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Abstract. The velocity tracking problem for the evolutionary Navier-Stokes equations in 3d
is studied. The controls are of distributed type and they are submitted to bound constraints. The
classical cost functional is modified so that a full analysis of the control problem is possible. First and
second order necessary and sufficient optimality conditions are proved. A fully-discrete scheme based
on discontinuous (in time) Galerkin approach combined with conforming finite element subspaces in
space, is proposed and analyzed. Provided that the time and space discretization parameters, τ and h
respectively, satisfy τ ≤ Ch2, then L2(ΩT ) error estimates of order O(h) are proved for the difference
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techniques and the approach of [6], we extend our results to the case of L1(ΩT ) type of functionals
that allow sparse controls.
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1. Introduction. In this paper, we study the velocity tracking control problem
associated to the evolutionary Navier-Stokes equations for three-dimensional flows,
that we write as follows.

(1.1)

{
yt − ν∆y + (y · ∇)y +∇p = f + u in ΩT = (0, T )× Ω,
divy = 0 in ΩT , y(0) = y0 in Ω, y = 0 on ΣT = (0, T )× Γ.

In these equations, y = (y1, y2, y3) is the velocity field of the fluid, p is the pressure,
ν > 0 is the viscosity, f and u represent the body forces, and y0 denotes the initial
velocity. We can control the system through the forces u.

For two-dimensional flows, Ω ⊂ R2, an existence and uniqueness theorem for a solu-
tion of (1.1) is known long time ago. The study is more complicated for the three-
dimensional flows, Ω ⊂ R3. In this case, two different type of solutions are distin-
guished: weak and strong solutions. Under minimal assumptions, the existence of
weak solutions y ∈ L2(0, T ;H1

0(Ω)) ∩ Cw([0, T ],L2(Ω)) can be proved. However, the
uniqueness is still an open problem, unless the data (f + u,y0) are small enough or
final time T is sufficiently small; see, for instance, Temam [21].

A strong solution y is a weak solution that additionally belongs to L8(0, T ;L4(Ω)).
In the 3d case, there exists at most one strong solution of (1.1), but its existence has
not been proved until now. In the two-dimensional case, weak and strong solutions
coincide, and hence we have existence and uniqueness of a solution.

In the classical tracking control problem, the cost functional involves the L2 norm
of y − yd, where yd is the given target field. In the case of three-dimensional flows,
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†Departmento de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y

de Telecomunicación, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain (ed-
uardo.casas@unican.es).
‡Department of Mathematics, School of Applied Mathematics and Physical Sciences, National

Technical University of Athens, Zografou Campus, Athens 15780, Greece (chrysafinos@math.ntua.gr)

1



2 E. CASAS AND K. CHRYSAFINOS

due to the lack of uniqueness of weak solutions or of the existence of strong solutions,
the analysis is very complicated. Actually, we cannot prove first and second order
optimality conditions, and error estimates for the discretization of the control problem
is an open issue. As a consequence, most of the studies devoted to the control problems
associated to the equations (1.1) assume that Ω ⊂ R2 [1, 5, 9, 11, 12, 14, 22].

Hereafter, we assume Ω ⊂ R3, but we do not require the data to be small because
this is not a realistic assumption. In this paper, we deal with strong solutions, which
allows us to carry out a complete analysis of the control problem. However, to prove
the existence of an optimal control with an associated strong solution we have to
consider a convenient cost functional. Instead of setting the L2 norm of y−yd in the
cost functional as usual we consider the functional

J (u,y)=
1

8

∫ T

0

‖y(t)− yd(t)‖8L4(Ω) dt

+
γ

2

∫
Ω

|y(T, x)− yΩ(x)|2 dx+
λ

2

∫ T

0

∫
Ω

|u(t, x)|2 dxdt,(1.2)

where λ > 0, γ ≥ 0, and yΩ ∈ L2(Ω) to be fixed more precisely later.

The goal is to minimize the J (u,y) in a certain class of functions, where (u,y) satisfies
(1.1). If y is a weak solution of (1.1) such that J (u,y) < +∞, then y is a strong
solution. With this formulation we can prove the existence of an optimal control and to
get the first and second order optimality conditions. Moreover, following the approach
of [5], we obtain the same error estimates proved there for the numerical discretization
of the control problem in 3d. In particular, we prove estimates of order O(h) for
the difference between locally optimal controls and their discrete approximations, for
τ ≤ Ch2, when τ, h denote the time and space discretization parameters respectively.
In addition, we also show that any strict local minimum can be approximated by a
sequence of local minima of the discrete optimal control problems. Estimates of order
O(h) are also obtained for the state and adjoint variables, and they are optimal in
terms of the regularity on the given data. The cost functional (1.2) was introduced in
[4, page 95] where existence of optimal controls and first order optimality conditions
were studied for the continuous problem. It is worth noting that it plays a crucial
role also in the development of error estimates when combined with the discontinuous
(in time) Galerkin framework. One of the main features of discontinuous (in time)
Galerkin machinery is that the discrete scheme inherits regularity properties of the
corresponding continuous problem due to its heavily implicit nature. In particular,
the fact that the cost functional (1.2) yields strong solutions, is an important asset at
the fully-discrete level, since the enhanced regularity is also inherited to the discrete
state and adjoint variables. As a consequence, it allows the numerical analysis of the
control to state, and adjoint mappings similar to the 2d case and as in [5].

Furthermore, we also discuss the case of sparse controls. To enforce sparsity of the
controls, i.e. the localization of the controls in a small region of the domain, we
modify our functional in a way to include the L1(ΩT ) norm. It is well understood
that the inclusion of the L1 norm in the cost functional yields to sparse controls
(see, for instance, [6], [7], [13], [20], [23]). In [6] necessary and sufficient second
order optimality conditions are derived, for a semi-linear elliptic control problem.
Adopting the techniques of [6] in our optimal control setting for the 3d evolutionary
Navier-Stokes case, we also prove error estimates for the difference between the locally
optimal controls and their discrete approximations based on the discontinuous (in
time) Galerkin framework.
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2. The State Equation. Assumptions and preliminary results. Hereafter
Ω denotes a bounded open subset in R3 with a Lipschitz boundary Γ. We assume
that either Ω is convex or Γ is of class C1,1. The outward unit normal vector to Γ
at a point x ∈ Γ is denoted by n(x). Given 0 < T < +∞, we set ΩT = (0, T ) × Ω
and ΣT = (0, T ) × Γ. As in [5], we denote the Sobolev spaces H1(Ω) = H1(Ω;R3),
H1

0(Ω) = H1
0 (Ω;R3), H−1(Ω) = (H1

0(Ω))′ and Ws,p(Ω) = W s,p(Ω;R3) for 1 ≤ p ≤ ∞
and s > 0. We also consider the spaces of integrable functions

L2
0(Ω) = {w ∈ L2(Ω) :

∫
Ω

w(x) dx = 0};

Lp(Ω) = Lp(Ω;R3) and, for a given Banach space X, Lp(0, T ;X) will denote the
integrable functions defined in (0, T ) and taking values in X endowed with the usual
norm. Following Lions and Magenes [17, Vol. 1] we put

H2,1(ΩT ) =

{
y ∈ L2(ΩT ) :

∂y

∂xi
,
∂2y

∂xixj
,
∂y

∂t
∈ L2(ΩT ), 1 ≤ i, j ≤ 2

}
.

Endowed with the standard norm, the space H2,1(ΩT ) is continuously embedded in
C([0, T ], H1(Ω)). We also set H2,1(ΩT ) = [H2,1(ΩT )]3. We introduce the usual spaces
of divergence-free vector fields:

Y = {y ∈ H1
0(Ω) : divy = 0 in Ω},

H = {y ∈ L2(Ω) : divy = 0 in Ω and y · n = 0 on Γ}.

Finally, let us consider the space W(0, T ) = {y ∈ L2(0, T ;Y) : yt ∈ L2(0, T ;Y∗)}.
It is well known that W(0, T ) ⊂ Cw([0, T ],H), where Cw([0, T ],H) is the space of
weakly continuous functions y : [0, T ] −→ H.

Along this paper, we will assume that f ,u ∈ L2(0, T ;L2(Ω)) and y0,yΩ ∈ Y. An
element y ∈W(0, T ) is said a weak solution of (1.1) if

(2.1)

{
(yt,ψ) + a(y,ψ) + c(y,y,ψ) = (f + u,ψ) ∀ψ ∈ Y for a.a. t ∈ [0, T ],
y(0) = y0,

and the following energy inequality holds
(2.2)

‖y(t)‖2L2(Ω) + 2ν

∫ t

0

‖y(s)‖2H1
0(Ω) ds ≤ ‖y0‖2 + 2

∫ t

0

(f(s) + u(s),y(s)) ds ∀t ∈ [0, T ],

where ‖ · ‖ and (·, ·) denote the norm and the inner product, respectively, in L2(Ω),
and a : H1(Ω)×H1(Ω) −→ R and c : L4(Ω)×H1(Ω)×H1(Ω) −→ R are defined by

a(y, z) = ν

∫
Ω

(∇y : ∇z) dx = ν

3∑
i,j=1

∫
Ω

∂xiyj ∂xizj dx

c(y, z,w) =
1

2
[ĉ(y, z,w)− ĉ(y,w, z)] with ĉ(y, z,w) =

3∑
i,j=1

∫
Ω

yj

(
∂zi
∂xj

)
wi dx.

