

‖v‖U(t)

≤ CeC0(t)|u|Hl+1hl+1 eC0(t)|v|H1h

|v|U(t)

≤ Ce2C0(t)+C1(t)|u|Hl+1hl+2,

by using the semi-norm equivalence.

4.2 Semi-discrete error estimates for a model problem

In order to obtain estimates for the coupled optimality system of equations, we first establish es-
timates on a model problem, which satisfies the strict coercivity assumption. In particular, we
consider the uncontrolled implicit parabolic equation g(.) ≡ 0, and we prove semi-discrete error
estimates, under minimal regularity assumptions. The auxiliary weak problem is stated as follows:
Given f ∈ L2[0, T ;U∗(.)], u0 ∈ H = H(0), we seek u ∈ L2[0, T ;U(.)] ∩H1[0, T ;U∗(.)] such that for
all v ∈ L2[0, T ; U(.)] ∩H1[0, T ; U∗(.)],

(u(T ), v(T ))H(T )+
∫ T

0

(
−(

u, vt)H(.)+a(.; u, v)+η(u, v)H(.)

)
= (u(0), v(0))H+

∫ T

0

〈
f, v

〉
U∗,U

. (4.4)

Remark 4.4. The constant η > 0 will be specified later, and depends on the data ca, Ca, cγ , Cγ , Cµ.

Similarly, the semi-discrete (in space) problem of the uncontrolled auxiliary problem takes the
form: we seek uh ∈ H1[0, T ; Uh] such that for all vh ∈ H1[0, T ; Uh],

(uh(T ), vh(T ))H(T ) +
∫ T

0

(
− (uh, vht)H(.) + a(.; uh, vh) + η(uh, vh)H(.)

)
(4.5)

= (uh(0), vh(0))H +
∫ T

0

〈
f, vh

〉
U∗,U

.
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The subsequent result will be used to uncouple the optimality system. The key idea is to derive
an estimate on the energy norm ‖.‖L2[0,T ;U(.)] which is independent of estimates on time-derivative
ut. The proof is based on L2 projection techniques, and follows [5, Theorem 3.1]. For completeness,
we state the relevant result and quantify various constants in terms of the ratio ca/cγ . The quantity
ca/cγ plays important role in applications such as the Lagrangian moving mesh formulation of
convection-diffusion equations (see e.g. [5]).

Theorem 4.5. Let Uh ⊂ H1
0 (Ω) be a finite dimensional subspace satisfying the assumptions of

Proposition 4.2 and suppose that assumptions 2.1-2.4-2.5 hold. Suppose that f ∈ L2[0, T ; U∗(.)],
u0 ∈ H, and let u, uh denote the solutions of (4.4)-(4.5) respectively. Then, for η ≥ Cγ + (Cµ/2) +
(cγCa/ca), the following estimate holds for the error e = u− uh. There exists an algebraic constant
C > 0 such that:

cγ |e|2L2[0,T ;U(.)] + (cγCa/ca)|e|2L2[0,T ;H(.)] ≤ C
(
|e(0)|2H + (Caca/cγ + cγCa/ca)|ep|2L2[0,T ;H(.)]

+(c2
a/cγ + cγ)|ep|2L2[0,T ;U(.)]

)

with ep(.) = u(.)− Ph(.)u(.). Here Ph(t) denotes the weighted L2 orthogonal projection.

Proof. Subtracting (4.5) from (4.4), we obtain the orthogonality condition

(e(T ), vh(T ))H(T ) +
∫ T

0

(
− (e, vht)H(.) + a(.; e, vh) + η(e, vh)H(.)

)
= (e(0), vh(0))H . (4.6)

Decomposing the error as e(.) = u(.)− uh(.) = u(.)− Ph(.)u(.) + Ph(.)u(.)− uh(.), denoting ep(.) =
u(.)− Ph(.)u(.), eh(.) = Ph(.)u(.)− uh(.) and setting vh = eh we obtain

(eh(T ), eh(T ))H(T ) +
∫ T

0

(
− (eh, eht)H(.) + a(.; eh, eh) + η(eh, eh)H(.)

)

= (eh(0), eh(0))H(0) −
∫ T

0

a(.; ep, eh).

Here we have used the properties of Ph(.). In particular, we emphasize that by construction, eh(t) ∈
Uh a.e. t ∈ (0, T ], and since Uh is independent of time, eht(t) ∈ Uh too. Hence

∫ T

0
(ep, eht)H(.) = 0.

Using assumption 2.1, we obtain

|eh(T )|2H(T ) +
∫ T

0

(
− 1

2
d

dt
(eh, eh)H(.) +

1
2
µ(.; eh, eh) + a(.; eh, eh) + η|eh|2H(.)

)

= |eh(0)|2H(0) −
∫ T

0

a(.; ep, eh),

which leads to (by assumption 2.4)

(1/2)
(
|eh(T )|2H(T ) − |eh(0)|2H(0)

)
+ cγ

∫ T

0

|eh|2U(.) +
(
η − Cγ − (Cµ/2)

) ∫ T

0

|eh|2H(.)

≤
∫ T

0

(
ca|ep|2U(.) + Ca|ep|2H(.)

)1/2(
ca|eh|2U(.) + Ca|eh|2H(.)

)1/2

.

Using the identity ab ≤ (1/4δ)a2 + δb2 and selecting δ > 0 to hide the ca

∫ T

0
|eh|2U(.) to the left, we

obtain

(1/2)
(
‖eh(T )‖2H(T ) − ‖eh(0)‖2H

)
+ (cγ/2)

∫ T

0

|eh|2U(.) +
(
η − Cγ − (Cµ/2)

) ∫ T

0

|eh|2H(.)

≤
∫ T

0

(c2
a/2cγ)|ep|2U(.) + (Caca/2cγ)|ep|2H(.) + (cγCa/2ca)

∫ T

0

|eh|2H(.).

12



Multiplying the last inequality by two, selecting η such that 2η−2Cγ−Cµ−(cγCa/ca) ≥ (cγCa/ca),
and using triangle inequality we obtain the desired estimate.

Corollary 4.6. Let the assumptions of Theorem 4.5 hold. Then,

‖e‖2L2[0,T ;U(.)] ≤ C
(
‖e(0)‖2L2(Ω) + ‖ep‖2L2[0,T ;U(.)]

)

where C is a constant depending only on the ratio ca/cγ , Ca, Cγ , Cµ.

Proof. Using standard algebra, the estimate of Theorem 4.5 and triangle inequality.

We close this subsection by proving an error estimate for the time derivative, based on the
generalized L2 projection techniques.

Theorem 4.7. Suppose that the assumptions of Theorem 4.5 hold, and denote by Cq the stability
constant of the projection Qh(.) with respect to U(.) norm, i.e.,

‖Qh(.)u‖U(.) ≤ Cq‖u‖U(.), and ‖u−Qh(.)u‖U(.) ≤ Cq‖u‖U(.). (4.7)

Then,
‖et‖2L2[0,T ;U∗(.)] ≤ C

(
‖ut −Qh(.)ut‖2L2[0,T ;U∗(.)] + ‖e‖2L2[0,T ;U(.)]

)

where the constant C depends on Ca, Cµ, Cγ , Cq, Cu and the ratio ca/cγ .

Proof. Working similar to the proof of Theorem 4.5 and integrating by parts the resulting orthogo-
nality condition, we obtain

∫ T

0

〈et, vh〉U∗(.),U(.) + µ(.; e, vh) + a(.; e, vh) + η(e, vh)H(.) = 0, (4.8)

for all vh ∈ H1[0, T ; Uh]. Note that eh ∈ H1[0, T ; Uh]. Then adding and subtracting Qh(.)v ∈ Uh

and using (4.8),

∫ T

0

〈et, v〉U∗(.),U∗(.) =
∫ T

0

〈et, v −Qh(.)v〉U∗(.),U(.) + 〈et, Qh(.)v〉U∗(.),U(.)

