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Abstract. A discontinuous Galerkin finite element method for an optimal control problem re-
lated to semilinear parabolic PDE’s is examined. The schemes under consideration are discontinuous
in time but conforming in space. Convergence of discrete schemes of arbitrary order is proven. In
addition, the convergence of discontinuous Galerkin approximations of the associated optimality sys-
tem to the solutions of the continuous optimality system is shown. The proof is based on stability
estimates at arbitrary time points under minimal regularity assumptions, and a discrete compactness
argument for discontinuous Galerkin schemes (see Walkington [42, Sections 3,4]).

1. Introduction. The optimal control problem considered here, is associated to
the minimization of the tracking functional

J(y, g) =
1
2

∫ T

0

‖y − U‖2L2(Ω)dt +
α

2

∫ T

0

‖g‖2L2(Ω)dt (1.1)

subject to the constraints,




yt − div[A(x)∇y] + φ(y) = f + g in (0, T )× Ω
y = 0 on (0, T )× Γ

y(0, x) = y0 in Ω.
(1.2)

Here, Ω denotes a bounded domain in R2, with Lipschitz boundary Γ, y0, f denote
the initial data and the forcing term respectively, g denotes the control variable of
distributed type, U is the target function, and α is a penalty parameter. The nonlinear
mapping φ satisfies certain continuity and monotonicity properties, and A(x) ∈ C1(Ω̄)
is a symmetric matrix valued function that is uniformly positive definite. The physical
meaning of the optimization problem is to seek states y and controls g such that y is
as close as possible to the given target U .

It is worth noting that several problems arise in the analysis of numerical algorithms
of optimal control problems constrained to evolutionary PDE’s. Solutions of such
optimal control problems as well as of their corresponding optimality systems (first
order necessary conditions), satisfy low regularity properties. Furthermore, the asso-
ciated optimality system consists of a state (forward in time) equation and an adjoint
(backwards in time) equation which are coupled through an optimality condition,
and nonlinear terms (see, e.g [18, 21, 29, 36]). Hence, techniques developed for un-
controlled parabolic problems are not easily applicable. The size of the parameter
α also plays an important role in many interesting applications, since it effectively
determines the size of the control g, and hence the speed of convergence (see also [21]
for relevant discussions).
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The scope of this work is the analysis of classical discontinuous Galerkin (DG) schemes
which are discontinuous in time and conforming in space. First, it is shown that DG
schemes of arbitrary order converge to the optimal solution for all α > 0, for any data
f ∈ L2[0, T ;H−1(Ω)], y0 ∈ L2(Ω) satisfying minimal regularity assumptions, and for
any target U ∈ L2[0, T ; L2(Ω)]. The key ingredient of the proof is the application
of a recently developed discrete compactness property (see Walkington [42, Theorem
3.1]) for DG schemes of arbitrary order, combined with stability estimates at arbitrary
time-points. The dependence upon α of various constants appearing in these estimates
is quantified, and the technique presented here, allows us to avoid any exponential
dependence. In addition, it is shown that the DG approximations of the corresponding
optimality system converge to the solution of the continuous optimality system under
minimal regularity assumptions on data, f, y0, target U , and for any choice of α > 0.

The motivation for using a DG approach stems from its performance in a vast area
of problems where the given data satisfy low regularity properties, such as optimal
control problems. The main difficulty in handling high-order discrete schemes within
the framework of the DG methodology for nonlinear evolutionary PDE’s, stems from
the lack of control on the discrete time-derivative. Recall that in the continuous case,
standard regularity theory implies that under certain assumptions on φ, the weak
solution y of (1.2) belongs to W (0, T ) ≡ L2[0, T ; H1

0 (Ω)] ∩ H1[0, T ;H−1(Ω)] when
y0 ∈ L2(Ω) and f ∈ L2[0, T ; H−1(Ω)]. Therefore, the nonlinear terms can be treated
by using the classical Aubin-Lions compactness Lemma (see [38, 45]) which allows
to establish strong convergence in an appropriate norm. In the discrete case, the
presence of discontinuities imply that discrete time derivative is not integrable and
hence this line of argument fails. For the uncontrolled case and for low order DG
schemes, i.e. for piecewise constants or piecewise linear approximations in time, one
may circumvent this difficulty by deriving estimates at arbitrary times via estimates at
the partition points and at the energy norm, provided that the solution is sufficiently
smooth. However this technique is not easily applicable in the optimal control setting
due to the lack of regularity, and the nonlinear coupling of the forward / backward in
time optimality system.

In this work, we present an analysis of DG schemes of arbitrary order which is suitable
for optimal control problems. A synopsis of our work and related results follows.

1.1. Synopsis. After introducing the necessary notation in section 2, we define
the continuous optimal control problem and its corresponding optimality system. In
section 3, a key stability estimate at arbitrary time points for the solution of the
discrete optimal control problem is obtained. The proof is based on the construction
of a suitable polynomial approximation of discrete characteristic functions (developed
in [5]) combined with a “boot-strap” argument. A key feature of our stability esti-
mates is that the time-step τ can be chosen independent of the size of the spacial
parameter h. These estimates together with the discrete compactness argument of
[42] are used to show the existence of the corresponding discrete optimal solution and
to prove convergence of discrete schemes of arbitrary order. In section 4, using a
“boot-strap” argument combined with approximation properties of a suitable poly-
nomial interpolant, we establish stability estimates on arbitrary time-points for the
adjoint variable. Then, using once more the discrete compactness Theorem of [42]
we show convergence of the DG approximations of the associated discrete optimality
system to the continuous optimality system. To our best knowledge the proposed
technique and results presented here are new.

2



1.2. Related results. Several problems with distributed controls have been
studied before analytically in [18, 21, 29, 30, 36] (see also references within). Issues
related to the analysis of numerical algorithms for optimal control problems con-
strained to time-dependent problems were studied in [2, 8, 10, 17, 19, 23, 24, 25, 26,
27, 28, 33, 37, 40, 41, 43, 44]. In the recent works of [4, 31, 32, 34, 35] discontinuous
Galerkin schemes were analyzed for distributed optimal control problems constrained
to linear parabolic PDE’s. In particular, a posteriori estimates for DG shemes were
studied in [31, 32] for distributed control problems related to linear parabolic PDE’s,
while in [34] an adaptive space-time finite element algorithm is analyzed. A priori
error estimates for an optimal control problem of distributed type, having states con-
strained to the heat equation are presented at the energy norm in the recent work of
[35]. Finally, in [4] a priori error estimates for DG schemes for the tracking problem re-
lated to linear parabolic PDE’s with non-selfadjoint elliptic part with time dependent
coefficients are established.

The literature related to DG schemes for the solution of parabolic equations (without
applying controls) is quite extensive (see e.g. [39] and references therein). The relation
of the DG method to adaptive techniques was studied in [11, 12, 39]. Results related to
finite element approximation of semi-linear and general nonlinear parabolic problems
are presented in [1, 15, 13, 14].

2. Preliminaries.

2.1. Notation. We use standard notation for Hilbert spaces L2(Ω), Hs(Ω),
0 < s ∈ R, H1

0 (Ω) ≡ {v ∈ H1(Ω) : v|Γ = 0}, related norms and inner products (see e.g.
[16, Chapter 5]). We denote by H−1(Ω) the dual of H1

0 (Ω) and the corresponding du-
ality pairing by 〈., .〉. For any Banach space X, we denote by Lp[0, T ; X], L∞[0, T ;X]
the time-space spaces, endowed with norms,

‖v‖Lp[0,T ;X] =
( ∫ T

0

‖v‖p
Xdt

) 1
p

, ‖v‖L∞[0,T ;X] = esssupt∈[0,T ] ‖v‖X .