The existence of a weak solution is well known; see, for instance, Ladyzhenskaya
[15], Lions [16], Temam [21], etc. However, the uniqueness of a weak solution is an
open question so far. We say that y is a strong solution of (1.1) if it is a weak
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solution and y ∈ L8(0, T ;L4(Ω)). It is well known that (1.1) does not have more
than one strong solution. Strong solutions satisfy the energy equality instead of the
energy inequality (2.2). Hence, they seem to be physically more significant than weak
solutions. Unfortunately there is no existence result for strong solutions.

Once y is found from (2.1), the existence of the pressure p ∈ D′(ΩT ) can be proved,
in such a way that (y, p) is a solution of (1.1).

We finish this section by collecting some results whose proofs can be found in [4].

Theorem 2.1. Let (f ,y0) ∈ L2(0, T ;L2(Ω))×Y, g ∈ L8(0, T ;L4(Ω)) with div g = 0
in ΩT , and e ∈ L∞(0, T ;Y) ∩ L3/2(0, T ;H2(Ω)). Then, there exist a unique element
y ∈ H2,1(ΩT ) ∩ C([0, T ],Y) and some p ∈ L2(0, T ;H1(Ω)) solution of the following
problem

(2.3)


∂y

∂t
− ν∆y + (g · ∇)y + (y · ∇)e +∇p = f in ΩT ,

divy = 0 in ΩT , y(0) = y0 in Ω, y = 0 on ΣT .

Moreover, p is unique up to the addition of a function of L2(0, T ). Finally, there
exists an increasing function η : [0,+∞) −→ [0,+∞) depending only on Ω and ν such
that

‖y‖H2,1(ΩT ) ≤ η
(
‖y0‖Y + ‖f‖L2(0,T ;L2(Ω)) + ‖g‖L8(0,T ;L4(Ω))(2.4)

+ ‖e‖L∞(0,T ;Y) + ‖e‖L3/2(0,T ;H2(Ω))

)
.

Corollary 2.2. Let us assume that (y, p) is a strong solution of Problem (1.1), then
y ∈ H2,1(ΩT ) ∩ C([0, T ],Y) and p ∈ L2(0, T ;H1(Ω)). Moreover

(2.5) ‖y‖H2,1(ΩT ) ≤ η
(
‖y0‖Y + ‖f + u‖L2(0,T ;L2(Ω)) + ‖y‖L8(0,T ;L4(Ω))

)
,

where η is as in Theorem 2.1.

The proof of this corollary follows from Theorem 2.1 taking g = y and e = 0.

Corollary 2.3. If Problem (1.1) has a strong solution for some element ū ∈
L2(0, T ;L2(Ω)), then there exists an open neighbourhood A0 of ū in L2(0, T ;L2(Ω))
such that (1.1) has a strong solution for every u ∈ A0. Moreover, the mapping
G : A0 −→ H2,1(ΩT ) ∩ C([0, T ],Y), defined by G(u) = yu, is of class C∞. Fi-
nally, if zv = G′(u)v and vv1v2

= G′′(u)(v1,v2), for some u ∈ A0 and some
v,v1,v2 ∈ L2(0, T ;L2(Ω)), then zv and zv1v2

are the unique strong solutions of
the following problems

(2.6)


∂zv
∂t
− ν∆zv + (yu · ∇)zv + (zv · ∇)yu +∇p1 = v in ΩT ,

div zv = 0 in ΩT , zv(0) = 0 in Ω, zv = 0 on ΣT ,

(2.7)


∂zv1v2

∂t
− ν∆zv1v2

+ (yu · ∇)zv1v2
+ (zv1v2

· ∇)yu

+(zv2 · ∇)zv1 + (zv1 · ∇)zv2 +∇p2 = 0 in ΩT ,

div zv1v2
= 0 in ΩT , zv1v2

(0) = 0 in Ω, zv1v2
= 0 on ΣT ,
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for some p1, p2 ∈ L2(0, T ;H1(Ω)), which are unique up to the addition of a function
of L2(0, T ).

Proof. Here we modify the proof of [4, Corllary 4.2.2] to correct a small mistake.
First, we observe that the solution y ∈ H2,1(ΩT ) ∩ C([0, T ],Y) of (2.3) satisfies that
y′ ∈ L2(0, T ;H). This is an immediate consequence of the proof of [4, Theorem 4.2.1].
Indeed, a Galerkin approach is followed there to approximate y by using a special basis
{ψj}∞j=1 of H2(Ω) ∩Y. The approximations take the form ym =

∑m
j=1 gj(t)ψj , and

y′m =
∑m
j=1 g

′
j(t)ψj belong to L2(0, T ;H) converges weakly to y in L2(0, T ;H).

Let us consider the space

H = {y ∈ H2,1(ΩT ) ∩ C([0, T ],Y) : y′ ∈ L2(0, T ;H)}.

Endowed with the norm of H2,1(ΩT ), this is a Hilbert space. Now, we define the
mapping

F : H× L2(0, T ;L2(Ω)) −→ L2(0, T ;H)×Y

F (y,u) =
(∂y
∂t

+ PH[−ν∆y + (y · ∇)y − (f + u)],y(0)− y0

)
,

where PH : L2(Ω) −→ H denotes the projection operator. It is easy to check that F
is of class C∞ and

∂F

∂y
(y,u)z =

(∂z
∂t

+ PH[−ν∆z + (y · ∇)z + (z · ∇)y], z(0)
)
.

Now, we observe that(
PH[−ν∆z + (y · ∇)z + (z · ∇)y],ψ

)
=
(
− ν∆z + (y · ∇)z + (z · ∇)y,ψ

)
= a(y,ψ) + c(y, z,ψ) + c(z,y,ψ) ∀ψ ∈ Y.

Therefore, ∂F
∂y (y,u)z = (v, z0), with (v, z0) ∈ L2(0, T ;H)×Y, if and only if{

(zt,ψ) + a(z,ψ) + c(z,y,ψ) + c(y, z,ψ) = (v,ψ) ∀ψ ∈ Y,
z(0) = z0,

or equivalently
∂z

∂t
− ν∆z + (y · ∇)z + (z · ∇)y +∇p = v in ΩT ,

div z = 0 in ΩT , z(0) = z0 in Ω, z = 0 on ΣT ,

for some p ∈ L2(0, T ;L2(Ω)). Indeed, it is enough to recall that if u,v ∈ L2(0, T ;H)
satisfy that (v,ψ) = (u,ψ) ∀ψ ∈ Y, then u = v; see [10, Theorem 2.8, page 30].

Now, with the help of Theorem 2.1 we infer that ∂F
∂y (y,u) : H −→ L2(0, T ;H)×Y is

an isomorphism for every (y,u) ∈ H × L2(0, T ;L2(Ω)). Therefore, if Problem (1.1)
has a strong solution ȳ for a given control ū, then F (ȳ, ū) = (0, 0), and applying
the implicit function theorem we deduce the existence of an open neighborhood A0 ⊂
L2(0, T ;L2(Ω)) of ū and a mapping G : A0 −→ H of class C∞ such that F (G(u),u) =
(0, 0) for every u ∈ A0. The rest of the proof is immediate.
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Remark 2.4. As a consequence of Corollary 2.2, we deduce that the set of controls
u ∈ L2(0, T ;L2(Ω)) for which there exists a strong solution yu is open. Hereafter,
this set will be denoted by A. It is known that A is dense in L2(0, T ;L2(Ω)) with
respect to the norm of Ls(0, T ;Lq(Ω)) for s, q ∈ (1,+∞) such that 4 < 2

s + 3
q ; see

[18]. In particular we have that for any u ∈ L2(0, T ;L2(Ω)) and any ε > 0, there
exists vε ∈ L2(0, T ;L2(Ω)) with ‖vε‖L1(0,T ;L1(Ω)) < ε such that u + vε ∈ A.

Remark 2.5. We have seen that (1.1) admits the variational formulation given in
(2.1). Analogously, equations (2.6) and (2.7) can be formulated in a variational form
as follows: ∀ψ ∈ Y

(2.8)

{
(zvt,ψ) + a(zv,ψ) + c(zv,yu,ψ) + c(yu, zv,ψ) = (v,ψ) a.e. in [0, T ],
zv(0) = 0,

(2.9)

 (zv1v2t,ψ) + a(zv1v2 ,ψ) + c(zv1v2 ,yu,ψ) + c(yu, zv1v2 ,ψ)
+c(zv1 , zv2 ,ψ) + c(zv2 , zv1 ,ψ) = 0 a.e. in [0, T ],

zv1v2
(0) = 0.

