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ANALYSIS AND APPROXIMATIONS OF THE EVOLUTIONARY STOKES

EQUATIONS WITH INHOMOGENEOUS BOUNDARY AND DIVERGENCE

DATA USING A PARABOLIC SADDLE POINT FORMULATION

Konstantinos Chrysafinos1 and L. Steven Hou2

Abstract. This work concerns the analysis and finite element approximations of the evolutionary
Stokes equations, with inhomogeneous boundary and divergence data. The proposed weak formulation
can be viewed as an attempt to develop the parabolic analog of the well known saddle point theory
for elliptic problems. Several results concerning the analysis and finite element approximations are
presented. The key feature of the weak formulation under consideration is the treatment of Dirichlet
boundary conditions within the Lagrange multiplier framework.
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1. Introduction

This work concerns the analysis and finite element approximations of the evolutionary Stokes equations with
inhomogeneous boundary and/or divergence data. In particular, we are interested in developing and analyzing
an appropriate weak formulation for the following problem: Given data φ, ψ and initial velocity u0 we seek a
pair (ũ, p̃) such that 

ũt − ν∆ũ +∇p̃ = 0 in Ω× (0, T ]
div ũ = ψ in Ω× (0, T ]

ũ = φ on Γ× (0, T ]
ũ(0) = u0 in Ω.

(1.1)

Here Ω ∈ Rd, d = 2, 3, denotes a bounded polygonal (polyhedral when d = 3), and convex domain or a
bounded domain with regular (enough) boundary Γ. Recall that the divergence Theorem implies the following
compatibility condition, ∫

Ω

ψ(., t) =

∫
Γ

φ(., t) · n(.) for a.e. t ∈ (0, T ].

It is worth noting that the analysis and finite element approximations of such problems are very important
from the engineering view-point since they are closely related to boundary control problems with Dirichlet
boundary control data, as well as to feedback control problems (see e.g. [19, 28]). In addition, another motive
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for this work, is the analysis and finite element approximations of a weak formulation suitable for handling
essential inhomogeneous Dirichlet boundary data for the evolutionary Stokes problem. Our main goal is to
develop the parabolic analog of the well known “saddle point” theory for elliptic problems and its finite element
approximation within the context of mixed finite element methods. To our best knowledge there are no results
regarding finite element approximations of such problems.

1.1. The parabolic saddle point framework

A weak formulation that resembles the classical saddle point formulation of the stationary Stokes equations
will be developed. In particular, we examine weak problems of the following form: Given data g, u0, find a
solution pair (u, p) such that, for a.e. t ∈ (0, T ],

〈ut(t),v〉(X∗,X) + νA(u(t),v) +B(v, p(t)) = 0 ∀v ∈ X
B(u(t), q) = 〈g(t), q〉(M∗,M) ∀q ∈M

(u(0), z) = (u0, z) ∀z ∈ H,
(1.2)

where X,M,H are suitable Banach spaces, X∗,M∗, H their duals, ν > 0 a positive constant, and A(·, ·), B(·, ·)
are continuous bilinear forms defined on X × X and X × M respectively. The precise functional analytic
framework is given in Section 2. A key feature of our analysis is that the bilinear forms A(·, ·) and B(·, ·)
are defined in way to handle evolutionary problems with essential inhomogeneous boundary data, in particular
within the framework of Lagrange multipliers. For instance, in the case of the evolutionary Stokes equations
(1.1), we define the bilinear form

A(u,v) =

∫
Ω

∇u : ∇v ∀u,v ∈ X = H1(Ω).

All other terms, involving pressure and / or boundary terms resulting from integration by parts in space, are
included into the bilinear form B(·, ·). The precise functional analytic formulation and its relation to Lagrange
multipliers is presented in Section 4.

1.2. Related results and comments

Evolutionary Navier-Stokes problems with inhomogeneous Dirichlet boundary data have been studied in the
works of [13, 14, 30]. Several results regarding the analysis of Dirichlet boundary value problems, as well as
several applications to optimal boundary control problems were studied in [11,12].

The evolutionary Stokes and Navier-Stokes equations with inhomogeneous divergence condition have also
their own independent importance. To this end, we point out the work of [30], where the Stokes and the Oseen’s
equations with inhomogeneous divergence condition were analyzed. The analysis of [30] is also applicable within
the context of feedback control. Saddle-point formulations suitable for space-time approximations, are studied
in the recent work of [18] for the Stokes and Navier-Stokes equations with Navier slip boundary conditions. The
main target of the work of [18] is the development of suitable weak formulations for space-time approximations
with wavelet basis.

A key feature of the analysis presented here, is to impose regularity assumptions on the data to guarantee the
existence of a suffieciently regular solution of (1.2) that allows the use of standard finite element approximations
within the context of mixed finite elements.

Our work differs from the previously developed analysis of [30], since our main emphasis is to avoid the use
of “divergence-free” spaces for the regularity of the time-derivative of the velocity ut, or very weak formulations
resulting the validity of the pressure term in a distributional sense. Even though the various concepts of very
weak solutions based on transposition techniques as presented in [30], guarantee existence and uniqueness under
very low regularity assumptions on the data, they are not directly applicable within the framework of finite
element analysis. This is due to the fact that the finite element discretization of weak solutions based on
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transposition techniques typically require nonstandard finite element spaces. To the contrary, the parabolic
saddle point formulation of (1.2) allows us to define finite element approximations in a more standard (but not
classical) way and to obtain error estimates for the semi-discrete (in space) approximations for the velocity and
the Lagrange multiplier. Special care is exercised in order to obtain estimates which resemble the “symmetric”
structure of the ones of the classical saddle point theory of elliptic problems. In addition, we prove error
estimates when essential inhomogeneous data are being used in the definition of the discrete analog of the weak
formulation (1.2). These estimates can be used in many physical applications, including optimal boundary
control problems. A particular choice of subspaces allowing the decoupling of the computation of the velocity
and pressure from the computation of the and Lagrange multiplier is analyzed in [7]. For results related to the
analysis and finite element approximations of parabolic problems with inhomogeneous Dirichlet boundary data,
we also refer the reader to [3, 6]. The Lagrange multiplier framework for the numerical treatment of essential
inhomogeneous Dirichlet boundary data for elliptic problems, and for stationary Navier-Stokes equations has
been considered in [1, 2, 20,27,34].

Saddle point problems are usually related to elliptic partial differential equations and result from certain
minimization principles. The main concepts originate from solid and fluid mechanics since many problems
in these areas can be viewed as saddle point problems. One of the main advantages of this approach, is the
relation of saddle point problems to finite element methods of mixed type. Finite element spaces of mixed type
were studied extensively in previous works (see e.g [4, 5]). For a comprehensive treatment of many important
algorithms such as penalized, iterated penalized algorithms, augmented Lagrangian and Uzawa type, one may
consult the classical works of [5, 16, 33]. Even though parabolic problems of saddle point type are not related
to an optimization principle, this particular type of formulation can be very useful for the analysis and finite
element approximations of time dependent problems such as (1.1).

This paper is organized as follows: In section 2 we present the notation and the main result concerning
saddle point problems associated to elliptic partial differential equations. Furthermore, we state the main result
concerning the existence and uniqueness of the solution of problem (1.2). In subsequent section 3 we establish
the proof of the main theorem. In section 4, we present applications of the main theorem to the existence
and uniqueness of weak solution for evolutionary problems with inhomogeneous boundary and divergence data.
Finally, in section 5, we derive the main error estimates for the finite element approximations. Note that we
also treat inhomogeneous essential boundary data.

2. Preliminaries and main results

2.1. Notation

Let Ω is a bounded domain in Rd, d = 2, 3 which can be either convex and polygonal (convex and polyhedral,
in d = 3) or with regular (enough) boundary Γ. We will denote all vector valued functions using the boldface
notation u,v etc. We use the standard notation Hm(Ω), Hs(Γ) for Hilbert spaces of order m, s ∈ R, defined
on Ω and Γ repsectively, and their norms. Furthermore we denote by H1

0 (Ω) ≡ {v ∈ H1(Ω) : v|Γ = 0} and H−1

its dual. Abusing the notation we will not use different notation for their vector valued counterparts. For any
Hilbert space U defined as above, the standard notation is being used for their corresponding time-space spaces
Lp(0, T ;U) and their norms, i.e.,

‖v‖Lp(0,T ;U) =
(∫ T

0

‖v‖pUdt
) 1

p

, ‖v‖L∞(0,T ;U) = esssupt∈[0,T ] ‖v‖U .

We also employ the standard notation for the L2(Ω) inner product (·, ·)L2(Ω) = (·, ·). In addition, we denote by
X any vector valued version of the above spaces and by H a (vector valued version) of the above Hilbert spaces
such that X ⊂ H ⊂ X∗ form an “evolution” triple, i.e., X ⊂ H with compact embedding (for details see [35,
Proposition 23.23]), satisfying 1

2
d
dt‖u(t)‖2H = 〈ut(t),u(t)〉(X∗,X). In practice, H is always the vector valued

version of L2(Ω) and X a vector valued version of H1(Ω), H1
0 (Ω) and/or their divergence free counterparts (see
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e.g. [15, 33]). Abusing the notation, we will denote by (., .) the inner product of H, and by 〈., .〉 ≡ 〈., .〉(X∗,X).

Similarly, we denote by L2(0, T ;X), L∞(0, T ;X) the vector valued time dependent spaces with their norms
defined as above. Finally, we will frequently use the space H1(0, T ;X), endowed with norn ‖u‖2H1(0,T ;X) =

‖u‖2L2(0,T ;X) + ‖ut‖2L2(0,T ;X). For the pressure terms, we also use the space

L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω

pdx = 0},

endowed with norm ‖.‖L2(Ω).

2.2. The elliptic saddle point problem

The classical theory of elliptic saddle point problems can be described as follows: Find (u, p) ∈ X ×M such
that, {

νA(u,v) +B(v, p) = 〈f ,v〉 ∀v ∈ X
B(u, q) = 〈g, q〉(M∗,M) ∀q ∈M,

(2.1)

where X,M are given spaces, f ∈ X∗, and g ∈M∗ are given data. We also assume that A(·, ·) is a continuous
bilinear form on X ×X, and B(·, ·) is a continuous bilinear form on X ×M . Moreover, we define the auxiliary
subspaces (see e.g. [15])

Z(g) := {u ∈ X : B(u, q) = 〈g, q〉(M∗,M) ∀q ∈M}, Z ≡ Z(0).

In addition we require that the bilinear forms satisfy the standard coercivity assumptions:

A(z, z) ≥ α‖z‖2X ∀z ∈ Z, (2.2)

inf
06=q∈M

sup
0 6=u∈X

B(u, q)

‖u‖X‖q‖M
≥ β > 0. (2.3)

The last inequality is usually called inf-sup condition (see e.g., [1], [5], [15], [23], [26] and references within).
The main result concerning the existence and uniqueness of a solution pair (u, p) ∈ X ×M is presented in the
following theorem (see e.g. [15]).

Theorem 2.1. Let A(u,v), B(v, q) be bounded bilinear operators satisfying coercivity conditions (2.2)-(2.3).
Then, for any given f ∈ X∗,g ∈M∗, there exists a unique pair (u, p) ∈ X ×M such that (2.1) holds.

2.3. The parabolic saddle point framework and main results

We close this section by stating the main result and some additional comments regarding the existence and
uniqueness of parabolic saddle point problems.