The set of all continuous functions v : [0, T ] → X, is denoted by C[0, T ; X], with norm
defined by ‖v‖C[0,T ;X] = maxt∈[0,T ] ‖v(t)‖X . Finally, we denote by H1[0, T ;X],

‖v‖H1[0,T ;X] =
( ∫ T

0

‖v‖2Xdt
) 1

2
+

( ∫ T

0

‖vt‖2Xdt
) 1

2
,

and the solution space by W (0, T ) = L2[0, T ; H1
0 (Ω)] ∩H1[0, T ; H−1(Ω)] with norm

‖v‖2W (0,T ) = ‖v‖2L2[0,T ;H1(Ω)] + ‖vt‖2L2[0,T ;H−1(Ω)].

The bilinear form associated to our operator, is defined by

a(y, v) =
∫

Ω

A(x)∇y∇vdx ∀ y, v ∈ H1(Ω),

and satisfies the standard coercivity and continuity conditions

a(y, y) ≥ η‖y‖2H1(Ω), a(y, v) ≤ Cc‖y‖H1(Ω)‖v‖H1(Ω) ∀ y, v ∈ H1
0 (Ω).

A weak formulation of (1.2) is then defined as follows: we seek y ∈ W (0, T ) such that
for a.e. t ∈ (0, T ],

{ 〈yt, v〉+ a(y, v) + 〈φ(y), v〉 = 〈f, v〉+ (g, v)
(y(0), v) = (y0, v), (2.1)
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for all v ∈ H1
0 (Ω). A weak formulation suitable for the DG schemes considered here,

is to seek y ∈ W (0, T ) such that

(y(T ), v(T )) +
∫ T

0

(
− 〈y, vt〉+ a(y, v) + 〈φ(y), v〉

)
dt (2.2)

= (y0, v(0)) +
∫ T

0

(
〈f, v〉+ (g, v)

)
dt,

for all v ∈ W (0, T ). The data satisfy the minimal regularity assumptions which
guarantee the existence of a weak solution y ∈ W (0, T ), i.e.,

f ∈ L2[0, T ;H−1(Ω)], y0 ∈ L2(Ω)

while the distributed control will be sought in the space

g ∈ L2[0, T ;L2(Ω)].

The above choice of the control space significantly simplifies the implementation of the
finite element algorithm, since it leads to an algebraic optimality condition. Hence,
it avoids the use of spaces of fractional order, or the solution of an extra PDE which
typically occur when other norms of g are included in the functional (see e.g. [21]).

For the subsequent analysis and it suffices that the target U ∈ L2[0, T ;L2(Ω)]. How-
ever in most cases U is actually smoother, since the target typically corresponds to
the solution a parabolic PDE, and hence it can be assumed that U ∈ W (0, T ). The
semi-linear term is required to fulfill the following structural assumptions.

Assumption 2.1. The semi-linear term φ ∈ C1(R;R), satisfy the following mono-
tonicity and growth properties. There exists C > 0, such that

φ′(s) ≥ 0,
∣∣φ(s)

∣∣ ≤ C|s|p,
∣∣φ′(s)

∣∣ ≤ C
∣∣s

∣∣p−1
, sφ(s) ≥ C

∣∣s
∣∣p+1

, for 1 < p < 3.

We close this preliminary section, by recalling generalized Hölder’s and Young’s
inequalities and the Gagliardo-Nirenberg interpolation inequality (see e.g. [3, 16, 45])
for two dimensional domains, which will be used subsequently.
Generalized Hölder’s Inequality: For any measurable set E, of any dimension
and for (1/s1) + (1/s2) + (1/s3) = 1, si ≥ 1,

∫

E

f1f2f3dE ≤ ‖f1‖Ls1 (E)‖f2‖Ls2 (E)‖f3‖Ls3 (E).

Young’s Inequality: For any a, b ≥ 0, δ > 0, and s1, s2 > 1

ab ≤ δas1 + C(δ)bs2 , with (1/s1) + (1/s2) = 1.

Gagliardo-Nirenberg Inequality: Let 1 ≤ q ≤ p < ∞. Then, for s = 1− (q/p),

‖u‖Lp(Ω) ≤ C‖u‖1−s
Lq(Ω)‖u‖s

H1(Ω), ∀u ∈ H1(Ω).

Next, we formulate the optimal control problem and state results regarding the exis-
tence of optimal solution(s) and its corresponding optimality system.
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2.2. The continuous optimal control problem. First, we quote a result
regarding the solvability of weak problem (2.2) on the natural energy space under
minimal regularity assumptions.

Theorem 2.2. Let f ∈ L2[0, T ; H−1(Ω)], y0 ∈ L2(Ω), g ∈ L2[0, T ; L2(Ω)]. Then,
there exists a unique solution y ∈ W (0, T ) which satisfies the following energy estimate

‖y‖W (0,T ) ≤ C
(
‖f‖L2[0,T ;H−1(Ω)] + ‖y0‖L2(Ω) + ‖g‖L2[0,T ;L2(Ω)]

)
.

Here C > 0 depends on the continuity and coercivity constants Cc, η and Ω.

Proof. The proof is standard (see e.g. [8, 16, 45]).

Next, we state the definition of the set of admissible solutions Aad and of the optimal
control problem respectively.

Definition 2.3. Let f ∈ L2[0, T ;H−1(Ω)], y0 ∈ L2(Ω), and U ∈ L2[0, T ; L2(Ω)].

1. The pair (y, g) is said to be an admissible element (pair) if y ∈ W (0, T ),
g ∈ L2[0, T ; L2(Ω)] satisfy (2.2). (Note that J(y, g) < ∞, due to Theorem
2.2).

2. The pair (y, g) ∈ Aad is said to be an optimal solution if J(y, g) ≤ J(w, h)
∀ (w, h) ∈ Aad, when ‖y − w‖W (0,T ) + ‖g − h‖L2[0,T ;L2(Ω)] ≤ δ for δ > 0
appropriately chosen.

Below, we state the main result concerning the existence of an optimal solution for
the minimization of the functional (1.1).

Theorem 2.4. Suppose y0 ∈ L2(Ω), f ∈ L2[0, T ; H−1(Ω)], U ∈ L2[0, T ; L2(Ω)].
Then, the optimal control problem has solution (y, g) ∈ W (0, T )× L2[0, T ; L2(Ω)].

Proof. Similar to [8, 18, 29].

Remark 2.5. The solution of optimal control problems having states constrained to
nonlinear parabolic PDE’s is in general not unique. However, note that if f, g, U ∈
L2[0, T ; L2(Ω)], y0 ∈ H1

0 (Ω), and φ is a continuous concave increasing function, with
sφ(s) ≥ 0 then it is proved that there exists a unique optimal control g (see e.g. [30,
Chapter 3, pp 43]). In addition, if φ′ is continuous, then the corresponding optimality
system admits a unique solution. For more results regarding existence and uniqueness
we refer the reader to [18].