Remark 2.6. The use of PH in the definition of F given in the proof of Corollary
2.3 is necessary. In principle, one could consider the mapping

F : H2,1(ΩT ) ∩ C([0, T ],Y)× L2(0, T ;L2(Ω)) −→ L2(0, T ;L2(Ω))×Y

F (y,u) =
(∂y
∂t
− ν∆y + (y · ∇)y − (f + u),y(0)− y0

)
.

Then, we have that F is of class C∞ and

∂F

∂y
(y,u)z =

(∂z
∂t

+−ν∆z + (y · ∇)z + (z · ∇)y, z(0)
)
.

Again, the identity ∂F
∂y (y,u)z = (v, z0) ∈ L2(0, T ;L2(Ω))×Y is equivalent to{

(zt,ψ) + a(z,ψ) + c(z,y,ψ) + c(y, z,ψ) = (v,ψ) ∀ψ ∈ Y,
z(0) = z0,

However, ∂F
∂y (y,u) is not an isomorphism. Indeed, observe that v and PHv lead to

the same solution y of the above system because (v,ψ) = (PHv,ψ) for every ψ ∈ Y.
This situation is avoided by introducing the projection PH in the definition of F . It
is enough to observe that if u,v ∈ L2(0, T ;H) and (v,ψ) = (u,ψ) for every ψ ∈ Y,
then u = v. The reader is referred to [21, Chapter 1] for details.

3. The control problem. In this section, we define in a precise way the optimal
control problem, we prove the existence of at least one solution, and we derive the
first and second order optimality conditions. First, we define the set of admissible
controls as follows: Uad = A ∩ Uα,β with

Uα,β = {u ∈ L2(0, T ;L2(Ω)) : αj ≤ uj(t, x) ≤ βj for a.a. (t, x) ∈ ΩT , 1 ≤ j ≤ 3},

where −∞ ≤ αj < βj ≤ +∞ for 1 ≤ j ≤ 3, and A is defined in Remark 2.4. In the
sequel, we will make the following assumption:

(3.1) Uad 6= ∅.
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Now, we consider the functional J : A −→ R defined by

J(u)=
1

8

∫ T

0

‖yu(t)− yd(t)‖8L4(Ω) dt

+
γ

2

∫
Ω

|yu(T, x)− yΩ(x)|2 dx+
λ

2

∫ T

0

∫
Ω

|u(t, x)|2 dxdt,(3.2)

where yu = G(u) is the state associated to u, the target yd ∈ L14(0, T ;L6(Ω)),
yΩ ∈ H1

0(Ω), γ ≥ 0, and λ > 0. It is obvious that J(u) = J (u,yu) ∀u ∈ A. The
regularity assumed for yd is needed in the proof of Theorem 3.1. Finally, we define
the control problem

(P)

{
min J(u)
u ∈ Uad

As an immediate consequence of Corollary 2.3 we have the following differentiability
properties of J .

Theorem 3.1. The cost functional J : A −→ R is of class C∞ and for every u ∈ A
and v ∈ L2(0, T ;L2(Ω)) we have

J ′(u)v =

∫ T

0

∫
Ω

(ϕu + λu)v dx dt,(3.3)

J ′′(u)v2= 4

∫ T

0

(∫
Ω

|yu − yd|2(yu − yd)zv dx

)2

dt(3.4)

+3

∫ T

0

‖yu − yd‖4L4(Ω)

(∫
Ω

(|yu − yd|2|zv|2 dx
)
dt

−2

∫ T

0

∫
Ω

(zv · ∇)zvϕu dx dt+ λ

∫ T

0

∫
Ω

|v|2 dx dt,

where zv = G′(u)v is the solution of (2.6) and ϕu ∈ H2,1(ΩT ) ∩ C([0, T ],Y) is the
unique element satisfying

(3.5)


−ϕut − ν∆ϕu − (yu · ∇)ϕu + (∇yu)Tϕu +∇π

= ‖yu − yd‖4L4(Ω)|yu − yd|2(yu − yd) in ΩT ,

divϕu = 0 in ΩT , ϕu(T ) = γ(yu(T )− yΩ) in Ω, ϕu = 0 on ΣT

with π ∈ L2(0, T ;H1(Ω)) uniquely defined up to the addition of a function of L2(0, T ).

Observe that the assumption on yd and the regularity yu ∈ H2,1(ΩT ) imply that

‖yu − yd‖4L4(Ω)|yu − yd|2(yu − yd) ∈ L2(0, T ;L2(Ω)),

and hence Theorem 2.1 shows that ϕu ∈ H2,1(ΩT ).

The variational formulation of (3.5) is written as follows:

(3.6)


−(ϕu,t,ψ) + a(ϕu,ψ) + c(ψ,yu,ϕu) + c(yu,ψ,ϕu)

= ‖yu − yd‖4L4(Ω)(|y − yd|2(y − yd),ψ) ∀ψ ∈ Y,

ϕu(T ) = γ(yu(T )− yΩ).
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The next theorem establishes the existence of at least one solution for (P), as well as
the first order optimality conditions satisfied by any local minimum of (P).

Theorem 3.2. Under assumption (3.1), (P) has at least one solution. More-
over, for any local solution ū there exist ȳ, ϕ̄ ∈ H2,1(ΩT ) ∩ C([0, T ],Y) and p̄, π̄ ∈
L2(0, T ;H1(Ω)) such that{

ȳt − ν∆ȳ + (ȳ · ∇)ȳ +∇p̄ = f + ū in ΩT ,

div ȳ = 0 in ΩT , ȳ(0) = ȳ0 in Ω, ȳ = 0 on ΣT ,
(3.7) 

−ϕ̄t − ν∆ϕ̄− (ȳ · ∇)ϕ̄+ (∇ȳ)T ϕ̄+∇π

= ‖ȳ − yd‖4L4(Ω)|ȳ − yd|2(ȳ − yd) in ΩT ,

div ϕ̄ = 0 in ΩT , ϕ̄(T ) = γ(ȳ(T )− yΩ) in Ω, ϕ̄ = 0 on ΣT ,

(3.8)

∫ T

0

∫
Ω

(ϕ̄+ λū)(u− ū) dx dt ≥ 0 ∀u ∈ Uα,β .(3.9)

Moreover, the regularity property

ū ∈ H1(ΩT ) ∩ C([0, T ],H1(Ω)) ∩ L2(0, T ;W1,6(Ω)) ∩ L2(0, T ;C(Ω̄))

holds.

Proof. Let us prove the existence of a solution. Since Uad is nonempty, there exists
a minimizing sequence {uk}∞k=1 ⊂ Uad of (P). Let us set yk = G(uk) ∈ H2,1(ΩT ) ∩
C([0, T ],Y). From the definition of the functional J we deduce

1

8
‖yk‖8L8(0,T ;L4(Ω)) +

λ

2
‖uk‖2L2(Ω) ≤ J(uk) ≤ J(u1) <∞ ∀k.

Hence {uk}∞k=1 and {yk}∞k=1 are bounded in L2(0, T ;L2(Ω)) and L8(0, T ;L4(Ω)),
respectively. By taking subsequences, if necessary, we can assume that uk ⇀ ū and
yk ⇀ ȳ weakly in L2(0, T ;L2(Ω)) and L8(0, T ;L4(Ω)), respectively. From (2.5), we
deduce that yk ⇀ ȳ weakly in H2,1(ΩT ). Using the compactness of the embedding
H2,1(ΩT ) ⊂ L8(0, T ;L4(Ω)), it is easy to pass to the limit in the state equation and
to deduce that ȳ is a strong solution of (1.1) with some pressure p̄ ∈ L2(0, T ;H1(Ω)).
Hence, we have that ū ∈ A. Moreover, it is immediate that ū ∈ Uα,β . Therefore,
ū ∈ Uad and

J(ū) = lim
k→∞

J(uk) = inf (P).

The optimality system (3.7)-(3.9) can be proved in the standard way by using the
expression of J ′ given in (3.3). Finally, the regularity of ū is a consequence of the
embedding ϕ̄ ∈ H2,1(ΩT ) ⊂ H1(ΩT ) ∩ C([0, T ],H1(Ω)) ∩ L2(0, T ;W1,6(Ω)) and the
projection formula

(3.10) ūj(t, x) = Proj[αj ,βj ]

(
− 1

λ
ϕ̄j(t, x)

)
for a.a. (t, x) ∈ ΩT , 1 ≤ j ≤ 3,

which follows from (3.9).

Now, we carry out the second order analysis of (P). Since this control problem is not
convex, some second order conditions are required for the numerical analysis of (P).
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To write the second order conditions we need to define the cone of critical directions.
To this end, let us introduce the function

(3.11) d̄ = ϕ̄+ λū.