Theorem 2.2. Assume that the continuous bilinear forms A(·, ·), B(·, ·) satisfy the coercivity properties (2.2)-
(2.3). Furthermore, suppose a semi-norm is defined by the bilinear form, |u|2X ≡ A(u,u) ∀u ∈ X with

A(u,v) ≤ 1

2
A(u,u) +

1

2
A(v,v), ∀u,v ∈ X. (2.4)

If g ∈ H1(0, T ;M∗), u0 ∈ X, and B(u(0), q) = 〈g(0), q〉(M∗,M),∀q ∈ M then there exists u ∈ L∞(0, T ;X) ∩
H1(0, T ;H), and p ∈ L2(0, T ;M) such that for a.e. t ∈ (0, T ], 〈ut,v〉+ νA(u,v) +B(v, p) = 0 ∀v ∈ X

B(u, q) = 〈g, q〉(M∗,M) ∀ q ∈M
(u(0), z) = (u0, z) ∀ z ∈ H.

(2.5)
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In addition, if we decompose u(.) = w(.) + z(.), where w(.) ∈ Z⊥, z(.) ∈ Z, for a.e. t ∈ (0, T ], then
wt ∈ L2(0, T ;X).

Remark 2.3. For the examples stated in the introduction, inequality (2.4), states that the bilinear form A(·, ·)
contains only gradient terms. In addition, note also that (2.4) implies the following inequality

A(u,u− v) ≥ 1

2
A(u,u)− 1

2
A(v,v) ≡ 1

2
|u|2X −

1

2
|v|2X . (2.6)

The inhomogeneous evolutionary Stokes equations (1.1), can be included in the above setting provided that
the data g are understood as a pair g ≡ (ψ,φ) ∈ H1(0, T ;M∗) with M ≡ M1 ×M2. Here M1,M2 denote
appropriate spaces for the inhomogeneous divergence and boundary data respectively. Hence, we seek velocity
u ≡ ũ ∈ L2(0, T ;X)∩H1(0, T ;X∗)∩L∞(0, T ;H) and a pair p ≡ (p̃, λ̃) ∈ L2(0, T ;M1)×L2(0, T ;M2) consisting

of the pressure p̃ and the Lagrange multiplier λ̃ terms respectively. Under our assumptions we prove the
enhanced regularity u ∈ H1(0, T ;H) ∩ L∞(0, T ;X) which is crucial in the development of error estimates. We

emphasize that the Lagrange multiplier term λ̃ contains all related boundary terms, including terms resulting
from various applications of Green’s Theorem. The presence of the Lagrange multiplier λ̃ is an essential feature
of our work which distinguishes it from other approaches. Note also, that the classical evolutionary Stokes
problem with inhomogeneous Dirichlet data can be fit into the above framework (for ψ ≡ 0).

The above result can be extended for a nonzero forcing term f , when it is combined with an analogous result
for the homogeneous case g ≡ 0.

Remark 2.4. Let the assumptions of Theorem 2.2 hold, and let the forcing term f ∈ L2(0, T ;H) Then there
exists u ∈ L2(0, T ;X) ∩H1(0, T ;H), and p ∈ L2(0, T ;M) such that for a.e. t ∈ (0, T ] 〈ut,v〉+ νA(u,v) +B(v, p) = 〈f ,v〉(X∗,X) ∀v ∈ X

B(u, q) = 〈g, q〉(M∗,M) ∀ q ∈M
(u(0), z) = (u0, z) ∀ z ∈ H.

The regularity assumption for f and u0 is due to the coupling between p and ut and our requirement for
regularity p ∈ L2(0, T ;M) within the above weak formulation. Recall that even in case of the evolutionary
Stokes equation with homogeneous data, if we restrict the regularity assumptions to f ∈ L2(0, T ;Z∗), u0 ∈ H,
where Z = {v ∈ H1

0 (Ω) : divv = 0}, and H = {v ∈ L2(Ω) : divv = 0,v ·n = 0}, then the existence of a pressure
is only proved in a distributional sense (see e.g. [33]).

3. Inhomogeneous parabolic saddle point problem

In this section, we present the proof of the main Theorem 2.2. We will employ a semi-discretization (in time)
approach, in order to fully utilize the inf-sup condition. In particular, we first obtain a-priori estimates for the
semi-discrete solutions, and then we pass to the limit following the approach of [33, Chapter 3, Section 4].

3.1. The semi-discrete (in time) approximation

Let N be an integer, set k = T
N , and let {tm}Nm=0, denote the partition points of [0, T ], where tm = mk, with

m = 0, ..., N . We recursively define a family of elements of X,M , denoted by {um}Nm=1, {pm}Nm=1 respectively
where um, pm are in some sense approximations of functions u(.), p(.) respectively, on the interval tm−1 < t ≤ tm,
with m = 1, ..., N . Here, we denote by u0 ≡ u(0). Taking into account that g ∈ H1(0, T ;M∗) ⊂ C([0, T ];M∗)
we may also define elements g0,g2, ...,gN of M∗ as:

gm = g(tm), m = 0, ..., N. (3.1)



6 TITLE WILL BE SET BY THE PUBLISHER

If {ui}m−1
i=1 , {pi}m−1

i=1 , are known, we can define um, pm as elements of X,M respectively satisfying:{
(um−um−1

k ,v) + νA(um,v) +B(v, pm) = 0 ∀v ∈ X
B(um, q) = 〈gm, q〉(M∗,M) ∀q ∈M (3.2)

We will also impose the compatibility condition B(u(0), q) = 〈g(0), q〉(M∗,M), for all q ∈ M . The existence of

the pair (um, pm) ∈ X ×M can be easily justified by Theorem 2.1. Indeed, we can rewrite (3.2) as:{
1
k (um,v) + νA(um,v) +B(v, pm) = ( 1

kum−1,v) ∀v ∈ X
B(um, q) = 〈gm, q〉(M∗,M) ∀q ∈M.

Note that 1
kum−1 + fm ∈ X∗ are given data. Moreover, ∀zm ∈ Z

1

k
(zm, zm) + νA(zm, zm) ≥ 1

k
‖zm‖2H + να‖zm‖2X ≥ να‖zm‖2X .

Since the coercivity inequality and the inf-sup condition on B(·, ·) hold, we may apply Theorem 2.1 to guarantee
the existence and uniqueness of a pair (um, pm) ∈ X×M . Moreover, it easy to check that the following inequality
holds: There exists a positive constant C, depending only on α, β, ν,Ω such that

‖um‖X + ‖pm‖M ≤ C
(1

k
‖um−1‖H + ‖fm‖X∗ + ‖gm‖M∗

)
.

For m = 1, ..., N ,we define the following auxiliary functions:

uk : [0, T ]→ X, uk(t) = um, t ∈ (tm−1, tm]

pk : [0, T ]→M, pk(t) = pm, t ∈ (tm−1, tm]

ūk : [0, T ]→ H, ūk is continuous, linear on each subinterval

(tm−1, tm], and ūk(tm) = um.

We also note that due to the inf-sup condition we may decompose um ∈ X as um = wm + zm, where wm ∈ Z⊥
and zm ∈ Z, and for all m = 1, .., N . We also define functions w̄k : (0, T ]→ Z⊥, in a similar fashion. The next
lemma relates various quantities of the semi-discrete (in time) values gm in terms of regularity properties on
data g.

Lemma 3.1. Let gm be defined as in (3.1) and g ∈ H1(0, T ;M∗). Then,

‖gm‖M∗ ≤ C <∞, k

N∑
m=1

‖g
m − gm−1

k
‖2M∗ ≤ C <∞. (3.3)

Proof. The first estimate is obvious. For the second one, using standard calculations, Hölder’s inequality and
the fact that gt ∈ L2(0, T ;M∗), we deduce that

‖g
m − gm−1

k
‖M∗ ≤

1

k

∫ tm

tm−1

‖gt(t)‖M∗dt ≤
1

k1/2

(∫ tm

tm−1

‖gt(t)‖2M∗dt
) 1

2

(3.4)

Hence (3.4) implies,

k‖g
m − gm−1

k
‖2M∗ ≤

∫ tm

tm−1

‖gt‖2M∗dt. (3.5)
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Adding inequalities (3.5), we conclude

k

N∑
m=1

‖g
m − gm−1

k
‖2M∗ ≤

N∑
m=1

∫ tm

tm−1

‖gt‖2M∗dt ≤
∫ T

0

‖gt(t)‖2M∗dt <∞.

�

We now derive estimates for the approximation pair (um, pm).

3.2. A priori estimates

First we derive a priori estimates for wm ∈ Z⊥ using Lemma 3.1 and the inf-sup condition. Subsequently,
we establish a priori estimates for the zm ∈ Z terms based on estimates on wm.

Lemma 3.2. Assume that the bilinear forms are continuous and satisfy (2.2)-(2.3). Suppose that g ∈
H1(0, T ;M∗), u0 ≡ u(0) ∈ X are given data, gm, m = 0, ...N are defined as in (3.1) with B(u0, q) =
〈g(0), q〉(M∗.M), for all q ∈M . Let (um, pm) ∈ X ×M , m = 1, ..., N satisfy (3.2). Then,

k

N∑
m=1

‖w
m −wm−1

k
‖2X ≤ C <∞, and k

N∑
m=1

‖wm‖2X ≤ C <∞, (3.6)

where C > 0 depends only upon Ω, β.

Proof. Note that B(um−um−1, q) = 〈gm−gm−1, q〉(M∗,M) ∀ q ∈M , for all m = 1, ..., N , so using the inf-sup

condition, the fact that zm − zm−1 ∈ Z, and (3.2)

‖w
m −wm−1

k1/2
‖X ≤ C sup

q∈M

B(wm−wm−1

k1/2 , q)

‖q‖M

≤ C sup
q∈M

|B(um−um−1

k1/2 , q)|+ |B(zm−zm−1

k1/2 , q)|
‖q‖M

≤ C sup
q∈M

|〈g
m−gm−1

k1/2 , q〉|
‖q‖M

.

Note that (3.4) implies gm−gm−1

k1/2 ∈M∗ , since

‖g
m − gm−1

k1/2
‖M∗ ≤

(∫ tm

tm−1

‖gt(t)‖2M∗dt
) 1

2

<∞.

Therefore, we deduce,

‖w
m −wm−1

k1/2
‖X ≤ C sup

q∈M

|〈g
m−gm−1

k1/2 , q〉|
‖q‖M

≤ C‖g
m − gm−1

k1/2
‖M∗ ,

or equivalently, squaring both sides,

1

k
‖wm −wm−1‖2X ≤

C

k
‖gm − gm−1‖2M∗ .
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Hence, the above inequality together with (3.3),

k

N∑
m=1

‖w
m −wm−1

k
‖2X ≤ Ck

N∑
m=1

‖g
m − gm−1

k
‖2M∗ ≤ C‖gt‖2L2(0,T ;M∗) <∞.

The other estimate is an immediate consequence of the inf-sup condition applied to B(um, q) = 〈gm, q〉 which

states that ‖wm‖X ≤ C‖gm‖M∗ ≤ C < ∞ by (3.3), and hence, k
∑N
m=1 ‖wm‖2X ≤ Ck

∑N
m=1 ‖gm‖2M∗ ≤ C <

∞. �

It remains to estimate several quantities related to {zm}Nm=1.

Lemma 3.3. Suppose that the assumptions of Lemma 3.2 hold and the bilinear forms are continuous and
satisfy (2.2)-(2.3)-(2.4). Then,

‖zm‖H ≤ C <∞, k

N∑
m=1

‖zm‖2X ≤ C <∞,
N∑
m=1

‖zm − zm−1‖2H ≤ C <∞, (3.7)

where C denotes constants depending only upon Ω,α, β, and ν.

Proof. We start from (3.2) and we substitute um,um−1 by their decomposition i.e.,
um = wm + zm, um−1 = wm−1 + zm−1,

(zm − zm−1,v) + νkA(zm,v) + kB(v, pm) = −(wm −wm−1,v)− νkA(wm,v). (3.8)

Set v = 2zm ∈ Z and note that B(zm, pm) = 0. Therefore,

‖zm‖2H − ‖zm−1‖2H + ‖zm − zm−1‖2H + 2kνα‖zm‖2X
≤ C‖wm −wm−1‖H‖zm‖X + Ckν‖wm‖X‖zm‖X

≤ kνα‖zm‖2X + C
( 1

νk
‖wm −wm−1‖2H + νk‖wm‖2X

)
.