2.3. The continuous optimality system. Suppose now that (y, g) ∈ Aad

is an optimal solution in the sense of Definition 2.3. Then, an optimality system
corresponding to the optimal control problem of Definition 2.3 can be easily derived
based on well known Lagrange multiplier techniques (see e.g. [8, 18, 29, 36]). In
particular, given f, y0, U satisfying the assumptions of Definition 2.3, we seek a state
(primal) variable y ∈ W (0, T ) and an adjoint (dual) variable µ ∈ W (0, T ) such that
for a.e. t ∈ (0, T ],





〈yt, v〉+ a(y, v) + 〈φ(y), v〉 = 〈f, v〉+ (g, v) in (0, T ]× Ω
(y(0), v) = (y0, v) in Ω

−〈µt, v〉+ a(µ, v) + 〈φ′(y)µ, v〉 = (y − U, v) in [0, T )× Ω
µ(T ) = 0 in Ω

αg + µ = 0 in [0, T ]× Ω,

for all v ∈ H1
0 (Ω). Using the optimality condition, we may replace g = − 1

αµ from the
forward in time equation which leads to the following weak formulation which is suit-
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able for DG approximations. Given f, y0, U satisfying the assumptions of Definition
2.3, we seek y, µ ∈ W (0, T ) such that





(y(T ), v(T )) +
∫ T

0

(
− 〈y, vt〉+ a(y, v) + 〈φ(y), v〉

)
dt

= (y0, v(0)) +
∫ T

0

(
〈f, v〉 − (1/α)(µ, v)

)
dt

y(0, x) = y0,

(2.3)





∫ T

0

(
〈µ, vt〉+ a(µ, v) + 〈φ′(y)µ, v〉

)
dt = −(µ(0), v(0)) +

∫ T

0

(y − U, v)dt

µ(T, x) = 0,
(2.4)

for all v ∈ W (0, T ).

Remark 2.6. Note that due to optimality condition we obtain that the control g
is actually smoother, i.e., g = −(1/α)µ ∈ W (0, T ). The later can be used to ob-
tain improved regularity results for the state and adjoint variables via a “boot-strap”
argument, when additional regularity on U, f, y0 is available.

3. The discrete optimal control problem.

3.1. The semi-discrete (in time) optimal control problem. We first state
the definition of the semi-discrete (in time) optimal control problem. We will use the
DG method for the discretization of the state equation (2.2) in time. Approximations
will be constructed on a partition 0 = t0 < t1 < . . . < tN = T of [0, T ]. On each
interval of the form (tn−1, tn], we impose that the semi-discrete (in time) associated
functions are polynomials of degree k, i.e., they belong to the space

U = {y ∈ L2[0, T ; H1
0 (Ω)] : y|(tn−1,tn] ∈ Pk[tn−1, tn; H1

0 (Ω)]}.

Here Pk[tn−1, tn;H1
0 (Ω)] denotes the space of polynomials of degree k or less having

values in H1
0 (Ω). The admissible pairs of the semi-discrete (in time) approximate

problem can be defined analogously to the continuous case. Therefore, the semi-
discrete (in time) optimal control problem is to seek state y ∈ U , and control g ∈
L2[0, T ; L2(Ω)] such that the functional J(y, g) is minimized subject to the constraints,

(yn, vn) +
∫ tn

tn−1

(
− 〈y, vt〉+ a(y, v) + 〈φ(y), v〉

)
dt (3.1)

= (yn−1, vn−1
+ ) +

∫ tn

tn−1

(
〈f, v〉+ (g, v)

)
dt ∀ v ∈ Pk[tn−1, tn;H1

0 (Ω)],

for n = 1, ..., N , and y0 ≡ y(0). Here we assume that the functions of U are left contin-
uous with right limits and we write yn for y(tn) = y(tn−), yn

+ for y(tn+) while the jump
term is denoted by [yn] = yn

+ − yn. A few comments regarding DG approximations
follow.

Remark 3.1. Note that the continuous weak solution y satisfies an analogous to
(3.1) weak form, when v ∈ Pk[tn−1, tn; H1

0 (Ω)] are being used as test functions into
(2.2). The control g needs only to satisfy g ∈ L2[0, T ; L2(Ω)], i.e. it will be sought
in the continuous space while the semi-discrete (in time) state variable satisfies (3.1).
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However, due to the algebraic structure of optimality condition αg + µ = 0, the semi
discrete (in time) approximation of g, can be implicitly defined and computed as the
DG approximation of the adjoint variable (see also [35]).

Remark 3.2. Recall, that for the uncontrolled problem the existence of DG ap-
proximations can be easily proved when k = 0, 1 (see e.g. [15, 39]), for linear and
semi-linear problems. For k > 1, existence and uniqueness can be proved under lo-
cal Lipschitz continuity properties for more general nonlinear problems by using fixed
point arguments (see, e.g. [1] and references within).

The analysis of the semi-discrete (in time) optimal control problem is similar to the
fully-discrete case, if we restrict ourselves to conforming finite element subspaces, i.e.,
for Uh ⊂ H1

0 (Ω). The analysis will be presented for the fully-discrete case.

3.2. The fully-discrete optimal control problem. The fully-discrete ap-
proximations are constructed on a partition 0 = t0 < t1 < . . . < tN = T of [0, T ].
On each interval of the form (tn−1, tn] a subspace Uh of H1

0 (Ω) is specified, and it is
assumed that Uh satisfies the classical approximation theory results (see e.g. [9]). We
seek approximate solutions who belong to the space

Uh = {yh ∈ L2[0, T ;H1
0 (Ω)] : yh|(tn−1,tn] ∈ Pk[tn−1, tn; Uh]}.

Here Pk[tn−1, tn; Uh] denotes the space of polynomials of degree k or less having
values in Uh. The discretization of the control can be effectively achieved through the
discretization of the adjoint variable.

Similar to the semi-discrete (in time) case, by convention, the functions of Uh are left
continuous with right limits and hence we will subsequently write (abusing the nota-
tion) yn for yh(tn) = yh(tn−), and yn

+ for yh(tn+). The jump at tn will be occasionally
denoted by [yn] = yn

+ − yn.

The discrete optimal control problem is now defined as follows. Under the assumptions
of Definition 2.3, we seek state yh ∈ Uh, and control gh ∈ L2[0, T ;Uh] such that the
functional J(yh, gh) is minimized subject to the constraints:

(yn, vn) +
∫ tn

tn−1

(
− 〈yh, vht〉+ a(yh, vh) + (φ(yh), vh)

)
dt (3.2)

= (yn−1, vn−1
+ ) +

∫ tn

tn−1

(
〈f, vh〉+ (gh, vh)

)
dt ∀ vh ∈ Pk[tn−1, tn;Uh],

for n = 1, ..., N . Here y0 denotes the given initial approximation of y(0). Similar, to
the semi-discrete case, we note that gh needs only to satisfy L2[0, T ; L2(Ω)] regularity.
However, motivated by the optimality condition, we discretize the control by using
the same discrete space Uh with the discrete state variable yh.

The proof of existence of optimal solution of the discrete problem and its correspond-
ing discrete optimality system of equations (first order necessary conditions) require
stability estimates for the solution of (3.2).

The key ingredient is a stability result at interior time points when k is arbitrary.
For the later, we’ll use a suitable polynomial approximation of discrete characteristic
functions (see e.g. [5]). The main advantage of this approach, within the context of
optimal control problems, is that the proof does not need any additional regularity,
apart from the one needed to guarantee the existence of a weak solution. In particular,
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we do not assume that ut ∈ L2[0, T ; L2(Ω)] which is frequently used in the literature
for DG approximations of parabolic PDE’s (even without controls), and it is not
suitable in the current optimal control setting.

3.3. Quotation of results related to the discrete characteristic function.
Note that the derivation of stability estimates at arbitrary times t ∈ [tn−1, tn) can be
facilitated by substituting vh = χ[tn−1,t)yh into the discrete equations. However, this
choice is not available since χ[tn−1,t)yh is not a member of Uh, unless t coincides with
a partition point. Therefore approximations of such functions need to be constructed.
This is done in [5, Section 2.3]. For completeness we state the main results. The
approximations are constructed on the interval [0, τ), where τ = tn − tn−1 and they
are invariant under translations.

