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Abstract. Semi-discrete in time approximations of the velocity tracking prob-
lem are studied based on a pseudo-compressibility approach. Two different
methods are used for the analysis of the corresponding optimality system. The
first one, the classical penalty formulation, leads to estimates of order k + ε,
under suitable regularity assumptions. The estimate is based on previously de-
rived results for the solution of the unsteady Navier-Stokes problem by penalty
methods (see e.g. Jie Shen [26]) and the Brezzi-Rappaz-Raviart theory (see
e.g. [12]). The second one, based on the artificially compressible optimality
system, leads to an improved estimate of the form k + εk for the linearized
system.

1. Introduction. The purpose of the velocity tracking problem for Navier-Stokes
flows, is to drive the velocity vector field u to a desired target U using a distributed
control function f . In particular, the optimization problem considered here is to
find a suitable pair (u, f) such that

J(u, f) =
α

2

∫ T

0

‖u(t)−U(t)‖2L2(Ω)dt +
β

2

∫ T

0

‖f(t)‖2L2(Ω)dt (1.1)

is minimized subject to the constraints:



ut − ν∆u + (u · ∇)u +∇p = f + g in Ω× (0, T )
∇ · u = 0 in Ω× (0, T )
u = 0 on Γ× (0, T )
u(0, x) = u0 in Ω

(1.2)

where Ω is a two-dimensional bounded domain with smooth boundary Γ, p denotes
the pressure, u0,g are given data, α, β are given parameters and ν denotes the
kinematic viscosity.

The scope of this work is to analyze semi-discrete in time schemes based on
pseudo-compressible methods. Due to the incompressibility constraint, several dif-
ficulties arise when solving the Navier-Stokes system numerically even for the un-
controlled system. Pseudo-compressible methods, such as the penalty method, the
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pressure stabilization method, the artificial compressibility method and the pro-
jection methods, aim to overcome this difficulty by relaxing the incompressibility
constraint. Several results in case of numerical approximations have been derived
before in works of [18, 23, 26, 27, 28], in case of the steady and unsteady Navier-
Stokes equations. The best available estimate for first order semi-discrete (in time)
approximations using a penalized approach (see e.g. [26]) is of order k + ε, where
k, ε denote the time discretization and regularization parameters respectively, while
in a recent work of [18], an optimal error estimate of the form k + ε + h, (where
h denotes the spatial discretization parameter), has been obtained for a backwards
Euler - finite element penalized scheme.

Motivated by the above results, which demonstrate the realization of the optimal
choice ε ≈ k, we study similar schemes for the time discretization of the optimality
system of the velocity tracking problem for Navier-Stokes flows. A class of pertur-
bation problems is defined, based on the penalized and the artificially compressible
Navier-Stokes equations and discretized in time. We obtain optimal semi-discrete
(in time) error estimates which are in accord with the previously developed the-
ory for pseudo-compressible schemes for the uncontrolled unsteady Navier-Stokes
equations.

It is worthmentioning that the optimality system consists of two coupled (a for-
ward and a backward in time) systems of Navier-Stokes type. The above coupling
creates many difficulties in the analysis and implementation of numerical schemes.
The pseudo-compressible condition is an important asset which facilitates the un-
coupling of the state and adjoint variables.

The mathematical literature concerning the analysis of distributed optimal con-
trol problems related to evolutionary equations is quite extensive (see [1, 11, 13, 24,
25] and references within) where several results regarding the existence of optimal
solutions of various optimal control problems are presented. In [16] analysis and fi-
nite element approximations of the velocity tracking problem are presented based on
a “discretize and then optimize” approach. In particular, a discrete (in time) func-
tional is introduced and the corresponding optimality system is rigorously derived.
Then, the optimality system is analyzed based on a gradient algorithm. In case of
bounded controls a similar approach is illustrated in [15]. An “optimize then dis-
cretize” approach is used in [10] to prove semi-discrete (in space) error estimates of
optimal order in case of the Taylor-Hood element. Second order methods are stud-
ied in [20] for local solutions of optimal control problems for Navier-Stokes flows.
Perturbation techniques for the analysis and semi-discrete (in time) discretization
for MHD flows have been recently used in [17]. We note also that in [22] an optimal
Dirichlet control problem related to elliptic Navier-Stokes equations is studied via
a penalized approach. Finally, the artificial compressibility approach for a shape
optimization problem was used in [29].

2. Background.

2.1. Notation and definition of the optimal control problem. We shall use
standard notation for Sobolev spaces (see e.g. [2]), L2(Ω), H1(Ω),Hm(Ω), H1

0 (Ω) =
{v ∈ H1(Ω) : v|Γ = 0}, and we denote by H−1 the dual space of H1

0 (Ω). The corre-
sponding vector valued spaces are denoted by L2(Ω),H1(Ω),Hm(Ω),H1

0(Ω),H−1(Ω)
and we employ the standard notation for inner products, norms, and duality pair-
ings. If X is a Hilbert space, we denote by X∗ its dual and by Lp(0, T ; X),H1(0, T ; X)
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the time-space function spaces such that

‖v‖p
Lp(0,T,X) ≡

∫ T

0

‖v(t)‖p
Xdt < ∞ ∀v ∈ Lp(0, T ;X), 1 ≥ p < ∞

and

‖v‖2H1(0,T ;X) ≡
∫ T

0

(‖v(t)‖2X + ‖vt(t)‖2X)dt < ∞ ∀v ∈ H1(0, T ; X),

together with the standard modification for L∞(0, T ;X).
Moreover we define the solenoidal vector spaces

V(Ω) = {u ∈ (C∞0 (Ω))2 : ∇ · u = 0},
V (Ω) = {u ∈ H1

0(Ω) : ∇ · u = 0},
W (Ω) = {u ∈ L2(Ω) : ∇ · u = 0, u · n = 0},

where n is the unit outer normal. Note that V (Ω),W (Ω) are the closures of V(Ω)
in H1(Ω) and L2(Ω), respectively. We also define,

L2
0(Ω) = {p ∈ L2(Ω) :

∫

Ω

pdx = 0}.

In order to introduce the weak formulation of the evolutionary Navier-Stokes equa-
tions we define the following continuous bilinear forms,

a(u,v) =
2∑

i,j

∫

Ω

Dij(u)Dij(v)dx ∀u,v ∈ H1(Ω),

b(v, q) = −
∫

Ω

q∇ · vdx ∀ q ∈ L2(Ω),v ∈ H1(Ω),

where Dij(v) = 1
2 ( ∂vi

∂xj
+ ∂vj

∂xi
). Moreover we define the continuous trilinear form,

c(w,u,v) =
2∑

i,j

∫

Ω

wj(
∂ui

∂xj
)vidx ∀w,u,v ∈ H1(Ω).

The target field U ∈ B, if and only if U ∈ C(0, T ;H2(Ω)), FU = Ut − ν∆U +
(U · ∇)U ∈ L∞(0, T ;L2(Ω)), divU = 0 and U|Γ = 0, so that the target U ∈ B
has a physical meaning. Then, a weak form for the Navier-Stokes equations can be
defined as follows: We seek a velocity u ∈ L2(0, T ; V (Ω)) ∩H1(0, T ;V (Ω)∗) and a
pressure p such that{ 〈ut,v〉+ νa(u,v) + c(u,u,v) = 〈f + g,v〉 ∀v ∈ V (Ω)

u(0, x) = u0(x) ∈ W (Ω). (2.1)

Assuming f + g ∈ L2(0, T ;V (Ω)∗) the pressure p satisfies (1.2) in distributional
sense. However, if we assume more regular data, a precise regularity statement for
ut, p is valid (see e.g. [27]).

We define the set of admissible solution pairs (u, f) and the optimal solution of
the control problem (P ) as follows:

Definition 2.1. Given, T > 0, u0 ∈ V (Ω), g ∈ L2(0, T ;L2(Ω)), and U ∈ B,

U1
ad =

{
(u, f) ∈ L2(0, T ;H1

0(Ω))× L2(0, T ;L2(Ω)), and there exists a pressure

p ∈ L2(0, T ; L2
0(Ω)) such that (2.1) is satisfied

}
.
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Definition 2.2. Given T > 0, u0 ∈ V (Ω), g ∈ L2(0, T ;L2(Ω)), and U ∈ B, we
seek (u, f) ∈ U1

ad such that J(u, f) ≤ J(w, φ) ∀(w, φ) ∈ U1
ad.