Here, C is a constant depending on α and on the domain. Hence,

‖zm‖2H − ‖zm−1‖2H + ‖zm − zm−1‖2H + kνα‖zm‖2X ≤
C

νk
‖wm −wm−1‖2H + Cνk‖wm‖2X .

Using the above relation recursively, we obtain

‖zN‖2H +

N∑
m=1

‖zm − zm−1‖2H + kνα

N∑
m=1

‖zm‖2X

≤ C
(
‖z0‖2H +

1

νk

N∑
m=1

‖wm −wm−1‖2H + νk

N∑
m=1

‖wm‖2X
)
.

Equations (3.6) of Lemma 3.2 guarantee that the last two sums are finite. �

Lemma 3.4. Under the assumptions of Lemma 3.3, the following estimates hold:

1

k

N∑
m=1

‖zm − zm−1‖2H ≤ C <∞, and |um|X ≤ C <∞ for all m = 1, ..., N,

where C denotes constants depending only upon Ω,α, β, and ν.
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Proof. We start from equation (3.2), and we substitute um,um−1 by their decomposition, i.e., um = wm + zm,
um−1 = wm−1 + zm−1, where zm, zm−1 ∈ Z and wm,wm−1 ∈ Z⊥.{

1
k (zm − zm−1,v) + νA(um,v) +B(v, pm) = − 1

k (wm −wm−1,v)
B(um, q) = 〈gm, q〉(M∗,M) ∀ q ∈M.

(3.9)

Set v = zm − zm−1 into (3.9). Therefore, after noting that B(zm − zm−1, pm) = 0,

1

k
‖zm − zm−1‖2H + νA(um, zm − zm−1) ≤ ‖w

m −wm−1

k
‖H‖zm − zm−1‖H

≤ 1

4k
‖zm − zm−1‖2H + k‖w

m −wm−1

k
‖2H .

Using the decomposition once more together with (2.6), we rewrite the bilinear term as follows

A(um, zm − zm−1) = A(um,um − um−1)−A(um,wm −wm−1)

≥ 1

2
|um|2X −

1

2
|um−1|2X −A(um,wm −wm−1).

Combining the last two inequalities,

3

4k
‖zm − zm−1‖2H +

ν

2
|um|2X −

ν

2
|um−1|2X

≤ k‖w
m −wm−1

k
‖2H + νA(um,wm −wm−1)

≤ k‖w
m −wm−1

k
‖2H + ν‖um‖X‖wm −wm−1‖X

≤ k‖w
m −wm−1

k
‖2H +

ν

2k
‖wm −wm−1‖2X +

νk

2
‖um‖2X . (3.10)

Using the above relation recursively from m = 1 to m = N , we obtain

1

k

N∑
m=1

‖zm − zm−1‖2H + ν|uN |2X

≤ C
(
|u0|2X +

1

k

N∑
m=1

‖wm −wm−1‖2H +
ν

k

N∑
m=1

‖wm −wm−1‖2X + νk

N∑
m=1

‖um‖2X
)
.

Lemmas 3.2-3.3 guarantee that the above sums are finite. Returning to (3.10), and summing from 1 to m, we
easily obtain |um|2X ≤ C <∞. �

Collecting the estimates of Lemmas 3.2-3.4, we obtain the main stability estimates.

Theorem 3.5. Assume that the bilinear forms A(., .), B(., .) are continuous, satisfy (2.2)-(2.3)-(2.4), and let
g ∈ H1(0, T ;M∗). Let u0 = u(0) ∈ X be given data, gm, m = 0, ...N be defined as in (3.1) with B(u(0), q) =
〈g(0), q〉(M∗.M) ≡ 〈g0, q〉(M∗,M), for all q ∈ M . Let (um, pm) ∈ X ×M , m = 1, ..., N satisfy (3.2). Then, the
following quantities are bounded by constants C <∞ depending only upon Ω, α, β, ν:

k

N∑
m=1

‖um‖2X ,
N∑
m=1

‖um − um−1‖2H ,
1

k

N∑
m=1

‖um − um−1‖2H ,

k

N∑
m=1

‖pm‖2M ,
1

k

N∑
m=1

‖um − um−1‖2X∗ , ‖um‖X for all m = 1, ..., N.
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Proof. Note that Lemmas 3.2-3.4 and the triangle inequality imply the first three estimates for the sums of um

terms. From the inf-sup condition, it is clear that

‖pm‖M ≤ C
(
‖u

m − um−1

k
‖H + ‖um‖X + ‖gm‖M∗

)
or equivalently,

k

N∑
m=1

‖pm‖2M ≤ C
( N∑
m=1

k‖u
m − um−1

k
‖2H + k

N∑
m=1

‖um‖2X + k

N∑
m=1

‖gm‖2M∗
)
.

It is now obvious that the desired estimate for the pressure holds, due to the first three estimates. Taking the

supremum over v ∈ X into the first equation of (3.2), we obtain k
∑N
m=1 ‖

um−um−1

k ‖2X∗ < ∞. In order to
estimate ‖um‖X we simply need to estimate ‖um‖H ≤ C <∞, since Lemma 3.4 states that |um|X ≤ C <∞,
for all m = 1, ..., N . For this purpose, we return to (3.2) and set v = um and q = pm. Thus, we deduce,

(um − um−1,um) + kνA(um,um) = −k〈gm, pm〉(M∗,M) ≤ (k/2)‖gm‖2M∗ + (k/2)‖pm‖2M .

The proof now follows upon summing the above inequalities from 1 to m, and using the previous bounds on

k
∑N
m=1 ‖gm‖2M∗ and k

∑N
i=1 ‖pm‖2M . �

Now we are ready to prove the main Theorem 2.2 by using the above a-priori bounds of the auxiliary functions
on the semi-discretized (in time) approach.

3.3. Proof of Theorem 2.2:

The proof is similar to the one of [33, Chapter III, Section 4]. The functions uk, ūk, pk defined as above,
together with Theorem 3.5 remain bounded in L2(0, T ;X) ∩ L∞(0, T ;H), and L2(0, T ;M) respectively. Also
note that ūkt remains bounded in L2(0, T ;H). Indeed, these are simply the interpretations of the stability
estimates of Theorem 3.5. Moreover, [33, Lemma 4.8, pp 328] implies that uk − ūk → 0 in L2(0, T ;H) as
k →∞. Therefore, we can extract subsequences, still denoted by uk, ūk, pk, such that

uk → u weakly in L2(0, T ;X), uk → u weakly-* in L∞(0, T ;H)

pk → p weakly in L2(0, T ;M), ūk → u∗ weakly in L2(0, T ;X)

ūk → u∗ weakly in L∞(0, T ;H),
dūk
dt
→ du∗

dt
weakly in L2(0, T ;X∗).

But [33, Lemma 4.8, pp 328], also implies that u = u∗. Note also that the classical Aubin-Lions compactness
Lemma (see [33, Chapter 3, Section 3]) implies that ūk → u strongly in L2(0, T ;H), since X ⊂ H ⊂ X∗ form
an evolution triple and X ⊂ H with compact embedding. It is evident that the limit (u, p) is the solution of
(2.5). Indeed, using the definitions of the auxiliary functions, we can rewrite the equations (3.2) as:{

(dūk(t)
dt ,v) + νA(uk,v) +B(v, pk) = 0 ∀v ∈ X

B(uk, q) = 〈gk, q〉(M∗,M) ∀q ∈M∗, (3.11)

where gk is defined by:

gk(t) = gm, t ∈ (tm−1, tm].

Working identically to [33, Lemma 4.9, pp 429] we obtain that

gk → g weakly in L2(0, T ;M∗).
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Hence, using the convergence results together with the continuity properties of the bilinear forms we pass the
limit into (3.11) to obtain (2.5). The improved regularity on u ∈ L∞(0, T ;X) is evident by the estimate of
Theorem 3.5. The regularity on wt is due to the estimate of Lemma 3.2.

4. Applications to evolutionary problems with inhomogeneous data

We apply the main Theorem 2.2 in order to prove the existence and uniqueness of a solution pair (u, p) of
problems with inhomogeneous boundary and/or divergence data. First, we begin by treating the evolutionary
Stokes problem with inhomogeneous divergence data, but with zero boundary condition. In particular, given
u0 and g, we seek velocity u and pressure p such that,

ut − ν∆u +∇p = 0 in Ω× (0, T ]
div u = g in Ω× (0, T ]

u = 0 on Γ× (0, T ]
u(0) = u0 in Ω.

(4.1)

First, we recast our problem into the parabolic saddle point framework. Assume that X = H1
0 (Ω), H = L2(Ω),

M = L2
0(Ω) and define the standard bilinear forms,

A(u,v) =

∫
Ω

∇u : ∇v, B(v, q) = −
∫

Ω

divv q

for all u,v ∈ H1
0 (Ω), q ∈ L2

0(Ω). Here we denote (∇u) : (∇v) =
∑d
i,j=1 ui,jvi,j , with the second index denoting

the derivative with respect to xj .

Theorem 4.1. Suppose that u0 ∈ H1
0 (Ω), and g ∈ H1(0, T ;L2

0(Ω)) with g(0) = div u(0). Then, there exists
a unique weak solution pair (u, p) of (4.1) in the sense of (1.2), satisfying:

u ∈ L∞(0, T ;H1
0 (Ω)) ∩H1(0, T ;L2(Ω)), p ∈ L2(0, T ;L2

0(Ω)).

For a.e. t ∈ (0, T ] let Z = {u ∈ H1
0 (Ω) : B(u, q) = 0, ∀q ∈ L2

0(Ω)}. Then, if u(.) is decomposed to
u(.) = z(.) + w(.), for a.e t ∈ (0, T ] with z(.) ∈ Z, w(.) ∈ Z⊥, we obtain, wt ∈ L2(0, T ;H1

0 (Ω)).

Proof. It is an immediate consequence of the main Theorem 2.2. Indeed, note that Z ≡ {u ∈ H1
0 (Ω) : divu=0},

and hence the continuity and coercivity conditions (2.2)-(2.3)-(2.4) can be easily proven (see e.g. [15]), as in
the elliptic case. The second result, is an immediate consequence of the inf-sup condition (see also regularity
estimate of Lemma 3.2). �

The second application of Theorem 2.2 is the Lagrange multiplier method for a weak solution of the evolu-
tionary Stokes, with inhomogeneous Dirichlet boundary data, i.e., the problem

ut − ν∆u +∇p = 0 in Ω× (0, T )
div u = 0 in Ω× (0, T )

u = φ on Γ× (0, T )
u(0) = u0 in Ω,

(4.2)

together with the compatibility condition
∫

Γ
φ(., t) · n(.) = 0 for a.e. t ∈ (0, T ]. In this problem, we enforce

the boundary condition weakly which implies that we need to introduce an additional variable, the Lagrange
multiplier λ corresponding to the boundary stress. Our preferred weak formulation, now can be defined as
follows: We seek u ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ; (H1(Ω))∗), p ∈ L2(0, T ;L2

0(Ω)) and λ ∈ L2(0, T ;H−1/2(Γ))
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such that for a.e. t ∈ (0, T ], and for all v ∈ H1(Ω), q ∈ L2
0(Ω), s ∈ H−1/2(Γ),

〈ut(t),v〉+ ν(∇u(t),∇v)− (p(t), divv) −〈λ(t),v〉(H−1/2(Γ),H1/2(Γ)) = 0

( div u(t), q) = 0
〈u(t), s〉(H1/2(Γ),H−1/2(Γ)) = 〈φ(t), s〉(H1/2(Γ),H−1/2(Γ))

(u(0),v) = (u0,v).