Now we set

(3.12) Cū = {v ∈ L2(0, T ;L2(Ω)) : v satisfies (3.13)− (3.15)},

vj(t, x) ≥ 0 if −∞ < αj = ūj(t, x),(3.13)

vj(t, x) ≤ 0 if ūj(t, x) = βj < +∞, j = 1, 2, 3(3.14)

vj(t, x) = 0 if d̄j(t, x) 6= 0.(3.15)

Let us notice that

(3.16)
J ′(ū)v =

∫ T

0

∫
Ω

d̄(t, x) · v(t, x) dxdt,

d̄(t, x) · v(t, x) = 0 for a.a. (t, x) ∈ ΩT and ∀v ∈ Cū.

We also deduce as usual from (3.9), for almost all (t, x) ∈ ΩT and j = 1, 2, 3,

(3.17)


ūj(t, x) = αj ⇒ d̄j(t, x) ≥ 0,

ūj(t, x) = βj ⇒ d̄j(t, x) ≤ 0,

αj < ūj(t, x) < βj ⇒ d̄j(t, x) = 0,

and

{
d̄j(t, x) > 0⇒ ūj(t, x) = αj ,

d̄j(t, x) < 0⇒ ūj(t, x) = βj .

As for the two-dimensional flows we have the following second order necessary and
sufficient conditions; see [5].

Theorem 3.3. Let ū be a local solution of problem (P), then J ′′(ū)v2 ≥ 0 ∀v ∈ Cū.
Conversely, let us assume that ū ∈ Uad satisfies

J ′(ū)(u− ū) ≥ 0 ∀u ∈ Uα,β ,(3.18)

J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0},(3.19)

then there exist ε > 0 and δ > 0 such that

(3.20) J(ū) +
δ

2
‖u− ū‖2L2(0,T ;L2(Ω)) ≤ J(u) ∀u ∈ Uα,β ∩Bε(ū),

where Bε(ū) is the L2(0, T ;L2(Ω))-ball of center ū and radius ε.

4. Approximation of the control problem (P). In this section, Ω is assumed
to be convex. We consider a family of triangulations {Kh}h>0 of Ω̄, defined in the
standard way. To each element K ∈ Kh, typically a tetrahedron or a hexahedron, we
associate two parameters hK and %K , where hK denotes the diameter of the set K
and %K is the diameter of the largest ball contained in K. Define the size of the mesh
by h = maxK∈Kh hK . We also assume that the standard regularity assumptions on
the triangulation hold:
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(i) – There exist two positive constants %K and δK such that hK
%K
≤ %K and h

hK
≤ δK

∀K ∈ Kh and ∀h > 0.
(ii) – Define Ωh = ∪K∈KhK, and let Ωh and Γh denote its interior and its boundary,
respectively. We assume that the vertices of Kh placed on the boundary Γh are points
of Γ.

Since Ω is convex, from the last assumption we have that Ωh is also convex. Moreover,
we assume that

(4.1) |Ω \ Ωh| ≤ Ch2 and yd ∈ L∞(0, T ;L6(Ω)) ∩ L2(0, T ;L∞(Ω)).

On the mesh Kh we consider two finite dimensional spaces Zh ⊂ H1
0(Ω) and Qh ⊂

L2
0(Ω) formed by piecewise polynomials in Ωh and vanishing in Ω \Ωh. We make the

following assumptions on these spaces.

(A1) If z ∈ H1+l(Ω) ∩H1
0(Ω), then

(4.2) inf
zh∈Zh

‖z− zh‖Hs(Ωh) ≤ Chl+1−s‖z‖H1+l(Ω), for 0 ≤ l ≤ 1 and s = 0, 1.

(A2) If q ∈ H1(Ω) ∩ L2
0(Ω), then

(4.3) inf
qh∈Qh

‖q − qh‖L2(Ωh) ≤ Ch‖q‖H1(Ω).

(A3) The subspaces Zh and Qh satisfy the inf-sup condition: ∃c > 0 such that

(4.4) inf
qh∈Qh

sup
zh∈Zh

b(zh, qh)

‖zh‖H1(Ωh)‖qh‖L2(Ωh)
≥ c,

where b : H1(Ω)× L2(Ω) −→ R is defined by

b(z, q) =

∫
Ω

q(x)div z(x) dx.

These assumptions are satisfied by the usual finite elements considered in the dis-
cretization of Navier-Stokes equations; see [10, Chapter 2].

We also consider a subspace Yh of Zh defined by

Yh = {yh ∈ Zh : b(yh, qh) = 0 ∀qh ∈ Qh}

and we set

Uh = {uh ∈ L2(Ωh) : uh|K ≡ uK ∈ R3 ∀K ∈ Kh}.

It is well known that, under the previous assumptions, given an element z ∈ H2(Ω)∩
Y, there exist elements zh ∈ Yh such that

‖z− zh‖H1
0(Ω) ≤ Ch‖z‖H2(Ω),

where C is independent of h and z. Moreover, from this estimate and an inverse
inequality it is easy to prove that for the usual finite elements considered in the
discretization of Navier-Stokes equations the following estimate holds

lim
h→0
‖z− zh‖W1,4(Ωh) = 0.
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Hence, in addition to the assumptions (A1)-(A3), we will assume

(4.5) lim
h→0

inf
zh∈Yh

‖z− zh‖W1,4(Ωh) = 0 ∀z ∈ H2(Ω) ∩Y.

We proceed now with the discretization in time. Let us consider a grid of points
0 = t0 < t1 < . . . < tNτ = T . We denote τn = tn − tn−1. We make the following
assumption

(4.6) ∃%0 > 0 s.t. τ = max
1≤n≤Nτ

τn ≤ %0τn ∀1 ≤ n ≤ Nτ and ∀τ > 0.

Given a triangulation Kh of Ω and a grid of points {tn}Nτn=0 of [0, T ], we set σ = (τ, h)
and |σ| = τ + h. Finally, we consider the following spaces

Yσ = {yσ ∈ L2(0, T ;Yh) : yσ |(tn−1,tn)
∈ Yh for 1 ≤ n ≤ Nτ},

Qσ = {qσ ∈ L2(0, T ;Qh) : qσ |(tn−1,tn)
∈ Qh for 1 ≤ n ≤ Nτ},

Uσ = {uσ ∈ L2(0, T ;Uh) : uσ |(tn−1,tn)
∈ Uh for 1 ≤ n ≤ Nτ}.

We have that the functions of Yσ, Uσ and Qσ are piecewise constant in time. We will
look for the discrete controls in the space Uσ. An element of this space can be written
in the form

(4.7) uσ =

Nτ∑
n=1

∑
K∈Kh

un,KχnχK , with un,K ∈ R3,

where χn and χK are the characteristic functions of (tn−1, tn) and K, respectively.
Therefore, the dimension of Uσ is 3NτNh, where Nh is the number of elements in Kh.
In Uσ we consider the convex subset

Uσ,ad = Uσ ∩ Uα,β = {uσ ∈ Uσ : un,K ∈
3∏
i=1

[αi, βi]}.

On the other hand, the elements of Yσ can be written in the form

(4.8) yσ =

Nτ∑
n=1

yn,hχn, with yn,h ∈ Yh,

where χn is as above. For every discrete state yσ we will fix yσ(tn) = yn,h, so that
yσ is continuous on the left. In particular, we have yσ(T ) = yσ(tNτ ) = yNτ ,h.

To define the discrete control problem we have to consider the numerical discretization
of the state equation (1.1) or equivalently (2.1). We achieve this goal by using a
discontinuous time-stepping Galerkin method, with piecewise constants in time and
conforming finite element spaces in space. For any u ∈ L2(0, T ;L2(Ω)) the discrete
state equation is given by

(4.9)


For n = 1, . . . , Nτ , and ∀ψh ∈ Yh,(
yn,h − yn−1,h

τn
,ψh

)
+ a(yn,h,ψh) + c(yn,h,yn,h,ψh) = (fn + un,ψh),

y0,h = y0h,
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where

(fn,ψh) =
1

τn

∫ tn

tn−1

(f(t),ψh)dt, (un,ψh) =
1

τn

∫ tn

tn−1

(u(t),ψh)dt,(4.10)

y0h ∈ Yh with ‖y0 − y0h‖L2(Ωh) ≤ Ch.(4.11)

Applying Brouwer’s Theorem one can easily prove the existence of at least one solution
yσ ∈ Yσ of (4.9) for every u ∈ L2(0, T ;L2(Ω)). The uniqueness is a more delicate
issue. For the uniqueness we need an extra assumption:

(4.12) ∃C0 > 0 such that τ ≤ C0h
2 ∀σ = (τ, h).

From [5, Corollary 4.9] we obtain the following result.