=
∫ T

0

〈et, v −Qh(.)v〉U∗(.),U(.) −
∫ T

0

(
µ(.; e,Qh(.)v) + a(.; e,Qh(.)v) + η(e,Qh(.)v)H(.)

)
,

for all v ∈ L2[0, T ;U(.)]. Here, at the last equality we have also used the fact that Qh(.)v(.) ∈
H1[0, T ;Uh]. Indeed, the stability inequality (4.7), the definition of Qh(.), implies that Qh(.)v(.) ∈
Uh, and hence (Qh(.)v(.))t ∈ Uh, since Uh is independent of time (by its construction). For the first
term on the right hand side, note that uht(.) and Qh(.)ut belong in Uh, and hence

∫ T

0

〈et, v −Qh(.)v〉U∗(.),U(.) =
∫ T

0

〈ut, v −Qh(.)v〉U∗(.),U(.) =
∫ T

0

〈ut −Qh(.)ut, v −Qh(.)v〉U∗(.),U(.).

Combining the last two equalities, we obtain,

∫ T

0

〈et, v〉U∗(.),U(.) =
∫ T

0

〈ut −Qh(.)ut, v −Qh(.)v〉U∗(.),U(.)

−
∫ T

0

(
µ(.; e,Qh(.)v) + a(.; e, Qh(.)v) + η(e,Qh(.)v)H(.)

)
.
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Hölder’s inequality, and various norm equivalences imply that
∫ T

0

〈et, v〉U∗(.),U(.) ≤ C
( ∫ T

0

‖ut −Qh(.)ut‖U∗(.)‖v −Qh(.)v‖U(.)

+
∫ T

0

Cµ‖e‖H(.)‖Qh(.)v‖H(.) + ‖e‖U(.)‖Qh(.)v‖U(.) + η‖e‖H(.)‖Qh(.)v‖H(.)

)

≤ C
(
‖ut −Qh(.)ut‖L2[0,T ;U∗(.)]‖v −Qh(.)v‖L2[0,T ;U(.)]

+
(
(Cµ + η)‖e‖L2[0,T ;H(.)] + ‖e‖L2[0,T ;U(.)]

)
‖Qh(.)v‖L2[0,T ;U(.)]

)
.

Using the stability inequality (4.7), and taking the supremum over v ∈ L2[0, T ; U(.)] we obtain the
desired estimate.

Various estimates of symmetric form can be deriving by combining the last two results. Recall,
that the quantity of interest with respect to the size of the various constants, is cα/cγ .

Theorem 4.8. Suppose that the assumptions of Theorems 4.5-4.7 hold. Then, the following estimate
is true:

‖e‖2L2[0,T ;U(.)] + ‖et‖2L2[0,T ;U∗(.)] ≤ C
(
|e(0)|2H(0) + ‖ep‖2L2[0,T ;U(.)] + ‖ut −Qh(.)ut‖2L2[0,T ;U∗(.)]

)
,

where the constant C depends on Ca, Cγ , Cµ, Cq, Cu and the ratio ca/cγ , c2
a/cγ .

Once, we have obtained error estimates on the natural energy norm under minimal regularity
assumptions for the auxiliary problem, we are ready to rewrite the optimality system into the
operator framework of Brezzi-Rappaz-Raviart. First, we quote the main result regarding the Brezzi-
Rappaz-Raviart theory, specialized to our needs. For more details the reader can consult [10].

4.3 The Brezzi-Rappaz-Raviart theory

The problems considered are of the following type. Suppose that X ,Y are Banach spaces and we
seek χ ∈ X such that

χ + T Gχ = 0, (4.9)

where T ∈ L(Y,X ), G is a C2 mapping from the solution space X to the data space Y. We call a
solution a regular solution if χ + T Gχ(χ) is an isomorphism from X to Y. Here Gχ (or DG) denotes
the Fréchet derivative of G(.). We also assume that there exists another Banach space Z, contained
in Y, with continuous embedding, such that

Gχ(χ) ∈ L(X ,Z) ∀χ ∈ X . (4.10)

Approximations are defined on a subspace Xh ⊂ X based on an approximating operator Th ∈
L(Y,Xh). The discrete problem is to find χh ∈ Xh such that

χh + ThGχh = 0. (4.11)

The approximation operator Th needs to satisfy the following properties.

lim
h→0

‖(Th − T )y‖X = 0, ∀ y ∈ Y, (4.12)

and

lim
h→0

‖Th − T ‖L(Z,X ) = 0. (4.13)

Recall that if Z ⊂ Y with compact embedding then (4.13) follows directly from (4.12). Next, we
state the main theorem. In the following statement D2G denotes the second Fréchet derivatives.

14



Theorem 4.9. Let X ,Y be Banach spaces. Assume that G is a C2 mapping from X to Y and
that D2G is bounded on all bounded sets of X . Suppose also that (4.10)-(4.12)-(4.13) hold and that
χ ∈ X is a regular solution of (4.9). Then there exists a neighborhood O of the origin in X and
for h ≤ h0 small enough, a unique function χh ∈ Xh such that χh is a regular solution of (4.11),
χh − χ ∈ O. Moreover, there exists a constant C independent of h such that

‖χh − χ‖X ≤ C‖(Th − T )Gχ‖X . (4.14)

Proof. [10, Theorem 3.3, pp.307].

Remark 4.10. The main advantage of the using the above framework to the linear optimality
system, is that it facilitates the decoupling the forward and backward in time PDE’s in presence of
the non-selfadjoint operators. Note also that the estimate has a symmetric structure, and relates the
error of the coupled optimality system to the error the model (uncoupled) PDE.

4.4 Brezzi-Rappaz-Raviart framework of the optimality system

In order to apply Theorem 4.9, we need to recast the optimality system, into the Brezzi-Rappaz-
Raviart framework. For this purpose, we set H = L2(Ω), U = H1

0 (Ω) and let H(.), U(.) denote the
underlying time-dependent spaces, induced by the operators M(.), A(.).

X = L2[0, T ;U ] ∩H1[0, T ; U∗], Y = L2[0, T ;U∗] ∩H

X = X ×X, Y = Y × Y.

All above spaces are endowed with the natural time-dependent norms, e.g.,

‖(u, ψ)‖2X = ca|u|2L2[0,T ;U(.)] + Ca|u|2L2[0,T ;H(.)] + ‖ut‖2L2[0,T ;U∗(.)]

+ca|ψ|2L2[0,T ;U(.)] + Ca|ψ|2L2[0,T ;H(.)] + ‖ψt‖2L2[0,T ;U∗(.)]

‖(f1, u1, f2, u2)‖2Y = ‖f1‖2L2[0,T ;U∗(.)] + |u1|2H(0) + ‖f2‖2L2[0,T ;U∗(.)] + |ψ2|2H(T ).

We define the operator T ∈ L(Y,X ) such that for given data (f̂1, û1, f̂2, ψ̂2) ∈ Y, (û, ψ̂) = T (f̂1, û1, f̂2, ψ̂2)
is the unique solution of the problem,

(û(T ), v(T ))H(T ) +
∫ T

0

(
(û, vt)H(.) + a(.; û, v) + η1(û, v)H(.)

)
(4.15)

= (û1, v(0))H +
∫ T

0

〈
f̂1, v

〉
U∗(.),U(.)