(4.3)

It is evident that if
∫

Γ
φ · n = 0, and u, p,λ sufficiently smooth (see e.g. [32]), then the formulation (4.3) is

equivalent to (4.2). Next we put (4.3) into our parabolic saddle point framework. For this purpose, we define

X = H1(Ω), M = L2
0(Ω)×H− 1

2 (Γ) and we denote by

a(u,v) =

∫
Ω

∇u : ∇v, b(v, q) = −
∫

Ω

divv q,

the standard bilinear forms associated to the evolutionary Stokes problem. Note that a(u,u) ≡ |u|2X denotes a
semi-norm, and satisfies (2.4). Now, it is clear that we can recast (4.3) as a “parabolic” saddle point problem
by simply defining the bilinear forms, for a.e. t ∈ (0, T ], for all u(.),v ∈ H1(Ω), q ∈ L2

0(Ω), s ∈ H−1/2(Γ),

A(u(.),v) ≡ a(u(.),v),

B(v(.), (q, s)) ≡ b(v(.), q)− 〈v, s〉(H1/2(Γ),H−1/2(Γ)).

Then, problem (4.3) can be written as a parabolic saddle point problem (1.2), as follows: For a.e. t ∈ (0, T ],
and for all v ∈ H1(Ω) and (q, s) ∈ L2

0(Ω)×H−1/2(Γ),
〈ut,v〉+ νA(u,v) +B(v, (p,λ)) = 0

B(u, (q, s)) = −〈φ, s〉H1/2(Γ),H−1/2(Γ))

(u(0),v) = (u0,v).
(4.4)

It remains to define the space Z = {u ∈ H1(Ω) : B(u, (q, s)) = 0 ∀ (q, s) ∈ L2
0(Ω)×H−1/2(Γ)}, upon which the

coercivity condition on A(., .) should be verified. We are ready to prove our main result.

Theorem 4.2. Suppose that φ ∈ H1(0, T ;H
1
2 (Γ)) with 〈φ(0), s〉(H1/2(Γ),H−1/2(Γ)) = 〈u(0), s〉(H1/2(Γ),H−1/2(Γ)),

for all s ∈ H−1(Γ), and u0 ∈ H1(Ω), with divu0=0, then there exists a unique solution

u ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)), p ∈ L2(0, T ;L2
0(Ω)), λ ∈ L2(0, T ;H−

1
2 (Γ))

satisfying system (4.4).

Proof. It is easy to prove the continuity and coercivity assumption on Z for the bilinear form A(·, ·), since
Z ⊂ H1

0 (Ω). The continuity of the bilinear form B(·, ·) is also evident. Then the proof follows directly from
Theorem 2.2, since the inf-sup condition is proved in [20, Proposition 3]. �

Remark 4.3. We note that more spacial regularity can be recovered, under additional assumptions. Indeed,
the fact that ut ∈ L2(0, T ;L2(Ω)) may be used to improve the spacial regularity of u in a standard fashion
and hence to recover a strong solution, by exploring techniques of parabolic regularity and classical boot-strap
arguments provided that some additional compatibility conditions, and smoothness on the boundary are assumed
(for instance Γ ∈ C1,1). For evolutionary Stokes equations, with inhomogeneous Dirichlet boundary data, if
φ ∈ L2(0, T ;H3/2(Γ))∩H3/4(0, T ;L2(Γ)) then we can recover L2(0, T ;H2(Ω)) regularity for the strong solution
(see for instance [32]). We note that the case of convex and polygonal domains requires further attention (see
for instance [17]) since the polygonal structure of the domain acts as a barrier for higher regularity. However,
for our analysis including the error estimates of the semi-discrete scheme, L2(0, T ;H2(Ω)) regularity for the
velocity will not be necessary.
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Remark 4.4. Even though the regularity on g,u0 is not optimal, compared to the notion of very weak solutions
of [30], the above formulation clearly represents the parabolic analog of saddle point theory.

Combining the above results, we may obtain the existence of a weak solution of the evolutionary Stokes
equations, with inhomogeneous divergence and Dirichlet boundary data. We will treat the inhomogeneous
Dirichlet boundary data for the evolutionary Stokes problem, as a parabolic saddle point problem by using a
Lagrange multiplier principle similar to the elliptic case (see e.g. [4]). As before, we denote by

a(u,v) =

∫
Ω

∇u : ∇v, b(v, q) = −
∫

Ω

divv q.

Introducing the Lagrange multiplier, the weak formulation is given as follows: Seek (u, p) ∈ L2(0, T ;H1(Ω)) ∩
H1(0, T ; (H1(Ω))∗) × L2(0, T ;L2(Ω)), and a Lagrange multiplier λ ∈ L2(0, T ;H−1/2(Γ)) such that, for all
v ∈ H1(Ω), q ∈ L2(Ω) and s ∈ H−1/2(Γ), and for a.e. t ∈ (0, T ],

〈ut,v〉+ νa(u,v) + b(v, p)− 〈λ,v〉H−1/2(Γ),H1/2(Γ) = 0
b(u, q) = (−ψ, q)

〈u, s〉H1/2(Γ),H−1/2(Γ) = 〈φ, s〉H1/2(Γ),H−1/2(Γ)

(u(0),v) = (u0,v).

(4.5)

In order to recast problem (4.5) as a parabolic saddle point problem, we define by

A(u,v) = a(u,v) ∀u,v ∈ H1(Ω)

B(u, (q, s)) = b(u, q)− 〈u, s〉(H1/2(Γ),H−1/2(Γ)) ∀ (q, s) ∈ L2
0(Ω)×H−1/2(Γ),

and

Z = {u ∈ H1(Ω) : B(u, (q, s)) = 0, ∀ (q, s) ∈ L2
0(Ω)×H−1/2(Ω)}.

Then, problem (4.5) can be rewritten as follows: For a.e. t ∈ (0, T ], for all v ∈ H1(Ω), q ∈ L2
0(Ω) and

s ∈ H−1/2(Γ), {
〈ut,v〉+ νA(u,v) +B(v, (λ, p)) = 0

B(u, (s, q)) = −(ψ, q)− 〈φ, s〉(H1/2(Γ),H−1/2(Γ)).
(4.6)

Theorem 4.5. Given initial and boundary data satisfying

u0 ∈ H1(Ω), φ ∈ H1(0, T ;H1/2(Γ)), ψ ∈ H1(0, T ;L2(Ω)),

and the compatibility conditions (divu0, q) = (ψ(0), q) for all q ∈ L2
0(Ω) and 〈u(0), s〉(H1/2(Γ),H−1/2(Γ)) =

〈φ(0), s〉(H1/2(Γ),H−1/2(Γ)) for all s ∈ H−1/2(Γ), there exists a unique weak solution

(u, (p,λ)) ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω))× L2(0, T ;L2
0(Ω))× L2(0, T ;H−1/2(Γ))

of the weak problem (4.6). Let u be decomposed to u(.) = z(.) + w(.), with z(.) ∈ Z and w(.) ∈ Z⊥ for a.e.
t ∈ (0, T ]. Then wt ∈ L2(0, T ;H1(Ω)).

Proof. Note that the continuity and coercivity assumption on bilinear form A(., .) can be easily verified, since
Z ⊂ H1

0 (Ω). It remains to prove the inf-sup condition, which can be verified identically to Theorem 4.2, since
the bilinear form B(·, ·) is defined as in Theorem 4.2. �
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5. Finite element approximations of parabolic saddle point problems

We now turn our attention to the error analysis of finite element approximations of such parabolic saddle
point problems. The main goal is to derive “best approximation” type of estimates for semi-discrete (in space)
approximations.

5.1. Preliminaries and assumptions

Let V h ⊂ X and Mh ⊂ M be standard finite element spaces, associated to the approximation of elliptic
saddle point problems (see e.g. [5, 15]) satisfying the classical approximation theory properties: There exists
an integer k, and a constant C, independent of h such that, ∀v ∈ Hm+1(Ω) ∩ X, 0 ≤ m ≤ k and ∀ q ∈
Hm(Ω) ∩M, 0 ≤ m ≤ k, the following inequalities hold:

infvh∈V h ‖v − vh‖X ≤ Chm‖v‖Hm+1(Ω)∩X
infvh∈V h ‖v − vh‖H ≤ Chm+1‖v‖Hm+1(Ω)∩X
infqh∈Mh ‖q − qh‖M ≤ Chm‖q‖Hm(Ω)∩M .

(5.1)

In addition, we assume that the discrete analog of the inf-sup condition holds for our choice of subspaces V h

and Mh:

inf
06=qh∈Mh

sup
06=uh∈V h

B(uh, qh)

‖uh‖X‖qh‖M
≥ β, (5.2)

with β > 0 and independent of the discretization parameter h. First we note that it is possible to construct
finite element spaces satisfying (5.1) and (5.2).

Indeed, for the model problem (4.1), we may consider standard finite element spaces V h0 ⊂ X ≡ H1
0 (Ω),

Mh ⊂M ≡ L2
0(Ω), satisfying standard approximation properties (5.1) and the classical discrete inf-sup condition

(5.2).
For model problem (4.2), we use X = H1(Ω), H = L2(Ω) for the velocity and M = M1 × M2, with

M1 = L2
0(Ω) for the pressure, and M2 = H−1/2(Γ) for the Lagrange multiplier term respectively. Therefore,

we consider V h1 ⊂ H1(Ω), for the velocity and Mh = Mh1
1 ×M

h2
2 ⊂ L2

0(Ω)×H1/2(Γ) for the pressure and the

boundary data respectively. We also assume that V h1 and Mh1
1 satisfy the standard approximation properties

(5.1). The approximation properties of Mh2
2 , in terms of the given regularity assumptions on data as well as

on the boundary regularity are more complicated (see for instance [20]), since in (4.2) the computation of the
velocity and pressure is coupled to that of the boundary (stress) terms. Hence, in order to satisfy the discrete

inf-sup condition (5.2), the choice of Mh2
2 should be related to that of V h1 and Mh1

1 .
To this end, we first treat the case of convex and polygonal (polyhedral in R3) domains. We choose V h1 ⊂

H1(Ω) and Mh1
1 ⊂ L2(Ω) such that the spaces V h1

0 = V h1 ∩H1
0 (Ω), and Mh

1 = Mh1
1 ∩ L2

0(Ω) satisfy (5.1) and

the discrete inf-sup condition (5.2). Then, we choose Mh2
2 ⊂ H1/2(Γ) (note that h2 might be different from h1)

such that the following approximation and inverse estimates hold (see e.g. [8] and [20]): There exists a constant
C > 0 and an integer k, 0 ≤ m ≤ k, such that,{

infφh∈Mh
2

‖φ− φh‖M2
≤ Chm2 ‖φ‖Hm− 1

2 (Γ)∩M2
, ∀φ ∈ Hm− 1

2 (Γ), 0 ≤ m ≤ 1,

infφh∈Mh
2

‖φ− φh‖M2
≤ Chm2 inf û∈Hm(Ω),û|Γ=φ ‖û‖Hm(Ω), ∀φ ∈ Hm(Ω)|Γ, 1 ≤ m ≤ k,

(5.3)

and

‖φh‖Hs(Γ) ≤ Cht−s2 ‖φh‖Ht(Γ), ∀φh ∈Mh2
2 , −(1/2) ≤ t ≤ s ≤ (1/2).

Then, under the above assumptions we finally, set h = max{h1, h2} and V h ≡ V h1 , Mh = Mh1
1 ×M

h2
2 .

