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Abstract. Finite element discretisations of the modified predator-prey system are examined. In
particular, fully-discrete schemes based on the discontinuous Galerkin time stepping approach for
the temporal discretisation combined with standard finite elements for the spatial discretisation

are considered. Stability estimates are derived for schemes of arbitrary order and error estimates
that maintain a symmetric structure are proved.
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1. Introduction

The scope of this work is the stability and error analysis of fully-discrete schemes
for the predator-prey system. The predator-prey system under consideration, con-
sists of two coupled parabolic pdes, i.e.,

ut − d1∆u− u(1− |u|) + vh(au) = 0 in (0, T )× Ω
∂u

∂n
= 0 on (0, T )× Γ

u(0, x) = u0 in Ω,
vt − d2∆v − bvh(au) + cv = 0 in (0, T )× Ω

∂v

∂n
= 0 on (0, T )× Γ

v(0, x) = v0 in Ω.

Here, d1, d2 > 0 denote diffusion constants, with d1 ̸= d2, b, c, a > 0 are positive
parameters and Ω ⊂ R3 is a bounded domain with suitably smooth boundary Γ.
The initial data are denoted by u0, v0 respectively. Our analysis covers two of the
most commonly used functional responses h(.), the Holling type II and type III
functionals, defined by:

h(au) =
au

1 + a|u|
or h(au) =

au2

1 + au2
,

respectively, and involves the nonlinear reaction function u(1− |u|). These type of
functional responses were proposed in [30, 31]. For an overview of the role of such
functional responses in these models we refer the reader to [32]. The above system is
often called the ”modified predator-prey system”. Our goal is to establish stability
and error estimates for fully-discrete schemes of arbitrary order. The schemes under
consideration are based on a discontinuous Galerkin -in time- approach combined
with standard conforming finite elements in space. Such schemes are known to
maintain the structural properties of the underlying pde model, in the sense, that it
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possible to prove stability estimates under minimal regularity assumptions. Indeed,
given initial data u0, v0 ∈ L2(Ω), in Section 3, we prove the following estimate:

∥uh∥W (0,T ) + ∥vh∥W (0,T ) ≤ C
(
∥u0∥L2(Ω) + ∥v0∥L2(Ω)

)
,

where uh, vh denote the fully-discrete approximations of weak solutions u, v, and
∥.∥W (0,T ) := ∥.∥L∞[0,T ;L2(Ω)] + ∥.∥L2[0,T ;H1(Ω)] denotes the natural energy norm as-
sociated to the discontinuous Galerkin approximation in time. The key difficulty
involves the derivation of estimates for higher order schemes at the ∥.∥L∞[0,T ;L2(Ω)]

norm in presence of the nonlinear coupling. We note that the above stability es-
timate under minimal regularity assumptions, is the key step in order to develop
a-priori error estimates. In addition, for u, v ∈ W (0, T ) ∩ L∞[0, T ;L∞(Ω)] we es-
tablish the fully-discrete analog of the classical Céa Lemma which in this context,
is an estimate of the form,

∥u− uh∥W (0,T ) + ∥v − vh∥W (0,T ) ≤ C
(
∥u− P loc

h u∥W (0,T ) + ∥v − P loc
h ∥W (0,T )

)
.

Here, P loc
h denotes the standard projection associated to discontinuous Galerkin

schemes that exhibits best approximation properties in terms of the available reg-
ularity of the solution.

We emphasise that this estimate is also derived under minimal regularity as-
sumptions on data and it is applicable when high order schemes are employed.
Such estimate demonstrates that the error of the fully-discrete scheme will conver-
gence at the maximal rate that the chosen approximation spaces and the regularity
of the solution will allow. The estimate is valid for a suitable choice of the temporal
discretisation parameter τ in terms of the parameters a, b, c, d1, d2, but it can be
chosen independent of the size of the spatial discretisation parameter h. Our work
uses ideas and techniques of [9, 8], developed for proving estimates at arbitrary
time points, combined with a suitable ”boot-strap” argument that decouples the
two involved pdes without imposing additional regularity and / or very stringent
conditions between the discretisation parameters and the physical parameters of our
system. In addition the estimate is derived without making assumptions regarding
point-wise space-time stability on uh, vh. To our best knowledge these estimates
are new.

Various issues related to numerical analysis and computational efficiency of
discretisation schemes for systems of reaction-diffusion pdes that resemble the
predator-prey system have been considered before (see e.g. [5, 6, 7, 14, 23, 24, 25,
27, 28, 33, 34, 35, 36, 40]). In particular, we point out [27] where a-priori estimates
are established for the fully-discrete approximation of the predator-prey system us-
ing semi-implicit Euler scheme in time combined with conforming finite elements in
space and [14] where the analysis of first-order in time implicit-symplectic method
is considered.

Stability analysis and a-priori error estimates involving the Brusselator nonlin-
ear coupling structure are presented in the work of [7]. A finite volume scheme
for the Brusselator model with cross diffusion is considered in [35], while an al-
ternative direction (ADI) extrapolated Crank-Nicolson orthogonal collocation al-
gorithm is analysed in [23]. Both papers include various informative computational
results and are applicable in other nonlinear reaction diffusion systems. In [40],
implicit-explicit schemes for various reaction diffusion systems arising in pattern
formation are considered, while analytical and computational aspects of moving
grid time-stepping schemes are studied in [36]. In [24], optimal error bounds of a
fully-discrete scheme based on the implicit-explicit Euler method combined with
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a lumped surface finite element method for the spatial discretisation of reaction-
diffusion equations on closed compact surfaces are proved. Other works that are
related to somewhat different but still relevant couplings, such as the forced-Fisher
equation, the FitzHugh-Nagumo system, and other parameter dependent systems
can be found in [28, 5, 6, 13, 25, 33]. In [6, 7] various computational examples re-
lated to high order discontinuous Galerkin schemes are presented. In [34] an error
analysis of exponential time differencing schemes for the epitaxial growth model
is presented. An overview of various properties of exponential time differencing
schemes can be found in [15].

There is an abundant literature concerning numerical analysis of general semi-
linear parabolic pdes: we refer the reader to [42] and the references therein. The
discontinuous (in time) Galerkin technique is analyzed in the works [3, 12, 16, 18,
19, 20, 21, 37, 39] for linear and semilinear problems. Other approaches includ-
ing implicit-explicit multistep methods and linear implicit schemes can be found in
[1, 2] respectively. An otherview of results regarding a posteriori error estimation
of reaction-diffusion systems are presented in [17] (see also references therein).

2. Preliminaries

We use standard notation for Hilbert spaces L2(Ω), Hs(Ω), 0 < s ∈ R, H1
0 (Ω) :=

{w ∈ H1(Ω) : w|Γ = 0}, related norms and inner products (see e.g. [22, Chapter
5]). We denote by ⟨., .⟩ the duality pairing between H1(Ω) and its dual H1(Ω)∗. For
any Banach space X, we denote by Lp[0, T ;X], L∞[0, T ;X] the time-space spaces,
endowed with norms,

∥w∥Lp[0,T ;X] =
(∫ T

0

∥w∥pXdt
) 1

p

, ∥w∥L∞[0,T ;X] = esssupt∈[0,T ] ∥w∥X .

The set of all continuous functions w:[0, T ]→X, is denoted by C[0, T ;X], with norm
∥w∥C[0,T ;X]=maxt∈[0,T ] ∥w(t)∥X . We refer the reader to [38, 22] for the definition

of spaces Hs[0, T ;X]. In particular, we will use the space H1[0, T ;X] with norm,

∥w∥H1[0,T ;X] =
(∫ T

0

∥w∥2Xdt
) 1

2

+
(∫ T

0

∥wt∥2Xdt
) 1

2

.