Let t ∈ (0, τ). We consider polynomials s ∈ Pk[0, τ ], and we denote the discrete
approximation of χ[0,t)s by the polynomial ŝ ∈ {ŝ ∈ Pk(0, τ), ŝ(0) = s(0)} which
satisfies

∫ τ

0

ŝq =
∫ t

0

sq ∀ q ∈ Pk−1[0, τ ].

The motivation for the above construction stems from the elementary observation
that for q = s′ we obtain

∫ τ

0
s′ŝ =

∫ t

0
ss′ = 1

2 (s2(t)− s2(0)).

The construction can be extended to approximations of χ[0,t)v for v ∈ Pk[0, τ ; V ]
where V is a linear space. The discrete approximation of χ[0,t)v in Pk[0, τ ;V ] is
defined by v̂ =

∑k
i=0 ŝi(t)vi and if V is a semi-inner product space then,

v̂(0) = v(0), and
∫ τ

0

(v̂, w)V =
∫ t

0

(v, w)V ∀w ∈ Pk−1[0, τ ; V ].

Finally, we quote the main result from [5]. In the rest of this paper, we denote by Ck,
constants depending only on k.

Proposition 3.3. Suppose that V is a (semi) inner product space. Then the mapping∑k
i=0 si(t)vi →

∑k
i=0 ŝi(t)vi on Pk[0, τ ;V ] is continuous in ‖.‖L2[0,τ ;V ]. In particular,

‖v̂‖L2[0,τ ;V ] ≤ Ck‖v‖L2[0,τ ;V ], ‖v̂ − χ[0,t)v‖L2[0,τ ;V ] ≤ Ck‖v‖L2[0,τ ;V ]

where Ck is a constant depending on k.

Proof. See [5, Lemma 2.4].

Remark 3.4. Combining the above estimate with standard scaling arguments and the
finite dimensionality of Pk[0, τ ] we also obtain an estimate of the form

‖v̂‖L∞[0,τ ;L2(Ω)] ≤ Ck‖v‖L∞[0,τ,L2(Ω)].

For various extensions of these results we refer the reader to [6].

Remark 3.5. The estimates of Proposition 3.3 hold when V = H1
0 (Ω) as well as

when V is replaced by conforming finite element subspaces Uh ⊂ H1
0 (Ω).

3.4. Stability estimates. Now we are ready to prove stability estimates for
the discrete optimal control problem under minimal regularity assumptions, which
are needed in order to obtain the existence of a discrete optimal solution and its
convergence to the optimal solution.
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Lemma 3.6. Suppose that y0 ∈ L2(Ω), U ∈ L2[0, T ; L2(Ω)], f ∈ L2[0, T ; H−1(Ω)]
are given functions, and let φ satisfy assumption 2.1. If (yh, gh) ∈ Uh × L2[0, T ; Uh]
denotes a solution of the discrete optimal control problem, then

∫ T

0

‖yh − U‖2L2(Ω)dt + (α/2)
∫ T

0

‖gh‖2L2(Ω)dt

≤ C
(
‖y0‖2L2(Ω) + (1/η)

∫ T

0

‖f‖2H−1(Ω)dt +
∫ T

0

‖U‖2L2(Ω)dt
)
≡ Cst

where C is a constant depending only on Ω. In addition, for all n = 1, ..., N

‖yn‖2L2(Ω) +
n−1∑

i=0

‖[yi]‖2L2(Ω) +
∫ tn

0

(
η‖yh‖2H1(Ω) + ‖yh‖p+1

Lp+1(Ω)

)
dt ≤ Dyst,

with Dyst ≡ Cst max{1, 1/α}. Let τ ≡ maxi=1,..,n τi, with τi = ti − ti−1. If τ ≤
min{(1/8D

(p−1)/2
yst Ck

)2/(3−p)
, (α/8)}, then

‖yh‖2L∞[0,T ;L2(Ω)] ≤ CDyst

where C depends on (Cc/η), Ck and Ω but not on α, τ, h. Here Cc, η denote the
continuity and coercivity constants of the bilinear form a(., .).

Proof. For the first estimate note that (ỹh, 0) is an admissible pair for the discrete
problem, and hence J(yh, gh) ≤ J(ỹh, 0) ≤ (1/2)

∫ T

0
‖ỹh−U‖2L2(Ω) ≤ Cst, where Cst is

a constant independent of α. The estimate on ‖ỹh‖L2[0,T ;L2(Ω)] can be easily derived
(see e.g. [5, Section 2]) since it corresponds to the stability estimate without control.

Setting vh = yh into (3.2) and using the monotonicity of φ and Young’s inequalities,
we easily derive

(1/2)‖yn‖2L2(Ω) + (1/2)‖[yn−1]‖2L2(Ω) − (1/2)‖yn−1‖2L2(Ω) (3.3)

+
∫ tn

tn−1

(
η‖yh‖2H1(Ω) + ‖yh‖p+1

Lp+1(Ω)

)
dt

≤ (C/η)
∫ tn

tn−1
‖f‖2H−1(Ω)dt + α

∫ tn

tn−1
‖gh‖2L2(Ω)dt + (C/α)

∫ tn

tn−1
‖yh‖2L2(Ω)dt.

Summing the resulting inequalities from i = 1 to n, and dropping positive terms
on the left we obtain the estimate at partition points by using the previous bounds
on α

∫ T

0
‖gh‖2L2(Ω)dt,

∫ T

0
‖yh‖2L2(Ω)dt. The estimate at the energy norm follows upon

summation from 1 to N . It remains to obtain a bound at arbitrary time-points.
To achieve this, we will use the approximation of the discrete characteristic. Fix
t ∈ [tn−1, tn] and set vh = ŷh into (3.2), where ŷh denotes the approximation of
χ[tn−1,t)yh defined as in Proposition 3.3. Then, using the definition of ŷh, we obtain,

(1/2)‖yh(t)‖2L2(Ω) + (1/2)‖[yn−1]‖2L2(Ω) − (1/2)‖yn−1‖2L2(Ω) +
∫ tn

tn−1
〈φ(yh), ŷh〉dt

≤
∫ tn

tn−1
|a(yh, ŷh)|dt +

∫ tn

tn−1
|〈f, ŷh〉|dt +

∫ tn

tn−1
|(gh, ŷh)|dt.
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Using Proposition 3.3, we may bound ŷh in terms of yh in various norms. In particular,
using Young’s inequalities with appropriately chosen δ > 0,

∫ tn

tn−1
|a(yh, ŷh)|dt ≤ CkCc

∫ tn

tn−1
‖yh‖2H1(Ω)dt

∫ tn

tn−1
|〈f, ŷh〉|dt ≤ (Ck/η)

∫ tn

tn−1
‖f‖2H−1(Ω)dt + η

∫ tn

tn−1
‖yh‖2H1(Ω)dt

∫ tn

tn−1
|(gh, ŷh)|dt ≤ α

∫ tn

tn−1
‖gh‖2L2(Ω)dt + (Ck/α)

∫ tn

tn−1
‖yh‖2L2(Ω)dt.

Therefore, collecting the above inequalities and using standard algebra, we obtain

(1/2)‖yh(t)‖2L2(Ω) + (1/2)‖[yn−1]‖2L2(Ω) − (1/2)‖yn−1‖2L2(Ω) +
∫ tn

tn−1
〈φ(yh), ŷh〉dt

≤ Ck

∫ tn

tn−1

(
‖f‖2H−1(Ω) + (Cc + η)‖yh‖2H1(Ω) + α‖gh‖2L2(Ω) + (1/α)‖yh‖2L2(Ω)

)
dt.