Next we state the main existence result [16, Theorem 2.1] for the above optimal
control problem (P ).

Theorem 2.3. For u0 ∈ V (Ω),g ∈ L2(0, T ;L2(Ω)), and U ∈ B, there exists a
solution of optimal control problem (P ).

Using techniques of Calculus of Variations, the constrained optimization problem
is related to the following optimality system. For a proof of this statement we refer
the reader to [16, Section 2]. The weak optimality system corresponding to problem
(P ), can be written as:




〈ut,v〉+ νa(u,v) + c(u,u,v) + b(v, p) = (f + g,v) ∀v ∈ H1

0(Ω)
b(u, q) = 0 ∀ q ∈ L2

0(Ω)
(u(0, x)− u0, z) = 0 ∀ z ∈ L2(Ω)

(2.2)





−〈µt,v〉+ νa(µ,v) + c(µ,u,v) + c(u,µ,v)
+b(v, r) = α(u−U,v) ∀v ∈ H1

0(Ω)
b(µ, q) = 0 ∀ q ∈ L2

0(Ω)
(µ(T, x), z) = 0 ∀ z ∈ L2(Ω)

(2.3)

µ = −βf . (2.4)

2.2. Penalized optimal control problems. We introduce a class for perturba-
tion problems, denoted by (Pε), based on a penalized weak formulation. For ε > 0,
minimize the functional,

J(uε, fε) =
α

2

∫ T

0

‖uε(t)−U(t)‖2L2(Ω)dt +
β

2

∫ T

0

‖fε(t)‖2L2(Ω)dt

subject to the constraints:


〈uε

t ,v〉+ νa(uε,v) + ĉ(uε,uε,v) + b(v, pε) = (fε + g,v) ∀v ∈ H1
0(Ω)

ε(pε, q)− b(uε, q) = 0 ∀ q ∈ L2(Ω)
(uε(0, x), z) = (u0(x), z) z ∈ L2(Ω)

(2.5)
where ĉ(u,v,w) is the modified trilinear term defined by,

ĉ(u,v,w) =
1
2
(c(u,v,w)− c(u,w,v)) ∀u,v,w ∈ H1

0(Ω).

To guarantee the existence of a unique solution pair of (2.5) on the “natural
energy spaces” (see e.g. [28]), (uε, pε) ∈ L2(0, T ;H1

0(Ω)) ∩ H1(0, T ;H−1(Ω)) ×
L2(0, T ;L2(Ω)) the data need only to satisfy: u0 ∈ L2(Ω), g ∈ L2(0, T ;H−1(Ω)).
The modified trilinear form satisfies the following properties (see e.g. [9, 27]):





ĉ(u,v,w) = c(u,v,w) ∀u ∈ V (Ω),v,w ∈ H1
0(Ω),

ĉ(u,v,w) = −ĉ(u,w,v) ∀u,v,w ∈ H1
0(Ω),

ĉ(u,v,w) ≤ C‖u‖
1
2
L2(Ω)‖∇u‖

1
2
L2(Ω)

×‖∇v‖L2(Ω)‖w‖
1
2
L2(Ω)‖∇w‖

1
2
L2(Ω) ∀u,v,w ∈ H1

0(Ω),
ĉ(u,v,w) ≤ C‖u‖H1(Ω)‖v‖H2(Ω)

×‖w‖L2(Ω) ∀u,w ∈ H1
0(Ω),v ∈ H2(Ω) ∩H1

0(Ω),
ĉ(u,v,w) ≤ C‖u‖L2(Ω)‖v‖H2(Ω)

×‖w‖H1(Ω) ∀u,w ∈ H1
0(Ω),v ∈ H2(Ω) ∩H1

0(Ω).
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Similarly, we may define the admissibility set U2
ad and the optimal control prob-

lem (Pε).

Definition 2.4. Given T > 0, u0 ∈ V (Ω), g ∈ L2(0, T ;L2(Ω)), and U ∈ B,

U2
ad =

{
(uε, fε) ∈ L2(0, T ;H1

0(Ω))× L2(0, T ;L2(Ω)), and there exists a pressure

pε ∈ L2(0, T ; L2(Ω)) such that (2.5) is satisfied
}

.

Definition 2.5. Given T > 0, u0 ∈ V (Ω), g ∈ L2(0, T ;L2(Ω)), and U ∈ B, we
seek (uε, fε) ∈ U2

ad such that J(uε, fε) ≤ J(w, φ) ∀(w, φ) ∈ U2
ad.

Below, we state the main result regarding the existence of optimal solutions for
the perturbed optimal control problems (Pε) and their convergence properties as
ε → 0.

Theorem 2.6. Suppose that u0 ∈ V (Ω), g ∈ L2(0, T ;L2(Ω)), and U ∈ B. Then,
for every ε, there exists an optimal solution (uε, pε, fε) of the optimal control prob-
lem (Pε). In addition,

(uε, pε, fε) → (u, p, f) as ε → 0

where (u, p, f) is an optimal solution of (P ).

Proof. The existence of an optimal solution of problem (Pε) can be proven similar
to [16, Section 2]. The main convergence result as ε → 0 can be proven by standard
techniques (see e.g. [7, Section 3]).

Remark 2.7. In the definition of (Pε), it is possible to further relax the regularity
assumptions on data u0,g, to u0 ∈ L2(Ω),g ∈ L2(0, T ;H−1(Ω)). Then, as shown
in [7, 8] the convergence of optimal solutions as ε → 0 can be established. However,
p := limε→0 pε only satisfies the Navier-Stokes equations (1.2) in distributional
sense.

Similar to [16, Section 2], one can show that the optimality system corresponding
to (Pε) is given by:




〈uε

t ,v〉+ νa(uε,v) + ĉ(uε,uε,v) + b(v, pε) = (fε + g,v) ∀v ∈ H1
0(Ω)

ε(pε, q)− b(uε, q) = 0 ∀ q ∈ L2(Ω)
(uε(0, x)− u0, z) = 0 ∀ z ∈ L2(Ω)

(2.6)



−〈µε
t ,v〉+ νa(µε,v) + ĉ(µε,uε,v) + ĉ(uε, µε,v)

+b(v, rε) = α(uε −U,v) ∀v ∈ H1
0(Ω)

−ε(rε, q)− b(µε, q) = 0 ∀ q ∈ L2(Ω)
(µε(T, x), z) = 0 ∀ z ∈ L2(Ω).

(2.7)

µε = −βfε. (2.8)

We further quote regularity results regarding the solvability of problem (2.5).

Proposition 2.8. Let fε
1 ≡ fε+g and suppose that fε

1 ∈ L2(0, T ;L2(Ω)),u0 ∈ V (Ω)
with norms bounded independent of ε. Then, there exists a unique solution pair of
(2.5), such that

(uε, pε) ∈ L∞(0, T ;H1
0(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0(Ω))× L2(0, T ; H1(Ω))

with norms bounded independent of ε.
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In addition, if we assume that fε
1 ∈ L∞(0, T ;L2(Ω))), fε

1t ∈ L2(0, T ;H−1(Ω)),
fε
1 (0) ∈ L2(Ω), and u0 ∈ H2(Ω)∩V (Ω), with norms bounded independent of ε, then
there exists a unique solution pair (uε, pε) of (2.5) such that

{
uε ∈ L∞(0, T ;H2(Ω) ∩H1

0(Ω)),uε
t ∈ L2(0, T ;H1

0(Ω)) ∩ L∞(0, T ;L2(Ω))
pε ∈ L∞(0, T ; H1(Ω))

with norms bounded independent of ε.

Proof. The first result is stated in [26, Section 2], and it is proven similar to [27].
The second regularity result is proven in [27, Theorems 3.5, 3.6 and Remark 3.8].
For the dependence on ε see [26, Lemma 5.1].