We define the (weak) solution space by W (0, T )=L2[0, T ;H1(Ω)]∩L∞[0, T ;L2(Ω)]
with norm

∥w∥2W (0,T ) = ∥w∥2L2[0,T ;H1(Ω)] + ∥w∥2L∞[0,T ;W (Ω)].

We use the standard bilinear form

a(y, w) =

∫
Ω

∇y∇wdx ∀ y, w ∈ H1(Ω),

which satisfies the classical coercivity and continuity properties,

a(y, y) = ∥∇y∥2L2(Ω) a(y, w) ≤ ∥y∥H1(Ω)∥w∥H1(Ω), ∀y, v ∈ H1(Ω).

We will also use the following classical inequalities:
Gagliardo-Nirenberg-Ladyzhenskaya inequalities (GNL): For all w ∈ H1(Ω),

∥w∥L4(Ω) ≤ C∥w∥1/2L2(Ω)∥w∥
1/2
H1(Ω), for d = 2,

∥w∥L4(Ω) ≤ C∥w∥1/4L2(Ω)∥w∥
3/4
H1(Ω), for d = 3,
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where C > 0 depends only on Ω and it is independent of w.
Young’s inequality : For any ϵ > 0, a, b ≥ 0, p, q > 1 it holds

ab ≤ ϵp

p
ap +

1

qϵq
bq, where 1/p+ 1/q = 1.

Throughout this work we will denote C > 0 positive constants that might change
at each occurance but depend only on the domain.

The weak formulation is stated as follows: Given data u0, v0 ∈ L2(Ω), we seek
u, v ∈W (0, T ) such that for every w ∈ L2[0, T ;H1(Ω)] ∩H1[0, T ;H1(Ω)∗],

(1)


(u(T ), w(T )) +

∫ T

0

(−⟨u,ws⟩+ d1a(u,w)− ⟨u(1− |u|), w⟩) ds

+

∫ T

0

⟨vh(au), w⟩ds = (u(0), w(0)),

(2)

 (v(T ), w(T )) +

∫ T

0

(−⟨v, ws⟩+ d2a(v, w)− b⟨vh(au), w⟩+ c⟨v, w⟩) ds

= (v(0), w(0)).

where we denote by ws :=
d
dsw the derivative with respect to time.

Existence and uniqueness of (1)-(2) is well known and can be derived by standard
techniques. Indeed, given initial data u0, v0 ∈ L2(Ω), there exists a unique solution
u, v ∈ W (0, T ) of (1) and (2). For the derivation of the symmetric error estimate
we will assume that u, v ∈W (0, T ) ∩ L∞[0, T ;L∞(Ω)] (see for instance [26, 41] for
a related results). Note that we will work solely with the modified model, that uses

the term
∫ tn

tn−1⟨u(1−|u|), w⟩ds. Otherwise, it is well known that the solution of the
predator-prey system, as well as its discrete approximations, may blow up in finite
time and further restrictions on the size of the data will be necessary in order to
guarantee stability estimates in the prescribed time interval.

3. The fully-discrete scheme and its stability properties

Approximations of (1) are constructed on a partition 0 = t0 < t1 < . . . < tN = T
of [0, T ] and we denote the length of each subinterval by τn = tn−tn−1, n = 1, ..., N.
On each interval of the form (tn−1, tn] a subspace Xh of H1(Ω) is specified. We
seek approximate solutions who belong to the space

Xh = {wh ∈ L2[0, T ;H1(Ω)] : wh|(tn−1,tn] ∈ Pk[t
n−1, tn;Xh]}.

Here Pk[t
n−1, tn;Xh] denotes the space of polynomials of degree k or less having

values in Xh. Notice that, by convention, the functions of Xh are left continuous
with right limits and hence will subsequently write wn

− for wh(t
n), and wn

+ for
lims→0+ wh(t

n+ s) := wh(t
n
+). The above notation will be also used with functions

u, v, w as well as for the corresponding errors eu := uh − u, ev := vh − v. Due to
a well known embedding result, it is assumed that the exact solution, u, v, is in
C[0, T ;L2(Ω)] so that the jump in the error at tn, denoted by [enu], [e

n
v ] is given by

[enu] = [un] = un+ − un and [env ] = vn+ − vn. The finite element space Xh satisfies
classical approximation theory results: If l ≥ 1 denote the degree of polynomials
(in space), and w ∈ H l+1(Ω), then,

(3) inf
wh∈Xh

∥w − wh∥Hs(Ω) ≤ Chl+1−s∥w∥Hl+1(Ω), 0 ≤ l ≤ ℓ, s = −1, 0, 1.

We also assume that Xh satisfies the inverse estimate: ∥wh∥H1(Ω)≤C
h ∥wh∥L2(Ω),

∀wh ∈ Xh. Throughout this work we employ a quasi-uniform partition in time,
i.e., there exists θ ∈ (0, 1] such that θτ ≤ minn=1,...N τn, where τ = maxn=1,...,N τn.
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We are ready to define the fully-discrete formulation of (1)-(2). We seek uh, vh ∈ Xh

such that, for all n = 1, .., N and wh ∈ Xh,

⟨unh−, wn
h−⟩+

∫ tn

tn−1

(
− ⟨uh, whs⟩+ d1a(uh, wh) + ⟨vhh(auh), wh⟩

)
ds(4)

= ⟨un−1
h− , wn−1

h+ ⟩+
∫ tn

tn−1

⟨uh(1− |uh|), wh⟩ds,

⟨vnh−, wn
h−⟩+

∫ tn

tn−1

(
− ⟨vh, whs⟩+ d2a(vh, wh) + c⟨vh, wh⟩

)
ds(5)

= ⟨vn−1
h− , wn−1

h+ ⟩+ b

∫ tn

tn−1

⟨vhh(auh), wh⟩ds.

Integrating by parts in time, we obtain the following equivalent formulation:

∫ tn

tn−1

(
⟨uhs, wh⟩+ d1a(uh, wh) + ⟨vhh(auh), wh⟩

)
ds(6)

+ ⟨[un−1
h ], wn−1

h+ ⟩ =
∫ tn

tn−1

⟨uh(1− |uh|), wh⟩ds,

∫ tn

tn−1

(
⟨vhs, wh⟩+ d2a(vh, wh) + c⟨vh, wh⟩

)
ds(7)

+ ⟨[vn−1
h ], wn−1

h+ ⟩ = b

∫ tn

tn−1

⟨vhh(auh), wh⟩ds.

We will frequently alternate between these two formulations. We are ready to
proceed with the main stability estimate, which is also the key ingredient in the
development of the error estimate. The stability estimate is derived under minimal
regularity assumptions on data. Apart from the nonlinear coupling and the presence
of different diffusion constants, another key technical challenge, when dealing with
high order schemes, is the derivation of the ∥.∥L∞(0,T ;L2(Ω)) stability estimates.
Here, the structure of the response functional h plays important role.

Theorem 3.1. Suppose that u0, v0 ∈ L2(Ω) and let a, b, c, d1, d2 positive constants.