Remark 5.1. (1) Despite the fact that the choice ofMh2
2 is independent of the pair (V h1 ,Mh1) the dimension

of Mh2
2 can not exceed the one of V h1 |Γ.
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(2) The verification of the discrete inf-sup condition of the above pair V h and Mh typically requires the
existence of a suitably large constant C, such that h2 ≥ Ch1 (see for example [20, Proposition 5]).

(3) For the choice h = h1 = h2, and Mh
2 = V h|Γ, we note that Mh

2 ⊂ C(Γ̄), and hence Mh
2 ⊂ H1(Γ). It is

clear that the first inequality of (5.3) is valid due to the approximation properties of V h, (see [20, Lemma

13 and Proposition 14]) at least when φ ∈ Hm− 1
2 (Γ), 0 ≤ m ≤ 1. For the second inequality of (5.3),

we note that for convex polyhedral domains, in general, it is not possible to define Hs(Γ) when s > 1.

Despite this fact, if v ∈ Hs+ 1
2 (Ω), with s > 1, it is still expected that its trace has approximation

properties compatible with its regularity on Ω. We refer the reader to [20, Section 3] for a detailed
discussion.

The above approximation properties easily result to approximation properties in time-space spaces. For
example (see also [22, Section 2]), there exists an integer k and a constant C (independent of h) such that
∀v ∈ L2(0, T ;Hm+1(Ω) ∩ X), 0 ≤ m ≤ k and ∀ q ∈ L2(0, T ;Hm(Ω) ∩ M1), 0 ≤ m ≤ k, the following
inequalities hold: 

infvh∈L2(0,T ;V h) ‖v − vh‖L2(0,T ;X) ≤ Chm1 ‖v‖L2(0,T ;Hm+1(Ω)∩X)

infvh∈L2(0,T ;V h) ‖v − vh‖L2(0,T ;H) ≤ Chm+1
1 ‖v‖L2(0,T ;Hm+1(Ω)∩X)

infqh∈L2(0,T ;Mh
1 ) ‖q − qh‖L2(0,T ;M1) ≤ Chm1 ‖q‖L2(0,T ;Hm(Ω))∩M1).

Similarly, there exists a constant C > 0 and an integer k, 0 ≤ m ≤ k, such that,
infφh∈L2(0,T ;Mh

2 )
‖φ− φh‖L2(0,T ;M2) ≤ Chm2 ‖φ‖L2(0,T ;Hm− 1

2 (Γ)∩M2)
, ∀φ ∈ L2(0, T ;Hm− 1

2 (Γ)), 0 ≤ m ≤ 1,

infφh∈L2(0,T ;Mh
2 )
‖φ− φh‖L2(0,T ;M2) ≤ Chm2 inf û∈L2(0,T ;Hm+1(Ω)),û|Γ=φ ‖û‖L2(0,T ;Hm(Ω)∩X),

∀φ ∈ L2(0, T ;Hm(Ω)|Γ), 1 ≤ m ≤ k.

We will frequently combine the approximation properties of M1 and M2, using the space M = M1 ×M2, by
denoting q̃ ≡ (q,φ) ∈M = M1 ×M2. In this case, recall that h = max{h1, h2}, V h = V h1 , Mh = Mh1

1 ×M
h2
2 .

Then, the approximation property is stated as follows: ∀ q̃ = (q,φ) such that q ∈ L2(0, T ;Hm(Ω) ∩M1), 0 ≤
m ≤ k and φ ∈ L2(0, T ;Hm− 1

2 (Γ) ∩M2), there exists a constant C > 0 such that,

inf
q̃h∈L2(0,T ;Mh)

‖q̃ − q̃h‖L2(0,T ;M) ≤ Chm.

As before, we will abuse the notation to denote q̃h = qh, p̃h = ph, etc. To formulate the discrete analog of (2.5)
we define the discretely “divergence” and/ or “divergence-free” analogs of the above finite element spaces by

Zh(g) ≡ {xh(.) ∈ V h with B(xh(.), qh) = 〈g(.), qh〉 ∀ qh ∈Mh for a.e t ∈ (0, T ]}.

Note that Zh(0) ≡ Zh, where

Zh = {vh ∈ V h : B(vh, qh) = 0 ∀ qh ∈Mh}.

Here, the bilinear form B(., .) is defined in a similar spirit as in Section 4, i.e., it contains all boundary terms
resulting from integration by parts, and related pressure terms. The semi-discrete (in space) finite element ap-
proximations of parabolic saddle point problem, can be defined as follows: Given uh0 ∈ V h, and g ∈ H1(0, T ;M∗)
we seek a discrete solution pair

(uh, ph) ∈ H1(0, T ;V h)× L2(0, T ;Mh)

satisfying, for a.e. t ∈ (0, T ] 〈u
h
t (t),vh〉+ νA(uh(t),vh) +B(vh, ph(t)) = 0 ∀vh ∈ V h

B(uh(t), qh) = 〈g(t), qh〉 ∀ qh ∈Mh

(uh(0)− uh0 , v
h) = 0 ∀vh ∈ V h.

(5.4)
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Throughout the remaining of this work, we assume that the discrete initial data uh0 are chosen in a way to
satisfy the standard approximation property, ‖u0 − uh0‖H ≤ Chm‖u0‖Hm(Ω).

Now, we turn our attention to the case of smooth domains (for simplicity in R2). In this case, it is assumed
that the domain can be approximated appropriately by the corresponding finite element domain in the sense
of [20, Section 3.4] or [34], and an approximation φh of the boundary data φ is actually computed. As a
consequence, we may construct our subspaces on the approximated polygonal domain, as above, while the
second equation of the discrete formulation (5.4) is now modified to

B(uh(.), qh) = 〈gh(.), qh〉 ∀qh ∈Mh, and for a.e t ∈ (0, T ].

This case is also very important within the context of optimal control problems, where the control is applied on
the Dirichlet part of the boundary, and it is an actual unknown. We view this case as the essential data case.
Typical choices for the approximation of g are the L2 projections. For instance, recall that for the boundary
data φ, one may choose the L2(Γ) projection operator from L2(Γ) to Mh2

2 .
The rest of this Section is organized as follows: First, in Section 5.2, we consider (5.4), with g fixed (which

covers the case of convex and polygonal or polyhedral domains), while the case of smooth domains and the case
of essential boundary data where g is approximated by an element gh will be treated subsequently in Section
5.3. In both cases, the role of the discrete inf-sup condition is carefully analyzed.

5.2. Preliminary best approximation estimates

The key difference between the inhomogeneous divergence and boundary data case, and the homogeneous one
concerns the treatment of the inhomogeneous divergence data constraint equation. In addition, we note that
the coupling between ut and p creates additional difficulties, within the context of numerical approximations.

In order to obtain estimates for the differences ut−uht , and p−ph, we will need to define various projections
that satisfy the best approximation properties. We emphasize that we are interested in estimates at the natural
energy norms, ‖ut − uht ‖L2(0,T ;X∗) and ‖p− ph‖L2(0,T ;M) respectively. We note that even for the homogeneous
evolutionary Stokes equations the estimates on the pressure and the time-derivative are both suboptimal, due
to the coupling between the time-derivative and the pressure through the incompressibility constraint.

For this purpose, we will follow the techniques of [22]. We denote by Ph the H projection Ph : H → V h

such that

(Phv,wh) = (v,wh) ∀wh ∈ V h

and by PhZ the “discretely divergence-free analog”, PhZ : H → Zh which satisfies,

(PhZv, zh) = (v, zh) ∀ zh ∈ Zh.

We also assume that Ph satisfies stability properties in ‖.‖X and ‖.‖H norms, while PhZ satisfy the standard
stability property in ‖.‖H . In particular, ∀v ∈ X,

‖Phv‖X ≤ C‖v‖X , ‖PhZv‖H ≤ C‖v‖H . (5.5)

In addition, the following inverse estimate ‖Phv‖X ≤ C/h‖Phv‖H will be frequently used. We also note that
‖PhZv‖X ≤ C‖v‖X for all v ∈ X∩Z. Then, the following properties hold (see e.g. [22, Section 2]) for projections
Ph, PhZ in L2(0, T ;X): There exists a constant C > 0 independent of h, such that{

‖v − Phv‖L2(0,T ;X) → 0 as h→ 0, ∀v ∈ L2(0, T ;X),
‖v − PhZv‖L2(0,T ;X) ≤ C‖v‖L2(0,T ;X), ∀v ∈ L2(0, T ;X ∩ Z).
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Finally, there exists constant C and an integer k such that for 0 ≤ m ≤ k, the following error estimates for the
projections Ph, PhZ hold respectively:

‖v − Phv‖L2(0,T ;X) ≤ Chm‖v‖L2(0,T ;Hm+1(Ω)) ∀v ∈ L2(0, T ;Hm+1(Ω) ∩X),
‖v − Phv‖L2(0,T ;H) ≤ Chm+1‖v‖L2(0,T ;Hm+1(Ω)) ∀v ∈ L2(0, T ;Hm+1(Ω) ∩X),
‖v − PhZv‖L2(0,T ;X) ≤ Chm‖v‖L2(0,T ;Hm+1(Ω)) ∀v ∈ L2(0, T ;Hm+1(Ω) ∩X ∩ Z).

In the subsequent proposition, we obtain the basic estimate, which relates the error u − uh to the best
approximation error u − xh, where xh ∈ L2(0, T ;V h ∩ Zh(g)) ∩H1(0, T ;V h) and xht ∈ L2(0, T ;Zh(gt)). Note
that if xh ∈ L2(0, T ;V h ∩ Zh(g)) and xh ∈ H1(0, T ;V h) then xht ∈ L2(0, T ;Zh(gt)), since we assume that the
bilinear form B(., .) does not contain time-dependent coefficients. We are now ready to obtain the preliminary
“best approximation” estimate in Zh(g) for the velocity, while for the pressure the discrete inf-sup condition is
needed, similar to the elliptic case (see [15] for the stationary Stokes case).

Theorem 5.2. Let g,u0 satisfy the regularity assumptions of Theorem 2.2 and that the continuous bilinear
forms A(., .), B(., .) satisfy the coercivity conditions (2.2)-(2.3)-(2.4). Assume that u,uh are the solutions of
the parabolic saddle point problem (1.2) and of the discrete parabolic saddle point problem (5.4) respectively.
Moreover, let A(zh, zh) ≥ C‖zh‖2X , ∀zh ∈ Zh. Suppose also that uh0 ∈ V h. Then, for any arbitrary xh ∈
H1(0, T ;V h) ∩ L2(0, T ;Zh(g)), qh ∈ L2(0, T ;Mh) the following estimate holds:

‖u− uh‖2L∞(0,T ;H) + ‖u− uh‖L2(0,T ;X)

≤ C
(
‖u0 − uh0‖H + inf

qh∈L2(0,T ;Mh)
‖p− qh‖L2(0,T ;M) (5.6)

+ inf
xh∈H1(0,T ;V h)∩L2(0,T ;Zh(g))

(
‖u− xh‖L2(0,T ;X) + ‖ut − xht ‖L2(0,T ;X∗)

))
.

Proof. The orthogonality condition states that for almost every t ∈ (0, T ]{
〈uht − ut,v

h〉+ νA(uh − u,vh) +B(vh, ph − p) = 0 ∀vh ∈ V h
B(uh − u, qh) = 0 ∀ qh ∈Mh.

(5.7)

Let xh ∈ L2(0, T ;V h ∩ Zh(g)), qh ∈ L2(0, T ;Mh) be arbitrary elements. Then, adding and subtracting xh in
(5.7), we obtain,

〈uht − xht ,v
h〉+ νA(uh − xh,vh) +B(vh, ph − p) (5.8)

= −〈xht − ut,v
h〉 −A(xh − u,vh) ∀vh ∈ Xh.