∀ v ∈ L2[0, T ; U(.)] ∩H1[0, T ; U∗(.)],

−(ψ̂2, v(T ))H(T ) +
∫ T

0

(
(ψ̂, vt)H(.) + µ(.; ψ̂, v) + a∗(.; ψ̂, v) + η2(ψ̂, v)H(.)

)
(4.16)

= −(ψ̂(0), v(0))H +
∫ T

0

〈
f̂2, v

〉
U∗(.),U(.)

∀ v ∈ L2[0, T ; U(.)] ∩H1[0, T ;U∗(.)].

The parameters η1, η2 will be chosen as indicated in the proof of Theorem 4.5. The mapping G
is defined by: Given (û, ψ̂) ∈ X then G(û, ψ̂) = (f̂1, û1, f̂2, ψ̂2) ∈ Y if and only if for all v ∈
L2[0, T ;U(.)] ∩H1[0, T ; U∗(.)]
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∫ T

0

〈
f̂1, v

〉
U∗(.),U(.)

= −
∫ T

0

(
〈f, v

〉
U∗(.),U(.)

− (1/α)(ψ̂, v)H(.) + η1(û, v)H(.)

)

(ψ̂1, v(0))H(0) = (u0, v(0))
∫ T

0

〈
f̂2, v

〉
U∗(.),U(.)

= −
∫ T

0

(
(û− z, v)H(.) + η2(ψ̂, v)H(.)

)

(ψ̂2, v(T ))H(T ) = 0.

Clearly the pair (u, ψ) ∈ X is a solution of the optimality system (3.3) if and only if

(u, ψ) + T G(u, ψ) = 0.

It remains to define the approximating operator Th. We denote by Uh (independent of time) a finite
element subspace of H1

0 (Ω) satisfying the assumptions of Theorem 4.2, and let Xh = H1[0, T ; Uh].
Then,

Xh = Xh ×Xh,

and for (f̂1, û1, f̂2, û2) ∈ Y, we define Th(f̂1, û1, f̂2, ψ̂2) = (ûh, ψ̂h) ∈ Xh if and only if

(ûh(T ), vh(T ))H(T ) +
∫ T

0

(
− (

ûh, vht

)
H(.)

+ a(.; ûh, vh) + η1(ûh, vh)H(.)

)

= (û1, vh(0))H +
∫ T

0

〈
f̂1, vh

〉
U∗(.),U(.)

∀ vh ∈ H1[0, T ; Uh], (4.17)

−(ψ̂2(T ), vh(T ))H(T ) +
∫ T

0

(
(ψ̂h, vht)H(.) + µ(.; ψ̂h, vh) + a∗(.; ψ̂h, vh) + η2(ψ̂h, vh)H(.)

)

= −(ψ̂h(0), vh(0))H +
∫ T

0

〈
f̂2, vh

〉
U∗(.),U(.)

∀ vh ∈ H1[0, T ; Uh]. (4.18)

Recall that the approximations are constructed on Uh ⊂ H1
0 (Ω) independent of time. Similar to

the continuous case, the discrete optimality system now takes the operator form

(uh, ψh) + ThG(uh, ψh) = 0.

A few remarks about the structure of the operators T , Th,G follow:

Remark 4.11. The operator T contains a forward and a backward in time implicit parabolic equa-
tions and it is essentially uncoupled. All coupling terms are contained in operator G. The estimate
on T −Th corresponds to two (uncoupled) estimates for the two auxiliary problems (a forward and a
backward in time) for suitable choices of η1, η2. The addition and subtraction of the term ηi(., .)H(.)

into 4.15-4.16 is to guarantee the strict coercivity of the bilinear forms.

Theorem 4.12. Let Uh ⊂ H1
0 (Ω) be classical finite element subspaces satisfying the standard ap-

proximation properties of Proposition 4.2, and f ∈ L2[0, T ; U∗(.)], u0 ∈ L2(Ω), z ∈ L2[0, T ; H(.)]
are given data. Let U(.) ⊂ H ⊂ U∗(.) be dense embedding of Hilbert spaces with embedding constants
independent of t, and let the norm and semi-norm equivalences of Proposition 4.2 hold. Suppose also
that the operators M(.),A(.),A∗(.) satisfy Assumptions 2.1,2.4,2.5,2.6. Furthermore, let (u, ψ) ∈ X
is a regular solution of the optimality system 3.2. Then, there exists a neighborhood of the origin
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O such that for h ≤ h0 small enough, (uh, ψh) ∈ Xh is a unique solution of the discrete optimality
system (4.1), and

‖(u, ψ)− (uh, ψh)‖X → 0 as h → 0.

In addition, if u, ψ ∈ L2[0, T ;H l+1(Ω) ∩ U(.)] ∩H1[0, T ; H l−1(Ω) ∩ U(.)], then there exists constant
C > 0, depending to (1/α), Ca, Cq, Cµ, Cu and the ratio ca/cγ such that,

‖(u, ψ)− (uh, ψh)‖X ≤ Ch2lDl(u, ψ)

where Dl(u, ψ) denote norms of the expected higher parabolic regularity L2[0, T ; H l+1(Ω) ∩ U(.)] ∩
H1[0, T ;H l−1(Ω) ∩ U(.)].

Proof. It is clear that G is a smooth polynomial map from X to Y. Note also that D2G is bounded
on all bounded sets of X , and recall that Theorem 4.5, 4.7 imply that

‖(T − Th)(f̂1, û1, f̂2, ψ̂1)‖X → 0 as h → 0,

for appropriate choice of parameters η1, η2. Indeed, T − Th essentially compares two uncoupled
problems, a forward and an backward in time. Hence, we may apply the estimate of the model
problem, with an appropriate choice of η1 = η where η is specified in Theorem 4.5, for the forward
in time model problem to obtain an estimate of the form Theorem 4.8, while the backward in time
problem can be treated similarly. Let (u, ψ), (ũ, ψ̃) ∈ X and note that the derivative DG is defined
as DG(u, ψ) · (ũ, ψ̃) = (f̃1, ũ1, f̃2, ψ̃1) if and only if

∫ T

0

〈f̃1, v〉U∗(.),U(.) = −
∫ T

0

(
− (1/α)(ψ̃, v)H(.) + η1(ũ, v)H(.)

)

(ũ1, v) = 0
∫ T

0

〈f̃2, v〉U∗(.),U(.) = −
∫ T

0

(
(ũ, v)H(.) + η2(ψ̃, v)H(.)

)

(ψ̃1, v) = 0

For sufficiently small ε > 0, we set Z = L2[0, T ; L2(Ω)]∩H1[0, T ; H−1(Ω)]×Hε(Ω), and Z = Z×Z.
Here, Z is endowed with the time-dependent norm ‖v‖2Z = ‖v‖2L2[0,T ;H(.)] + ‖vt‖2L2[0,T ;U∗(.)]. Since
L2(Ω) ⊂ H−1(Ω) with compact embedding, using a standard compactness result in Lp[0, T ;B]
spaces (see e.g. [28, Theorem 2.1, pp 271]), we obtain that L2[0, T ;L2(Ω)] ∩ H1[0, T ;H−1(Ω)] ⊂
L2[0, T ;H−1(Ω)] with compact embedding. Therefore, Z ⊂ Y with compact embedding, due to the
time-dependent norm, and semi-norm equivalences. Moreover, notice that DG(u, ψ) ∈ Z due to
regularity properties of ũ, ψ̃. Hence, we have verified the assumptions of Theorem 4.9, which clearly
imply the desired estimates.