In addition, suppose that τ satisfy τ ≤

{
min{ 1

Ck(b+d2)
, 1
Ck(b+c)} when c

2 < b+ d2,
1

Ck(b+c) when c
2 ≥ b+ d2,

where Ck is a constant depending only on the polynomial degree k of the temporal
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discretisation. Then, the following estimates hold:

∥vNh ∥2L2(Ω) +

N∑
i=1

∥[vi−1
h ]∥2L2(Ω) + 2d2

∫ T

0

∥vh∥2H1(Ω)ds+ c

∫ T

0

∥vh∥2L2(Ω)ds(8)

≤ Cst,1 =:

{
∥v0∥2L2(Ω) when c

2 ≥ b+ d2,

CeCk(b+d2)T ∥v0h∥2L2(Ω) when c
2 < b+ d2,

∥vh(t)∥2L∞[tn−1,tn,L2(Ω)] ≤ CkCst,1∥v0h∥2L2(Ω),(9)

∥uNh ∥2L2(Ω) +
N∑
i=1

∥[ui−1
h ]∥2L2(Ω) + d1

∫ T

0

∥∇uh∥2L2(Ω)ds+

∫ T

0

∥uh∥3L3(Ω)ds(10)

≤ C

(
∥u0h∥2L2(Ω) + Cd1T +

Cst,1

c

)
:= Cst,2,

∥uh(t)∥2L∞[0,T,L2(Ω)] ≤ CkCst,2.(11)

where C is an algebraic constant and Cd1 := 1
4

(
2 + 4

3d1
)3
.

Proof. We select wh = vh into (7), and since |h(auh)| ≤ 1, we easily deduce,

1

2
∥vnh∥2L2(Ω) +

1

2
∥[vn−1

h ]∥2L2(Ω) + d2

∫ tn

tn−1

∥vh∥2H1(Ω)ds(12)

+ c

∫ tn

tn−1

∥vh∥2L2(Ω)ds ≤
1

2
∥vn−1

h ∥2L2(Ω) + (b+ d2)

∫ tn

tn−1

∥vh∥2L2(Ω)ds,

where we have added d2
∫ tn

tn−1 ∥vh∥2L2(Ω)ds term at both sides. Let us point out that

if c
2 ≥ (b+ d2) then summing the above inequalities, we obtain that

∥vNh ∥2L2(Ω)+
N∑
i=1

∥[vi−1
h ]∥2L2(Ω)+2d2

∫ T

0

∥vh∥2H1(Ω)ds+c

∫ T

0

∥vh∥2L2(Ω)ds ≤ ∥v0h∥2L2(Ω).

We focus our attention to the case where c
2 < b + d2. We need to bound the last

term of (12). We will use a technique proposed in [8]. First, we fix zh ∈ Xh and
t ∈ (tn−1, tn). Then, set wh(s) = ϕ(s)zh, where ϕ ∈ Pk(t

n−1, tn) satisfies,

ϕ(tn−1) = 1,

∫ tn

tn−1

ϕψ =

∫ t

tn−1

ψ, ψ ∈ Pk−1(t
n−1, tn).

Note that [8, Lemma 3.2], implies that ∥ϕ∥L∞(tn−1,tn) ≤ Ck, where constant Ck is
independent of the fixed t and depends on the polynomial degree of the temporal
discretisation. Therefore, the above construction with the particular choice of wh,
allow us to integrate,∫ tn

tn−1

(vhs, wh)ds+ (vn−1
h+ − vn−1

h− , wn−1
h+ )

=

∫ t

tn−1

(vhs, zh)ds+ (vn−1
h+ − vn−1

h− , ϕ(tn−1)zh)

= (vh(t)− vn−1
h+ , zh) + (vn−1

h+ − vn−1
h− , zh) = (vh(t)− vn−1

h− , zh).
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Therefore, selecting wh := ϕ(s)zh into (7) and substituting the above equality, (7)
yields,

(vh(t)− vn−1
h− , zh) = −

∫ tn

tn−1

(d2a(vh, zhϕ(s)) + c(vh, zhϕ(s))) ds

+ b

∫ tn

tn−1

(vhh(auh), zhϕ(s))ds.

Hence, using the fact the ∥ϕ∥L∞(tn−1,tn) ≤ Ck, and since zh ∈ Xh is independent
of the integration variable, we deduce,∣∣∣(vh(t)− vn−1

h− , zh)
∣∣∣ ≤ Ck

(
d2∥zh∥H1(Ω)

∫ tn

tn−1

∥vh∥H1(Ω)ds

+ (b+ c)∥zh∥L2(Ω)

∫ tn

tn−1

∥vh∥L2(Ω)ds
)
,

where we have used Hölder’s inequality, and the fact that |h(auh)| ≤ 1. Thus,

using Hölder’s inequality with respect to time to bound
∫ tn

tn−1 ∥vh(t)∥L2(Ω)dt ≤
τ
1/2
n ∥vh∥L2[tn−1,tn;L2(Ω)] and

∫ tn

tn−1 ∥vh(t)∥H1(Ω)dt ≤ τ
1/2
n ∥vh∥L2[tn−1,tn;H1(Ω)], we

obtain,

(vh(t)− vn−1
h− , zh) ≤ Ck

(
d2∥zh∥H1(Ω)τ

1/2
n ∥vh∥L2[tn−1,tn;H1(Ω)]

+ (b+ c)∥zh∥L2(Ω)τ
1/2
n ∥vh∥L2[tn−1,tn;L2(Ω)]

)
.

For the fixed t, set zh = vh(t) and integrate the resulting inequality with respect
to time,∫ tn

tn−1

∥vh(t)∥2L2(Ω)dt ≤ ∥vn−1
h− ∥L2(Ω)

∫ tn

tn−1

∥vh(t)∥L2(Ω)dt

+ Ckd2

(∫ tn

tn−1

∥vh(t)∥H1(Ω)dt

)
τ1/2n ∥vh∥L2[tn−1,tn;H1(Ω)]

+ Ck(b+ c)

(∫ tn

tn−1

∥vh(t)∥L2(Ω)dt

)
τ1/2n ∥vh∥L2[tn−1,tn;L2(Ω)].

Using Hölder’s inequality once more, Young’s inequality to hide the ∥vh∥2L2[tn−1,tn;L2(Ω)]

on the left, and for all τn such that Ck(b+ c)τn ≤ 1/4, we obtain,∫ tn

tn−1

∥vh(t)∥2L2(Ω)dt ≤ Ckτn

(
∥vn−1

h− ∥2L2(Ω) + d2

∫ tn

tn−1

∥vh∥2H1(Ω)dt

)
.(13)

Substituting (13) into (12), it yields,

1

2
∥vnh∥2L2(Ω) +

1

2
∥[vn−1

h ]∥2L2(Ω) + d2

∫ tn

tn−1

∥vh∥2H1(Ω)ds+ c

∫ tn

tn−1

∥vh∥2L2(Ω)ds(14)

≤
(
1

2
+ (b+ d2)Ckτn

)
∥vn−1

h ∥2L2(Ω) + (b+ d2)Ckτnd2

∫ tn

tn−1

∥vh∥2H1(Ω)dt.

Select τn such that (b + d2)Ckτnd2 ≤ d2/2 and (b + d2)Ckτn < 1 to deduce (8)
upon using the standard discrete Gronwall Lemma. The estimate at partition
point ∥vmh ∥2L2(Ω) follows by summing from 1 to m where m ∈ {1, .., N}. Returning
back to (13), using an inverse estimate in time, and the estimate in ∥.∥L2[0,T ;H1(Ω)]
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and the estimate at partition points, we obtain the estimate (9). We proceed with
estimate on uh. Now, we set wh = uh in (6),

1

2
∥unh∥2L2(Ω) +

1

2
∥[un−1

h ]∥2L2(Ω) + d1

∫ tn

tn−1

∥uh∥2H1(Ω)ds+

∫ tn

tn−1

∥uh∥3L3(Ω)ds(15)

≤ 1

2
∥un−1

h ∥2L2(Ω) + (1 + d1)

∫ tn

tn−1

∥uh∥2L2(Ω)ds+

∫ tn

tn−1

(vhh(auh), uh)ds

≤ 1

2
∥un−1

h ∥2L2(Ω) + (
3

2
+ d1)

∫ tn

tn−1

∥uh∥2L2(Ω)ds+
1

2

∫ tn

tn−1

∥vh∥2L2(Ω)ds.