Note that uh−xh ∈ Zh, and hence B(uh−xh, ph− p) = B(uh−xh, qh− p) for any qh ∈ L2(0, T ;Mh). Setting
vh = uh − xh in (5.8) and using the coercivity inequality on Zh we obtain,

1

2

d

dt
‖uh − xh‖2H + C‖uh − xh‖2X ≤ C

(
‖xht − ut‖2X∗ + ‖xh − u‖2X + ‖qh − p‖2M

)
.

The last inequality clearly implies estimate (5.6) by standard Grönwall Lemma. �

Proposition 5.3. Suppose that the assumptions of Theorem 5.2 and the discrete inf-sup condition (5.2) for
the choice of V h,Mh hold. Then, for any arbitrary xh ∈ H1(0, T ;V h) ∩L2(0, T ;Zh(g)), qh ∈ L2(0, T ;Mh) the
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following estimates hold:

‖ut − uht ‖L2(0,T ;X∗) + ‖p− ph‖L2(0,T ;M)

≤ C

h

(
‖u0 − uh0‖H + inf

qh∈L2(0,T ;Mh)
‖p− qh‖L2(0,T ;M)

+ inf
xh∈H1(0,T ;V h)∩L2(0,T ;Zh(g))

(
‖u− xh‖L2(0,T ;X) + ‖ut − xht ‖L2(0,T ;X∗)

))
,

‖ut − uht ‖L2(0,T ;Z∗) ≤ C
(
‖u0 − uh0‖H + inf

qh∈L2(0,T ;Mh)
‖p− qh‖L2(0,T ;M)

+ inf
xh∈H1(0,T ;V h)∩L2(0,T ;Zh(g))

(
‖u− xh‖L2(0,T ;X) + ‖ut − xht ‖L2(0,T ;X∗)

))
.

Here C > 0 denotes a constant depending only on Ω, ν, α, β.

Proof. We begin by estimating the time-derivative. First, we note that if xh ∈ L2(0, T ;Zh(g)) then for a.e t ∈
(0, T ], we obtain uh(.)−xh(.) ∈ Zh, and uht (.)−xht (.) ∈ Zh. Recall, ‖uht (.)−xht (.)‖X∗ = supv∈X

〈uh
t (.)−xh

t (.),v〉
‖v‖X .

Adding and subtracting PhZv, we obtain,

‖uht (.)− xht (.)‖X∗ = sup
v∈X

〈uht (.)− xht (.),v − PhZv〉+ 〈uht (.)− xht (.), PhZv〉
‖v‖X

.

Note that since uht (.)−xht (.) ∈ Zh the definition of the projection PhZ implies that 〈uht (.)−xht (.),v−PhZv〉 = 0.
For the remaining term, from the orthogonality condition (5.8), we obtain

‖uht (.)− xht (.)‖X∗ ≤ sup
v∈X

(ν|A(uh(.)− xh(.), PhZv)|
‖v‖X

+
|B(PhZv, ph − p)|

‖v‖X

+
|〈ut(.)− xht (.), PhZv〉|

‖v‖X
+
|A(xh − u, PhZv)|

‖v‖X

)
. (5.9)

Observe that B(PhZv, ph − p) = B(PhZv, qh − p). Then, using the inverse estimate ‖PhZv‖X ≤ C
h ‖P

h
Zv‖H ,

squaring both sides, and integrating with respect to time we obtain the desired estimate. Once, we have shown
an estimate on the time derivative on ‖ut−uht ‖L2(0,T ;X∗) the estimate on the p− ph term follows directly from
the discrete inf-sup condition (5.2). Indeed, note that

B(vh, ph − qh) = B(vh, ph − p)−B(vh, p− qh)

= −〈uht − ut,v
h〉 − νA(uh − u,vh)−B(vh, p− qh)

≤ C(‖uht − ut‖X∗‖vh‖X + ‖uh − u‖X‖vh‖X + ‖vh‖X‖p− qh‖M ).

Hence, dividing by ‖vh‖X , taking the supremum over V h, using the discrete inf-sup (5.2) and standard algebra
we derive the estimate on p − ph term. At the second equality, we have used the orthogonality condition. For

the last estimate, we note that ‖uht (.)−xht (.)‖Z∗ = supv∈Z
〈uh

t (.)−xh
t (.),v〉

‖v‖X and hence working identically as above

we obtain the analogue of (5.9),

‖uht (.)− xht (.)‖Z∗ ≤ sup
v∈Z

(ν|A(uh(.)− xh(.), PhZv)|
‖v‖X

+
|B(PhZv, ph − p)|

‖v‖X

+
|〈ut(.)− xht (.), PhZv〉

‖v‖X
+
|A(xh − u, PhZv)|

‖v‖X

)
. (5.10)
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The estimate now follows using similar arguments and the stability estimate ‖PZv‖X ≤ C‖v‖X for all v ∈
Z ∩X. �

Remark 5.4. The structure of the estimate (5.10) on ‖uht −xht ‖L2(0,T ;Z∗) is similar to the estimate of the velocity

in L2(0, T ;X) and hence it leads to similar rates. In particular, we have shown the following best-approximation
and almost symmetric error estimate:

‖u− uh‖L2(0,T ;X) + ‖ut − uht ‖L2(0,T ;Z∗)

≤ C
(
‖u0 − uh0‖H + inf

qh∈L2(0,T ;Mh)
‖p− qh‖L2(0,T ;M)

+ inf
xh∈H1(0,T ;V h)∩L2(0,T ;Zh(g))

(
‖u− xh‖L2(0,T ;X) + ‖ut − xht ‖L2(0,T ;X∗)

))
.

However, the above estimate is not useful since we cannot apply the inf-sup condition to recover an estimate
for the pressure and the Lagrange multiplier term. Indeed, despite the fact that the estimate in L2(0, T ;Z∗)
is of the same order to the velocity one, it seems unlikely to obtain a better rate in L2(0, T ;X∗) norm simply
because B(v, q) = 0,∀v ∈ Z, q ∈M . The reduced rate for the estimate on the time derivative and the pressure
is even present for the homogeneous evolutionary Stokes equations, and it is due to the coupling between the
time-derivative and the pressure. The rate reduction was caused because we have used a suboptimal bound for
the time-derivative in L2(0, T ;X∗) norm by applying an inverse estimate. The inverse estimate was necessary
since we cannot assume the stability property ‖PZv‖X ≤ C‖v‖X for any v ∈ X, but only if v ∈ X ∩ Z. On
the other hand, the definition of the projection, implies the stability in the H norm.

Next, we will relate the approximation properties on H1(0, T ;V h)∩L2(0, T ;Zh(g)) to standard best approx-
imation properties on H1(0, T ;V h). This is necessary in order to quantify the error estimate. The discrete
inf-sup condition will be used similar to the elliptic case (see [15, Theorem 1.1, pp 114]). We note that we will
use the enhanced regularity wt ∈ H1(0, T ;X), in order to obtain estimate on the time derivative via the inf-sup
condition. Recall, that we have shown that ut ∈ L2(0, T ;H) and if the decomposition u(.) = w(.) + z(.), with
w(.) ∈ Z⊥, z(.) ∈ Z holds for a.e. t ∈ (0, T ] then wt ∈ L2(0, T ;X).

Lemma 5.5. Let the assumptions of Theorem 5.2 hold. In addition, suppose that the finite element subspaces
V h,Mh satisfy the discrete inf-sup condition (5.2). Then, for any vh ∈ H1(0, T ;V h), qh ∈ L2(0, T ;Mh) the
following estimates hold:

‖u− uh‖L∞(0,T ;H) + ‖u− uh‖L2(0,T ;X) +

+h
(
‖ut − uht ‖L2(0,T ;X∗) + ‖p− ph‖L2(0,T ;M)

)
≤ C

(
‖u0 − uh0‖H + inf

vh∈H1(0,T ;V h)
(‖u− vh‖L2(0,T ;X) + ‖ut − vht ‖L2(0,T ;X∗))

+ inf
vh∈H1(0,T ;V h)

‖wt − vht ‖L2(0,T ;X) + ‖p− qh‖L2(0,T ;M)

)
.

Here we denote by u(.) = w(.) + z(.), where z(.) ∈ Z, w(.) ∈ Z⊥ for a.e. t ∈ (0, T ]. If in addition, u ∈
H1(0, T ;Hm+1(Ω) ∩X), and p ∈ L2(0, T ;Hm(Ω) ∩M) then there exists a constant C such that

‖u− uh‖L∞(0,T ;H) + ‖u− uh‖L2(0,T ;X)

+h
(
‖ut − uht ‖L2(0,T ;X∗) + ‖p− ph‖L2(0,T ;M)

)
≤ Chm.

Proof. If the finite element subspaces V h,Mh satisfy the discrete inf-sup condition (5.2) then using the Banach-
Babuška-Nečas Lemma (see e.g. [5, 15, 26]) for a.e t ∈ (0, T ] there exists wh(.) ∈ (Zh)⊥ (depending on q) such
that

B(wh(.), qh) = B(u(.)− vh(.), qh), ∀vh ∈ L2(0, T ;V h) and ∀qh ∈Mh. (5.11)
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In addition, the discrete inf-sup implies ‖wh(.)‖X ≤ C‖u(.)−vh(.)‖X . Set xh(.) = wh(.) + vh(.) and note that
xh(.) ∈ L2(0, T ;V h), and xh(.) ∈ Zh(g), since

B(xh(.), qh) = B(wh(.) + vh(.), qh) = B(u(.), qh) = 〈g(.), qh〉,

due to (5.11). Therefore, ‖u(.)−xh(.)‖X ≤ ‖u(.)−vh(.)‖X +‖wh(.)‖X ≤ C‖u(.)−vh(.)‖X . The last inequality
implies that ‖u − xh‖L2(0,T ;X) ≤ C‖u − vh‖L2(0,T ;X), for any arbitrary vh ∈ L2(0, T ;V h). Suppose now that

vh ∈ H1(0, T ;V h). The unique decomposition of u(.) = w(.) + z(.), with w(.) ∈ Z⊥, z(.) ∈ Z implies that
B(wh(.), qh) = B(u(.)−vh(.), qh) = B(w(.)−vh(.), qh). Hence, since wt,v

h
t ∈ L2(0, T ;X), differentiating with

respect to time, we deduce for a.e. t ∈ (0, T ],

B(wh
t (.), qh) = B(wt(.)− vht (.), qh).

The discrete inf-sup condition, and the Banach-Babuška-Nečas Lemma (see e.g. [5, 15, 26]) imply that there
exists w̃h ∈ (Zh)⊥ such that B(w̃h(.), qh) = B(wt(.)− vht (.), qh). Therefore, we obtain

B(w̃h(.), qh) = B(wt(.)− vht (.), qh) = B(wh
t (.), qh). (5.12)

The discrete inf-sup implies ‖w̃h(.)‖X ≤ C‖wt(.) − vht (.)‖X . Note that since w̃h ∈ L2(0, T ; (Zh)⊥) we also
deduce from (5.12) that wh

t ∈ L2(0, T ; (Zh)⊥), and ‖wh
t ‖L2(0,T ;X) ≤ C‖wt(.) − vht (.)‖X . Hence using triangle

inequality and the previous estimates we obtain the following estimate,

‖ut − xht ‖L2(0,T ;X∗) ≤ C(‖ut − vht ‖L2(0,T ;X∗) + ‖wh
t ‖L2(0,T ;X∗))

≤ C
(
‖ut − vht ‖L2(0,T ;X∗) + ‖wt − vht ‖L2(0,T ;X)

)
,

since ‖wh
t ‖L2(0,T ;X∗) is estimated by ‖wh

t ‖L2(0,T ;X) ≤ C‖wt−vht ‖L2(0,T ;X). The desired estimate easily follows

by substituting xh into the estimate of Theorem 5.2 and Proposition 5.3 (see also Remark 5.4). The last estimate
of the Theorem now follows by the approximation properties. �

We are ready to state the main best approximation type error estimates for the semi-discrete approximations
of problems (4.1) and (4.2). First, we simply point out that we may recast problem (4.1) into the discrete
parabolic saddle point framework of (5.4), for V h ⊂ H1

0 (Ω), Mh ⊂ L2
0(Ω) and by defining the bilinear forms

similar to Section 4. Then it is evident that the assumptions of Theorem 5.1, and Proposition 5.2 hold, and
hence the estimates of Theorem 5.1, Proposition 5.2, and Lemma 5.3 hold. In particular, we have the following
result:

Corollary 5.6. Suppose that u0 ∈ H1
0 (Ω), and g ∈ H1(0, T ;L2

0(Ω)) with g(0) = div u(0). Let V h,Mh

satisfy the approximation properties of Section 5.1, uh0 ∈ V h an approximation of u0. Then, there exists a
constant C > 0 independent of h, such that,

‖u− uh‖L∞(0,T ;H) + ‖u− uh‖L2(0,T ;X) → 0.