Remark 4.13. The above result indicates that the optimality system exhibits the same approxi-
mation properties to an uncontrolled model problem, provided that the constants involved to norm
equivalences stay under control. However, in many interesting cases such as the Lagrangian moving
mesh formulation of convection dominated problems or the dynamic mesh approaches of problems
related to the diffusion on manifolds (see e.g. [5] and [4] and relevant discussion within) these
constants grow exponentially in terms of various physical variables (see also relevant discussion in
section 2) unless re-triangulation of the mesh is performed in every few time-steps. Hence, similar to
the uncontrolled case, fully-discrete schemes based on the discontinuous Galerkin (in time) approach
are needed to properly model the change of subspaces at every other (or every few) time steps.

17



5 Fully-discrete error estimates

In this section we consider approximating optimal control problems which are related to implicit
parabolic equations of the form

(M(t)u)t + B(t)u = F, u|Γ = 0, u(0, x) = u(0) (5.1)

Here, we will assume that the operator B(.)u : U(.) → U∗(.) induces a strictly coercive bilinear
form b(.; ., .) in the sense of Theorem 4.5. In particular, the associated bilinear form b(.; ., ) has the
following structure:

b(.;u, v) = a(.; u, v) + η(u, v)H(.)

The optimal control problem considered in this section, is to minimize the tracking functional (1.3)
subject to equation (5.1) with F = f + g. It obvious that the analysis of Sections 3 and 4 is also
applicable in this case, while the parameter η can be quantified in terms of constants Ca, Cγ , Cµ and
the ratio ca/cγ similar to Theorem 4.5. Then, the optimality system of equations take the form, for
all v ∈ L2[0, T ; U(.)] ∩H1[0, T ; U∗(.)],





(u(T ), v(T ))H(T ) +
∫ T

0

(
− (u, vt)H(.) + a(.; u, v) + η(u, v)H(.)

)
− (u0, v(0))H

=
∫ T

0

(
− (1/α)(ψ, v)H(.) + 〈f, v〉U∗(.),U(.)

)

∫ T

0

(
(ψ, vt)H(.) + a∗(.; ψ, v) + η(ψ, v)H(.) + µ(.; ψ, v)

)
+ (ψ(0), v(0))H =

∫ T

0

(u− z, v)H(.)

(5.2)
Below, we discretize the corresponding optimality system in both space and time, using a discon-
tinuous Galerkin approach. The proposed scheme is discontinuous in time, but conforming in space
and the time-discretization is defined in the neighborhood O of Theorem 4.12 where the correspond-
ing semi-discrete approximation (of arbitrary order) in space was defined. Given a quasi-uniform
partition 0 = t0 < t1 < ... < tN = T of [0, T ] with τ = maxi τ i, τ i ≡ (ti − ti−1) and subspaces
Un

h of U , satisfying the standard approximation properties (see e.g. [6]) the DG method constructs
approximate solutions uh, ψh ∈ Uτ

h where

Uτ
h ≡ {uh ∈ L2[0, T ; U(.)] such that uh|(tn−1,tn] ∈ Pk[tn−1, tn;Un

h ]}.
Here Pk[tn−1, tn;Un

h ] denotes polynomials of degree k with respect to time and values in Un
h . Then

the fully discrete formulation, is to seek uh, ψh ∈ Uτ
h such that for every n = 1, ..., N and vh ∈

Pk[tn−1, tn;Un
h ],





(un, vn)H(tn) +
∫ tn

tn−1

(
− (uh, vht)H(.) + a(.;uh, vh) + η(uh, vh)H(.)

)

−(un−1, vn−1
+ )H(tn−1) =

∫ tn

tn−1

(
− (1/α)(ψh, vh)H(.) + 〈f, vh〉U∗(.),U(.)

)

−(ψn
+, vn)H(tn) +

∫ tn

tn−1

(
(ψh, vht)H(.) + a∗(.; ψh, vh) + η(ψh, vh)H(.) + µ(.; ψh, vh)

)

+(ψn−1
+ , vn−1

+ )H(tn−1) =
∫ tn

tn−1
(uh − z, vh)H(.).

(5.3)

Note that by convention the functions are assumed to be left continuous with right limits, and
we denote by un, the value of uh(tn) = uh(tn−) and by un

+ the value of uh(tn+). The exact solution
are assumed to be C[0, T ; H(.)] (see also the parabolic regularity assumption 2.6), so the jump in
the error at tn is denoted by [en] ≡ [un] = un

+ − un. We refer the reader to [30, Chapter 12] for an
excellent exposition of the discontinuous (in time) Galerkin methods (see also references within).
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Remark 5.1. The existence of discontinuous Galerkin approximations can be proved easily for low
order schemes. For example, recall that when k = 0 (piecewise constants in time), the discontinuous
Galerkin scheme reduces to the implicit Euler scheme. Alternatively, for the arbitrary k, we first
obtain a-priori estimates on uh, ψh at the energy norm and at arbitrary time-points, working similar
to the subsequent Theorems 5.4,5.7, and then we proceed by following the approach of [14, Section 3]
based on the definition of a fully-discrete optimal control problem. Below, we focus on the derivation
of error estimates.

Next, we derive error estimates of arbitrary order for the above optimality systems of equations.
The proof solely relies on suitable projection techniques (see e.g. [4] for the uncontrolled problem)
since the lack of regularity for the time-derivative of the discrete problem due to the discontinuities,
prohibits the use of the operator theoretic framework of Brezzi-Rappaz-Raviart which was used
in the semi-discrete (in space) approximation. These projections, will also allow us to handle the
time-dependent norms and inner products associated to our problem. Below, we state the main
definitions (see also e.g. [4]).

Definition 5.2. 1. We denote by Pn(t) : H(t) → Un
h the standard weighted L2 projection from

H(t) onto Un
h , i.e., (Pn(t)v, vh)H(t) = (v, vh)H(t) ∀ vh ∈ Un

h .

2. We denote by P loc
n the local weighted L2 projection, by P loc

n : C[tn−1, tn; H(.)] → Pk[tn−1, tn; Un
h ]

that satisfies (P loc
n v)n = Pn(tn)v(tn) and

∫ tn

tn−1
(v − P loc

n v, vh)H(.) = 0 ∀ vh ∈ Pk−1[tn−1, tn; Un
h ]

where we have used the convention that (P loc
n v)n ≡ (P loc

n v)(tn).

3. We denote by P loc
h the projection which consists of all local P loc

n projections, i.e., P loc
h :

C[0, T ; H(.)] → Uτ
h satisfies P loc

h v ∈ Uτ
h and (P loc

n v)|(tn−1,tn] = P loc
n (v|[tn−1,tn]).

Remark 5.3. For the adjoint equation, the projections of Definition 5.2 (denoted by P loc,b
n ,P loc,b

h etc)
should be modified to handle the backwards in time evolution. In particular, in addition to relation∫ tn

tn−1(v−P loc
n v, vh)H(.) = 0∀ vh ∈ Pk−1[tn−1, tn; Un

h ] we should impose the matching condition at the
left end-point. However, note that the approximation properties of both projections are exactly the
same, and hence we occasionally use the same notation for both situations. For the basic properties
of the above projections we refer the reader to [30, 5] and references within.

Now, we are ready to prove the main estimate at the energy norm. Throughout the rest of
this section we will be tracking the dependence of various constants on the ratio ca/cγ and on the
parameter α. The proof uses techniques from [4, Theorem 4.3] suitably adjusted for the optimality
system.