For the last term note that (1/α)
∫ tn

tn−1 ‖yh‖2L2(Ω)dt ≤ (τn/α)‖yh‖2L∞[tn−1,tn;L2(Ω)]. It
remains to bound the semi-linear term. For this purpose, note the growth condition
and Young’s inequality with s1 = (p + 1)/p, s2 = p + 1, imply,

∫ tn

tn−1
〈φ(yh), ŷh〉dt ≤ C

∫ tn

tn−1

∫

Ω

|yh|p|ŷh|dt

≤
∫ tn

tn−1
‖yh‖p+1

Lp+1(Ω)dt + C

∫ tn

tn−1
‖ŷh‖p+1

Lp+1(Ω)dt.

For the last term on the right hand side, the Gagliardo-Nirenberg interpolation in-
equality states that

‖ŷh‖Lp+1(Ω) ≤ C‖ŷh‖1−s
L2(Ω)‖ŷh‖s

H1(Ω),

with s = 1− (2/p + 1) = (p− 1)/(p + 1). Hence, 1− s = 2/(p + 1) and
∫ tn

tn−1
‖ŷh‖p+1

Lp+1(Ω)dt ≤ C

∫ tn

tn−1
‖ŷh‖2L2(Ω)‖ŷh‖p−1

H1(Ω)dt

≤ C‖ŷh‖2L∞[tn−1,tn;L2(Ω)]

∫ tn

tn−1
‖ŷh‖p−1

H1(Ω)dt

≤ C‖ŷh‖2L∞[tn−1,tn;L2(Ω)]

( ∫ tn

tn−1
1dt

)(3−p)/2(∫ tn

tn−1
‖ŷh‖2H1(Ω)dt

)(p−1)/2

≤ Ck‖yh‖2L∞[tn−1,tn;L2(Ω)]τ
(3−p)/2
n D

(p−1)/2
yst .

Here we have used the generalized Hölder inequality with s1 = 2/(p − 1) > 1, s2 =
2/(3− p) > 1 (recall 1 < p < 3), Proposition 3.3 to bound ŷh in terms of yh, and the
stability estimates at the energy norm. Hence, selecting t such that ‖yh(t)‖2L2(Ω) =

sups∈(tn−1,tn] ‖yh(s)‖2L2(Ω) and choosing τn > 0 in way to satisfy Ckτ
(3−p)/2
n D

(p−1)/2
yst ≤

(1/8) and (τn/α) ≤ (1/8), i.e., for τn ≤ min{(1/8D
(p−1)/2
yst Ck

)2/3−p
, (α/8)} we obtain,

(1/4)‖yh‖2L∞[tn−1,tn;L2(Ω)] ≤ ‖yn−1‖2L2(Ω)

+Ck

∫ tn

tn−1

(
‖f‖2H−1(Ω) + (Cc + η)‖yh‖2H1(Ω) + ‖yh‖p+1

Lp+1(Ω) + α‖gh‖2L2(Ω)

)
dt.
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The estimate now follows by using the previously derived estimates at the energy
norm and at partition points.

In order to handle the nonlinear terms within the DG setting some form of strong
convergence needs to be established. For the later we will employ the following com-
pactness argument of Walkington (see [42, Theorem 3.1]).

3.5. The discrete compactness Theorem. The problems considered in [42],
involve the numerical approximations of solutions u : [0, T ] → U of general evolution
equations of the form

ut + A(u) = f(u) u(0) = u0, (3.4)

where U is a Banach space and each term of the equation takes values in U∗. Here,
both A(u) = A(t, u) and f(u) = f(t, u) may depend upon t and are allowed to be
nonlinear. We assume that U ⊂ H ⊂ U∗ (with continuous embeddings) form the
standard evolution triple, i.e., the pivot space H is a Hilbert space. The numerical
schemes approximate the weak form of (3.4), i.e.,

〈ut, v〉+ a(u, v) = 〈f(u), v〉 ∀ v ∈ U, (3.5)

where a : U ×U → R is defined by a(u, v) = (A(u), v). Recall, that for each subspace
Uh ⊂ U and partition 0 = t0 < t1 < ... < tN = T of [0, T ] the DG scheme constructs
a function in Pk[tn−1, tn;Uh] on each (tn−1, tn), which satisfies for n = 1, ..., N and
for all vh ∈ Pk[tn−1, tn;Uh],

∫ tn

tn−1

(
(uht, vh) + a(uh, vh)

)
dt + (un−1

+ − un−1, vn−1
+ ) =

∫ tn

tn−1
(f(uh), vh)dt. (3.6)

Here, u0 is a given approximation of u0. Set F (u) ≡ f(u) − A(u). Then the follow-
ing theorem [42, Theorem 3.1] establishes the compactness property of the discrete
approximation.

Theorem 3.7. Let H be a Hilbert space, U be a Banach space and U ⊂ H ⊂ U∗ be
dense and compact embeddings. Fix integer k ≥ 0 and 1 ≤ p, q < ∞. Let h > 0 be the
mesh parameter, and let {ti}N

i=0 denote a uniform partition of [0, T ]. Assume that

1. uh ∈ {uh ∈ Lp[0, T ;U ] | uh|(tn−1,tn) ∈ Pk[tn−1, tn;Uh]} and on each inter-
val,

∫ tn

tn−1
(uht, vh)dt + (un−1

+ − un−1, vn−1
+ ) =

∫ tn

tn−1
(F (uh), vh)dt

holds for every vh ∈ Pk[tn−1, tn; Uh].
2. {uh}h>0 is bounded in Lp[0, T ;U ] and {‖F (uh)‖Lq [0,T ;U∗]}h>0 is also bounded.

Then,

1. If p > 1 then {uh}h>0 is compact in Lr[0, T ; H] for 1 ≤ r < 2p.
2. If 1 ≤ (1/p) + (1/q) < 2, and

∑N
i=1 ‖[uh]‖2H < C is bounded independent of

h, then {uh}h>0 is compact in Lr[0, T ;H] for 1 ≤ r < 2/((1/p) + (1/q)− 1).

Proof. See [42].
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3.6. Convergence of the discrete optimal control problem. Once, we have
shown the stability estimates in L∞[0, T ; L2(Ω)]∩L2[0, T ; H1

0 (Ω)], we may apply the
discrete compactness Theorem 3.7, to obtain the existence of an optimal discrete
solution, and its convergence to the continuous optimal solution.

Theorem 3.8. Suppose that f ∈ L2[0, T ;H−1(Ω)], y0 ∈ L2(Ω), U ∈ L2[0, T ; L2(Ω)].
Let h > 0 and a uniform partition 0 = t0 < t1 < ... < tN = T of [0, T ] fixed, with
τ = maxi=1,...,N τi, τi = ti − ti−1, satisfying the assumptions of Lemma 3.6. Then,

1. For α > 0, there exist yh ∈ Uh and gh ∈ L2[0, T ; L2(Ω)] such that the pair
(yh, gh) satisfies the discrete equation (3.2) and the functional J(yh, gh) is
minimized.