Theorem 4.1. Under assumption (4.12), for any bounded set K ⊂ L2(0, T ;L2(Ω))×
L8(0, T ;L4(Ω)) there exists a constant τK > 0 such that for any u ∈ A with (u,yu) ∈
K the equation (4.9) has a unique solution yσ(u) ∈ Yσ for every τ < τK. Moreover,
the sequence {yσ(u)}τ<τK is bounded in L∞(0, T ;H1

0(Ωh)). Finally, if u,v ∈ A and
(u,yu), (v,yv) ∈ K, then there exists a constant CK > 0 such that

‖yu − yσ(v)‖L∞(0,T ;L2(Ωh)) + ‖yu − yσ(v)‖L2(0,T ;H1(Ωh))

≤ CK

{
h+ ‖u− v‖L2(0,T ;L2(Ω))

}
.(4.13)

The proof given in [5] for the two-dimensional case is also valid for the three-
dimensional case assuming that the controls belong to A and the pair control-state
belongs to K. It is enough to take into account the estimate (2.5).

Now, we define the discrete control problem as follows

(Pσ)

{
minJσ(uσ,yσ)
(uσ,yσ) ∈ Uσ,ad × Yσ satisfy (4.9)

with

Jσ(uσ,yσ)=
1

2

∫ T

0

‖yσ(t)− yd(t)‖8L4(Ωh) dt

+
γ

2

∫
Ωh

|yσ(T )− yΩh|2 dx+
λ

2

∫ T

0

∫
Ωh

|uσ|2 dxdt,

where yΩh ∈ Yh satisfies

(4.14) ∃C > 0 such that ‖yΩ − yΩh‖L2(Ωh) ≤ Ch.

For instance, yΩh can be defined as the projection of yΩ.

The following result is crucial in the rest of the paper.

Theorem 4.2. Under assumption (4.12), the control problem (Pσ) has at least one
solution (ūσ, ȳσ) and there exists a constant µ0 > 0 such that the set of all solutions
{(ūσ, ȳσ)}|σ|≤µ0

is bounded in L2(0, T ;L2(Ω)) × L8(0, T ;L4(Ω)). If (ū, ȳ) is a weak
limit in L2(0, T ;L2(Ω)) × L8(0, T ;L4(Ω)) of a subsequence of solutions {(ūσ, ȳσ)}σ
with σ → 0, then ū is a solution of (P), ȳ = ȳū ∈ H2,1(ΩT ), and

lim
σ→0
‖ūσ − ū‖L2(0,T ;L2(Ωh)) = 0,(4.15)

lim
σ→0

{
‖ȳσ − ȳ‖L8(0,T ;L4(Ωh)) + γ‖ȳσ(T )− ȳ(T )‖L2(Ωh)

}
= 0.(4.16)
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Furthermore, ūσ ∈ Uad for every |σ| ≤ µ0.

Proof. Along this proof every element of uσ ∈ Uσ will be extended to (0, T ) × Ω by
setting u(t, x) = (a+b)/2 for almost every (t, x) ∈ (0, T )× (Ω\Ωh). It is obvious that
the set of elements (uσ,yσ) ∈ Uσ,ad × L8(0, T ;L4(Ω)) satisfying (4.9) is not empty
and closed, and Jσ is continuous and coercive on this set, hence (Pσ) has at least
one solution. According to Theorem 3.2 there exists at least one solution û of (P).
Let ûσ be the L2(0, T ;L2(Ωh))-projection of û on Uσ. Then, it is immediated that
ûσ → û strongly in L2(0, T ;L2(Ω)), and additionally ûσ ∈ Uσ,ad. Consequently, we
have that ûσ ∈ A if |σ| ≤ µ1 for some µ1 > 0. Now, from corollary 2.3 it follows that
yûσ = G(ûσ)→ ŷ = G(û) in H2,1(ΩT ). Hence, if we take K = {(ûσ,yûσ ) : |σ| ≤ µ1},
then Theorem 4.1 implies that, for µ1 small enough, the equation (4.9) has a unique
solution ŷσ = yσ(ûσ) ∈ Yσ, associated with ûσ, for all |σ| ≤ µ1. Moreover, {ŷσ}|σ|≤µ1

is bounded in L∞(0, T ;H1
0(Ω)). Using this boundedness and (4.13) we infer∫ T

0

‖ŷ(t)− ŷσ(t)‖8L4(Ω) dt ≤ C0

∫ T

0

‖ŷ(t)− ŷσ(t)‖8H1
0(Ω)

≤ C0‖ŷ − ŷσ‖6H1
0(Ω)

∫ T

0

‖ŷ(t)− ŷσ(t)‖8H1
0(Ω) → 0 as σ → 0.

In addition, there exists a constant C independent of σ such that

Jσ(ūσ, ȳσ) ≤ Jσ(ûσ, ŷσ) ≤ C ∀|σ| ≤ µ1.

In the sequel we make the proof for γ > 0. If γ = 0, then we should remove
all the convergence comments about ȳσ(T ), and the rest remains equal. From the
above inequality we obtain the boundedness of the sequence {(ūσ, ȳσ, ȳσ(T ))}|σ|≤µ1

in L2(0, T ;L2(Ω))×L8(0, T ;L4(Ω))×L2(Ω). By taking a subsequence if necessary, we
have that (ūσ, ȳσ, ȳσ(T )) ⇀ (ū, ȳ, ȳT ) weakly in L2(0, T ;L2(Ω))×L8(0, T ;L4(Ω))×
L2(Ω). In addition, since (ūσ, ȳσ) satisfies (4.9), we also deduce as usual the bound-

edness of {ȳσ}|σ|≤µ1
in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0(Ω)), therefore, ȳσ
∗
⇀ ȳ in

L∞(0, T ;L2(Ω)) and ȳσ ⇀ ȳ in L2(0, T ;H1
0(Ω)). Using a compactness result, tai-

lored in for discontinuous Galerkin time stepping schemes, by Walkington [24, The-
orem 3.1], we infer that ȳσ → ȳ strongly in L2(0, T ;L2(Ω)). Indeed, in our case
[24, Theorem 3.1], states that for any 1 ≤ p, q < ∞, if {‖ȳσ‖Lp(0,T ;Y)}σ>0 and
{‖F (ȳσ)‖Lq(0,T ;Y′h)}σ>0, are bounded independent of σ, with

〈F (ȳσ),vσ〉 ≡ −a(ȳσ,vσ)− c(ȳσ, ȳσ,vσ) + (ūσ,vσ),

then {ȳσ}σ, is compact in Lr(0, T ;L2(Ω)) for 1 ≤ r < 2p. Note that for p = 2,
it is easy to show that {‖F (ȳσ)‖L2(0,T ;Y′h)}σ>0, is bounded independent of σ. We
only have to consider the convection terms associated to the trilinear form, and in
particular∫ T

0

|c(ȳσ, ȳσ,vσ)|dt ≤ ‖ȳσ‖2L4(0,T ;L4(Ω))‖vσ‖L2(0,T ;H1(Ω)) ≤ C‖vσ‖L2(0,T ;Yh).

As a consequence of all these convergence properties we prove below that ȳ ∈W(0, T )
and (ū, ȳ) satisfies (2.1). Assuming that this has been already established, and taking
into account that ȳ ∈ L8(0, T ;L4(Ω)), then we deduce that ȳ is a strong solution of
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(2.1) associated with ū, and hence ū ∈ Uad and ȳ = G(ū). It will be also established
below that ȳ(T ) = ȳT . Now, using the continuity and convexity of J , along with the
facts that (ūσ, ȳσ) and û are solutions of (Pσ) and (P), respectively, we get

J(û) ≤ J(ū) = J (ū, ȳ) ≤ lim inf
σ→0

Jσ(ūσ, ȳσ)

≤ lim sup
σ→0

Jσ(ūσ, ȳσ) ≤ lim sup
σ→0

Jσ(ûσ, ŷσ) = J (û, ŷ) = J(û),

which proves that

lim
σ→0
Jσ(ūσ, ȳσ) = J (ū, ȳ) = J(ū) = J (û, ŷ).

Thus, ū is a solution of (P). Let us prove the strong convergence (ūσ, ȳσ, ȳσ(T )) →
(ū, ȳ, ȳT ) in L2(0, T ;L2(Ω))×L8(0, T ;L4(Ω))×L2(Ω). For the convergence ūσ → ū
we proceed as follows

λ

2
‖ū‖2L2(Ω) ≤ lim inf

σ→0

λ

2
‖ūσ‖2L2(Ω) ≤ lim sup

σ→0

λ

2
‖ūσ‖2L2(Ω)

= lim sup
σ→0

(
Jσ(ūσ, ȳσ)−

{
1

8
‖ȳσ − yd‖8L8(0,T ;L4(Ω)) +

γ

2
‖ȳσ(T )− yΩ‖2L2(Ω)

})

≤ lim sup
σ→0

Jσ(ūσ, ȳσ)− lim inf
σ→0

{
1

8
‖ȳσ − yd‖8L8(0,T ;L4(Ω)) +

γ

2
‖ȳσ(T )− yΩ‖2L2(Ω)

}

≤ J (ū, ȳ)−
{

1

8
‖ȳ − yd‖8L8(0,T ;L4(Ω)) +

γ

2
‖ȳT − yΩ‖2L2(Ω)

}
=
λ

2
‖ū‖2L2(Ω).