Theorem 5.4. Suppose that the Assumptions 2.1, 2.4-2.5-2.6 hold, and let u, ψ ∈ L2[0, T ; U(.)] ∩
H1[0, T ;U∗(.)], uh, ψh ∈ Uh denote the solutions of optimality systems (5.2) and (5.3) respectively.
Denote by e = u−uh and r = ψ−ψh. Then for η satisfying η ≥ 4Cγ + 4(Caca/cγ) + 6Cµ + 2Ca the
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following estimate holds:

|eN |2H(tN ) + (1/α)|r0
+|2H(0) +

∫ T

0

(
‖e‖2U(.) + (1/α)‖r(.)‖2U(.)

)
+

N−1∑

i=0

‖[ei]‖2H(ti) +
N∑

i=1

‖[ri]‖2H(ti)

≤ C max{1, (1/α2)}
[ ∫ T

0

(
‖(I − P loc

h )u‖2U(.) + ‖(I − P loc
h )ψ‖2U(.)

)
+

∫ T

0

‖rp‖2H(.)dt

+
N−1∑

i=0

min
{

(Ck/τ i+1cγ)‖Pi+1(I − Pi)u(ti)‖2U∗(ti), |(I − Pi)u(ti)|2H(ti)

}

+
N∑

i=1

min
{

(Ck/τ icγ)‖Pi(I − Pi+1)ψ(ti)‖2U∗(ti), |(I − Pi)y(ti)|2H(ti)

}
+ |e0|2H(0)

]

where C depends on the ratio ca/cγ , and on the constants Ca, Cγ , Cµ, Ck, Cu.

Proof. Subtracting (5.3) from (5.2) we obtain the orthogonality condition, for every n = 1, ..., N and
vh ∈ Pk[tn−1, tn; Un

h ],




(en, vn)H(tn) +
∫ tn

tn−1

(
− (e, vht)H(.) + a(.; e, vh) + η(e, vh)H(.)

)

−(en−1, vn−1
+ )H(tn−1) = −(1/α)

∫ tn

tn−1
(r, vh)H(.)

−(rn
+, vn)H(tn) +

∫ tn

tn−1

(
(r, vht)H(.) + a∗(.; r, vh) + η(r, vh)H(.) + µ(.; r, vh)

)

+(rn−1
+ , vn−1

+ )H(tn−1) =
∫ tn

tn−1
(e, vh)H(.).

(5.4)

We decompose the error e = (y − P loc
n y) + (P loc

n y − yh) ≡ ep + eh, and using the properties of P loc
n ,

and in particular that
∫ tn

tn−1(ep, vht)H(.) = 0, since vht ∈ Pk−1[tn−1, tn; Un
h ], we obtain,

(en
h, vn)H(tn) +

∫ tn

tn−1

(
− (eh, vht)H(.) + a(.; eh, vh) + η(eh, vh)H(.)

)
− (en−1

h , vn−1
+ )H(tn−1)

= ((I − Pn−1)u(tn−1), vn−1
+ )H(tn−1) −

∫ tn

tn−1

(
a(.; ep, vh) + η(ep, vh)H(.)

)
− (1/α)

∫ tn

tn−1
(r, vh)H(.).

Setting vh = eh in the above equation, and using the assumptions 2.1 and 2.4,

(1/2)|en
h|2H(tn) +

∫ tn

tn−1

(
cγ |eh|2U(.) + (η − Cγ)|eh|2H(.)

)
+ (1/2)|en−1

h+ − en−1
h |2H(tn−1)

≤ (1/2)|en−1
h |2H(tn−1) +

∫ tn

tn−1

(
a(.; ep, eh) + η(ep, eh)H(.) + (1/2)µ(.; eh, eh)

)

+((I − Pn−1)u(tn−1), en−1
+ )H(tn−1) − (1/α)

∫ tn

tn−1
(r, eh)H(.). (5.5)

The inequality ab ≤ (1/4δ)a2 + δb2, with appropriate δ > 0, and assumptions 2.1,2.4, imply that

∫ tn

tn−1

(
a(.; ep, eh) + η(ep, eh)H(.) + (1/2)µ(.; eh, eh)

)
≤

∫ tn

tn−1

(
(cγ/2)|eh|2U(.) + (c2

a/2cγ)|ep|2U(.)

)

+
∫ tn

tn−1

((
(Caca/2cγ) + (η/2)

)|ep|2H(.) +
(
(cγCa/2ca) + (Cµ/2) + (η/2)

)|eh|2H(.)

)
.
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Finally for the coupling term, decomposing r = rp + rh where rp = (I − P loc,b
n )ψ,rh = P loc,b

n ψ−ψh,
we write

∫ tn

tn−1 −(1/α)(r, eh)H(.) =
∫ tn

tn−1 −(1/α)
(
(rp, eh)H(.)+ (rh, eh)H(.)

)
and note that

∣∣∣
∫ tn

tn−1
−(1/α)(rp, eh)H(.)

∣∣∣ ≤
∫ tn

tn−1

(
1/α2η)|rp|2H(.) + (η/4)|eh|2H(.)

)
.

Hence, collecting that last inequalities into (5.5), we arrive to

(1/2)|en
h|2H(tn) +

∫ tn

tn−1

(
(cγ/2)|eh|2U(.) + ((η/4)− Cγ − (cγCa/2ca)− (Cµ/2))|eh|2H(.)

)

+(1/2)|[en−1
h ]|2H(tn−1) ≤ (1/2)|en−1

h |2H(tn−1) +
∫ tn

tn−1

(
(c2

a/2cγ)|ep|2U(.) +
(
(Caca/2cγ) + (η/2)

)|ep|2H(.)

)

+((I − Pn−1)u(tn−1), en−1
+ )H(tn−1) +

∫ tn

tn−1
(1/α2η)‖rp‖2H(.) − (1/α)

∫ tn

tn−1
(rh, eh)H(.). (5.6)

It remains to treat the inner product term of the right hand side of equation 5.6. Note that en−1
h ∈

Un−1
h and hence

((I − Pn−1)u(tn−1), en−1
h+ )H(tn−1) = ((I − Pn−1)u(tn−1), en−1

h+ − en−1
h )H(tn−1)

≤ |(I − Pn−1)u(tn−1)|2H(tn−1) + (1/4)|[en−1
h ]|2H(tn−1),

while an alternative bound is obtained by

((I − Pn−1)u(tn−1), en−1
h+ )H(tn−1) = (Pn(I − Pn−1)u(tn−1), en−1

h+ )H(tn−1)

≤ ‖(Pn(I − Pn−1)u(tn−1)‖U∗(tt−1)‖en−1
h+ ‖U(tn−1)

≤ (C(Ck, Cu)/τncγ)‖(Pn(I − Pn−1)u(tn−1)‖2U∗(tt−1)

+(cγ/4)
∫ tn

tn−1
‖eh‖2U(.).

Here, we have used the inverse estimate for functions on Pk[tn−1, tn; Un
h ] and the norm equivalence

assumption, which states that

‖en−1
h+ ‖2U(tn−1) ≤ Ck/τn

∫ tn

tn−1
‖eh‖2U(tn−1) ≤ C(Ck, Cu)/τn

∫ tn

tn−1
‖eh‖2U(.).

Now we turn our attention to the backwards in time equation. Decomposing the error of the adjoint
variable as r = rp + rh with rp = (I − P loc,b

n )ψ,rh = P loc,b
n ψ − ψh and working similarly to state

variable, we obtain

−(rn
h+, vn)H(tn) +

∫ tn

tn−1

(
(rh, vht)H(.) + a∗(.; rh, vh) + µ(., rh, vh) + η(rh, vh)H(.)

)

= −(rn−1
h+ , vn−1

+ )H(tn−1) + (rn
p+, vn)H(tn) −

∫ tn

tn−1

(
a(.; rp, vh) + µ(.; rp, vh) + η(rp, vh)H(.)