2. For α > 0, (yh, gh) converges to the solution (y, g) of the continuous optimal
control problem as h, τ → 0.

Proof. We present the proof for 3/2 ≤ p < 3. The case 1 < p ≤ 3/2, can be treated
similarly.
(1). Let h > 0 and 0 = t0 < t1, ..., tN = T be a fixed uniform partition of [0,T] with
τ, h satisfying the assumptions of Lemma 3.6. The discrete admissible set

Ad
ad ≡ {(yh, gh) ∈ Uh × L2[0, T ; Uh] such that (3.2) is satisfied}

is not empty since (ỹh, 0) belongs in it. Now let (yhm, ghm) ∈ Ad
ad be minimizing

sequence where yhm denotes the corresponding solution of (3.2) with right hand side
ghm. In fact, we may choose the minimizing sequence such that J(yhm, ghm) ≤ M ,
with M be the value of the functional for an admissible element, say (ỹh, 0). Hence,
the stability estimates (independent of h,τ) imply that (passing to a subsequence, if
necessary), as m →∞,

yhm → yh weakly in L2[0, T ; H1(Ω)], yhm → yh weakly-* in L∞[0, T ; L2(Ω)],

ghm → gh weakly in L2[0, T ; L2(Ω)].

The proof now follows by using standard arguments and the finite dimensionality of
the subspaces. We may pass to the limit to show that (yh, gh) ∈ Ad

ad satisfy the
discrete equation (3.2) (see also part (2)). The weak lower semi-continuity of the
functional finishes the proof.

(2). Recall that yh is bounded in L∞[0, T ; L2(Ω)] ∩ L2[0, T ; H1(Ω)] by constants
independent of τ, h, and similarly gh is bounded in L2[0, T ; L2(Ω)]. Hence, we may
extract subsequences (still denoted by yh, gh), converging weakly to y, g respectively
in the following sense,

yh → y weakly in L2[0, T ; H1(Ω)], yh → y weakly-* in L∞[0, T ; L2(Ω)],

gh → g weakly in L2[0, T ;L2(Ω)].

Using the discrete compactness Theorem 3.7 we will prove the strong convergence of
yh to y in L2[0, T ; L2(Ω)]. To verify the assumptions of Theorem 3.7 set U = H1

0 (Ω),
H = L2(Ω) and define, 〈F (y), v〉 = −a(y, v)−〈φ(y), v〉+(g, v)+〈f, v〉, ∀ y, v ∈ H1

0 (Ω).
It is evident by the stability Lemma 3.6 and in particular by the estimates on yh in
L2[0, T ; H1(Ω)], L∞[0, T ;L2(Ω)], on gh in L2[0, T ; L2(Ω)], and the assumptions on
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the semi-linear term, that {‖yh‖L2[0,T ;H1(Ω)]}h>0, {‖F (yh)‖L4/3[0,T ;H−1(Ω)]}h>0 re-
main bounded independent of h, τ . Indeed, to bound the later term, we only need to
consider the semi-linear term. Let v ∈ L4[0, T ;H1

0 (Ω)]. Using Hölder’s inequalities,
the embedding H1(Ω) ⊂ L4(Ω) and the Gagliardo-Nirenberg interpolation inequality
(note that 2 ≤ 4p

3 when 3/2 ≤ p)

‖yh‖L4p/3(Ω) ≤ C‖yh‖1−s
L2(Ω)‖yh‖s

H1(Ω),

with s = 1− 2
(4p/3) ≡ 2p−3

2p , 1− s = 3/2p, we obtain

∫ T

0

∫

Ω

|yh|pvhdxdt ≤ C

∫ T

0

‖yh‖p
L4p/3(Ω)

‖v‖L4(Ω)dt

≤ C
(∫ T

0

‖yh‖4p/3

L4p/3(Ω)
dt

)3/4( ∫ T

0

‖v‖4H1(Ω)dt
)1/4

≤ C
(∫ T

0

‖yh‖2L2(Ω)‖yh‖
2
3×(2p−3)

H1(Ω) dt
)3/4

‖v‖L4[0,T ;H1
0 (Ω)] ≤ C,

where at the last step we have used the stability bounds for yh and the fact that
2
3 × (2p − 3) < 2, for 1 < p < 3. Hence, Theorem 3.7 is applicable, with p = 2, q =
4/3, r = 2 and the strong convergence of yh to y is proven in L2[0, T ;L2(Ω)] norm.
It remains to show that the solution (yh, gh) ∈ Ad

ad of (3.2) converges to the solution
(y, g) of (2.2). Then, the weak lower semi-continuity of the functional finishes the
proof. Suppose now that we choose vh ∈ C[0, T ; Uh] ∩ Uh with vh(T ) = 0. Then,
equation (3.2) takes the form,

∫ T

0

(
− 〈yh, vht〉+ a(yh, vh) + 〈φ(yh), vh〉

)
dt =

∫ T

0

(
〈f, vh〉+ (gh, vh)

)
dt + (y0, vh(0)).

Recall, that there exists a subsequence (still denoted by yh, gh) such that yh → y
weakly in L2[0, T ;H1(Ω)], gh → g weakly in L2[0, T ; L2(Ω)] and yh → y strongly in
L2[0, T ; L2(Ω)]. Hence, we may pass the limit term by term into the above equation
to get equation (2.2). A standard density argument completes the proof.

4. The discrete optimality system. In the last section, we prove convergence
of the solutions of the discrete optimality system to the solutions of the continuous
optimality system. The fully-discrete optimality system is defined as follows: we seek
yh, µh ∈ Uh such that for n = 1, ..., N and for every vh ∈ Pk[tn−1, tn; Uh],

(yn, vn) +
∫ tn

tn−1

(
− 〈yh, vht〉+ a(yh, vh) + (φ(yh), vh)

)
dt (4.1)

= (yn−1, vn−1
+ ) +

∫ tn

tn−1

(
〈f, vh〉+ (gh, vh)

)
dt,

−(µn
+, vn) +

∫ tn

tn−1

(
〈µh, vht〉+ a(vh, µh) + (φ′(yh)µh, vh)

)
dt (4.2)

= −(µn−1
+ , vn−1

+ ) +
∫ tn

tn−1
(yh − U, vh)dt,
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and
∫ T

0

(αgh + µh, vh)dt = 0 ∀ vh ∈ L2[0, T ; Uh]. (4.3)

Here, y0, µN
+ = 0, f, U are given data, and y0 denotes an approximation of y(0).

Remark 4.1. The existence of the discrete optimality system can be proved similar
to the linear case (see e.g. [35]), by using the previously developed stability estimates.
Note that the optimality condition (4.3) is equivalent to

∫ tn

tn−1(αgh +µh, vh) = 0 for all
vh ∈ Pk[tn−1, tn; Uh], and n = 1, ..., N and hence we may replace the control function
from equation (4.1), similar to the continuous case.

A “boot-strap” argument will be applied in order to derive estimates on the adjoint
variable at arbitrary time points. For this purpose, an exponential interpolant of
e−λ(tn−t)µh, λ > 0, needs to be constructed.

4.1. An exponential interpolant. An L∞[0, T ;L2(Ω)] bound for the adjoint
variable will be obtained, by using the following polynomial interpolant.

Definition 4.1. Let V be a linear space, and λ > 0 be given. If v =
∑k

i=0 ri(t)vi ∈
Pk[tn−1, tn; V ], with ri ∈ Pk[tn−1, tn], vi ∈ V , we define the exponential interpolant of
v by

v̄ =
k∑

i=0

r̄ivi

where r̄i ∈ Pk[tn−1, tn] is the approximation of ri(t)e−λ(tn−t) satisfying r̄i(tn) = ri(tn)
and

∫ tn

tn−1
r̄i(t)q(t)dt =

∫ tn

tn−1
ri(t)q(t)e−λ(tn−t)dt, q ∈ Pk−1[tn−1, tn].