≤ 1

2
∥un−1

h ∥2L2(Ω) + (
3

2
+ d1)

(
δ3

3

∫ tn

tn−1

1ds+
2

3δ3/2

∫ tn

tn−1

∥uh∥3L3(Ω)ds

)

+
1

2

∫ tn

tn−1

∥vh∥2L2(Ω)ds.

where at the last two steps we have used Young’s inequality. Choosing δ > 0 such
that ( 32 + d1)

2
3δ3/2

= 1
2 , (15) yields,

1

2
∥unh∥2L2(Ω) +

1

2
∥[un−1

h ]∥2L2(Ω) + d1

∫ tn

tn−1

∥uh∥2H1(Ω)ds+
1

2

∫ tn

tn−1

∥uh∥3L3(Ω)ds(16)

≤ 1

2
∥un−1

h ∥2L2(Ω) + Cd1

∫ tn

tn−1

1ds+
1

2

∫ tn

tn−1

∥vh∥2L2(Ω)ds,

with Cd1 = 1
4

(
2 + 4d1

3

)3
which implies estimate (10) upon summation and substitu-

tion of ∥vh∥2L2[0,tn;L2(Ω)] from (8). It remains to prove (11), for which we will use the

same technique to bound
∫ tn

tn−1 ∥uh∥2L2(Ω)ds as in (9). Fix zh ∈ Xh, t ∈ (tn−1, tn)

and set wh(s) = ϕ(s)zh into (6) to get

(uh(t)− un−1
h− , zh) = −

∫ tn

tn−1

(
d1a(uh, zhϕ(s)) + (uh(1− |uh|), zhϕ(s))

)
ds

+

∫ tn

tn−1

(vhh(auh), zhϕ(s))ds.

Working identically as for the estimate of uh and using Hölder’s inequality to bound∫ tn

tn−1

∫
Ω
|uh|2|zh|dxds ≤

∫ tn

tn−1 ∥uh∥2L3(Ω)∥zh∥L3(Ω)ds we obtain,

∣∣∣(uh(t)− vn−1
h− , zh)

∣∣∣ ≤ Ck

(
d1∥zh∥H1(Ω)

∫ tn

tn−1

∥uh∥H1(Ω)ds

+ ∥zh∥L2(Ω)

∫ tn

tn−1

(∥vh∥L2(Ω) + ∥uh∥L2(Ω))ds+ ∥zh∥L3(Ω)

∫ tn

tn−1

∥uh∥2L3(Ω)ds
)
.

Using the Hölder inequality with respect to time,∣∣∣(uh(t)− un−1
h− , zh)

∣∣∣ ≤ Ck

(
d1∥zh∥H1(Ω)τ

1/2
n ∥uh∥L2[tn−1,tn;H1(Ω)]

+ ∥zh∥L2(Ω)τ
1/2
n (∥uh∥L2[tn−1,tn;L2(Ω)] + ∥vh∥L2[tn−1,tn;L2(Ω)])

+ ∥zh∥L3(Ω)τ
1/3
n ∥uh∥2L3[tn−1,tn;L3(Ω)]

)
.
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Set zh = uh(t) and integrate with respect to time the resulting inequality to deduce,

∫ tn

tn−1

∥uh(t)∥2L2(Ω)dt ≤ τnCk

(
∥un−1

h− ∥2 + d1

∫ tn

tn−1

∥uh∥2H1(Ω)dt+

∫ tn

tn−1

∥vh∥2L2(Ω)dt

(17)

+

∫ tn

tn−1

∥uh∥3L3(Ω)dt
)
.

where at the last step have used Hölder’s inequality to bound
∫ tn

tn−1 ∥uh(t)∥L3(Ω)dt ≤
τ
2/3
n ∥uh∥L3[tn−1,tn;L3(Ω)]. The estimate now follows using an inverse estimate and
substituting the estimates (8) and (10). �

4. Error estimates

4.1. Projections and orthogonality relations. The following projections re-
lated to discontinuous Galerkin time-stepping schemes will be used.

Definition 4.1. (1) Ph : L2(Ω) → Xh is the orthogonal L2 projection operator
onto Xh, i.e., (Phw,wh) = (w,wh), ∀wh ∈ Xh, w ∈ L2(Ω).

(2) The projection P loc
n : C[tn−1, tn;L2(Ω)] → Pk[t

n−1, tn;Xh] satisfies (P
loc
n w)n =

Phw(t
n), and∫ tn

tn−1

(w − P loc
n w,wh)ds = 0, ∀wh ∈ Pk−1[t

n−1, tn;Xh].

In the above definition, we have used the convention (P loc
n w)n ≡ (P loc

n w)(tn).

(3) The projection P loc
h : C[0, T ;L2(Ω)] → Xh satisfies

P loc
h w ∈ Xh and (P loc

h w)|(tn−1,tn] = P loc
n (w|[tn−1,tn]).

In the following Lemma, we collect several results regarding rates of convergence
for the above projection (see e.g. [8]).

Lemma 4.2. Let Xh ⊂ H1(Ω) satisfy (3) and let P loc
h denote the projection of

Definition 4.1. Then, for all w ∈ L2[0, T ;H l+1(Ω)] ∩Hk+1[0, T ;L2(Ω)] there exists
constant C > 0 independent of h, τ such that

∥w − P loc
h w∥L2[0,T ;L2(Ω)] ≤ C

(
hl+1∥w∥L2[0,T ;Hl+1(Ω)]+τ

k+1∥w(k+1)∥L2[0,T ;L2(Ω)]

)
,

∥w − P loc
h w∥L2[0,T ;H1(Ω)] ≤ C

(
hl∥w∥L2[0,T ;Hl+1(Ω)]+(τk+1/h)∥w(k+1)∥L2[0,T ;L2(Ω)]

)
,

∥w − P loc
h w∥L∞[0,T ;L2(Ω)] ≤ C

(
hl+1∥w∥L∞[0,T ;Hl+1(Ω)]+τ

k+1∥w(k+1)∥L∞[0,T ;L2(Ω)]

)
.

If w ∈ L2[0, T ;H l+1(Ω)] ∩ Hk+1[0, T ;H1(Ω)], then there exists constant C > 0
independent of τ, h such that

∥w − P loc
h w∥L2[0,T ;H1(Ω)] ≤ C

(
hl∥w∥L2[0,T ;Hl+1(Ω)] + τk+1∥w(k+1)∥L2[0,T ;H1(Ω)]

)
.