Remark 2.9. Assuming additional regularity on g,u0,U, we can apply a “boot-
strap” regularity argument to the optimality system (2.6)-(2.7)-(2.8). After not-
ing that ‖fε‖L2(0,T ;L2(Ω)) is bounded independent of ε (see e.g. [7, Chapter 3]),
then using equation (2.6), we may also obtain that (uε, pε) is bounded indepen-
dent of ε in the L2(0, T ;H2(Ω) ∩H1

0(Ω)) ∩ L∞(0, T ;H1
0(Ω)) ∩H1(0, T ;L2(Ω)) and

L2(0, T ;H1(Ω)) norms respectively. Then, if u0,U(0, x)
∈ H2(Ω) ∩ V (Ω), equation (2.7) and the enhanced regularity at the right hand
side, i.e. U,uε ∈ L∞(0, T ;L2(Ω)),Ut,uε

t ∈ L2(0, T ;H−1(Ω)), implies bounds
independent of ε for µε, rε in the L∞(0, T ;H2(Ω) ∩ H1

0(Ω)) ∩ H1(0, T ;H1
0(Ω)) ×

L∞(0, T ;H1(Ω)) norms respectively.

3. Convergence of semi-discrete approximations.

3.1. The discrete optimal control problem. Next we discretize (in time) the
optimality system in the following manner. Let t0 = 0 < t1 < t2 < ... < tN = T
be a partition of [0, T ] into equal subintervals with k = T/N . To each function v
or vector valued function v and for every fixed N , we associate the approximate
function vN ≡ vN (t, x) = vn(x), t ∈ (tn−1, tn], n = 1, ..., N (sometimes also denoted
by the set {vn(x)}N

n=1) and a continuous piecewise (in time) linear function vN
pwl =

vN
pwl(t, x) by the interpolation conditions vN

pwl(tn, x) = vn(x) for every n = 1, ..., N .
Similarly, on the same partition, we define the discrete (in time) target and data as
Un(x) = U(tn, x) and gn(x) = g(tn, x) for n = 1, ..., N respectively.

Then, the discrete (in time) optimality system can be written as: For every
n = 1, ..., N ,





1
k (un

ε − un−1
ε ,v) + νa(un

ε ,v) + ĉ(un
ε ,un

ε ,v) + b(v, pn
ε ) = (fn

ε + gn,v)
∀v ∈ H1

0(Ω)
ε(pn

ε , q)− b(un
ε , q) = 0 ∀ q ∈ L2(Ω)

un
ε (x) = 0, on Γ

(3.1)





− 1
k (µn

ε − µn−1
ε ,v) + νa(v,µn−1

ε ) + ĉ(un
ε ,v,µn−1

ε ) + ĉ(v,un
ε , µn−1

ε )
+b(v, rn−1

ε ) = α(un
ε −Un,v) ∀v ∈ H1

0(Ω)
−ε(rn−1

ε , q)− b(µn−1
ε , q) = 0 ∀ q ∈ L2(Ω)

µn−1
ε (x) = 0, on Γ

(3.2)

fn
ε = − 1

β
µn−1

ε . (3.3)

The above semi-discrete (in time) optimality system can be viewed as the optimality
system corresponding to the following discrete optimal control problem.
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Definition 3.1. Given k = T/N , u0 ∈ V (Ω), g ∈ L2(0, T ;L2(Ω)), and U ∈ B, we
seek {un

ε , pn
ε , fn

ε }N
n=1 ∈ H1

0(Ω)× L2(Ω)× L2(Ω) such that the discrete functional

JN ({un
ε }N

n=1, {fn
ε }N

n=1) =
αk

2

N∑
n=1

‖un
ε −Un‖2L2(Ω) +

βk

2

N∑
n=1

‖fn
ε ‖2L2(Ω) (3.4)

is minimized subject to the constraints: ∀n = 1, ..., N,



1
k (un

ε − un−1
ε ,v) + νa(un

ε ,v) + ĉ(un
ε ,un

ε ,v) + b(v, pn
ε ) = (fn

ε + gn,v)∀v ∈ H1
0(Ω)

ε(pn
ε , q)− b(un

ε , q) = 0 ∀q ∈ L2(Ω)
un

ε (x) = 0, on Γ.
(3.5)

The set of the admissible solutions Ud
ad of the discrete optimal control problem

can be defined similar to U2
ad, i.e., given k = T/N , u0 ∈ V (Ω), g ∈ L2(0, T ;L2(Ω))

and U ∈ B, then

Ud
ad = {{un

ε , pn
ε , fn

ε }N
n=1 ∈ H1

0(Ω)× L2(Ω)× L2(Ω) such that (3.5) is satisfied}
Note that as k → 0 the functional (3.4) tends to the functional of the corresponding
continuous problem and the initial value f0

ε is not involved in the above formulation,
so it can be chosen arbitrary.

Next we prove the existence of a solution for the discrete optimal control problem
and we clarify the dependance on ε of various norms. Then, the optimality system
(3.1)-(3.2)-(3.3) follows using techniques similar to [16, Section 3].

Lemma 3.2. Given k = T/N , u0 ∈ V (Ω), g ∈ L2(0, T ;L2(Ω)), and U ∈ B then
for a solution sequence {un

ε , pn
ε , fn

ε }N
n=1 of the discrete optimal control problem we

obtain:∀n = 1, .., N ,

‖un
ε ‖2L2(Ω) + kν

n∑

i=1

‖ui
ε‖2H1

0(Ω) + εk

n∑

i=1

‖pi
ε‖2L2(Ω)

≤ C(
1
ν

)k
n∑

i=1

(‖f i
ε‖2L2(Ω) + ‖gi‖2L2(Ω)) < ∞.

Proof. Multiply the (3.5) by 2un
ε and 2pn

ε respectively and adding the corresponding
equalities we obtain:

‖un
ε ‖2L2(Ω) − ‖un−1

ε ‖2L2(Ω) + ‖un
ε − un−1

ε ‖2L2(Ω)

+Cνk‖un
ε ‖2H1

0(Ω) + 2εk‖pn
ε ‖2L2(Ω)

≤ 2Ck

ν

(‖fn
ε ‖2L2(Ω) + ‖gn

ε ‖2L2(Ω)

)
. (3.6)

Summing the above inequalities from 1 to n we obtain the desired estimate.

Lemma 3.3. Let ε > 0, k = T/N and suppose that u0 ∈ V (Ω), g ∈ L2(0, T ;L2(Ω)),
U ∈ B. Then for a solution sequence {un

ε , pn
ε , fn

ε }N
n=1 of the discrete optimal control

problem we obtain:

βk

N∑
n=1

‖fn
ε ‖2L2(Ω), νk

N∑
n=1

‖un
ε ‖2H1

0(Ω),

‖uN
ε ‖2L2(Ω) + εk

N∑
n=1

‖pn
ε ‖2L2(Ω) ≤ C(

1
ν

, T, α) < ∞. (3.7)



1084 KONSTANTINOS CHRYSAFINOS

where C( 1
ν , T, α) is independent of ε, k.

Proof. For every ε let {ũn
ε , p̃n

ε }N
n=1 be the solution of




1
k (ũn

ε − ũn−1
ε ,v) + νa(ũn

ε ,v) + ĉ(ũn
ε , ũn

ε ,v) + b(v, p̃n
ε ) = (gn,v) ∀v ∈ H1

0(Ω)
ε(p̃n

ε , q)− b(ũn
ε , q) = 0 ∀ q ∈ L2(Ω)

ũn
ε (x) = 0, on Γ.

(3.8)
Then {ũn

ε , p̃n
ε ,0}N

n=1 belongs to the discrete admissibility set Ud
ad and moreover,

JN ({un
ε }N

n=1, {fn
ε }N

n=1) =
αk

2

N∑
n=1

‖un
ε −Un‖2L2(Ω) +

βk

2

N∑
n=1

‖fn
ε ‖2L2(Ω)

≤ JN ({ũn
ε }N

n=1, 0) =
αk

2

N∑
n=1

‖ũn
ε −Un‖2L2(Ω).

The later sum is bounded independent of ε, k due to Lemma 3.2 applied to equation
(3.8), which clearly implies the first result. Returning back to the estimates of
Lemma 3.2, we easily obtain the last two bounds.

Next we prove the existence of an optimal solution for the discrete problem for
every fixed ε.

Theorem 3.4. Let ε > 0, k = T/N and suppose that u0 ∈ V (Ω),g ∈ L2(0, T ;L2(Ω)),
U ∈ B. Then, there exists

{un
ε , pn

ε , fn
ε }N

n=1 ∈ H1
0(Ω)× L2(Ω)× L2(Ω)

such that the discrete functional (3.4) is minimized subject to (3.5).