The above construction is the analogue of [7, Definition 3.3] suitably modified for the
adjoint equation (4.2) which is posed backwards in time. In particular, we use the
extra degree of freedom to match the interpolant at the end point of each time interval
(tn−1, tn] instead of the initial point which is used when dealing with the forward in
time problem. An analogue of [7, Lemma 3.4] can be proved using exactly the same
arguments (see also [5, Lemma 2.3, and Lemma 2.4]).

Lemma 4.2. Let V and Q be linear spaces and v → v̄ be the map constructed in
Definition 4.1, with parameter λ > 0. If L(., .) : V × Q → R is a bilinear mapping
and v ∈ Pk[tn−1, tn;V ], then

∫ tn

tn−1
L(v(t), q(t))dt =

∫ tn

tn−1
L(v(t), q(t))e−λ(tn−t)dt, q ∈ Pk−1[tn−1, tn; Q].

If (., .)V is a (semi) inner-product on V , then there exists a constant Ck depending
on k (and not on λ), such that

‖v − v̄‖L2[tn−1,tn;V ] ≤ Ckλ(tn − tn−1)‖v‖L2[tn−1,tn;V ],

and in particular,

‖v̄‖L2[tn−1,tn;V ] ≤ Ck‖v‖L2[tn−1,tn;V ].
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Proof. (Sketch) The key step is to show that
∫ tn

tn−1
(ri − r̄i)2dt ≤ Ck(1− e−λ(tn−tn−1))2

∫ tn

tn−1
r2
i dt.

The rest of the proof follows by standard calculations as in [5, Lemma 2.4]. For this
purpose, note that since ri(tn) = r̄i(tn), there exists pi ∈ Pk−1[tn−1, tn] such that
ri− r̄i = (tn− t)pi. The last relation, and the definition of the interpolant imply that
for all q ∈ Pk−1[tn−1, tn],

∫ tn

tn−1
(tn − t)piqdt =

∫ tn

tn−1
(ri − r̄i)qdt =

∫ tn

tn−1
(1− e−λ(tn−t))riqdt.

Setting q = pi, and using Hölder’s inequality, we obtain
∫ tn

tn−1
(tn − t)p2

i dt ≤ (1− e−λ(tn−tn−1))‖ri‖L2[tn−1,tn]‖pi‖L2[tn−1,tn].

The equivalence of norms in Pk[tn−1, tn], and the last inequality show that

Ck(tn − tn−1)
∫ tn

tn−1
p2

i dt ≤ (1− e−λ(tn−tn−1))‖ri‖L2[tn−1,tn]‖pi‖L2[tn−1,tn],

or equivalently,

Ck(tn − tn−1)‖pi‖L2[tn−1,tn]dt ≤ (1− e−λ(tn−tn−1))‖ri‖L2[tn−1,tn].

The desired bound follows by the norm equivalence in Pk[tn−1, tn].

4.2. Convergence of the discrete optimality system. Finally, we establish
stability estimates under minimal regularity assumptions for the adjoint variable.
These estimates combined with the discrete compactness Theorem 3.7 will be used to
establish convergence of the discrete optimality system to continuous one.

Lemma 4.3. Suppose that y0 ∈ L2(Ω), U ∈ L2[0, T ; L2(Ω)], f ∈ L2[0, T ; H−1(Ω)] are
given functions, let φ satisfy the growth condition assumptions 2.1. If (yh, gh) denote
the discrete optimal solution and (yh, µh, gh) satisfy (4.1)-(4.2)-(4.3) then

‖µ0
+‖2L2(Ω) +

N∑

i=1

‖[µi]‖2L2(Ω) + η

∫ T

0

‖µh‖2H1(Ω)dt ≤ Cstα
1/2

and for n = 1, ..., N

‖µn−1
+ ‖2L2(Ω) ≤ Cstα

1/2,

where Cst is defined in Lemma 3.6. Let τ ≡ maxi=1,..,n τi, with τi = ti − ti−1 satisfy
the assumption of Lemma 3.6. Then

‖µh‖2L∞[0,T ;L2(Ω)] ≤ CCstα
1/2

(
1 + D

(p−1)/2
yst

)
≡ Dµst,

where C does not depend on α, τ, h, but only on Cc/η, Ck, Ω and Dyst denotes the
constant of Lemma 3.6. Here Cc, η denote the continuity and coercivity constants of
bilinear form a(., .).
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Proof. First, note that the optimality condition and the estimate of Lemma 3.6 on
gh clearly imply that

∫ T

0
‖µh‖2L2(Ω)dt ≤ Cstα. Now, setting vh = µh to the adjoint

equation (4.2), using the monotonicity of φ and Young’s inequality we obtain

−(1/2)‖µn
+‖2L2(Ω) + (1/2)‖[µn]‖2L2(Ω) + (1/2)‖µn−1

+ ‖2L2(Ω) + η

∫ tn

tn−1
‖µh‖2H1(Ω)dt

≤ α1/2

∫ tn

tn−1
‖yh − U‖2L2(Ω)dt + (1/4α1/2)

∫ tn

tn−1
‖µh‖2L2(Ω)dt.

Summing the above inequalities from N to 1 and using the bounds on yh − U , µh

and µN
+ = 0, we obtain the first estimate. The second estimate follows upon summing

the inequalities from N to n. It remains to obtain a bound at arbitrary time-points.
For this purpose let µ̄h denote the exponential interpolant of µh as constructed in
Definition 4.1. Integrating by parts (in time) (4.2) and setting vh = µ̄h we obtain

∫ tn

tn−1

(
− 〈µht, µ̄h〉+ a(µh, µ̄h) + (φ′(yh)µh, µ̄h)

)
dt− ([µn], µn) =

∫ tn

tn−1
(yh − U, µ̄h)dt.

Using the Definition 4.1, and integration by parts (in time) the first term of the above
equality can be written as,

−
∫ tn

tn−1
〈µht, µ̄h〉dt = −

∫ tn

tn−1
(µht, µh)e−λ(tn−t)dt = −(1/2)

∫ tn

tn−1

d

dt
‖µh‖2L2(Ω)e

−λ(tn−t)dt

= −(1/2)‖µn‖2L2(Ω) + (1/2)‖µn−1
+ ‖2L2(Ω)e

−λ(tn−tn−1) + (λ/2)
∫ tn

tn−1
‖µh‖2L2(Ω)e

−λ(tn−t)dt.

Hence, combining the last two relations, and standard algebra, we obtain

(1/2)‖µn−1
+ ‖2L2(Ω)e

−λ(tn−tn−1) − (1/2)‖µn
+‖2L2(Ω) + (1/2)‖[µn]‖2L2(Ω)

+(λ/2)
∫ tn

tn−1
‖µh‖2L2(Ω)e

−λ(tn−t)dt +
∫ tn

tn−1
(φ′(yh)µh, µ̄h)dt (4.4)

= −
∫ tn

tn−1

(
a(µh, µ̄h) + (yh − U, µ̄h)

)
dt.

Recall that Lemma 4.2 implies that

∫ tn

tn−1
a(µh, µ̄h)dt ≤ CkCc

∫ tn

tn−1
‖µh‖2H1(Ω)dt,

and
∫ tn

tn−1
(yh − U, µ̄h)dt ≤ (Ck/α1/2)

∫ tn

tn−1
‖µh‖2L2(Ω)dt + a1/2

∫ tn

tn−1
‖yh − U‖2L2(Ω)dt.