If in addition, u ∈ H1(0, T ;Hm+1(Ω) ∩X), and p ∈ L2(0, T ;Hm(Ω) ∩M) then there exists a constant C such
that

‖u− uh‖L∞(0,T ;H) + ‖u− uh‖L2(0,T ;X)

+h
(
‖ut − uht ‖L2(0,T ;X∗) + ‖p− ph‖L2(0,T ;M)

)
≤ Chm.

Now, for the model problem (4.2), we choose the spaces V h = V h1 for the velocity and Mh = Mh1
1 ×M

h2
2

for the pressure and the boundary data term, satisfying the assumptions of Section 5.1. Then, denoting by
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h = max{h1, h2}, the discrete analog of (4.2), is to seek uh ∈ H1(0, T ;V h1), ph ∈ L2(0, T ;Mh1), and a Lagrange

multiplier λh ∈ L2(0, T ;Mh2
2 ) such that for a.e. t ∈ (0, T ], and for all v ∈ V h1 and (qh, sh) ∈Mh1

1 ×M
h2
2 ,

〈uht (t),vh〉+ νa(uh(t),vh)− (ph(t), divvh) −〈λh(t),vh〉(H−1/2(Γ),H1/2(Γ)) = 0

( div uh(t), qh) = 0
〈uh(t), sh〉(H1/2(Γ),H−1/2(Γ)) = 〈φ(t), sh〉(H1/2(Γ),H−1/2(Γ))

(uh(0),vh) = (uh0 ,v
h).

which is written equivalently, 〈u
h
t ,v

h〉+ νA(uh,vh) +B(vh, (ph,λh)) = 0
B(uh, (qh, sh)) = −〈φ, sh〉H1/2(Γ),H−1/2(Γ))

(uh(0),vh) = (uh0 ,v
h).

Here, similar to Section 4, we denote by A(u,v) = a(., .), ∀u,v ∈ H1(Ω) and by B(u, (q, s)) = b(u, q) −
〈u, s〉(H1/2(Γ),H−1/2(Γ)), ∀ (q, s) ∈ L2

0(Ω) × H−1/2(Γ). Then, a direct application of Theorem 5.2, Proposition
5.3, and Lemma 5.5, imply the following estimates:

Corollary 5.7. Suppose that u0 ∈ H1(Ω), φ ∈ H1(0, T ;H1/2(Γ)) given data with 〈φ(0), s〉(H1/2(Γ),H−1/2(Γ)) =

〈u(0), s〉(H1/2(Γ),H−1/2(Γ)), for all s ∈ H−1(Γ), and u0 ∈ H1(Ω), with divu0=0. Let V h,Mh satisfy the approx-

imation properties of Section 5.1, and uh0 ∈ V h an approximation of u0. Then, there exists a constant C > 0
independent of h, such that,

‖u− uh‖L∞(0,T ;L2(Ω))) + ‖u− uh‖L2(0,T ;H1(Ω))

+h(‖p− ph‖L2(0,T ;L2
0(Ω)) + ‖λ− λh‖L2(0,T ;H−1/2(Γ)))→ 0.

If in addition, u ∈ H1(0, T ;Hm+1(Ω) ∩X), and p ∈ L2(0, T ;Hm(Ω) ∩ L2
0(Ω))× L2(0, T ;Hm− 1

2 (Γ) ∩M2) then
there exists a constant C such that

‖u− uh‖L∞(0,T ;H) + ‖u− uh‖L2(0,T ;X)

+h
(
‖ut − uht ‖L2(0,T ;X∗) + ‖(p, λ)− (ph,λh)‖L2(0,T ;M)

)
≤ Chm.

Remark 5.8. The choice of finite element spaces (V h1 ,Mh1
1 ), and Mh2

2 is related through the verification of the
coercivity of bilinear form A(., .) and the inf-sup condition (5.2) (see Remark 5.1). For a detailed discussion we
refer the reader to [20] (see also references within).

5.3. Treating essential inhomogeneous data

Our next goal is to derive estimates in terms of projections when g is approximated by a function gh. This
case arises when we consider essential inhomogeneous Dirichlet boundary data and/or a curved boundary.

The discrete parabolic saddle point problem is defined as follows: Given uh0 ∈ V h, and gh ∈ H1(0, T ;Mh)
we seek a discrete solution pair

(uh, ph) ∈ H1(0, T ;V h)× L2(0, T ;Mh),

satisfying, for almost every t ∈ (0, T ] 〈u
h
t (t),vh〉+ νA(uh(t),vh) +B(vh, ph(t)) = 0 ∀vh ∈ V h

B(uh(t), qh) = 〈gh(t), qh〉 ∀ qh ∈Mh

(uh(0)− uh0 , v
h) = 0 ∀vh ∈ V h,

(5.13)
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where gh is a suitable approximation of g.

Theorem 5.9. Let g,u0 satisfy the regularity assumptions of Theorem 2.2 and that the continuous bilin-
ear forms A(., .), B(., .) satisfy the coercivity conditions (2.2)-(2.3)-(2.4). Moreover, let V h ⊂ X, Mh ⊂ M
be finite element subspaces satisfying the discrete inf-sup condition (5.2) and standard approximation prop-
erties. Suppose also that uh0 ∈ V h, gh ∈ H1(0, T ;Mh), and ut ∈ L2(0, T ;X) Then, for any arbitrary
xh ∈ H1(0, T ;V h), qh ∈ L2(0, T ;Mh), the following estimate holds:

‖u− uh‖L2(0,T ;X) ≤ C
(
‖u0 − uh0‖H + ‖u− Phu‖H1(0,T ;X) + ‖g − gh‖H1(0,T ;M∗) + ‖p− qh‖L2(0,T ;M)

)
. (5.14)

If in addition, the approximation gh of g satisfies the estimate ‖g−gh‖H1(0,T ;M∗) ≤ Chm and u ∈ H1(0, T ;Hm+1(Ω)∩
X), p ∈ L2(0, T ;Hm(Ω) ∩M) then, ‖u− uh‖L2(0,T ;X) ≤ Chm.

Proof. The orthogonality condition reads as follows: For almost every t ∈ (0, T ]

{
〈uht − ut,v

h〉+ νA(uh − u,vh) +B(vh, ph − p) = 0 ∀vh ∈ V h
B(uh − u, qh) = 〈gh − g, qh〉 ∀ qh ∈Mh.

(5.15)

We split the error as follows: uh − u = (uh − Phu) + (Phu− u), where Phu : H → V h, denotes the standard
orthogonal projection. First we prove an estimate for uh − Phu term. For that purpose, we note that for
a.e. t ∈ (0, T ], uh(t) − Phu(t) ∈ V h, and we use the decomposition uh(t) − Phu(t) = wh(t) + zh(t) where

wh(t) ∈ Zh
⊥
, zh(t) ∈ Zh. We can bound the wh(t) term using the discrete inf-sup condition (5.2) and the

orthogonality condition (5.15), (dropping the t notation),

‖wh‖X ≤ C sup
qh∈Mh

|B(wh, qh)|
‖qh‖M

≤ C sup
qh∈Mh

|B(uh − Phu− zh, qh)|
‖qh‖M

≤ C sup
qh∈Mh

|B(uh − Phu, qh)|
‖qh‖M

≤ C sup
qh∈Mh

|B(uh − u, qh) +B(u− Phu, qh)|
‖qh‖M

≤ C

(
sup

qh∈Mh

|〈gh − g, qh〉|
‖qh‖M

+ sup
qh∈Mh

|B(u− Phu, qh)|
‖qh‖M

)
≤ C

(
‖g − gh‖M∗ + ‖u− Phu‖X

)
. (5.16)

Therefore, after integrating (5.16),

‖wh‖2L2(0,T ;X) ≤ C
(
‖g − gh‖2L2(0,T ;M∗) + ‖u− Phu‖2L2(0,T ;X)

)
. (5.17)

Note also that uht ,w
h
t ∈ L2(0, T ;V h) and that ut ∈ L2(0, T ;X). Hence, the orthogonality condition implies

after differentiation with respect to time,

d

dt
B(uh(t)− u(t), qh) = 〈ght (t)− gt(t), q

h〉 ∀ qh ∈Mh.
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Therefore, following exactly the same steps as above the inf-sup condition implies for a.e. t ∈ (0, T ], (dropping
the t notation)

‖wh
t ‖X ≤ C sup

qh∈Mh

|B(wh
t , q

h)|
‖qh‖M

≤ C sup
qh∈Mh

= C sup
qh∈Mh

| ddtB(wh, qh)|
‖qh‖M

≤ C sup
qh∈Mh

| ddtB(uh − Phu− zh, qh)|
‖qh‖M

≤ C sup
qh∈Mh

| ddtB(uh − Phu, qh)|
‖qh‖M

≤ C sup
qh∈Mh

| ddt (B(uh − u, qh) +B(u− Phu, qh))|
‖qh‖M

≤ C
(
‖ght − gt‖M∗ + ‖ut − Phut‖X

)
which clearly implies,

‖wh
t ‖2L2(0,T ;X) ≤ C

(
‖ght − gt‖2L2(0,T ;M∗) + ‖ut − Phut‖2L2(0,T ;X)

)
.

It remains to bound the zh term. Note that the regularity assumptions on g, u0 imply that ut ∈ L2(0, T ;H)
(see Theorem 2.2). Adding and subtracting appropriate terms at the orthogonality condition (5.15) we obtain,

〈uht − Phut,vh〉+ νA(uh − Phu,vh) +B(vh, ph − p)
= −〈Phut − ut,v

h〉 − νA(Phu− u,vh) ∀vh ∈ V h. (5.18)

Note that by the definition of projection Ph we obtain that 〈Phut − ut,v
h〉 = 0. Using once more the

decomposition uh − Phu = wh + zh, we obtain from (5.18) for all vh ∈ V h and for a.e. t ∈ (0, T ],

〈zht ,vh〉+ νA(zh,vh) +B(vh, ph − p) (5.19)

= −νA(Phu− u,vh)− 〈wh
t ,v

h〉 − νA(wh,vh).

Note that B(vh, ph−p) = B(vh, ph−qh)+B(vh, qh−p), so (5.19) can be rewritten as follows: For all vh ∈ V h,
and for a.e. t ∈ (0, T ],

〈zht ,vh〉+ νA(zh,vh) +B(vh, ph − qh) (5.20)

= −νA(Phu− u,vh)−B(vh, qh − p)− 〈wh
t ,v

h〉 −A(wh,vh).