Let k = 0, l = 1, and w ∈ L2[0, T ;H2(Ω)] ∩ H1[0, T ;L2(Ω)]. Then, there exists
constant C > 0 independent of h, τ such that,

∥w − P loc
h w∥L∞[0,T ;L2(Ω)]+∥w − P loc

h w∥L2[0,T ;H1(Ω)] ≤ C
(
h∥w∥L2[0,T ;H2(Ω)]

+ τ1/2(∥wt∥L2[0,T ;L2(Ω)]+∥w∥L2[0,T ;H2(Ω)])
)
.
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Subtracting (1) from (4) and (2) from (5), we obtain the fully-discrete orthogo-
nality condition, which reads as: For every wh ∈ Xh and for n = 1, ..., N ,

(enu−, w
n
h−) +

∫ tn

tn−1

(−⟨eu, whs⟩+ d1a(eu, wh) + (vhh(auh)− vh(au), wh)) ds(18)

=

∫ tn

tn−1

(uh(1− |uh|)− u(1− |u|, wh)ds+ (en−1
− , wn−1

h+ ),

and

(env−, w
n
h−) +

∫ tn

tn−1

(−⟨ev, whs⟩+ d2a(ev, wh)− b(vhh(auh)− vh(au), wh)) ds(19)

+c

∫ tn

tn−1

(ev, wh)ds = (en−1
− , wn−1

h+ ),

where eu = uh−u, ev = vh−v denote the error for the u, v components respectively.
We will split the error as eu = (uh − up) + (up − u) := euh + eup, and ev =
(vh−vp)+(vp−v) := evh+evp respectively, where up is the discontinuous Galerkin
solution of a linear parabolic pde with right hand side ut − d1∆u, and initial data
up0 = Phu0, and vp is the discontinuous Galerkin solution of a linear parabolic
pde with right hand side vt − d2∆v and initial data vp0 = Phv0. Hence, for every
wh ∈ Xh and for n = 1, ..., N , we define up, vp ∈ Xh as follows,

(unp−, w
n
h−) +

∫ tn

tn−1

(
− ⟨up, whs⟩+ d1a(up, wh)

)
ds(20)

= (un−1
p− , wn−1

+ ) +

∫ tn

tn−1

⟨ut − d1∆u,wh⟩ds,

(vnp−, w
n
h−) +

∫ tn

tn−1

(
− ⟨vp, whs⟩+ a(vp, wh)

)
ds(21)

= (vn−1
p− , wn−1

+ ) +

∫ tn

tn−1

⟨vt − d2∆v, wh⟩ds.

Integrating by parts the last term of the right-hand side and noting that u, v ∈
C[0, T ;L2(Ω)], we obtain the equivalent form of the orthogality condition: For
n = 1, ..., N , and wh ∈ Xh

(enp−, w
n
h−) +

∫ tn

tn−1

(
− ⟨ep, whs⟩+ d1a(ep, wh)

)
ds = (en−1

p− , wn−1
+ ),(22)

(enp−, w
n
h−) +

∫ tn

tn−1

(
− ⟨ep, whs⟩+ d2a(ep, wh)

)
ds = (en−1

p− , wn−1
+ ).(23)

We can estimate eup, evp in terms of the standard dG projection of Definition 4.1
which is a straightforward application of [9, Theorem 2.2 and Theorem 2.3]):

∥eup∥L∞[0,T ;L2(Ω)] + d
1/2
1 ∥eup∥L2[0,T ;H1(Ω)] ≤ Ck

(
∥Phu(0)− u(0)∥L2(Ω)(24)

+ ∥u− P loc
h u∥L∞[0,T ;L2(Ω)] + d

1/2
1 ∥u− P loc

h u∥L2[0,T ;H1(Ω)]

)
,

∥evp∥L∞[0,T ;L2(Ω)] + d
1/2
2 ∥evp∥L2[0,T ;H1(Ω)] ≤ Ck

(
∥Phv(0)− v(0)∥L2(Ω)(25)

+ ∥v − P loc
h v∥L∞[0,T ;L2(Ω)] + d

1/2
2 ∥v − P loc

h v∥L2[0,T ;H1(Ω)]

)
.

Here Ck is a constant depending upon Ω and on the polynomial degree of the tem-
poral discretisation. Therefore, using (22) and (23) into (18) and (19) respectively
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we deduce the of following relations for euh and evh: For all n = 1, .., N and for all
wh ∈ Xh,

(enuh−, w
n
h−) +

∫ tn

tn−1

(−⟨euh, whs⟩+ d1a(euh, wh) + (vhh(auh)− vh(au), wh)) ds

(26)

=

∫ tn

tn−1

(uh(1− |uh|)− u(1− |u|), wh)ds+ (en−1
uh−, w

n−1
h+ ),

(envh−, w
n
h−) +

∫ tn

tn−1

(−⟨evh, whs⟩+ d2a(evh, wh)− b(vhh(auh)− vh(au), wh)) ds

(27)

+ c

∫ tn

tn−1

(evh + evp, wh)ds = (en−1
vh−, w

n−1
h+ ).

Our goal now is to bound euh and evh in terms of eup and evp.

4.2. The main error estimate. We proceed by deriving the initial estimate that
bounds norms at partition point tn and the energy norms ∥euh∥2L2[tn−1,tn;H1(Ω)] and

∥evh∥2L2[tn−1,tn;H1(Ω)] , in terms of the similar norms of the projection error eup, evp

plus ∥euh∥2L2[tn−1,tn;L2(Ω)] and ∥evh∥2L2[tn−1,tn;L2(Ω)] terms.

Proposition 4.3. Let u, v satisfy (1),(2) respectively and uh, vh denote their fully-
discrete approximations defined by (4), (5) respectively. Suppose that the assump-
tions of Theorem 3.1 hold, and let up, vp defined by (20), (21) respectively. Denote
by euh := uh − up, eup := up − u, and by evh := vh − vp, evp := vp − v. Then, the
following estimate holds: For all n = 1, .., N

1

2
∥enuh−∥2L2(Ω) +

1

2
∥[euh]n−1∥2L2(Ω) + d1

∫ tn

tn−1

∥euh∥2H1(Ω)ds

+
1

2
∥envh−∥2L2(Ω) +

1

2
∥[evh]n−1∥2L2(Ω) + d2

∫ tn

tn−1

∥evh∥2H1(Ω)ds+
c

2

∫ tn

tn−1

∥evh∥2L2(Ω)ds

≤ 1

2
∥en−1

uh−∥
2
L2(Ω) +

1

2
∥en−1

vh−∥
2
L2(Ω)

+ C̃

∫ tn

tn−1

(
∥evh∥2L2(Ω) + ∥euh∥2L2(Ω) + ∥evp∥2L2(Ω) + ∥eup∥2L2(Ω) + ∥evp∥2H1(Ω)

)
ds,

where C̃ := Cmax{C∞,a,b, c, d1, d2, C
2
st,2/d

3
1, Cst,2/d1}. Here Cst,2 denotes the sta-

bility constant (11) of Theorem 3.1, and C∞,a,b = max{Cv,a,b, Cu} where Cv,a,b :=
Cmax{2, (1 + 3a)∥v∥L∞[0,T ;L∞(Ω)]}max{1, b} and Cu := 1 + ∥u∥L∞[0,T ;L∞(Ω)] re-
spectively.

Proof. We present the proof in case of the Howling type II functional response.
The of case of Holling type III functional can be treated in a similar way (see also
Remark 4.5). We focus on the three dimensional case. The two dimensional case
can be treated similarly and more easily. We need to treat the nonlinear terms of
(26) and (27). We begin first with the two nonlinear terms of (26). For the first



FULLY-DISCRETE SCHEMES FOR PREDATOR-PREY SYSTEMS 415

one, note that standard algebraic manipulations lead to,

∣∣∣vhh(auh)− vh(au)
∣∣∣ = ∣∣∣ avhuh

1 + a|uh|
− avu

1 + a|u|

∣∣∣(28)

≤
a
∣∣vhuh − vu

∣∣
(1 + a|uh|)(1 + a|u|)

+
a2
∣∣∣vhuh|u| − vu|uh|

∣∣∣
(1 + a|uh|)(1 + a|u|)

≤ a

∣∣vhuh − vuh + vuh − vu
∣∣

(1 + a|uh|)(1 + a|u|)
+ a2

∣∣∣vhuh|u| − vuh|u|+ vuh|u| − vu|uh|
∣∣∣

(1 + a|uh|)(1 + a|u|)

≤ a
|uh||vh − v|

(1 + a|uh|)(1 + a|u|)
+ a

|v||uh − u|
(1 + a|uh|)(1 + a|u|)

+ a2
|uh||u||vh − v|

(1 + a|uh|)(1 + a|u|)
+ a2|v|

∣∣uh|u| − u|uh|
∣∣

(1 + a|uh|)(1 + a|u|)
≤ 2|vh − v|+ (1 + 3a)|v||u− uh|.