Proof. For simplicity we drop the ε notation. First note that due to Lemma 3.2
for every ε there exists a solution of the corresponding semi-discrete equations, i.e.,
Ud

ad 6= ∅. Therefore, we may obtain a minimizing sequence denoted by um, fm of
the functional (3.4), satisfying: for all m = 1, 2, ... and n = 1, ..., N ,




1
k (un

m − un−1
m ,v) + νa(un

m,v) + c(un
m,un

m,v) + b(v, pn
m) = (fn

m + gn,v)
∀v ∈ H1

0(Ω)
ε(pn

m, q)− b(un
m, q) = 0 ∀ q ∈ L2(Ω)

un
m(x) = 0 on Γ.

(3.9)
It is easy to see that as m →∞ for every n = 1, ..., N

un
m → un in H1

0(Ω) weakly, fn
m → fn in L2(Ω) weakly

pn
m → pn in L2(Ω) weakly, un

m → un in L2(Ω) strongly,
where the last result follows from the compact embedding H1

0(Ω) ⊂ L2(Ω). Due to
the strong convergence result, we may pass the limit through the nonlinear term
since for any w ∈ C∞0 (Ω) we have that

lim
m→∞

ĉ(un
m,un

m,w) = ĉ(un,un,w).

A well known density argument, implies that this is still true for w ∈ H1
0(Ω). There-

fore, we may pass the limit to obtain equations (3.5). The lower semi-continuity of
functional (3.4), finishes the proof.

Finally, we prove that as k → 0 the solution of the semi-discrete optimal control
problem converges to the solution of the continuous problem (Pε).
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Theorem 3.5. Suppose that u0 ∈ V (Ω),g ∈ L2(0, T ;L2(Ω)),U ∈ B and let k =
T/N . Then, the solution of the semi-discrete optimal control problem

{un
ε , pn

ε , fn
ε }N

n=1 ∈ H1
0(Ω)× L2(Ω)× L2(Ω)

converges to the solution of the optimal control problem (Pε) as k → 0.

Proof. Set ūn
ε ≡ (un

ε − un−1
ε )/k. Lemma 3.2 implies that

‖un
ε ‖L2(Ω), k

N∑
n=1

‖un
ε ‖2H1

0(Ω), k

N∑
n=1

‖fn
ε ‖2L2(Ω), εk

N∑
n=1

‖pn
ε ‖2L2(Ω) < ∞

are bounded independent of ε, k. In addition note that εk
∑N

n=1 ‖ūn
ε ‖2H−1(Ω) is also

bounded independent of ε, k since,

‖ūn
ε ‖H−1(Ω) ≤ sup

v∈H1
0(Ω)

ν|a(un
ε ,v)|+ |ĉ(un

ε ,un
ε ,v)|+ |b(v, pn

ε )|+ |(fn
ε + gn,v)|

‖v‖H1
0(Ω)

≤ C
(‖un

ε ‖H1
0(Ω) + ‖un

ε ‖L2(Ω)‖un
ε ‖H1

0(Ω)

+‖pn
ε ‖L2(Ω) + ‖fn

ε ‖L2(Ω) + ‖gn‖L2(Ω)

)
.

The last inequality clearly implies the desired bound, after squaring both sides,
multiplying by ε, k, summing from n = 1 to n = N , and using the previously derived
a-priori bounds. Therefore, using standard techniques regarding the semi-discrete
approximation (in time) for the Navier-Stokes equations (see e.g. [27, Part III,
Chapter 4]), we obtain that uN

ε , pN
ε , fN

ε and d
dtu

N
ε,pwl are bounded (independent

of k), in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0(Ω)), L2(0, T ;L2(Ω)), L2(0, T ;L2(Ω)) and

L2(0, T ;H−1(Ω)) respectively. Therefore, we may extract subsequences such that

uN
ε → uε in L2(0, T ;H1

0(Ω)) weakly uN
ε → uε in L∞(0, T ;L2(Ω)) weakly-*

pN
ε → pε in L2(0, T ;L2(Ω) weakly fN

ε → fε in L2(0, T ;L2(Ω)) weakly
d

dt
uN

ε,pwl → uε
t in L2(0, T ;H−1(Ω)) weakly.

Due to the compact embedding of L2(0, T ;H1
0(Ω))∩H1(0, T ;H−1(Ω)) ⊂ L2(0, T ;L2(Ω))

(see [27, Chapter III, Theorem 2.1]), we obtain

uN
ε → uε in L2(0, T ;L2(Ω)) strongly

The theorem now follows using standard techniques.

Remark 3.6. To rigorously derive the semi-discrete optimality system, we may now
directly apply the techniques of [16, Section 3], after noting that k

∑N
n=1 ‖fn

ε ‖2L2(Ω)

is bounded independent of ε.

3.2. Semi-discrete (in time) estimates for a model problem. The auxiliary
linear problem, considered here, is the semi-discrete (in time) approximations of the
following problem: Given data f1, u0 we seek a solution pair uε, pε satisfying




(uε
t ,v) + νa(uε,v) + b(v, pε) = (f1,v) ∀v ∈ H1

0(Ω)
ε(pε, q)− b(uε, q) = 0 ∀ q ∈ L2(Ω)
(u(0, x), z) = (u0, z) ∀ z ∈ L2(Ω).

(3.10)

Next we define spaces suitable for the semi-discrete in time approximations for the
model problem (3.10), associated to optimality system (3.1)-(3.2)-(3.3). As before,
let t0 = 0 < t1 < t2 < ... < tN = T be a partition of [0, T ] into equal subintervals
with k = T/N . Recall that to each function or vector valued function v and for
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every fixed N , we associate the approximate function vN and its set {vn(x)}N
n=0

defined by vN = vn(x), t ∈ (tn−1, tn], n = 1, ..., N and a continuous piecewise linear
function vN

pwl = vN
pwl(t, x) defined by interpolation conditions vN (tn, x) = vn(x)

for every n = 1, ..., N . Suppose that the data satisfy f1 ∈ Y , u0 ∈ Y0 where,

Y := Y N

= {f1 ∈ L∞(0, T ;L2(Ω)), f1t ∈ L2(0, T ;H−1(Ω)),
f1(0) ∈ L2(Ω), f1|(tn−1,tn] ∈ C0},

Y0 := H2(Ω) ∩ V (Ω).

We define the solution space X = X1 ×X2 ×M where

X1 := XN
1 = {u ∈ L∞(0, T ;H2(Ω) ∩H1

0(Ω)) : u|(tn−1,tn]) ∈ C0},
X2 := XN

2 = {ut ∈ L∞(0, T ;L2(Ω)) : ut|(tn−1,tn]) ∈ C0},
M := MN = {p ∈ L∞(0, T ; H1(Ω)) : p|(tn−1,tn) ∈ C0}.

and we seek (uN
ε , d

dtu
N
ε,pwl, p

N
ε ) ∈ X such that for every n = 1, ..., N .





1
k (un

ε − un−1
ε ,v) + νa(un

ε ,v) + b(v, pn
ε ) = (fn

1 ,v) ∀v ∈ H1
0(Ω)

ε(pn
ε , q)− b(un

ε , q) = 0 ∀ q ∈ L2(Ω)
un

ε (x) = 0, on Γ.
(3.11)

Finally, we quote the main result of [26] regarding semi-discrete in time approxima-
tions of the linearized model problem.

Proposition 3.7. Suppose that f1 ∈ Y,u0 ∈ Y0, and (uε, pε), {un
ε , pn

ε }N
n=1 satisfy

(3.10) and (3.11) respectively. Then the following estimate holds: ∀n = 1, ..., N ,

‖en‖2H1
0(Ω) + νk

n∑

i=1

‖ui‖2H2(Ω) ≤ C(
1
ν

, T )k2

νk

n∑

i=1

‖e
i − ei−1

k
‖2L2(Ω) + νk

n∑

i=1

‖pε(ti)− pi
ε‖2H1(Ω) ≤ C(

1
ν

, T )k2

where C( 1
ν , T ) is a constant independent of ε, and en := uε(tn)− un

ε .