It remains to treat the semi-linear term. Adding and subtracting µh, and using the
monotonicity of φ, we obtain

∫ tn

tn−1
(φ′(yh)µh, µ̄h)dt ≥

∫ tn

tn−1
(φ′(yh)µh, µ̄h − µh)dt.

16



For the later term, the growth condition on φ′, the Hölder’s inequality (with s1 =
2/(p− 1), s2 = s3 = 4/(3− p)), and the continuous embedding H1(Ω) ⊂ L4/(3−p)(Ω),
imply

∣∣
∫ tn

tn−1
(φ′(yh)µh, µ̄h − µh)dt

∣∣ ≤ C

∫ tn

tn−1
‖yh‖p−1

L2(Ω)‖µh‖L4/(3−p)(Ω)‖µ̄h − µh‖L4/(3−p)(Ω)dt

≤ C‖yh‖p−1
L∞[tn−1,tn;L2(Ω)]

∫ tn

tn−1
‖µh‖H1(Ω)‖µ̄h − µh‖H1(Ω)dt

≤ CD
(p−1)/2
yst ‖µh‖L2[tn−1,tn;H1(Ω)]‖µ̄h − µh‖L2[tn−1,tn;H1(Ω)]

≤ CD
(p−1)/2
yst λτn‖µh‖2L2[tn−1,tn;H1(Ω)],

where we have used the stability estimate of Lemma 3.6 on ‖yh‖2L∞[0,T ;L2(Ω)] ≤ Dyst,
and Lemma 4.2 to bound µ̄h − µh in terms of µh. Therefore substituting the last
inequality into (4.4), we obtain

(1/2)‖µn−1
+ ‖2L2(Ω)e

−λ(tn−tn−1) − (1/2)‖µn
+‖2L2(Ω) + (1/2)‖[µn]‖2L2(Ω)

+(λ/2)
∫ tn

tn−1
‖µh‖2L2(Ω)e

−λ(tn−t)dt

=
∫ tn

tn−1

(
CcCk‖µh‖2H1(Ω) + (1/α1/2)‖µh‖2L2(Ω) + α1/2‖yh − U‖2L2(Ω)

)
dt

+CD
(p−1)/2
yst λτn

∫ tn

tn−1
‖µh‖2H1(Ω)dt.

Setting now λ = 1/τn, we obtain

(1/2)‖µn−1
+ ‖2L2(Ω)e

−1 − (1/2)‖µn
+‖2L2(Ω) + (1/2)‖[µn]‖2L2(Ω)

+(e−1/2τn)
∫ tn

tn−1
‖µh‖2L2(Ω)dt

≤
∫ tn

tn−1

(
CkCc‖µh‖2H1(Ω) + (1/α1/2)‖µh‖2L2(Ω) + α1/2‖yh − U‖2L2(Ω)

)
dt

+CD
(p−1)/2
yst Ck

∫ tn

tn−1
‖µh‖2H1(Ω)dt.

The proof now follows, after using the inverse inequality ‖µh‖2L∞[tn−1,tn;L2(Ω)] ≤
(Ck/τn)‖µh‖2L2[tn−1,tn;L2(Ω)] and the previously developed estimates of yh, µh in vari-
ous norms.

Note that stability estimates on µh scale better in terms of α compared to yh, as
expected. Using the above estimates, which are independent of τ, h, we may pass the
limit into the discrete optimality system to prove convergence.

Theorem 4.4. Suppose that f ∈ L2[0, T ; H−1(Ω)], y0 ∈ L2(Ω), U ∈ L2[0, T ; L2(Ω)]
and that φ satisfies assumption 2.1. In addition, let φ ∈ C2(R;R) with |φ′′(s)| ≤
C|s|p−2 for 2 < p < 3 or φ′ be uniformly continuous. Let h > 0 and a uniform
partition {ti}N

i=0 of [0, T ] with τi = ti − ti−1 and τ = maxi=1,...,N τi, satisfying the
assumptions of Lemma 3.6, and Lemma 4.3. Then, for α > 0, (yh, µh) converges to
the solution (y, µ) of the continuous optimality system as τ, h → 0.
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Proof. (Sketch) The proof follows similarly to Theorem 3.8. We treat the case 3/2 <
p < 3 (the case 1 < p ≤ 3/2 can be treated similarly). Recall that yh, gh are bounded
in L∞[0, T ; L2(Ω)] ∩ L2[0, T ; H1(Ω)] and L2[0, T ; L2(Ω)] by constants independent
of τ, h. Similarly µh is bounded in L∞[0, T ; L2(Ω)] ∩ L2[0, T ; L2(Ω)] by a constant
independent of τ, h. Hence, we may extract subsequences, converging weakly to y, g, µ
respectively in the above norms, while an application of the discrete compactness
Theorem 3.7 guarantees the strong convergence of yh to y in L2[0, T ; L2(Ω)] and
of µh to µ in L2[0, T ;L2(Ω)]. Note that in order to apply Theorem 3.7, we now
define 〈F (µ), v〉 ≡ −a(µ, v) − 〈φ′(y)µ, v〉 + (y − U, v). It is evident by the stability
estimates that {‖µh‖L2[0,T ;H1(Ω)]}h>0, {‖F (µh)‖L4/3[0,T ;H−1(Ω)]}h>0 remain bounded
independent of h, τ . For the later term, we only need to estimate the term,

∫ T

0

〈φ′(yh)µh, vh〉dt ≤ C‖µh‖L4[0,T ;L4(Ω)]‖|yh|p−1‖L2[0,T ;L2(Ω)]‖v‖L4[0,T ;L4(Ω)]

≤ C‖µh‖1/2
L∞[0,T ;L2(Ω)]‖µh‖1/2

L2[0,T ;H1(Ω)]‖|yh|p−1‖L2[0,T ;L2(Ω)]‖v‖L4[0,T ;H1(Ω)].

Note that using the embedding L4(Ω) ⊂ L2(p−1)(Ω) (recall that 3/2 ≤ p < 3),
and the interpolation inequality ‖.‖2L4(Ω) ≤ C‖.‖L2(Ω)‖.‖H1(Ω), we may show that
‖|yh|p−1‖L2[0,T ;L2(Ω)] < ∞ since yh remains bounded (with constant independent
of h, τ) in L∞[0, T ; L2(Ω)] ∩ L2[0, T ;H1(Ω)]. All other terms are easy to handle.
The proof is completed after noting that we may pass the limit into equations (4.1)-
(4.2)-(4.3), and into the functional (1.1). Indeed, for the adjoint equation, choosing
vh ∈ C[0, T ; Uh] ∩ Uh with vh(0) = 0, equation (4.2) takes the form,

∫ T

0

(
〈µh, vht〉+ a(µh, vh) + 〈φ′(yh)µh, vh〉

)
dt =

∫ T

0

(yh − U, vh)dt.

Using the strong convergence of yh, µh in L2[0, T ;L2(Ω)] we may pass the limit term
by term. For the semilinear term note that
∫ T

0

〈φ′(y)µ−φ′(yh)µh, vh〉dt =
∫ T

0

〈(φ′(y)−φ′(yh))µ, vh〉dt+
∫ T

0

〈φ′(yh)(µ−µh), vh〉dt.

The first term can be treated using the growth condition on φ′′ (or by the uni-
form continuity of φ′), the regularity of µ, vh and the strong convergence of yh in
L2[0, T ; L2(Ω)]. The growth condition on φ′, the stability estimates on yh, and the
strong convergence of µh allow to pass the limit through the second term.

Acknoledgments: The author would like to thank Prof. Noel J. Walkington, for
providing the compactness result [42, Theorem 3.1] which led to significant improve-
ments of the results.
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