At the last step we have used the inequalities a|uh|
1+a|uh| ≤ 1 and 1

1+a|u| ≤ 1 for the

first term, 1
(1+a|uh|)(1+a|u|) ≤ 1 for the second term, a2|uh||u|

(1+a|uh|)(1+a|u|) ≤ 1 for the

third term, while for the fourth term (adding and subtracting u|u| first) the bounds
a|u|

1+a|u| ≤ 1, and 1
1+|uh| ≤ 1. It remains to bound the second nonlinear term of (26).

For this purpose, we simply observe that standard algebraic manipulations lead to,

∣∣∣u(1− |u|)− uh(1− |uh|)
∣∣∣ ≤ (1 + |u|+ |uh|)|u− uh|.(29)

Setting wh = euh and wh = evh into (26) and (27) respectively, using (28), (29)
and standard algebra we deduce,

1

2
∥enuh−∥2L2(Ω) +

1

2
∥[euh]n−1∥2L2(Ω) + d1

∫ tn

tn−1

∥∇euh∥2L2(Ω)ds(30)

≤ 1

2
∥en−1

uh−∥
2
L2(Ω) +

∫ tn

tn−1

∫
Ω

(2|v − vh|+ (1 + 3a)|v||u− uh|) |euh|dxds

+

∫ tn

tn−1

∫
Ω

(1 + |u|+ |uh|)|u− uh||euh|dxds,

and

1

2
∥envh−∥2L2(Ω) +

1

2
∥[evh]n−1∥2L2(Ω) + d2

∫ tn

tn−1

∥∇evh∥2L2(Ω)ds(31)

+
c

2

∫ tn

tn−1

∥evh∥2L2(Ω)ds ≤
1

2
∥en−1

vh−∥
2
L2(Ω) +

c

2

∫ tn

tn−1

∥evp∥2L2(Ω)ds

+ b

∫ tn

tn−1

∫
Ω

(2|v − vh|+ (1 + 3a)|v||u− uh|) |evh|dxds.
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Adding d1
∫ tn

tn−1 ∥euh∥2L2(Ω)ds on both sides of (30) and d2
∫ tn

tn−1 ∥evh∥2L2(Ω)ds on

both sides of (31) and adding the resulting inequalities we finally arrive at,

1

2
∥enuh−∥2L2(Ω) +

1

2
∥[euh]n−1∥2L2(Ω) + d1

∫ tn

tn−1

∥euh∥2H1(Ω)ds

+
1

2
∥envh−∥2L2(Ω) +

1

2
∥[evh]n−1∥2L2(Ω) + d2

∫ tn

tn−1

∥evh∥2H1(Ω)ds

+
c

2

∫ tn

tn−1

∥evh∥2L2(Ω)ds

≤ 1

2
∥en−1

uh−∥
2
L2(Ω) +

1

2
∥en−1

vh−∥
2
L2(Ω) +

c

2

∫ tn

tn−1

∥evp∥2L2(Ω)ds(32)

+ d1

∫ tn

tn−1

∥euh∥2L2(Ω)ds+ d2

∫ tn

tn−1

∥evh∥2L2(Ω)ds

+

∫ tn

tn−1

∫
Ω

(2|evh + evp|+ (1 + 3a)|v||euh + eup|) (|euh|+ b|evh|) dxds

+

∫ tn

tn−1

∫
Ω

(1 + |u|+ |uh|)|euh + eup||euh|dxds.

=:
1

2
∥en−1

uh−∥
2
L2(Ω) +

1

2
∥en−1

vh−∥
2
L2(Ω) +

c

2

∫ tn

tn−1

∥evp∥2L2(Ω)ds

+ d1

∫ tn

tn−1

∥euh∥2L2(Ω)ds+ d2

∫ tn

tn−1

∥evh∥2L2(Ω)ds+ I1 + I2.

We need to estimate the integrals Ii, for i = 1, 2. For the first term, we easily
observe that

I1 ≤ Cv,a,b

∫ tn

tn−1

(
∥evh∥2L2(Ω) + ∥evp∥2L2(Ω) + ∥euh∥2L2(Ω) + ∥eup∥2L2(Ω)

)
ds

where Cv,a,b = Cmax{2, (1 + 3a)∥v∥L∞[0,T ;L∞(Ω)]}max{1, b}, For the second term
using Young’s inequality,

I2 ≤ Cu

∫ tn

tn−1

(
∥euh∥2L2(Ω) + ∥eup∥2L2(Ω)

)
ds

+

∫ tn

tn−1

∥uh∥L2(Ω)

(
∥euh∥2L4(Ω) + ∥euh∥L4(Ω)∥eup∥L4(Ω)

)
ds,

where Cu = 1 + ∥u∥L∞[0,T ;L∞(Ω)]. Therefore, combing the last two bounds,

I1 + I2 ≤ C∞,a,b

∫ tn

tn−1

(
∥evh∥2L2(Ω) + ∥evp∥2L2(Ω) + ∥euh∥2L2(Ω) + ∥evh∥2L2(Ω)

)
ds

+

∫ tn

tn−1

∥uh∥L2(Ω)

(
∥euh∥2L4(Ω) + ∥eup∥L4(Ω)∥euh∥L4(Ω)

)
ds

where C∞,a,b := max{Cv,a,b, Cu}. It remains to bound the last integral. The GNL
interpolation inequality and Young’s inequality with p1 = 4, p2 = 4/3 and ϵ1 > 0
(to be determined) for the first integral and the embedding H1(Ω) ⊂ L4(Ω) and
Young’s inequality with p1 = p2 = 2 and ϵ2 > 0 (to be determined) for the second
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one imply that∫ tn

tn−1

∥uh∥L2(Ω)

(
∥euh∥2L4(Ω) + ∥eup∥L4(Ω)∥euh∥L4(Ω)

)
ds

≤ C∥uh∥L∞[0,T ;L2(Ω)]

∫ tn

tn−1

(
∥euh∥1/2L2(Ω)∥euh∥

3/2
H1(Ω)dt+ ∥euh∥H1(Ω)∥eup∥H1(Ω)

)
ds

≤ C
ϵ41C

2
st,2

4

∫ tn

tn−1

∥euh∥2L2(Ω)ds+
3

4ϵ
4/3
1

∫ tn

tn−1

∥euh∥2H1(Ω)ds

+ C
ϵ2Cst,2

2

∫ tn

tn−1

∥eup∥2H1(Ω)ds+
1

2ϵ2

∫ tn

tn−1

∥euh∥2H1(Ω)ds.

where Cst,2 denotes the stability constant of Theorem 3.1 and C is an algebraic

constant depending on the domain. We select ϵ1 such that 3

4ϵ
4/3
1

= d1

4 and 1
2ϵ2

= d1

4 ,

and substituting the resulting bound into I1+I2 and then I1+I2 into (32) we derive
the desired estimate. �

For low order schemes, i.e., when k = 0 or k = 1, standard Gronwall techniques
imply the desired estimates. In order to include high order schemes in our analysis

we need to provide a sharp local estimate for
∫ tn

tn−1

(
∥euh∥2L2(Ω) + ∥evh∥2L2(Ω)

)
ds.

This is achieved in the subsequent proposition.