Proof. (Sketch) Note that pε = 1
ε div uε, and hence, for data f1 ∈ Y,u0 ∈ Y0 the

linear model problem (2.5) can be written into the strong form:

1
k

(un
ε − un−1

ε ) +Aεun = fn
1

where the operator Aε ≡ −ν∆uε − 1
ε∇ div uε is a positive self-adjoint operator

from H2(Ω) ∩H1
0(Ω) to L2(Ω) with powers (Aε)s, s ∈ R well defined. Therefore,

with en = uε(tn) − un
ε , the error equation takes the form of the linear version of

[26, Equations 5.6,5.7]

1
k

(en − en−1) +Aεen =
1
k

∫ tn

tn−1

(t− tn−1)uε
ttdt. (3.12)

The first inequality is proven in [26, Lemma 5.2]. The last inequality is essentially
contained in the proof of [26, Lemma 5.2, Remark 5.1]. For the first term, we obtain
the estimate νk

∑n
i=1 ‖ei−ei−1

k ‖2L2(Ω) ≤ C( 1
ν , T )k2.
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Finally, for the pressure term note that pε = 1
ε div uε, pi

ε = 1
ε div ui

ε so the error
equation (3.12) implies,

‖pε(ti)−pi
ε‖H1(Ω) ≤ C

(
‖e

i − ei−1

k
‖L2(Ω)+‖ei‖H2(Ω)+‖

1
k

∫ ti

ti−1

(t−ti−1)uε
ttdt‖L2(Ω)

)
.

The estimate then follows from the first inequality together with the estimate on the
time derivative, after taking the squares, summing from 0 to n muptiplying by νk

and using the bound, k
∑N

n=0 ‖ 1
k

∫ tn

tn−1
(t − tn−1)uε

ttdt‖2L2(Ω) ≤ k2
∫ T

0
‖uε

tt‖2L2(Ω)dt.
Note that uε

tt ∈ L2(0, T ;L2(Ω)) with norm bounded independent of ε (see also [26,
Lemma 5.1]).

Remark 3.8. The estimate on 1
k (en − en−1) can be used to obtain estimates in

various norms. Suppose that uε
t ∈ C((tn−1, tn];L2(Ω))∀n = 1, .., N . Then, for

every t ∈ (tn−1, tn] note that ut(t)− d
dtu

N
ε,pwl(t) = uε

t (t)− 1
k (un

ε −un−1
ε ), and using

standard algebra,

1
k

∫ tn

tn−1

(t− tn−1)uε
tt(t)dt = uε

t (tn)− 1
k

(en − en−1)− 1
k

(un
ε − un−1

ε )

Combining the last two equalities we obtain

uε
t (t)−

d

dt
uN

ε,pwl(t) = uε
t (t)− uε

t (tn) +
1
k

(en − en−1) +
1
k

∫ tn

tn−1

(t− tn−1)uε
tt(t)dt,

which clearly implies that ‖uε
t (t)− d

dtu
N
ε,pwl‖L∞((tn−1,tn];L2(Ω)) → 0.

3.3. Some results concerning the approximation of a class of nonlin-
ear problems. Next we describe the main results concerning the Brezzi-Rappaz-
Raviart (BRR) theory, introduced in [4]. To our knowledge within the context of
optimal control problems, BRR theory was first used in [14] to handle the nonlinear
terms and to uncouple the discrete state and adjoint equations in case of a Dirichlet
boundary optimal control problem for the stationary Navier-Stokes equations. The
essence of this theory is that under certain hypotheses the error of the approxima-
tion of the coupled problem is of the same order of a related uncoupled linear one.
For a more extensive presentation of the BRR theory one may consult [12]. The
problems considered in [12], specialized to our needs, are of the following type: Let
X ,Y be Banach spaces. We seek a ψ ∈ X such that

ψ + T G(λ, ψ) = 0, (3.13)

where T ∈ L(Y,X ),G is a C2 mapping from Λ × X into Y, and Λ is a compact
interval of R. The set {λ, ψ(λ)|λ ∈ Λ} is called a branch of solutions of (3.13)
if λ → ψ(λ) is a continuous function from Λ into X such that (3.13) is satisfied.
The solution branch ψ (depending on λ) is called regular if we also have that
I + T Gψ(λ, ψ) is an isomorphism from X to X , where Gψ denotes the Fréchet
derivative with respect to the ψ and I the identity mapping. We assume that there
exists another Banach space Z, contained in Y, with continuous embedding, such
that

ψ → Gψ(λ, ψ) ∈ L(X ,Z) ∀λ ∈ Λ, ψ ∈ X . (3.14)
Approximations are defined by introducing a subspace XN ⊂ X and an approxi-
mating (semi-discrete in time, in our case) operator T N ∈ L(Y,XN ). Then, we seek
ψN ∈ XN such that

ψN + T NG(λ, ψN ) = 0. (3.15)
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Concerning the linear operator we assume the approximation properties:

lim
N→∞

‖(T N − T )w‖X = 0 ∀w ∈ Y (3.16)

and
lim

N→∞
‖T N − T ‖L(Z,X ) = 0. (3.17)

Note that whenever the imbedding Z ⊂ Y is compact, the last relation follows from
(3.16), and moreover the operator ψ → T Gψ(ψ) ∈ L(X ,Y) is compact. The main
theorem can be stated as follows:

Theorem 3.9. Let X and Y be Banach spaces. Assume that G is a C2 mapping
from Λ × X to Y and that D2Gis bounded on all bounded sets of Λ × X . Assume
that (3.14)-(3.16)-(3.17) hold and that ψ is a regular solution of (3.13). Then
there exists a neighborhood O of the origin in X and for N ≥ N0 big enough a
unique function ψN (λ) ∈ XN such that ψN (λ) is a regular solution of (3.15), and
ψN (λ)−ψ(λ) ∈ O. Moreover, there exists a constant C > 0, independent of N and
λ such that

‖ψN (λ)− ψ(λ)‖X ≤ C‖(T N − T )G(λ, ψ)‖X . (3.18)

Proof. See [12, pp 306-307].

3.4. Error estimates for the optimality System. In this section, we recast
optimality system (2.6)-(2.7)-(2.8) into a form that allow us to use Theorem 3.9.
For this purpose set λ ≡ 1

ν and adopting the notation of Section 3.2, we define the
spaces

X := XN = XN
1 ×XN

2 ×MN , X = X ×X

and
Y := Y N × Y0 × Y N × Y0 Z := Y

endowed with the natural norms. Then, we define the linear operator T : Y → X for
every (f1,u1, f2, µ1) ∈ Y as follows: T (f1,u1, f2, µ1) = (uε,uε

t , p
ε, µε, µε

t , r
ε) ∈ X if

and only if



〈uε

t ,v〉+ a(uε,v) + b(v, pε) = (f1,v) ∀v ∈ H1
0(Ω)

ε(pε, q)− b(uε, q) = 0 ∀ q ∈ L2(Ω)
(uε(0, x), z) = (u1, z) ∀ z ∈ L2(Ω)




−〈µε

t ,v〉+ a(µε,v) + b(v, rε) = (f2,v) ∀v ∈ H1
0(Ω)

−ε(rε, q)− b(µε, q) = 0 ∀ q ∈ L2(Ω)
(µε(T, x), z) = (µ1, z) ∀ z ∈ L2(Ω).

Analogously, we define the semi-discrete (in time) operator T N ∈ L(Y N , XN ), such
that T (f1,u1, f2, µ1) = (uN

ε , d
dtu

N
ε,pwl, p

N
ε , µN

ε , d
dtµ

N
ε,pwl, r

N
ε ) ∈ XN×XN := X if and

only if




( d
dtu

N
ε,pwl,v) + a(uN

ε ,v) + b(v, pN
ε ) = (f1,v) ∀v ∈ H1

0(Ω)
ε(pN

ε , q)− b(uN
ε , q) = 0 ∀ q ∈ L2(Ω)

uN
ε (x) = 0, on Γ uN

ε (0, x) = u1

(3.19)




−( d

dtµ
N
ε,pwl,v) + a(µN

ε ,v) + b(v, rN
ε ) = (f2,v) ∀v ∈ H1

0(Ω)
−ε(rN

ε , q)− b(µN
ε , q) = 0 ∀ q ∈ L2(Ω)

µN
ε (x) = 0, on Γ µN

ε (T, x) = µ1.
(3.20)



ESTIMATES FOR THE VELOCITY TRACKING 1089

Moreover, we denote by G : Λ× X → Y the mapping containing all coupled terms,
i.e., G(λ,uε,uε

t , p
ε, µε,µε

t , r
ε) = (f1,u1, f2, µ1) if and only if

(f1,v) = −λ
(− 1

β
(µε,v) + (g,v)− ĉ(uε,uε,v)

) ∀v ∈ H1
0(Ω),

(u1, z) = (u0, z) ∀ z ∈ L2(Ω),
(f2,v) = −λ

(
α(uε −U,v)− ĉ(uε, µε,v)− ĉ(µε,uε,v)

) ∀v ∈ H1
0(Ω),

(µ1, z) = 0 ∀ z ∈ L2(Ω).