Hence, the uniform convexity of the space L2(0, T ;L2(Ω)) implies the strong conver-
gence ūσ → ū in L2(0, T ;L2(Ω)). Analogously, we prove the strong convergence of
the other two terms.

Now, the strong convergence ūσ → ū in L2(0, T ;L2(Ω)) and the fact that ū ∈ A
implies that there exists µ0 ≤ µ1 such that ūσ ∈ Uad for |σ| ≤ µ0.

To conclude the proof it remains to show that ȳ ∈W(0, T ), (ū, ȳ) satisfies (2.1) and
ȳ(T ) = ȳT . First we observe that ȳσ ∈ L2(0, T ;Yh) and ȳσ ⇀ ȳ in L2(0, T ;H1

0(Ω))
imply that ȳ ∈ L2(0, T ;Y). Now, let us take ψ ∈ H2(Ω) ∩ Y and φ ∈ C1[0, T ]
arbitrary. Let ψh ∈ Yh such that ψh → ψ strongly in W1,4

0 (Ω); see (4.5). Then,
from (4.9) we obtain

∫ T

0

(ȳσ(t),ψh)φ′(t) dt =

Nτ∑
n=1

∫ tn

tn−1

(ȳn,h,ψh)φ′(t) dt =

Nτ∑
n=1

(ȳn,h,ψh)(φ(tn)− φ(tn−1))

= −
Nτ∑
n=1

(ȳn,h − ȳn−1,h,ψh)φ(tn−1) + (ȳNτ ,h,ψh)φ(T )− (y0h,ψh)φ(0)
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=

Nτ∑
n=1

{τna(ȳn,h,ψh) + τnc(ȳn,h, ȳn,h,ψh)− τn(fn + ūn,ψh)}φ(tn−1)

+(yσ(T ),ψh)φ(T )− (y0h,ψh)φ(0)

=

∫ T

0

{a(ȳσ(t),ψh) + c(ȳσ(t), ȳσ(t),ψh)− (f(t) + ūσ(t),ψh)}φ(t) dt+

Nτ∑
n=1

∫ tn

tn−1

{a(ȳσ(t),ψh) + c(ȳσ(t), ȳσ(t),ψh)− (f(t) + ūσ(t),ψh)} (φ(tn−1)− φ(t)) dt

+(ȳσ(T ),ψh)φ(T )− (y0h,ψh)φ(0) = I1 + I2 + I3 − I4.

Let us study the convergence of these terms when σ → 0. Let us start with I3 and I4.
From the weak convergence ȳσ(T ) ⇀ ȳT in L2(Ω), (4.11) and the strong convergence
ψh → ψ in W1,4

0 (Ω) we get

(4.17) lim
σ→0

(yσ(T ),ψh)φ(T ) = (ȳT ,ψ)φ(T ) and lim
σ→0

(y0h,ψh)φ(0) = (y0,ψ)φ(0).

Now, we consider the term I1. We will prove that

lim
σ→0

∫ T

0

{a(ȳσ(t),ψh) + c(ȳσ(t), ȳσ(t),ψh)− (f(t) + ūσ(t),ψh)}φ(t) dt

(4.18) =

∫ T

0

{a(ȳ(t),ψ) + c(ȳ(t), ȳ(t),ψ)− (f(t) + ū(t),ψ)}φ(t) dt.

Using again the strong convergence ψh → ψ in W1,4
0 (Ω) and the weak convergence

ūσ ⇀ ū in L2(0, T ;L2(Ω)) and ȳσ ⇀ ȳ in L2(0, T ;H1
0(Ω)), it is immediate to pass to

the limit in the first and third terms of the integral. Let us analyze the second term.
We have

c(ȳσ(t), ȳσ(t),ψh)− c(ȳ(t), ȳ(t),ψ)

(4.19) = c(ȳσ(t)− ȳ(t), ȳσ(t),ψh) + c(ȳ(t), ȳσ(t)− ȳ(t),ψh) + c(ȳ(t), ȳ(t),ψh−ψ).

For the first term we proceed as follows

|c(ȳσ(t)− ȳ(t), ȳσ(t),ψh)| = |c(ȳσ(t)− ȳ(t),ψh, ȳσ(t))|

≤ ‖ȳσ(t)− ȳ(t)‖L2(Ω)‖∇ψh‖L4(Ω)‖ȳσ(t)‖L4(Ω).

From the boundedness of {ȳσ}σ in L8(0, T ;L4(Ω)) and the strong convergence ȳσ → ȳ
in L2(0, T ;L2(Ω)), we deduce from the above inequality∫ T

0

|c(ȳσ(t)− ȳ(t), ȳσ(t),ψh)||φ(t)| dt
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≤ ‖ȳσ − ȳ‖L2(0,T ;L2(Ω))‖∇ψh‖L4(Ω)‖ȳσ‖L2(0,T ;L4(Ω))‖φ‖L∞(0,T ) → 0 as σ → 0.

In the same way we obtain

lim
σ→0

∫ T

0

|c(ȳσ(t), ȳσ(t)− ȳ(t),ψh)||φ(t)| dt = 0.

For the third term of (4.19) we have

lim
σ→0

∫ T

0

|c(ȳ(t), ȳ(t),ψh −ψ)||φ(t)| dt = lim
σ→0

∫ T

0

|c(ȳ(t),ψh −ψ, ȳ(t))||φ(t)| dt

≤ ‖ȳ‖2L2(0,T ;L4(Ω))‖φ‖L∞(0,T ) lim
h→0
‖ψh −ψ‖W1,4(Ω) = 0,

which concludes the proof of (4.18). Finally, we consider the term I2. To this end,
we observe that

|φ(tn−1)− φ(t)| ≤ ‖φ′‖L∞(0,T )τn ≤ ‖φ′‖L∞(0,T )τ ∀t ∈ [tn−1, tn] and 1 ≤ n ≤ Nτ .

Hence, using the boundedness of {ȳσ}σ in L8(0, T ;L4(Ω)) ∩ L2(0, T ;H1
0(Ω)) we get

that I2 → 0 when σ → 0. Using the convergence ȳσ → ȳ in L2(0, T ;L2(Ω)) and
ψh → ψ in L2(Ω), we get the desired identity∫ T

0

(y(t),ψ)φ′(t) dt = lim
σ→0

∫ T

0

(ȳσ,ψh)φ′(t) dt

=

∫ T

0

{a(ȳ(t),ψ) + c(ȳ(t), ȳ(t),ψ)− (f(t) + ū(t),ψ)}φ(t) dt

(4.20) +(ȳT ,ψ)φ(T )− (y0,ψ)φ(0) ∀φ ∈ C1[0, T ] and ∀ψ ∈ H2(Ω) ∩Y.

By the density of H2(Ω)∩Y in Y and the fact that ȳ ∈ L2(0, T ;Y), the above identity
is also valid for all ψ ∈ Y. If we take φ ∈ C∞0 (0, T ) we obtain from (4.20) that the
first equation of (2.1) holds in the distribution sense with f + ū in the right hand side.
Therefore, ȳt ∈ L2(0, T ;Y∗), and hence ȳ ∈W(0, T ) holds. Moreover, the functions
t ∈ (0, T ) 7→ g(t) = (ȳ(t),ψ) ∈ R and t ∈ (0, T ) 7→ g′(t) = (ȳt(t),ψ) ∈ R belongs to
L2(0, T ). Therefore, g belongs to H1(0, T ) ⊂ C[0, T ] and the following integration by
parts is valid

(ȳ(T ),ψ)φ(T )− (ȳ(0),ψ)φ(0) =

∫ T

0

(ȳt(t),ψ)φ(t) dt+

∫ T

0

(ȳ(t),ψ)φ′(t) dt

= (ȳT ,ψ)φ(T )− (y0,ψ)φ(0) ∀φ ∈ C1[0, T ].

Selecting φ ∈ C1[0, T ] with φ(T ) = 0 and φ(0) = 1 and taking into account that ψ
is an arbitrary element of Y, we deduce that ȳ(0) = y0. Thus, we get that (ū, ȳ)
satisfies (2.1). Analogously, we can take φ satisfying that φ(0) = 0 and φ(T ) = 1 to
deduce that ȳ(T ) = ȳT as desired.
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Now, we prove a converse result. The next theorem states that any strict local mini-
mum of (P) can be approximated by a sequence of local minima of problems (Pσ).