)

+
∫ tn

tn−1
(e, vh)H(.).

Setting vh = rh and using the assumptions 2.1,2.4 and the inequality ab ≤ (1/4δ)a2 + δb2, for
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appropriate δ > 0 analogously to the primal variable, we obtain

−(1/2)|rn
h+|2H(tn) + (1/2)|rn−1

h+ |2H(tn−1) − (1/2)|[rn
h ]|2H(tn) (5.7)

+
∫ tn

tn−1

(
(cγ/2)|rh|2U(.) +

(
(η/4)− Cγ − (cγCa/2ca)− (3/Cµ)

)|rh|2H(.)

)

≤
∫ tn

tn−1

(
(c2

a/2cγ)|rp|2U(.) +
(
(Caca/2cγ) + (η/2) + (Cµ/2)

)|rp|2H(.)

)

+((I − Pn)ψ(tn+), rn) +
∫ tn

tn−1
(1/η)‖ep‖2H(.) +

∫ tn

tn−1
(eh, rh)H(.).

The inner product term of the right hand side of (5.7) can be treated similarly to (5.6). Multiplying
(5.7) by (1/α), adding the resulting inequality to (5.6) and summing from 0 to N , we obtain the
desired estimate, after noting the the coupling terms

∫ tn

tn−1

(− (1/α)(rh, eh)H(.) + (1/α)(eh, rh)H(.)

)
are cancelled due to the symmetric property of operators M(.).

Remark 5.5. The key feature of the proof is to exploit the presence of the weighted L2 norm in the
functional and the symmetric property of the operator M(.) in order to cancel the terms with the
alternative sign.

Since, we have obtained an estimate on the energy norm ‖.‖L2[0,T ;U(.)] for both the state and
adjoint variable, the optimality system is now essentially uncoupled. Hence, using a classical “boot-
strap” argument, we may obtain estimates at arbitrary time-points, working with each equation
separately by applying the techniques of [4, Theorem 4.3]. Recall, that a convenient choice of test
functions in order to obtain stability and error estimates at arbitrary time points, is to multiply the
equation by χ[0,t)uh, χ[0,t)eh respectively. However, this choice is not available unless t is a partition
point. To overcome this difficulty, approximations of such functions need to be constructed. For
implicit parabolic equations, this is done in [4, Section 3.1]. The main advantage of this approach
within the context of optimal control problems, is that we do not require any additional time-
regularity. Below, we state the main results. To simplify the presentation, we consider the interval
[tn−1, tn) and let t ∈ [tn−1, tn).

Let u ∈ Pk[tn−1, tn; Un
h ]. Then, we define the discrete approximation ũ of χ[tn−1,t)u such as:

ũ ∈ Pk[tn−1, tn; Un
h ] satisfying

ũ(tn−1) = u(tn−1) and
∫ tn

tn−1
(ũ, v)H(.) =

∫ t

tn−1
(u, v)H(.), ∀ v ∈ Pk−1[tn−1, tn; Un

h ].

The following lemma establishes bounds in L2[tn−1, tn;H(.)] and L2[tn−1, tn; U(.)] norms respec-
tively.

Lemma 5.6. The mapping u → ũ in Pk[tn−1, tn; H(.)] is linear, continuous and there exists a
constant Ck depending only on k such that

‖ũ‖L2[tn−1,tn;H(.)] ≤ (1 + CkeCµτ )‖u‖L2[tn−1,tn;H(.)].

In addition, let the inverse hypothesis constant Cinv(h) be defined by

Cinv(h) = max
0≤n≤N

sup
uh∈Un

h

sup
t∈(tn−1,tn]

|uh|U(t)

|uh|H(t)
.

Then, there exists a constant C depending only on Ck, Cµ such that

|u|L2[tn−1,tn;U(.)] ≤ C(Ck, Cµ)
(
C2

u|u|L2[tn−1,tn;U(.)] + τCinv(h)|u|L2[tn−1,tn;H(.)]

)
.
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Proof. See [4, Lemma 3.2 and Corollary 3.4].

Theorem 5.7. Suppose that the assumptions of Theorem 5.4, and Lemma 5.6 hold. Then, there
exists a constant Ĉ depending on C(Ck, Cµ, Cu,

√
caτCinv(h)) and on constant C of Theorem 5.4

such that for eh = P loc
h u− uh the following estimate holds:

|eh(t)|2H(t) +
∫ tn

0

cγ |eh|2U(.) ≤ Ĉ max{1, (1/α2)}
(
|e0|2H(0) +

∫ T

0

‖(I − P loc
h )u‖2U(.)

+
N−1∑

i=0

min
{

(Ck/τ i+1cγ)‖Pi+1(I − Pi)y(ti)‖2U∗(ti), |(I − Pi)u(ti)|2H(ti)

}
+

∫ T

0

|ψ − ψh|2H(.)

)

Proof. (Sketch:) The proof follows closely the proof of [4, Theorem 4.3], suitably modified to handle
the adjoint variable term ψ−ψh of the right hand side. Since, we have already obtained an estimate
on ‖.‖L2[0,T ;U(.)], the estimate at partition points follows easily from (5.5). It suffices to bound
|e(t)|H(t) for t ∈ (tn−1, tn]. Similar to the proof of Theorem 5.4, we decompose the error into
e = (u− P loc

h u) + (P loc
h u− uh) ≡ ep + eh to obtain the orthogonality condition,

(en
h, vn)H(tn) +

∫ tn

tn−1

(
− (eh, vht)H(.) + a(.; eh, vh) + η(eh, vh)H(.)

)
− (en−1

h , vn−1
+ )H(tn−1)

= ((I − Pn−1)u(tn−1), vn−1
+ )H(tn−1) −

∫ tn

tn−1

(
a(.; ep, vh) + η(ep, vh)H(.)

)

−(1/α)
∫ tn

tn−1
(ψ − ψh, vh)H(.).

Integrating by parts in time, and using assumption 2.1, we obtain,
∫ tn

tn−1

(
(eht, vh)H(.) + a(.; eh, vh) + η(eh, vh)H(.) + µ(.; eh.vh)

)
+ (en−1

h+ − en−1
h , vn−1

+ )H(tn−1)

= ((I − Pn−1)u(tn−1), vn−1
+ )H(tn−1) −

∫ tn

tn−1

(
a(.; ep, vh) + η(ep, vh)H(.)

)

−(1/α)
∫ tn

tn−1
(ψ − ψh, vh)H(.).

Setting vh ≡ ẽh, where ẽh denotes the discrete approximation of χ[tn−1,t)eh, we obtain
∫ t

tn−1
(eht, eh)H(.) +

∫ tn

tn−1
µ(.; eh, ẽh) + (en−1

h+ − en−1
h , en−1

+ )H(tn−1)

= ((I − Pn−1)u(tn−1), en−1
+ )H(tn−1) −

∫ tn

tn−1

(
a(.; ep, ẽh) + η(ep, ẽh)H(.)

)

−(1/α)
∫ tn

tn−1
(ψ − ψh, ẽh)H(.) −

∫ tn

tn−1

(
a(.; ep, ẽh) + η(eh, ẽh)H(.)

)

Using once more the smoothness assumption 2.1, we finally arrive at

(1/2)|eh(t)|2H(t) − (1/2)
∫ tn

tn−1
µ(.; eh, eh) +

∫ tn

tn−1
µ(.; eh, ẽh)− (1/2)|en−1

h+ |2H(tn−1) + (1/2)|[en−1
h ]|2H(tn−1)

= ((I − Pn−1)u(tn−1), en−1
+ )H(tn−1) −

∫ tn

tn−1

(
a(.; ep, ẽh) + η(ep, ẽh)H(.)