Clearly, the continuous optimality system (2.6)-(2.7)-(2.8) is equivalent to

(uε, λuε
t , λpε,µε, λµε

t , λrε) + T G(λ,uε, λuε
t , λpε, µε, λµε

t , λrε) = 0,

and the semidiscrete optimality system (3.1)-(3.2)-(3.3) is equivalent to

(uN
ε , λ

d

dt
uN

ε,pwl, λpN
ε , µN

ε , λ
d

dt
µN

ε,pwl, λrN
ε )

+T NG(λ,uN
ε , λ

d

dt
uN

ε,pwl, λpN
ε , µN

ε , λ
d

dt
µN

ε,pwl, λrN
ε ) = 0.

Therefore, we have recast the continuous and semidiscrete optimality system into a
form that enables us to apply BRR theory.

Theorem 3.10. Suppose that λ = 1
ν is chosen in way that (uε, λpε)− (µε, λrε) is

a regular branch of solutions of the optimality system (2.6)-(2.7)-(2.8), and assume
that the given data g,u0 and the control function fε satisfy the regularity properties
of proposition (2.8). Then there exists a neighborhood of the origin O in X and for
N ≥ N0 a unique regular solution uN

ε (λ), d
dtu

N
ε,pwl(λ), pN

ε (λ), µN
ε (λ), d

dtµ
N
ε,pwl(λ),

rN
ε (λ) and a positive constant C independent of ε, k, such that (uN

ε (λ), d
dtu

N
ε,pwl(λ),

pN
ε (λ), µN

ε (λ), d
dtµ

N
ε,pwl(λ), rN

ε (λ)) ∈ O and

‖(uε(λ),uε
t (λ), pε(λ), µε(λ),µε

t (λ), rε(λ))

−(uN
ε (λ),

d

dt
uN

ε,pwl(λ), pN
ε (λ),µN

ε (λ),
d

dt
µN

ε,pwl(λ), rN
ε (λ))‖X → 0.

In addition if uε, µε ∈ C1(0, T ;H2(Ω) ∩H1
0(Ω)), uε

t ,µ
ε
t ∈ C1(0, T ;L2(Ω)) then

‖(uε(λ),uε
t (λ), pε(λ), µε(λ), µε

t (λ), rε(λ))

−(uN
ε (λ),

d

dt
uN

ε,pwl(λ), pN
ε (λ),µN

ε (λ),
d

dt
µN

ε,pwl(λ), rN
ε (λ))‖X ≤ C(

1
ν

, T )k.

Proof. We follow arguments similar to [17, Theorem 5.2]. For simplicity, we drop the
ε, λ from the notation. It is easy to see that D2G is a C∞ mapping, and bounded on
all bounded sets of X . A well known regularity result (see e.g. Proposition 2.8) for
the continuous and semi-discrete problems imply that u, µ ∈ C((tn−1, tn];H2(Ω) ∩
H1

0(Ω)), utt,µtt ∈ L2(0, T ;L2(Ω)) and whence,

‖(uN − u, µN − µ)‖XN
1 ×XN

1

≤ max
n=1,...,N

sup
t∈(tn−1,tn]

(
‖u(t)− u(tn)‖H2(Ω) + ‖µ(t)− µ(tn)‖H2(Ω)

)

+ max
n=1,..,N

(
‖u(tn)− un‖H2(Ω) + ‖µ(tn)− µn‖H2(Ω)

)
. (3.21)

Employing estimate (3.12), and the fact that u,µ are piecewise continuous (in time),
we obtain ‖(uN −u, µN −µ)‖XN

1 ×XN
1
→ 0. Similarly, we can establish convergence
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for the time derivative norm after noting that ut,µt ∈ C((tn−1, tn];L2(Ω)) (see also
Remark 3.8). Therefore, Proposition 3.7, implies that

lim
N→∞

‖(T N − T )w‖L(Y,X ) → 0 ∀w ∈ Y.

The additional regularity assumption on u, µ, i.e., u, µ ∈ C1(0, T ;H2(Ω)∩H1
0(Ω))

also imply that the first part of (3.21) is also of order O(k). Working similarly
for the time derivative and pressure terms, using the enhanced regularity and once
more Proposition 3.7, we obtain

‖T N − T ‖L(Y,X ) ≤ Ck.

Finally, we need to prove the condition for the derivative DG. DG(u, p, µ, r) ·
(ũ, p̃, µ̃, r̃) = (ζ̃1, ũ1, η̃1, µ̃1) if and only if,

(ζ̃1,v) = −
(
− 1

β
(µ,v)− ĉ(u, ũ,v)− ĉ(ũ,u,v)

)
∀v ∈ H1

0(Ω),

(ũ1, z) = 0 ∀ z ∈ L2(Ω),

(η̃1,v) = −
(
α(u,v) + ĉ(ũ,v,µ) + ĉ(u,v, µ̃)

+ĉ(u, ũ,v) + ĉ(ũ,u,v)
)

∀v ∈ H1
0(Ω),

(µ̃1, z) = 0 ∀ z ∈ L2(Ω).

Rewrite ζ̃1 = ζ̃
1

1 + ζ̃
2

1 + ζ̃
3

1, where 〈ζ̃1

1,v〉 = 1
β (µ,v), 〈ζ̃2

1,v〉 = ĉ(u, ũ,v), 〈ζ̃3

1,v〉 =

ĉ(ũ,u,v), ∀v ∈ H1
0(Ω). Note that the regularity of µ implies that ζ̃

1

1 ∈ Z := Y.
For the ζ̃

2

1 we use standard techniques for the trilinear form (see Section 2.2) to
obtain:

‖ζ̃2

1‖L2(Ω) = sup
v∈L2(Ω)

|ĉ(u, ũ,v)|
‖v‖L2(Ω)

≤ C sup
v∈L2(Ω)

‖u‖H1
0(Ω)‖ũ‖H2(Ω)‖v‖L2(Ω)

‖v‖L2(Ω)
≤ C‖u‖H1

0(Ω)‖ũ‖H2(Ω).

From the last inequality and regularity properties of u, ũ follows that ζ̃
2

1 ∈ Y. For
the time derivative term note that

‖ζ̃2

1t‖H−1(Ω) = sup
v∈H1

0(Ω)

|ĉ(ut, ũ,v)|+ |ĉ(u, ũt,v)|
‖v‖H1

0(Ω)

≤ C
(‖ut‖L2(Ω)‖ũ‖H2(Ω) + ‖u‖H2(Ω)‖ũt‖L2(Ω)

)
.

Taking the squares, integrating with respect to time, and using regularity properties
of u, ũ we also obtain that ζ̃

2

1t ∈ L2(0, T ;H−1(Ω)). Working similarly for the other
terms we obtain the desired estimate, which concludes our proof.

Remark 3.11. The constant C appearing in Theorem (3.9) is independent of λ = 1
ν

but depends on α, β through various norms of I+T DψG(λ, ψ). However, note that to
estimate ‖(T n−T )Gψ‖X , ψ ∈ Y we have applied Proposition 3.7, where a constant
depending on 1

ν , T is introduced.

Remark 3.12. The additional regularity appears to be necessary in order to guar-
antee a rate of convergence. Note however, that only additional regularity in time
is needed. In the two-dimensional case we may easily prove the existence of a reg-
ular solution (see e.g. [9, 27]). The BRR theory can be applied three dimensional
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problems, where uniqueness and existence of regular solutions hold only for certain
values of the parameter ν, i.e., for small intervals Λ.