Theorem 4.3. Let us assume that (4.12) holds and let ū be a strict local minimum of
(P) in the L2(0, T ;L2(Ω)) sense. Then, there exist a number µ̄0 > 0 and a sequence
{(ūσ, ȳσ)}|σ|≤µ̄0

of local minima of problems (Pσ) such that (4.15) and (4.16) hold
with ȳ = G(ū). Moreover, {ūσ}|σ|≤µ̄0

⊂ A, (4.9) has a unique solution for every
ūσ with |σ| ≤ µ̄0, and there exists ε > 0 such that Jσ attains its minimum value in
(B̄ε(ū) ∩ Uσ,ad)× Yσ at (ūσ, ȳσ) for every |σ| ≤ µ̄0.

Proof. Since ū is a strict local minimum of (P), there exists ε > 0 such that ū is the
unique solution of the control problem

(Q)

{
min J(u)
u ∈ B̄ε(ū) ∩ Uad

where ε is taken sufficiently small so that B̄ε(ū) ⊂ A. Along this proof, every element
uσ ∈ Uσ will be extended to Ω× (0, T ) by setting uσ(t, x) = ū(t, x) for almost every
(t, x) ∈ (0, T )× (Ω \ Ωh).

Now, we consider the discrete control problem

(Qσ) min {Jσ(uσ,yσ) : (uσ,yσ) ∈ (B̄ε(ū) ∩ Uσ,ad)× Yσ satisfy (4.9)}.

From the continuity and coercivity of Jσ and the fact that the set of admissible points
is closed, it is enough to prove that (Qσ) has at least one admissible point to deduce
the existence of a solution. To this end, we consider the L2(0, T ;L2(Ω))-projection
uσ of ū. It is obvious that uσ ∈ Uσ,ad for every σ and ‖ū − uσ‖L2(0,T ;L2(Ω)) → 0 as
σ → 0, then there exists µ1 > 0 such that uσ ∈ B̄ε(ū) for every |σ| ≤ µ1, which shows
that uσ is an admissible point of (Qσ) for every |σ| ≤ µ1. Let (ūσ, ȳσ) be a solution of
(Qσ). Then, arguing as in the proof of Theorem 4.2, we obtain that (4.15) and (4.16)
hold. Furthermore, applying Theorem 4.1 we deduce the existence of 0 < µ̄0 ≤ µ1

such that (4.9) has a unique solution for every ūσ with |σ| ≤ µ̄0. Using (4.15) and
taking µ̄0 sufficiently small, we have that ūσ ∈ Bε(ū). Hence, (ūσ, ȳσ) is a local
minimum of (Pσ) and Jσ attains the minimum value in (B̄ε(ū) ∩ Uσ,ad)× Yσ at this
point.

In the rest of the section, ū will denote a local (or global) minimum of (P) with
associated state and adjoint state ȳ and ϕ̄, respectively. In addition, {(ūσ, ȳσ)}|σ|≤µ̄0

will be a sequence of local (or global) minima of problems (Pσ) satisfying (4.15) and
(4.16). The goal is to get the rate of convergence of (ū−ūσ, ȳ−ȳσ, ϕ̄−ϕ̄σ), where ϕ̄σ
denotes the discrete adjoint state associated to ūσ. To this end we assume that (3.19)
and (4.12) hold. The first step in the derivation of the error estimates is to prove
that ϕ̄σ is well defined and to write the first-order optimality conditions satisfied by
(ūσ, ȳσ). Since ū ∈ Uad ⊂ A, we know that ȳ ∈ H2,1(ΩT ). Let B(ȳ) denote the unit
ball centered at ȳ in H2,1(ΩT ). Since G : A −→ H2,1(ΩT )∩C([0, T ],Y) is continuous
and G(ū) = ȳ, there exists ε > 0 such that Bε(ū) ⊂ A and G(Bε(ū)) ⊂ B(ȳ). From
the embedding H2,1(ΩT ) ⊂ L8(0, T ;L4(Ω)) we have that K = Bε(ū) × B(ȳ) is a
bounded subset of L2(0, T ;L2(Ω)) × L8(0, T ;L4(Ω)). Moreover, (u,yu) ∈ K for all
u ∈ Bε(ū). Hence, Theorem 4.1 implies the existence of τK > 0 such that (4.9) has a
unique solution for every u ∈ Bε(ū) and all τ < τK. Now, using (4.15) we deduce the
existence of σ0 ∈ (0, τK) such that ūσ ∈ Bε(ū) and ȳσ is the unique solution of (4.9)
associated to ūσ for every |σ| ≤ σ0. Hence, for |σ| ≤ σ0 we can define the functions

Jσ : Bε(ū)→ R, Jσ(u) = Jσ(u,yσ(u)).
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Moreover, ūσ is a local (global) minimum of Jσ in Bε(ū) ∩ Uσ,ad. We need to prove
the differentiability of Jσ to get the optimality conditions satisfied by ūσ. The reader
is referred to [5, §4.2] for the proof of the following theorem.

Theorem 4.4. For every |σ| ≤ σ0 the function Jσ : Bε(ū)→ R is of class C∞ and

(4.21) J ′σ(u)v =

∫ T

0

∫
Ωh

(ϕσ + λu)v dxdt,

where ϕσ ∈ Yσ is the solution of the adjoint equation
(4.22)

for n = Nτ , . . . , 1, and ∀ψh ∈ Yh,(
ϕn,h −ϕn+1,h

τn
,ψh

)
+ a(ϕn,h,ψh) + c(ψh,yn,h,ϕn,h) + c(yn,h,ψh,ϕn,h)

=
1

τn

∫ tn

tn−1

‖yn,h − yd‖4L4(Ωh)(|yn,h − yd|2(yn,h − yd),ψh) dt,

ϕNτ+1,h = γ(yNτ ,h − yΩh),

and yσ is the solution of (4.9) corresponding to u.

The optimality conditions for ūσ can be written as J ′σ(ūσ)(uσ − ūσ) ≥ 0 ∀u ∈ Uσ,ad.
Using (4.21) we get the following corollary.

Corollary 4.5. With the above notation, there exist ȳσ, ϕ̄σ ∈ Yσ such that
For n = 1, . . . , Nτ , and ∀ψh ∈ Yh,(
ȳn,h − ȳn−1,h

τn
,ψh

)
+ a(ȳn,h,ψh) + c(ȳn,h, ȳn,h,ψh) = (fn + un,ψh),

ȳ0,h = y0h,

(4.23)



for n = Nτ , . . . , 1, and ∀ψh ∈ Yh,(
ϕ̄n,h − ϕ̄n+1,h

τn
,ψh

)
+ a(ϕ̄n,h,ψh) + c(ψh, ȳn,h, ϕ̄n,h) + c(ȳn,h,ψh, ϕ̄n,h)

=
1

τn

∫ tn

tn−1

‖ȳn,h − yd‖4L4(Ωh)(|ȳn,h − yd|2(ȳn,h − yd),ψh) dt,

ϕ̄Nτ+1,h = γ(yNτ ,h − yΩh),

(4.24)

∫ T

0

∫
Ωh

(ϕ̄σ + λūσ)(uσ − ūσ) dx dt ≥ 0 ∀uσ ∈ Uσ,ad.(4.25)

Analogously to Theorem 4.1 we have the following result whose proof follows from [5,
Corollary 4.12].

Theorem 4.6. Under the assumption (4.12), there exists a constant C > 0 indepen-
dent of σ such that ∀u,v ∈ Bε(ū) and |σ| ≤ σ0

‖ϕu −ϕσ(v)‖L∞(0,T ;L2(Ωh)) + ‖ϕu −ϕσ(v)‖L2(0,T ;H1(Ωh))

≤ C
{
h+ ‖u− v‖L2(0,T ;L2(Ω))

}
(4.26)
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Proof. (Sketch:) Let yu be the associated state to u, ϕ ≡ ϕu denote the associated
adjoint state, and ϕσ ≡ ϕσ(u) the associated discrete state. First, we prove that ‖ϕ−
ϕσ‖L∞(0,T ;L2(Ωh)) + ‖ϕ − ϕσ‖L2(0,T ;H1(Ωh)) ≤ Ch, where C is a constant depending
upon the L∞(0, T ;L6(Ω)), L2(0, T ;L∞(Ω)) norms of yd, and the L∞(0, T ;H1(Ωh))
norms of y,yσ,ϕ. Then, the result follows similarly to [5, Corollary 4.12]. We consider
the projection operator Rσ : C(0, T ;L2(Ωh)) → Yσ by (Rσw)n,h = Phw(tn−1) for
1 ≤ n ≤ Nτ where Ph is the standard L2(Ω) projection, i.e., Ph : L2(Ω) → Yh,
with (Phy,wh) = (y,wh), ∀wh ∈ Yh. In addition, for the discrete adjoint states, we
fix (Rσw)(tn−1) = (Rw)n,h. We split the error into ε = ϕ − ϕσ = (ϕ − Rσϕ) +
(Rσϕ − ϕσ) = η + εσ, and note that according to our notation, we have η(tn) =
ϕ(tn) − (Rσϕ)(tn) = ϕ(tn) − (Rσϕ)n+1,h = ϕ(tn) − Phϕ(tn), for 0 ≤ n ≤ Nτ − 1.
Also we have εσ(tn) = εn+1,h, 0 ≤ n ≤ Nτ − 1. Setting (Rσw)Nτ+1,h = Phw(T ) and
recalling that ϕNτ+1,h = γ(yNτ ,h − yΩh), then the previous identities are also well
defined for n = Nτ . Then, working identically to [5, Theorem 4.11], the orthogonality
condition related to (3.6) and (4.22) lead to the inequalities, n = Nτ , . . . , 1,