)

−(1/α)
∫ tn

tn−1
(ψ − ψh, ẽh)H(.) −

∫ tn

tn−1

(
a(.; ep, ẽh) + η(eh, ẽh)H(.)

)
.
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It remains to bound the terms involving the bilinear form a(.; ., .), the linear form µ(.; ., .) and the
inner products (., .)H(.). This is done in [4, Theorem 4.3], by using the assumption 2.4, 2.5 combined
with the estimates of Lemma 5.6 to bound terms of ẽh in terms eh. The jump terms can be handled
similar to Theorem 5.4. It remains to bound the inner product term containing the adjoint variable.
For that purpose, note that Cauchy-Schwarz (with δ > 0) and Lemma 5.6 imply

(1/α)
∫ tn

tn−1
‖ψ − ψh‖H(.)‖ẽh‖H(.) ≤ (δ/α)

∫ tn

tn−1
‖ψ − ψh‖2H(.) + (1/4δα)

∫ tn

tn−1
‖ẽh‖2H(.)

≤ (δ/α)
∫ tn

tn−1
‖ψ − ψh‖2H(.) + ((1 + CkeCµτ )/4δα)

∫ tn

tn−1
‖eh‖2H(.)

Choose δ > 0 such that ((1 + CkeCµτ )/4δα) = Cγ/4. The remaining of the proof follows identical
to [4, Theorem 4.3].

Corollary 5.8. Under the assumptions of Theorem 5.4, and Lemma 5.6 the following estimate
holds:

|e(t)|2H(t) +
∫ tn

0

ca|e|2U(.) ≤ Ĉ max{1, (1/α2)}
(
|e0|2H(0) + |ep(t)|2H(t) +

∫ T

0

‖(I − P loc
h )u‖2U(.)

+
N−1∑

i=0

min
{

(Ck/τ i+1cγ)‖Pi+1(I − Pi)y(ti)‖2U∗(ti), |(I − Pi)u(ti)|2H(ti)

}
+ (1/α2)

∫ T

0

|ψ − ψh|2H(.)

)

Here, Ĉ depends on C(Ck, Cµ, Cu,
√

caτCinv(h)), the ratio ca/cγ and on constant C of Theorem 5.4.

Proof. The proof follows using standard algebra and triangle inequality.

So far, we have obtained estimates under minimal regularity assumptions for the fully-discrete
optimality system of equations, in terms of the projections defined in definition 5.2. We complete
this section, by recalling a result from [5, Corollary 4.8] which expresses the error of the projection
P loc

h in terms of the local projections P loc
n and hence to the standard weighted L2 projection.

Lemma 5.9. Let the spaces {H(t)}T
t=0 satisfy the assumptions 2.1,2.4, and the inverse hypothesis

assumption of definition 5.2. Then, there exist constants C0, C1 depending upon C0 = C0(k, eCµτ )
and C1 = C1(k,Cu, eCµτ , eCT ) (where C is an algebraic constant) such that the projection P loc

h :
C[0, T ; H(.)] → Uτ

h of definition 5.2 satisfies,

‖|u− P loc
h u|‖∞ ≤ C0 max

1≤n≤N

(
‖u− Pn(tn)u‖L∞[tn−1,tn;H(tn)] + τk+1‖u(k+1)‖L∞[tn−1,tn;H(tn)]

)

+C1
√

ca(1 + CµτCinv(h))
{( N∑

n=1

‖u− Pn(tn)u‖2L2[tn−1,tn;U(tn)]

)1/2

+τk+1
( N∑

n=1

‖u(k+1)‖2L2[tn−1,tn;U(tn)]

)1/2}

when u(k+1) ∈ L∞[0, T ;H] ∩ L2[0, T ;U ], and similarly

‖|u− P loc
h u|‖2 ≤ C0

(( N∑
n=1

‖u− Pn(tn)u‖2L2[tn−1,tn;H(tn)]

)1/2

+ τk+1
( N∑

n=1

‖u(k+1)‖2L2[tn−1,tn;H(tn)]

)1/2)

+C1
√

ca(1 + CµτCinv(h))
{( N∑

n=1

‖u− Pn(tn)u‖2L2[tn−1,tn;U(tn)]

)1/2

+τk+1
( N∑

n=1

‖u(k+1)‖2L2[tn−1,tn;U(tn)]

)1/2}
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Here, u(k+1) denotes the (k + 1)th time-derivative, and

‖|u|‖2∞ = sup
s∈(0,T ]

‖u(s)‖2H(s) + ca

∫ T

0

|e(s)|2U(s)ds, ‖|u|‖22 =
∫ T

0

‖u(s)‖2H(.) + ca

∫ T

0

‖u(s)‖2U(.)ds.

Proof. See [5, Corollary 4.8].

6 Convergence Rates

Below, we demonstrate the applicability of the results of sections 4 and 5, in the situation of the
examples of section 2. Specifically, we state semi-discrete (in space) error estimates for the example
2.1.2 (diffusion on manifolds), and fully-discrete error estimates for the example 2.1.2 (convection
diffusion equation in Lagrangian coordinates, with appropriately chosen regularization parameter
η). Here we follow the exposition of [4, Section 6].

First, we consider semi-discrete (in space) error estimates for the optimality system related to
the example 2.1.2. For that purpose, note that the corresponding time-dependent bilinear forms,
inner products, etc are defined by:

(u, v)H(t) = (M(t)u, v)L2(Sr) ≡
∫

Sr

uvJ

and
a(.;u, v) =

∫

Sr

(
σ(∇v)T (FT F )−1∇u− (I − n× n) · (∇xV)uv

)
J.

Then, recall that
Jt = J(I − n× n) · (∇xV),

so if 0 < c0 ≤ J(0, .) ≤ C0, we obtain

c0e
−Ct ≤ J(t, .) ≤ C0e

Ct, with C = 2‖∇xV‖L∞ .

In order to verify Assumptions 2.1-2.4, note first that the semi-norm is defined by

|u|2U(.) ≡
∫

Sr

σ(∇u)T (FT F )−1∇uJ.

and that the bilinear form

µ(.; u, v) =
∫

Sr

uvJt =
∫

Sr

uv(I − n ◦ n) · ∇xV,

satisfies Assumption 2.1 with Cµ = 2‖∇xV‖L∞ . The norm equivalence on U(.) can be found in [4,
Relation 6.2]. Finally, the continuity and coercivity constants, are given by (see also [4, Section 6]),

ca = σ, Ca = 2‖∇xV‖L∞ , cγ = σ, Cγ = 2‖∇xV‖L∞ .

The constants appearing in the adjoint bilinear form a∗(.; u, v) also maintain the same structure, in
particular, we point out that the corresponding ratio ca/cγ ≈ 1. Combining Theorem 4.12 and the
approximation properties of Proposition 4.2, we obtain the following estimate.

Theorem 6.1. Suppose that {Rh}h>0 be a quasi-uniform family of triangulations of Sr, and let
Uh ⊂ H1

0 (Ω) be a classical finite element space constructed over Th by using polynomials of degree
l ≥ 0 on each triangle. Then, under the assumptions of Theorem 4.12, there exists a neighborhood
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of the origin O such that for h ≤ h0 small enough, (uh, ψh) ∈ Xh is a unique solution of the discrete
optimality system 4.1, and

‖(u, ψ)− (uh, ψh)‖X → 0 as h → 0.

In addition, if u, ψ ∈ L2[0, T ; Hm+1∩U(.)]∩H1[0, T ; Hm−1∩U(.)], then there exists constant C > 0,
depending to ‖∇xV‖L∞ , Cq, Cu, (1/α2) similar to Theorem 4.5 such that,

‖(u, ψ)− (uh, ψh)‖X ≤ Ch2lDl(u, ψ).