Finally, we conclude this section by stating the main result comparing the semi-
discrete penalized system (3.1)-(3.2)-(3.3) to the solution of the original optimality
system (2.2)-(2.3)-(2.4).

Proposition 3.13. Let (u, p, µ, r) (uN
ε , pN

ε ,µN
ε , rN

ε ) be the solutions of (2.2)-(2.3)-
(2.4) and (3.1)-(3.2)-(3.3) respectively, satisfying the assumptions of Theorem (3.10).
Then, there estists a positive constant C independent of ε, k such that following es-
timate holds:

ν‖u(tn)− un
ε ‖H1

0(Ω) + ν‖µ(tn)− µn
ε ‖H1

0(Ω) ≤ C(
1
ν

, α, β)(k + ε). (3.22)

Proof. Using standard techniques (see e.g. [7, Chapter 3]), ‖fε‖L2(0,T ;L2(Ω)) is
bounded independent of ε. Then, subtracting (2.2)-(2.3)-(2.4) from (2.6)-(2.7)-(2.8)
yields: 




〈uε
t − u,v〉+ νa(uε − u,v) + ĉ(uε,uε,v)− ĉ(u,u,v)

+b(v, pε − p) = (fε − f ,v) ∀v ∈ H1
0(Ω)

ε(pε, q)− b(uε − u, q) = 0 ∀ q ∈ L2(Ω)
(uε(0, x)− u0, z) = 0 ∀ z ∈ L2(Ω)

(3.23)





−〈µε
t − µ,v〉+ νa(µε − µ,v) + ĉ(µε,uε,v) + ĉ(uε, µε,v)
−ĉ(µ,u,v)− ĉ(u, µ,v) + b(v, rε − r) = α(uε − u,v) ∀v ∈ H1

0(Ω)
−ε(rε, q)− b(µε − µ, q) = 0 ∀ q ∈ L2(Ω)
(µε(T, x), z) = 0 ∀ z ∈ L2(Ω).

(3.24)
µε − µ = −β(fε − f). (3.25)

Therefore, we may apply [26, Theorem 3.1] into equation (3.23), to obtain the
estimate ‖u−uε‖L2(0,T ;L2(Ω)) ≤ Cε1/2. Then, the regularity assumptions on u−uε

imply that the assumptions of [26, Theorem 4.1] are satisfied (see also Proposition
2.8, and Remark 2.9) and hence using the equation (3.24), we obtain the estimate
‖µ − µε‖L∞(0,T ;H1

0(Ω)) ≤ Cε. Returning back to equation (3.23), and using the
enhanced regularity of µ − µε term, we also obtain that ‖u − uε‖L∞(0,T ;H1

0(Ω)) ≤
Cε. The theorem follows directly from triangle inequality and results of Theorem
3.10.

4. An improved estimate for the linearized optimality system. Next we
introduce an alternative scheme based on the time discretization of the artificially
compressible Navier-Stokes. An alternative class of pertubation problems, based on
the artificial compressibility condition is defined in a similar manner: Minimize the
tracking functional J(uε, fε) subject to the constraints:



〈uε

t ,v〉+ νa(uε,v) + ĉ(uε,uε,v) + b(v, pε) = (fε + g,v) ∀v ∈ H1
0(Ω)

εk d
dt (p

ε, q)− b(uε, q) = 0 ∀ q ∈ L2(Ω)
(uε(0, x), z) = (u0(x), z) (pε(0, x), q) = (p0(x), q) ∀ z ∈ L2(Ω), q ∈ L2(Ω),

(4.1)
where u0, p0, g,U are given data. Similar theorems regarding existence of optimal
solutions and their convergence as ε → 0 can be also proved (see [8, Section 3]).
For analysis and fully-discrete finite element error estimates for the uncontrolled
system, one may consult the classical work of [27, Part III, Section 8].
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In this section we only treat the linearized optimality system. Adopting sim-
ilar notation as in the previous section, we seek sequences {uε}N

n=1, {pε}N
n=1 and

{µε}N
n=1, {rε}N

n=1 such that that:




1
k (un

ε − un−1
ε ,v) + νa(un

ε ,v) + b(v, pn
ε ) = (fn

ε + gn,v) ∀v ∈ H1
0(Ω)

ε(pn
ε − pn−1

ε , q)− b(un
ε , q) = 0 ∀ q ∈ L2(Ω)

un
ε (x) = 0, on Γ

(4.2)




− 1

k (µn
ε − µn−1

ε ,v) + νa(v, µn−1
ε ) + b(v, rn−1

ε ) = α(un
ε −Un,v) ∀v ∈ H1

0(Ω)
−ε(rn

ε − rn−1
ε , q)− b(µn−1

ε , q) = 0 ∀ q ∈ L2(Ω)
µn−1

ε (x) = 0, on Γ
(4.3)

fn
ε = − 1

β
µn−1

ε . (4.4)

The above semi-discrete (in time) discretization corresponds to the following
optimality system, and it is based on the artificial compressibility.




〈uε

t ,v〉+ νa(uε,v) + b(v, pε) = (− 1
β µε + g,v) ∀v ∈ H1

0(Ω)
εk d

dt (p
ε, q)− b(uε, q) = 0 ∀ q ∈ L2(Ω)

(uε(x), z) = (u0, z), (pε(0), q) = (p0, q) ∀z ∈ L2(Ω), q ∈ L2(Ω)
(4.5)




〈µε

t ,v〉+ νa(µε,v) + b(v, rε) = α(µε −U,v) ∀v ∈ H1
0(Ω)

−εk d
dt (r

ε, q)− b(µε, q) = 0 ∀ q ∈ L2(Ω)
µε(T ) = 0, rε(T ) = 0.

(4.6)

Below, we compare the solution of systems (2.2)-(2.3)-(2.4), (4.2)-(4.3)-(4.4).

Theorem 4.1. Given data g ∈ L2(0, T ;L2(Ω)) ∩ H1(0, T ;L2(Ω)), u0 ∈ V (Ω),
U ∈ B, suppose that (u, p), (µ, r) is the solution of problem (2.2)-(2.3)-(2.4) and
{un

ε , pn
ε }N

n=1, {µn
ε , rn

ε }N
n=1 the solution of its semi-discrete approximation (4.2)-

(4.3)-(4.4). In addition, let utt,µtt ∈ L2(0, T ;H−1(Ω)), pt, rt ∈ C(0, T ; L2(Ω))
ptt, rtt ∈ C(0, T ;L2(Ω)). Then, the following estimate holds:

‖eN‖2L2(Ω) + ε‖eN
p ‖2L2(Ω) + kν

N∑
n=1

‖∇en‖2L2(Ω) ≤ C
(
k2 + ε2k2

)

‖d0‖2L2(Ω) + ε‖d0
p‖2L2(Ω) + kν

N−1∑
n=0

‖∇dn‖2L2(Ω) ≤ C
(
k2 + ε2k2

)

where en = u(tn)− un
ε , en

p = p(tn)− pn
ε and dn = µ(tn)−µn

ε , dn
p = r(tn)− rn

ε and
C is constant depending on 1

ν2 max{α2

βν , α
β2ν },min{ 1

β , α}, T and on domain Ω.

Proof. For convenience, we omit ε from un
ε , pn

ε , µn
ε , rn

ε . First, we introduce an auxil-
iary optimality system. Suppose that {ûn}N

n=1, {p̂n}N
n=1, {µ̂n}N

n=1, {r̂n}N
n=1 are the

solutions of the optimality system: ∀n = 1, ..., N ,




1
k (ûn − ûn−1) + νa(ûn,v) + b(v, p̂n) = (f(tn) + g(tn),v) ∀v ∈ H1

0(Ω)
ε(p̂n − p̂n−1, q)− b(ûn, q) = 0 ∀ q ∈ L2(Ω)
ûn(x) = 0, on Γ

(4.7)
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



− 1
k (µ̂n − µ̂n−1,v) + νa(v, µ̂n−1) + b(v, r̂n−1) = α(u(tn)−U(tn),v)

∀v ∈ H1
0(Ω)

−ε(r̂n − r̂n−1, q)− b(µ̂n−1, q) = 0 ∀ q ∈ L2(Ω)
µ̂n−1(x) = 0, on Γ.