Proposition 4.4. Suppose that the assumptions of Theorem 3.1 and Proposi-

tion 4.3 hold. If in addition, τ satisfies CkC̃(d1 + C
1/2
st,2)τ < d1/2, CkC̃τ < 1/2,

Ck(C∞,a,b + c)τ < 1/4, and CkC∞,aτ < 1/2 where Cst,2 is the stability constan-

t (11) of Theorem 3.1, C̃ denotes the constant of Proposition 4.3, and C∞,a :=

Cmax
{
max{2, (1 + 3a)Cv}, 1 + Cu

}
, C∞,a,b = bC∞,awith Cv = ∥v∥L∞[0,T ;L∞(Ω)]

and Cu := ∥u∥L∞[0,T ;L∞(Ω)], then the following estimate holds: For all n = 1, ..., N ,

∥enuh−∥2L2(Ω)+

n∑
i=1

∥[euh]i−1∥2L2(Ω)+d1

∫ tn

0

∥euh∥2H1(Ω)ds

+∥envh−∥2L2(Ω)+
n∑

i=1

∥[evh]i−1∥2L2(Ω)+d2

∫ tn

0

∥evh∥2H1(Ω)ds+c

∫ tn

0

∥evh∥2L2(Ω)ds

≤ C̃eCkC̃T

{∫ tn

0

(
∥evp∥2H1(Ω)+∥eup∥2H1(Ω)

)
ds

}
.

Proof. We will closely follow the proof of Theorem 3.1. We fix zh ∈ Xh and t ∈
(tn−1, tn) and we return back to (26) to set wh(s) = ϕ(s)zh, where ϕ ∈ Pk(t

n−1, tn)
satisfies,

ϕ(tn−1) = 1,

∫ tn

tn−1

ϕψ =

∫ t

tn−1

ψ, ψ ∈ Pk−1(t
n−1, tn).

Note that due to [8, Lemma 3.2], ∥ϕ∥L∞(tn−1,tn) ≤ Ck, where constant Ck is inde-
pendent of the fixed t. Therefore, this particular choice of wh, allow us to integrate,∫ tn

tn−1

(euh,t, wh)ds+ (en−1
uh+ − en−1

hh−, w
n−1
h+ ) = (euh(t)− vn−1

h− , zh).
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Hence, working identically as in Theorem 3.1, we obtain that

(euh(t)− en−1
uh−, zh) = −d1

∫ tn

tn−1

a(euh, zhϕ(s))ds(33)

−
∫ tn

tn−1

((vhh(auh)− vh(au), zhϕ(s))) ds

+

∫ tn

tn−1

(uh(1− |uh|)− u(1− |u|, zhϕ(s))ds.

Therefore, since ∥ϕ∥L∞(tn−1,tn) ≤ Ck, and zh ∈ Xh, and applying bounds (28) and
(29) to (33), it yields,∣∣∣(euh(t)− en−1

uh−, zh)
∣∣∣ ≤ Ck

{
d1

∫ tn

tn−1

∫
Ω

|∇euh||∇zh|dxds

+

∫ tn

tn−1

∫
Ω

(2|vh − v|+ (1 + 3a)|v||u− uh|) |zh|dxds

+

∫ tn

tn−1

∫
Ω

(1 + |u|+ |uh|)|u− uh||zh|dxds

}
.

Using Hölder’s inequalities and since zh ∈ Xh (and independent of s) the above
inequality leads to,∣∣∣(euh(t)− en−1

uh−, zh)
∣∣∣ ≤ Ck

{
d1∥∇zh∥L2(Ω)

∫ tn

tn−1

∥∇euh∥L2(Ω)ds

+ C∞,a∥zh∥L2(Ω)

∫ tn

tn−1

(
∥evh∥L2(Ω) + ∥evp∥L2(Ω) + ∥eup∥L2(Ω) + ∥euh∥L2(Ω)

)
ds

+ ∥zh∥L4(Ω)

∫ tn

tn−1

∥uh∥L2(Ω)∥euh + eup∥L4(Ω)ds

}
,

where here we denote by C∞,a := Cmax
{
max{2, (1 + 3a)Cv}, 1 + Cu

}
with

Cv = ∥v∥L∞[0,T ;L∞(Ω)] and Cu := ∥u∥L∞[0,T ;L∞(Ω)]. Hence, using the embedding

H1(Ω) ⊂ L4(Ω) and working identically as in Theorem 3.1 we obtain,∫ tn

tn−1

∥euh∥2L2(Ω) ≤ Ckτn

{
∥en−1

h− ∥2L2(Ω + (d1 + C
1/2
st,2)∥euh∥2L2[tn−1,tn;H1(Ω)](34)

+ C∞,a

(
∥euh∥2L2[tn−1,tn;L2(Ω)] + ∥evh∥2L2[tn−1,tn;L2(Ω)]

)
+ C∞,a

(
∥eup∥2L2[tn−1,tn;L2(Ω)] + ∥evp∥2L2[tn−1,tn;L2(Ω)]

)
+ C

1/2
st,2∥eup∥2L2[tn−1,tn;H1(Ω)]

}
.

We proceed in a similar way to derive the bound on
∫ tn

tn−1 ∥evh∥2L2(Ω)ds. Indeed,

once again we fix zh ∈ Xh and set wh(s) = ϕ(s)zh, in (27) where ϕ ∈ Pk(t
n−1, tn)

satisfies,

ϕ(tn−1) = 1,

∫ tn

tn−1

ϕψ =

∫ t

tn−1

ψ, ψ ∈ Pk−1(t
n−1, tn).
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Hence, working in an identical way, we get

∣∣∣(evh(t)−en−1
vh−, zh)

∣∣∣≤Ckd2

∫ tn

tn−1

∫
Ω

|∇evh||∇zh|+ c|evh||zh|dxds

+ Ckb

∫ tn

tn−1

∫
Ω

(2|vh − v|+ (1 + 3a)|v||u− uh|) |zh|dxds.

Thus, we arrive at

∣∣∣(evh−en−1
vh−, zh)

∣∣∣
≤Ckτ

1/2
n

{
d2∥∇zh∥L2(Ω)

∫ tn

tn−1

∥∇evh∥L2(Ω)ds+c∥zh∥L2(Ω)

∫ tn

tn−1

∥evh∥L2(Ω)ds

+ C∞,a,b∥zh∥L2(Ω)

∫ tn

tn−1

(
∥euh∥L2(Ω) + ∥evh∥L2(Ω) + ∥eup∥L2(Ω) + ∥evp∥L2(Ω)

)
ds

}
,

where C∞,a,b = bC∞,a. Setting now zh = evh(t) and integrating with respect to
time we easily deduce,

∫ tn

tn−1

∥evh∥2L2(Ω)dt ≤ Ckτn

{
∥en−1

vh−∥
2
L2(Ω) + d2∥∇evh∥2L2[tn−1,tn;H1(Ω)](35)

+ (C∞,a,b + c)
(
∥evh∥2L2[tn−1,tn;L2(Ω)] + ∥euh∥2L2[tn−1,tn;L2(Ω)]

)
+ C∞,a,b

(
∥eup∥2L2[tn−1,tn;L2(Ω)] + ∥evp∥2L2[tn−1,tn;L2(Ω)]

)}
.