Here Dl(u, ψ) depends only on norms of u, ψ.

Remark 6.2. The above estimate states the error for the semi-discrete solution of the optimality
system, is as good as the approximation theory enables it to be. Recall, that the Brezzi-Rappaz-
Raviart theory compares the estimate of the optimality system to an estimate of a strictly coercive
model problem.

For the example 2.1.1 (convection-diffusion equation in Lagrangian coordinates) we begin by
identifying various spaces and constants appearing in our model. First note that we are interested
in deriving fully-discrete error estimates in Lagrangian coordinates (t, X) and hence in order to
apply our theoretical results we will need to add a regularization parameter η(., .)H(.) to satisfy the
strict coercivity of the bilinear form. This is similar to the moving mesh characteristic Galerkin
approach of [7, 18]. The spaces H(t) will be taken to be the weighted inner product (in Lagrangian
coordinates), i.e.,

(ū, v̄)H(t) =
∫

Ωr

ūv̄J(t, .).

The continuity of the bilinear form M(.) is understood in the sense
∫

Ωr

ūn−1(tn−1, X)2Jn−1(tn−1, X)dX =
∫

Ω

u2dx =
∫

Ωr

ūn(tn−1
+ , X)2Jn(tn−1

+ , X)dX,

where u : Ω → R is fixed and ūn(t,X) = u(χ(t,X)) denotes the representation of u in the Lagrangian
configuration on interval (tn−1, tn]. The weighted semi-norm (principal part) of H1 is defined by

|ū|2U(.) =
∫

Ωr

|F−T∇X ū|2JdX.

Note that performing a changing of variables to the Eulerian coordinates, the last integral equals to∫
Ω
|∇xu|2dx. The bilinear form a(.; ., .) is identified by

a(.; ū, v̄) =
∫

Ωr

(
− divx(V)ūv̄ + (V − Ṽ).(F−T∇X ū)v̄ + ε(F−T∇X ū).(F−T∇X v̄)

)
J.

For assumption 2.1, recall that J satisfy J̇ = Jdivx(Ṽ) so in the interval (tn−1, tn], we easily obtain
that

e−‖divx(Ṽ)‖L∞ (t−tn−1) ≤ J(., t)/J(., tn−1
+ ) ≤ e‖divx(Ṽ)‖L∞ (t−tn−1).

Hence, if the reference configuration on each time interval (i.e. the initial condition for the ODE in
(tn−1, tn]) is selected to satisfy χ(tn−1

+ , X) = X, which implies J(tn−1
+ , .) = 1 then we easily obtain

(see [5, Theorem 4.9]) that

c(t)‖ū‖2L2(Ωr) ≤ (J(.)ū, ū) = (M(.)ū, ū),
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with c(t) = e−‖divx(Ṽ)‖∞(t−tn−1). The norm equivalence on U(.) (assumption 2.4) and the constant
Cu can be found in [5, Theorem 4.9]. Finally for constants of assumptions 2.1-2.5, take the form
(see [5, Theorem 4.9])

ca = 2ε, cγ = ε/2, Cγ = ‖divx(Ṽ)‖∞ + ‖V − Ṽ‖2∞/ε

and
Ca = max{1, Cγ}, Cµ = ‖divx(Ṽ)‖∞, Cinv(h) = C(Ω, k)eCµτCu/h.

Theorem 6.3. Let Un
h be a finite element subspaces constructed by piecewise polynomials of degree

l in a way to satisfy the classical approximation theory properties as stated in Proposition 4.2. In
addition, let τ = maxi=1,...,N τ i with τ i = (ti−ti−1) be a quasi-uniform partition of the time-interval
[0, T ]. Suppose that the hypotheses of Theorem 5.7 and Lemma 5.6 hold and let the initial value
ū0

h satisfy ‖ū0
h − P0(0)ū(0)‖L2(Ωr) ≤ Chl+1‖ū(0)‖Hl+1(Ωr). Then, for η ≥ 4‖divx(Ṽ)‖∞ + ‖V −

Ṽ‖2∞/ε, there exists a constant C depending upon Ck, ‖divx(Ṽ)‖∞, ‖V − Ṽ‖2∞/ε, e‖divx(Ṽ)‖∞τ ,
Cu, Cq and

√
ετ/h such that the approximate solutions of the discrete optimality system computed

by the discontinuous Galerkin method satisfy

‖|ū− ūh|‖2 + (1/α)‖|ψ̄ − ψ̄h|‖2 ≤ C max{1, (1/α2)}
{

hl+1C1 + τk+1C2 +
√

ε(1 + τ/h)
(
hlC3 + τk+1C4

)

+hl
((

h + min(h/
√

τ , h2/τ
√

ε)
)
C5 +

√
ε(1 + τ/h)C6

)}
.

In addition, at arbitrary points, the following estimate holds:

‖|ū− ūh|‖∞ ≤ C max{1, (1/α2)} ×
{

τk+1
(
C7 +

√
ε(1 + τ/h)C4

)

+hl
((

h + min(h/
√

τ , h2/τ
√

ε)
)
C5 +

√
ε(1 + τ/h)C6

)}

where,

C1 =
( N∑

n=1

‖ū‖2L2[tn−1,tn;H(tn)]

)1/2

+
( N∑

n=1

‖ψ̄‖2L2[tn−1,tn;H(tn)]

)1/2

C2 =
( N∑

n=1

‖ū(k+1)‖2L2[tn−1,tn;H(tn)]

)1/2

+
( N∑

n=1

‖ψ̄(k+1)‖2L2[tn−1,tn;H(tn)]

)1/2

,

C3 =
( N∑

n=1

‖ū‖2L2[tn−1,tn;U(tn)]

)1/2

+
( N∑

n=1

‖ψ̄‖2L2[tn−1,tn;U(tn)]

)1/2

,

C4 =
( N∑

n=1

‖ū(k+1)‖2L2[tn−1,tn;U(tn)]

)1/2

+
( N∑

n=1

‖ψ̄(k+1)‖2L2[tn−1,tn;U(tn)]

)1/2

,

C5 = max
1≤n≤N

|ū|L∞[tn−1,tn;Hl+1(Ω)] + max
1≤n≤N

|ψ̄|L∞[tn−1,tn;Hl+1(Ω)],

C6 =
( N∑

n=1

|ū|2L2[tn−1,tn;Hl+1(Ωr)]

)1/2

+
( N∑

n=1

|ψ̄|2L2[tn−1,tn;Hl+1(Ωr)]

)1/2

C7 = max
1≤n≤N

‖ū(k+1)‖L∞[tn−1,tn;H(tn)] + max
1≤n≤N

‖ψ̄(k+1)‖L∞[tn−1,tn;H(tn)].

Here ū(k+1), ψ̄(k+1) denotes the (k + 1)th time-derivative of ū, ψ̄ respectively.
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Proof. The proof follows by combining Theorem 5.4, Corollary 5.7 and Lemma 5.9 and standard
algebra. For the jump terms we refer the reader to [5, Corollary 4.10]. Finally, note that Cinv(h) ≤
C(Ω, l)(1/h).

Remark 6.4. The above estimate is applicable for a variety of choices of discretization parameters
τ, h. One of the main features of this approach is that the estimate is still valid even if ε is relatively
small in terms of τ and h. In case, of fine-meshes, i.e., h ≤ ε then the estimate can be simplified.
Finally, we would like to point out that the constant C does not depend on exponential terms of
(1/α), and hence the estimate remains valid even in case that α is small.
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