(4.8)

We denote by ên = u(tn)− ûn, ên
p = p(tn)− p̂n, d̂n = µ(tn)− µ̂n, d̂n

p = r(tn)− r̂n

and note that we may directly apply results of [26, Proposition 5.1] since the above
system is essentially uncoupled. Indeed, note that the regularity assumptions of
[26, Proposition 5.1] are satisfied, and subtracting (4.7)-(4.8) from (2.2)-(2.3)-(2.4)
we obtain{

1
k (ên − ên−1,v) + νa(ên,v) + b(v, ên

p ) = (Rn
1 ,v) ∀v ∈ H1

0(Ω)
ε(ên

p − ên−1
p , q)− b(ên, q) = (Rn

2 , q) ∀ q ∈ L2(Ω) (4.9)

{
− 1

k (d̂n − d̂n−1,v) + νa(d̂n−1,v) + b(v, d̂n−1
p ) = (Rn

3 ,v)
−ε(d̂n

p − d̂n−1
p , q)− b(d̂n−1, q) = (Rn

4 , q) ∀ q ∈ L2(Ω)
(4.10)

where

Rn
1 =

1
k

∫ tn

tn−1

(t− tn−1)uttdt, Rn
2 = ε

∫ tn

tn−1

ptdt

and

Rn
3 = −1

k

∫ tn

tn−1

(t− tn−1)µttdt, Rn
4 = −ε

∫ tn

tn−1

rtdt.

Then, we apply [26, Proposition 5.1] directly to (4.9) to obtain an estimate

‖ên‖2L2(Ω) + kν

n∑

i=0

‖∇êi‖2L2(Ω) ≤ C(
1
ν

, T )(k2 + ε2k2), ∀n = 1, ..., N (4.11)

and once again to (4.10) to obtain the estimate,

‖d̂n‖2L2(Ω) +kν

n∑

i=1

‖∇d̂i‖2L2(Ω) ≤ C(
1
ν

, T )(k2 +ε2k2), ∀n = 0, ..., N−1 (4.12)

where C is independent of ε, k, α, β. It remains to compare systems (4.7)-(4.8) to
(4.2)-(4.3)-(4.4). For this purpose, we denote by ẽn = ûn − un, ẽn

p = p̂n − pn,
d̃n = µ̂n − µn, d̃n

p = r̂n − rn. Subtracting (4.2)-(4.3)-(4.4) from (4.7)-(4.8) we
obtain:{

1
k (ẽn − ẽn−1,v) + νa(ẽn,v) + b(v, ẽn

p ) = (f(tn)− fn,v) ∀v ∈ H1
0(Ω)

ε(ẽn
p − ẽn−1

p , q)− b(ẽn, q) = 0 ∀ q ∈ L2(Ω)
(4.13){ − 1

k (d̃n − d̃n−1,v) + νa(d̃n−1,v) + b(v, d̃n−1
p ) = α(u(tn)− un,v)

−ε(d̃n
p − d̃n−1

p , q)− b(d̃n−1, q) = 0 ∀ q ∈ L2(Ω)
(4.14)

Note that using (2.4)-(4.4) we may write f(tn) − fn = − 1
β (µ(tn) − µ(tn−1)) −

1
β (µ(tn−1)−µn−1), with µ(tn−1)−µn−1 = d̂n−1 + d̃n−1, and u(tn)−un = ên + ẽn.
Setting 2kẽn, 2kẽn

p respectively into (4.13), we obtain:

‖ẽn‖2L2(Ω) − ‖ẽn−1‖2L2(Ω) + ‖ẽn − ẽn−1‖2L2(Ω) + 2kν‖∇ẽn‖2L2(Ω)

+ε(‖ẽn
p‖2L2(Ω) − ‖ẽn−1

p ‖2L2(Ω) + ‖ẽn
p − ẽn−1

p ‖2L2(Ω))

= −2k

β

(
(d̃n−1, ẽn) + (d̂n−1, ẽn) + (µ(tn)− µ(tn−1), ẽn)

)
(4.15)
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and similarly multilplying (4.14) by 2kd̃n−1, 2kd̃n−1
p ,

‖d̃n−1‖2L2(Ω) − ‖d̃n‖2L2(Ω) + ‖d̃n − d̃n−1‖2L2(Ω) + 2kν‖∇d̃n−1‖2L2(Ω)

+ε(‖d̃n−1
p ‖2L2(Ω) − ‖d̃n

p‖2L2(Ω) + ‖d̃n − d̃n−1‖2L2(Ω))

= 2αk
(
(ên, d̃n−1) + (ẽn, d̃n−1)

)
. (4.16)

Multiplying (4.15) by α, and (4.16) by 1
β and adding the resulting equations, we

may cancel the coupling term (ẽn, d̃n−1)
)

on the right hand side to obtain:

α
(‖ẽn‖2L2(Ω) − ‖ẽn−1‖2L2(Ω) + ‖ẽn − ẽn−1‖2L2(Ω) + 2kν‖∇ẽn‖2L2(Ω)

)

+εα
(‖ẽn

p‖2L2(Ω) − ‖ẽn−1
p ‖2L2(Ω) + ‖ẽn

p − ẽn−1
p ‖2L2(Ω)

)

+
1
β

(‖d̃n−1‖2L2(Ω) − ‖d̃n‖2L2(Ω) + ‖d̃n − d̃n−1‖2L2(Ω) + 2kν‖∇d̃n−1‖2L2(Ω)

)

+
ε

β

(‖d̃n−1
p ‖2L2(Ω) − ‖d̃n

p‖2L2(Ω) + ‖d̃n − d̃n−1‖2L2(Ω)

)

≤ 2αk

β
(ên, 2d̃n−1)− 2αk

β
(d̂n−1, ẽn)− 2αk

β
(µ(tn)− µ(tn−1), ẽn). (4.17)

It remains to bound the last three terms. Using Cauchy’s inequality with appropri-
ate constants, where C depends only on the geometry,

2αk

β
(ên, d̃n−1) ≤ kν

β
‖∇d̃n−1‖2L2(Ω) +

α2kC

βν
‖ên‖2L2(Ω)

2αk

β
(d̂n−1, ẽn) ≤ 2αkC

β2ν
‖d̂n−1‖2L2(Ω) +

ανk

2
‖∇ẽn‖2L2(Ω).

In order to bound the last term note that

µ(tn)− µ(tn−1) = kµt(tn)−
∫ tn

tn−1

(t− tn−1)µttdt

and
2αk

β
(kµt(tn), ẽn) ≤ αkC

β2ν
‖kµt‖2L2(Ω) +

ανk

4
‖∇ẽn‖2L2(Ω),

2αk

β
(
∫ tn

tn−1

(t− tn−1)µttdt, ẽn)

≤ 2αkC

β2ν
‖

∫ tn

tn−1

(t− tn−1)µttdt‖2H−1(Ω) +
ανk

4
‖∇ẽn‖2L2(Ω).

Collecting the last three inequalities, setting γ = min{α, 1
β }, and using (4.17)

recursively, we easily obtain

γνk

N∑
n=1

‖∇ẽn‖2L2(Ω) + γνk

N−1∑
n=0

‖∇d̃n−1‖2L2(Ω)

≤ C(α, β, ν)k
( N∑

n=1

‖∇ên‖2L2(Ω) +
N−1∑
n=0

‖∇d̂n−1‖2L2(Ω)

)

+C(α, β, ν)
(
k3

N∑
n=0

‖µt(tn)‖2L2(Ω) + k2

∫ T

0

‖µtt‖2H−1(Ω)dt
)
.
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where C(α, β, ν) = max{α2

βν , α
β2ν }. The the estimate easily follows by triangle in-

equality, after (4.11)-(4.12), after noting that
k3

∑N
n=0 ‖µt(tn)‖2L2(Ω) ≤ k2T‖µt‖2L∞(0,T ;L2(Ω)).

Remark 4.2. It is evident that the penalization based on the artificial compress-
ibility formulation leads to an estimate of the form k + εk, unlike to the standard
penalization algorithm which usually leads to estimates of the form k + ε. For the
standard penalization algorithm the obvious choice k ≈ ε leads to systems with large
condition numbers. However, discretization based on the artificial compressibility
allows greater flexibility to the choice of ε.
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