Adding (34) and (35), and for Ck(C∞,a,b + c)τn ≤ 1/4, CkC∞,aτn ≤ 1/2 (note that
Ck might be different in different occurrences), we hide the terms ∥euh∥2L2[tn−1,tn;L2(Ω)]

and ∥evh∥2L2[tn−1,tn;L2(Ω)] at the left hand side to obtain,

∫ tn

tn−1

(
∥euh∥2L2(Ω) + ∥evh∥2L2(Ω)

)
dt ≤ CCkτn

{
∥en−1

uh−∥
2
L2(Ω) + ∥en−1

vh−∥
2
L2(Ω)(36)

+ (d1 + C
1/2
st,2)∥euh∥2L2[tn−1,tn;H1(Ω)] + d2∥evh∥2L2[tn−1,tn;H1(Ω)]

+max{C∞,a, C∞,a,b}
(
∥eup∥2L2[tn−1,tn;L2(Ω)] + ∥evp∥2L2[tn−1,tn;L2(Ω)]

)
+ C

1/2
st,2∥eup∥2L2[tn−1,tn;H1(Ω)]

}
.
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Replacing (36) into Proposition 4.3, we finally obtain,

1

2
∥enuh−∥2L2(Ω) +

1

2
∥[euh]n−1∥2L2(Ω) + d1

∫ tn

tn−1

∥euh∥2H1(Ω)ds

+
1

2
∥envh−∥2L2(Ω) +

1

2
∥[evh]n−1∥2L2(Ω) + d2

∫ tn

tn−1

∥evh∥2H1(Ω)ds+
c

2

∫ tn

tn−1

∥evh∥2L2(Ω)ds

≤
(
1

2
+ CkC̃τn

)(
∥en−1

uh−∥
2
L2(Ω) +

1

2
∥en−1

vh−∥
2
L2(Ω)

)
+ CCkC̃(d1 + C

1/2
st,2)τn

∫ tn

tn−1

∥euh∥2H1(Ω) + CCkC̃d2τn

∫ tn

tn−1

∥evh∥2H1(Ω)ds

+ CkC̃(1 + max{C∞,a,b, C∞,a}τn)
∫ tn

tn−1

(
∥evp∥2L2(Ω) + ∥eup∥2L2(Ω)

)
ds

+ CkC̃(1 + C
1/2
st,2τn)

∫ tn

tn−1

(
∥evp∥2H1(Ω) + ∥eup∥2H1(Ω)

)
ds.

Choosing τn such that CCkC̃(d1+C
1/2
st,2)τn ≤ d1

2 , CCkC̃d2τn ≤ d2

2 and CkC̃τn < 1,
we obtain the desired estimate using standard algebra. �
Remark 4.5. Let us briefly consider the case of the functional response of Holling
type III. Then, we only need to prove an analog of (28) for the case when h(au) =
au2

1+au2 . For this purpose, we simply observe that

∣∣∣vhh(auh)− vh(au)
∣∣∣ = ∣∣∣ avhu

2
h

(1 + au2h)
− avu2

1 + au2

∣∣∣(37)

≤
a
∣∣∣vhu2h − vu2

∣∣∣
(1 + au2h)(1 + au2)

+
a2
∣∣∣vhu2hu2 − vu2u2h

∣∣∣
(1 + au2h)(1 + au2)

≤ a

∣∣vhu2h − vu2h + vu2h − vu2
∣∣

(1 + au2h)(1 + au2)
+ a2

|vh − v|u2hu2

(1 + au2h)(1 + au2)

≤ a
u2h
∣∣vh − v

∣∣
(1 + au2h)(1 + au2)

+ a
|v||uh − u|(|uh|+ |u|)
(1 + au2h)(1 + au2)

+ a2
|vh − v|u2hu2

(1 + au2h)(1 + au2)

≤ 2|v − vh|+
a1/2|v|

4
|uh − u|.

For the first term we have used that
au2

h

(1+a2
h)

≤ 1 and 1
(1+au2) ≤ 1, while for the

second one
√
a|uh|

(1+auh
2 )(1+au2

h)
≤ 1

2 , and
√
a|u|

1+au2 ≤ 1
2 . Finally for the third term term we

have that
(au2

h)(au
2)

(1+au2
h)(1+au2)

≤ 1. Hence, the remaing of the proofs of Proposition 4.3

and Proposition 4.4 remain the same upon using different algebraic constants C.

4.3. The symmetric estimate and rates of convergence. We close this sec-
tion by stating the main result.

Theorem 4.6. Let the assumptions of Theorem 3.1 and Propositions 4.3 and 4.4
hold and let P loc

h defined as in Defintion 4.1. Then, there exists a constant D̃ such
that

∥u− uh∥W (0,T ) + ∥v − vh∥W (0,T ) ≤ D̃
(
∥u− P loc

h u∥W (0,T ) + ∥v − P loc
h ∥W (0,T )

+ ∥u0 − Phu0∥L2(Ω) + ∥v0 − Phv0∥L2(Ω)

)
.
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If in addition u, v ∈∈ L2[0, T ;H l+1(Ω)] ∩ Hk+1[0, T ;L2(Ω)] there exists constant

D̃ ≥ 0 such that

∥u− uh∥W (0,T ) + ∥v − vh∥W (0,T ) ≤ D̃
(
hl +

τk+1

h

)
.

If in addition u, v ∈∈ L2[0, T ;H l+1(Ω)] ∩Hk+1[0, T ;H1(Ω)] then there exists con-

stant D̃ such that

∥u− uh∥W (0,T ) + ∥v − vh∥W (0,T ) ≤ D̃
(
hl + τk+1

)
.

The constant D̃ depends upon the constant (
C

1/2
st,2

d1
+ 1)C̃eCkT C̃, where C̃ is defined

in Proposition 4.4, Cst,2 is the stability constant (11) of Theorem 3.1 and it is
independent of τ, h.

Proof. First note that Proposition 4.4 implies an estimate at arbitrary time points.
Indeed, from (36) and the classical inverse estimate - in time applied to euh and
evh repsectively, we obtain,

∥euh∥2L∞[tn−1,tn;L2(Ω) + ∥evh∥2L∞[tn−1,tn;L2(Ω)]

≤ Ck

τn

(
∥euh∥2L2[tn−1,tn;L2(Ω)] + ∥evh∥2L2[tn−1,tn;L2(Ω)]

)
≤ CCk

{
∥en−1

uh−∥
2
L2(Ω) + ∥en−1

vh−∥
2
L2(Ω)

+ (C
1/2
st,2 + d1)

∫ tn

tn−1

∥euh∥2H1(Ω)ds+ d2

∫ tn

tn−1

∥evh∥2H1(Ω)ds

+ C
1/2
st,2

∫ tn

tn−1

∥eup∥2H1(Ω)ds+max{C∞,a, C∞,a,b}
∫ tn

tn−1

∥eup∥2L2(Ω) + ∥evp∥2L2(Ω)ds

}
.

Using now Proposition 4.4, the above estimate implies that

∥euh∥2L∞[tn−1,tn;L2(Ω)] + ∥evh∥2L∞[tn−1,tn;L2(Ω)](38)

≤ (
C

1/2
st,2

d1
+ 1)C̃eCkC̃

{(
∥evp∥2L2[0,T ;H1(Ω)] + ∥eup∥2L2[0,T ;H1(Ω)]

)}
.

The first estimate now follows from Proposition 4.4, inequality (38) and triangle
inequality after splitting eu = euh+eup, ev = evh+evp and substituting the bounds
of eup, evp by (24). The second and the third estimate follow by Lemma 4.2. �

5. Conclusion

In this work we have studied high order schemes for the predator-prey system
based on a discontinuous Galerkin approach in time combined with standard finite
elements for the spatial discretization. After proving the main stability estimate
in the natural energy norm, under minimal regularity assumptions on the given
data, we were able to obtain an a-priori error estimate of almost symmetric type
that can be viewed as the Céa Lemma’s analogue. The estimate is applicable when
high order discretizations both in space and time are used and it is derived without
making any assumption regarding point-wise discrete stability estimates on the
fully-discrete solutions. Future work will include extensive testing of high order
schemes under various choices of the physical parameters involved.
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