Set vh = zh ∈ Zh in (5.20) and note that B(zh, ph− qh) = 0. Therefore, using the coercivity condition of A(·, ·)
on Zh, we obtain

1

2

d

dt
‖zh‖2H + να‖zh‖2X ≤ C

(
‖Phu− u‖X‖zh‖X + ‖zh‖X‖qh − p‖M +

(
‖wh‖X + ‖wh

t ‖X∗
)
‖zh‖X

)
.

Using Cauchy’s inequality with appropriate constants,

1

2

d

dt
‖zh‖2H +

να

2
‖zh‖2X ≤ C

(
‖Phu− u‖2X + ‖qh − p‖2M + ‖wh‖2X + ‖wh

t ‖2X∗
)
.
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Clearly, the above inequality together with previous estimate for wh, leads to the desired estimate for the zh

term, i.e,

‖zh‖L2(0,T ;X) ≤ C
(
‖Phu− u‖H1(0,T ;X) + ‖qh − p‖L2(0,T ;M) + ‖gh − g‖H1(0,T ;M∗)

)
.

Here, we have used the bound ‖Phu− u‖L2(0,T ;X∗) ≤ C‖Phu− u‖L2(0,T ;X) (since the later norm also appears

in the estimate of wh
t ). Combining estimates for zh,wh, we finally arrive at:

‖uh − Phu‖L2(0,T ;X) ≤ C
(
‖Phu− u‖H1(0,T ;X) + ‖qh − p‖L2(0,TM) + ‖gh − g‖H1(0,T ;M∗)

)
.

Using the triangle inequality we finally arrive at the desired estimate (5.14). �

Next we focus on the estimate on the time derivative term. We emphasize that we derive an estimate
on the natural dual norm L2(0, T ;X∗), instead of L2(0, T ;Z∗). To achieve this, the enhanced regularity on
ut ∈ L2(0, T ;X) will be used. Theorem 2.2 implies that ut ∈ L2(0, T ;H) and that wt ∈ L2(0, T ;X) where w is
defined through the decomposition u = w + z, with w ∈ (Zh)⊥ and z ∈ Zh. The enhanced regularity appears
to be necessary in order to utilize the discrete inf-sup condition and control wt. In addition, we will employ the
discrete divergence free projection PhZ , and will assume stability properties in the X norm.

Theorem 5.10. Suppose that the assumptions as of Theorem 5.9 hold. Then, there exists a constant C > 0
independent of h such that the following estimate holds:

‖uht − ut‖L2(0,T ;H) + ‖p− ph‖L2(0,T ;M) ≤
C

h

(
‖uh − u‖L2(0,T ;X)

+‖Phu− u‖H1(0,T ;X) + ‖qh − p‖L2(0,T ;M) + ‖gh − g‖H1(0,T ;M∗)

)
.

Proof. We focus on uht − Phut term. Recall that ut ∈ L2(0, T ;H) and hence Phut(.) is well defined for
a.e. t ∈ (0, T ]. Then the estimate follows from triangle inequality. Note that we use the decomposition
uh(t) − Phu(t) = wh(t) + zh(t) as before. Working identically to Theorem 5.9 we may derive an estimate for
wh
t , i.e

‖wh
t ‖L2(0,T ;X) ≤ C

(
‖ght − gt‖L2(0,T ;M∗) + ‖ut − Phut‖X

)
.

Using (5.18), we obtain for v ∈ X,

〈uht − Phut,v〉 = 〈uht − Phut,v − vh〉+ 〈uht − Phut,vh〉

= 〈uht − Phut,v − vh〉 −
(
νA(uh − Phu,vh) +B(vh, ph − qh)

+〈Phut − ut,v
h〉+ νA(Phu− u,vh) +B(vh, qh − p)

)
. (5.21)

Setting vh = PhZv into (5.21) and noting that 〈uht −Phut,v−vh〉 = (wh
t + zht ,v−PhZv) and (zht ,v−PhZv) = 0

due to the definition of PhZ , we obtain

〈uht − Phut,v〉 ≤ C
(
‖wh

t ‖H‖v − PhZv‖H + ‖uh − Phu‖X‖PhZv‖X

+(‖Phut − ut‖X∗ + ‖Phu− u‖X + ‖qh − p‖M )‖PhZv‖X
)
. (5.22)

Using the inverse estimate ‖PhZv‖X ≤ C
h ‖P

h
Zv‖H the stability of the projection PhZ in H and taking the

supremum in (5.22) over all v ∈ H with ‖v‖H = 1 and using the stability properties of the projection PhZ we
arrive at:

‖uht − Phut‖H ≤ C
(
‖wh

t ‖X +
1

h

(
‖uh − Phu‖X + ‖qh − p‖M + ‖Phut − ut‖X∗ + ‖Phu− u‖X

) )
. (5.23)
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Taking the square, integrating with respect to time, using the estimate on ‖wt‖L2(0,T ;X , and estimates from
Theorem 5.9, we obtain from (5.23) the desired estimate on the time derivative. For the pressure term note
that

B(vh, ph − qh) = B(vh, ph − p)−B(vh, p− qh)

= −〈uht − ut,v
h〉 − νA(uh − u,vh)−B(vh, p− qh)

≤ C
(
‖uht − ut‖X∗‖vh‖X + ‖uh − u‖X‖vh‖X + ‖vh‖X‖p− qh‖M

)
.

The discrete inf-sup condition, together with Theorem 5.9 and using the estimate on ‖ut − uht ‖H to estimate
‖ut − uht ‖X∗ , we establish the estimate on the pressure term. �

Combining Theorems 5.9, 5.10, we obtain an estimate for smooth solutions.

Proposition 5.11. Let the assumption of Theorem 5.9 hold. If in addition, the approximation gh of g satisfies
the estimate ‖g − gh‖H1(0,T ;M∗) ≤ Chm and u ∈ H1(0, T ;Hm+1(Ω) ∩X), p ∈ L2(0, T ;Hm(Ω) ∩M) then,

‖u− uh‖L2(0,T ;X) + h
(
‖ut − uh‖L2(0,T ;H) + ‖p− ph‖L2(0,T ;M)

)
≤ Chm.

Proof. The proof follows directly from Theorems 5.9, 5.10, and the approximation properties of the related
finite element spaces and of the projection PhZ . �

Remark 5.12. Similar to Section 5.2, the reduced rate for the pressure is justified since the coupling of the
time-derivative and pressure requires the use of estimates on the time-derivative in L2(0, T ;X∗) norm, and it is
present even in case of homogeneous data, i.e., g = 0. Theorems 5.9, and 5.10 provide estimates, which originate
to various best approximation properties of suitable projections, under the additional regularity assumption on
ut ∈ L2(0, T ;X). Once again this is due to the coupling of the pressure, and the time-derivative constraint as
well as the inhomogeneous divergence data. A careful inspection of the proof reveals that it is not possible to
directly estimate wh

t ∈ L2(0, T ;X∗) without invoking the discrete inf-sup condition, which actually estimates
wh
t in the bigger norm L2(0, T ;X).

Remark 5.13. Compared to [21], our theory treats also inhomogeneous essential boundary problems.

Finally we apply the results of Theorems 5.9,5.10, and Proposition 5.11, to obtain error estimates for the
semi-discrete approximations of problem (4.2). Recall that, we have chosen the spaces V h = V h1 for the

velocity and Mh = Mh1
1 × Mh2

2 for the pressure and the boundary data term, satisfying the assumptions
of Section 5.1. Then, denoting by h = max{h1, h2}, the semi-discrete analog of (4.2), is written now as

follows: Given φh ∈ H1(0, T ;Mh
2 ), we seek uh ∈ H1(0, T ;V h1), ph ∈ L2(0, T ;Mh1), and a Lagrange multiplier

λh ∈ L2(0, T ;Mh2
2 ) such that for a.e. t ∈ (0, T ], and for all v ∈ V h1 and (qh, sh) ∈Mh1

1 ×M
h2
2 ,

〈uht ,vh〉+ νA(uh,vh) +B(vh, (ph,λh)) = 0

B(uh, (qh, sh)) = −〈φh, sh〉H1/2(Γ),H−1/2(Γ))

(uh(0),vh) = (uh0 ,v
h).

(5.24)

Here, similar to Section 4, we denote by A(u,v) = a(., .), ∀u,v ∈ H1(Ω) and by B(u, (q, s)) = b(u, q) −
〈u, s〉(H1/2(Γ),H−1/2(Γ)), ∀ (q, s) ∈ L2

0(Ω) × H−1/2(Γ). For the approximation of data, we assume that for a.e.

t ∈ (0, T ], φh(t) = PhL2(Γ)φ(t), where PhL2(Γ) denotes the standard L2(Γ) projection of the boundary data,

i.e., (PhL2(Γ)φ, s
h)L2(Γ) = (φ, sh)L2(Γ), ∀ sh ∈ Mh

2 . We note that due to [20, Proposition 14], Theorems 5.9,

5.10 and Proposition 5.11, we deduce ‖φ − φh‖H1(0,T ;H1/2(Γ)) → 0, and if more regularity is available, then

‖φ−φh‖H1(0,T ;H1/2(Γ)) ≤ Chm inf û∈H1(0,T ;Hm+1(Ω)),û|Γ=φ ‖û‖H1(0,T ;Hm+1(Ω)). Hence, we arrive at the following

estimate.
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Corollary 5.14. Suppose that the assumptions of Theorem 5.8 hold, and let φ ∈ H1(0, T ;H1/2(Γ)). Then,
there exists a constant C > 0 independent of h, such that,

‖u− uh‖L∞(0,T ;L2(Ω))) + ‖u− uh‖L2(0,T ;H1(Ω))

+h(‖p− ph‖L2(0,T ;L2
0(Ω)) + ‖λ− λh‖L2(0,T ;H−1/2(Γ)))→ 0.

If in addition, u ∈ H1(0, T ;Hm+1(Ω) ∩X), and p ∈ L2(0, T ;Hm(Ω) ∩ L2
0(Ω))× L2(0, T ;Hm− 1

2 (Γ) ∩M2) then
there exists a constant C such that

‖u− uh‖L∞(0,T ;H) + ‖u− uh‖L2(0,T ;X)

+h
(
‖ut − uht ‖L2(0,T ;X∗) + ‖(p, λ)− (ph,λh)‖L2(0,T ;M)

)
≤ Chm.

Remark 5.15. The discrete weak formaluation for the evolutionary Stokes equations with inhomogeneous Dirich-
let boundary data (5.24) resembles the classical saddle point formulation for elliptic problems. However, the
computation of the velocity and the pressure is coupled to the computation of the Lagrange multiplier. A more
practical choice of finite element spaces is considered in [7], allowing the decoupling of the computation of the
velocity and the pressure from the computation of the Lagrange multiplier.

Acknowledgements: The authors would like thank the referees for many useful recommendations that help
improve the paper.
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[27] K. Pitkäranta, Boundary subspaces for the finite element method with Lagrange multipliers, Numer. Math., 33 (1979), pp
273-289.

[28] J.-P. Raymond, Boundary feedback stabilization of the two dimensional Navier-Stokes equations, SIAM J. Control and Optim.,

45 (2006), pp 790-828.
[29] J.-P. Raymond, Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions, Annales de l’ IHP, An non

lin., 6 (2007), pp 921-951.

[30] J.-P. Raymond, Stokes and Navier-Stokes equations with an nonhomogeneous divergence condition, Discr. Cont. Dynam.
Syst. Ser B., 14 (2010), pp. 1537-1564.

[31] R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comput.,

54 (1990), pp. 483-493.
[32] V. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equaions. J. Soviet. Math., 8 (1977), pp. 213–317.

[33] R. Temam, Navier Stokes Equations, North Holland, Amsterdam, 1979.

[34] R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip bopundary condition, Numer.
Math., 50 (1987), pp 697-721.

[35] E. Zeidler, Nonlinear functional analysis and its application-Linear monotone operators, New York, 1990.