1

2
‖εn,h‖2 −

1

2
‖εn+1,h‖2 +

1

2
‖εn,h − εn+1,h‖2 + ν

∫ tn

tn−1

‖∇εn,h‖2dt

≤ ν
∫ tn

tn−1

‖∇η(t)‖‖∇εn,h‖ dt+

∫ tn

tn−1

[c(yn,h, εn,h,ϕn,h)− c(y(t), εn,h,ϕ(t))] dt

+

∫ tn

tn−1

[c(εn,h,yn,h,ϕn,h)− c(εn,h,y(t),ϕ(t))] dt

+

∫ tn

tn−1

(‖yu − yd‖4L4(Ω)|y − yd|2(y − yd), εn,h) dt

−
∫ tn

tn−1

‖yn,h − yd‖4L4(Ωh)(|yn,h − yd|2(yn,h − yd), εn,h) dt.

The trilinear terms can be treated similar to [5, Theorem 4.11], after noting that
yσ ∈ L∞(0, T ;H1(Ωh)), ϕ ∈ L∞(0, T ;H1(Ω)). Indeed, we can bound the trilinear
terms by,

∫ tn

tn−1

|trilinear terms|dt ≤ ν

8

∫ tn

tn−1

‖εn,h‖2L2(Ωh) dt+ C
(∫ tn

tn−1

‖η‖2H1(Ωh) dt

+

∫ tn

tn−1

‖y − yn,h‖2H1(Ωh) dt
)
,

where constant C depends upon the L∞(0, T ;H1(Ω)) norms of ϕ, y, and yσ. To
complete the proof it remains to estimate the difference of the last two integrals in
a similar way. Then, the discrete Grönwall inequality finishes the proof. First note
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that,

I ≡
∫ tn

tn−1

(‖yu − yd‖4L4(Ω)|y − yd|2(y − yd), εn,h) dt

−
∫ tn

tn−1

‖yn,h − yd‖4L4(Ωh)(|yn,h − yd|2(yn,h − yd), εn,h) dt

=

∫ tn

tn−1

(
‖yu − yd‖4L4(Ω) − ‖yn,h − yd‖4L4(Ωh)

)
(|y − yd|2(y − yd), εn,h) dt

+

∫ tn

tn−1

‖yn,h − yd‖4L4(Ωh)

(
|y − yd|2(y − yd)− |yn,h − yd|2(yn,h − yd), εn,h

)
dt

=

∫ tn

tn−1

‖yu − yd‖4L4(Ω\Ωh)

(
|y − yd|2(y − yd), εn,h

)
dt

+

∫ tn

tn−1

(
‖yu − yd‖4L4(Ωh) − ‖yn,h − yd‖4L4(Ωh)

) (
|y − yd|2(y − yd), εn,h

)
dt

+

∫ tn

tn−1

‖yn,h − yd‖4L4(Ωh)

(
|y − yd|2(y − yd)− |yn,h − yd|2(yn,h − yd), εn,h

)
dt

≡ I1 + I2 + I3.

For the first integral, we note that Hölder’s inequality, interpolation inequality ‖.‖L4 ≤
C‖.‖1/4L2 ‖.‖3/4L6 , assumption (4.1), and Young’s inequality imply,

I1 ≤
∫ tn

tn−1

‖y − yd‖4L4(Ω\Ωh)‖y − yd‖3L6(Ωh)‖εn,h‖L2(Ωh) dt

≤ C‖y − yd‖6L∞(0,T ;L6(Ω))

∫ tn

tn−1

‖y − yd‖L2(Ω\Ωh)‖εn,h‖L2(Ωh) dt

≤ Cy,yd

∫ tn

tn−1

‖y − yd‖L∞(Ω)h‖εn,h‖L2(Ωh) dt

≤
∫ tn

tn−1

‖εn,h‖2L2(Ωh)dt+ Ch2

∫ tn

tn−1

‖y − yd‖2L∞(Ω) dt

where constant C depends upon ‖y − yd‖L∞(0,T ;L6(Ω)). For the second integral, us-
ing standard algebra, and Hölder’s inequality, the stability bounds on y,yd,yσ in
L∞(0, T ;L6(Ω)), we obtain that

I2 ≤
∫ tn

tn−1

‖yu − yn,h‖L4(Ωh) ×
(
‖yu − yd‖L4(Ωh) + ‖yn,h − yd‖L4(Ωh)

)
×
(
‖yu − yd‖2L4(Ωh) + ‖yn,h − yd‖2L4(Ωh)

)
‖y − yd‖3L6(Ωh)‖εn,h‖L2(Ωh) dt

≤ C
∫ tn

tn−1

‖yu − yn,h‖L4(Ωh)‖εn,h‖L2(Ωh) dt

≤
∫ tn

tn−1

‖εn,h‖2L2(Ωh) + C

∫ tn

tn−1

‖yu − yn,h‖2H1(Ωh) dt.
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For the third integral, using standard algebra, we arrive to,

I3 =

∫ tn

tn−1

‖yn,h − yd‖4L4(Ωh)

((
|y − yd|2 − |yn,h − yd|2

)
(y − yd), εn,h

)
dt

+

∫ tn

tn−1

‖yn,h − yd‖4L4(Ωh)

(
|yn,h − yd|2(y − yn,h), εn,h

)
dt ≡ I1

3 + I2
3 .

Then, Hölder’s inequality and the embedding H1(Ω) ⊂ L6(Ω) imply that

I2
3 ≤ C

∫ tn

tn−1

‖yn,h − yd‖6L6(Ωh)‖y − yn,h‖H1(Ωh)‖εn,h‖L2(Ωh) dt

≤ C
∫ tn

tn−1

‖y − yn,h‖2H1(Ωh) dt+

∫ tn

tn−1

‖εn,h‖2L2(Ωh) dt

where constant C depends upon the L∞(0, T ;L6(Ω)) norms of yd,y,yσ. Integral I1
3

can be handled in a similar way.

Finally, we have the following theorem [5, Theorem 4.16].

Theorem 4.7. Suppose that (3.19) and (4.12) hold. Then, there exists a constant
C > 0 independent of σ such that

‖ū− ūσ‖L2(0,T ;L2(Ωh)) ≤ Ch,(4.27)

‖ȳ − ȳσ‖L∞(0,T ;L2(Ωh)) + ‖ȳ − ȳσ‖L2(0,T ;H1(Ωh)) ≤ Ch,(4.28)

‖ϕ̄− ϕ̄σ‖L∞(0,T ;L2(Ωh)) + ‖ϕ̄− ϕ̄σ‖L2(0,T ;H1(Ωh)) ≤ Ch.(4.29)

5. Sparse controls. In the applications, we are frequently required to localize
the controls in a small region of the domain. An interesting issue is to guess the region
where the controls are more efficient. To solve this question we consider the following
control problem

(Pκ)

{
min Jκ(u)
u ∈ Uad

where

Jκ(u) = J(u) + κj(u) and j(u) = ‖u‖L1(ΩT ) =

3∑
j=1

∫
ΩT

|uj(x, t)| dx dt

with κ > 0. In this section, we assume that −∞ < αj < 0 < βj < +∞, 1 ≤ j ≤ 3.
Thus, any admissible control can take the value 0 in some points. We will show that
the solutions ū of (Pκ) are sparse controls, and the size of their supports can be
monitored by κ. The bigger κ is, the smaller the support of ū is.

The functional j is convex and Lipschitz. Its subdifferential is defined by

∂j(u) = {ζ ∈ L∞(ΩT ) :

∫
ΩT

ζ(v − u) dx dt+ j(u) ≤ j(v) ∀v ∈ L1(ΩT )}.

By taking v = 0 and v = 2u, respectively, we get that

(5.1)

∫
ΩT

ζu dx dt = j(u) and hence

∫
ΩT

ζv dx dt ≤ j(v) ∀v ∈ L1(ΩT ).
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From here we infer

(5.2) ζj(x, t) ∈ sign(uj(x, t)), 1 ≤ j ≤ 3, where sign(s) =

 {+1} if s > 0
{−1} if s < 0

[−1,+1] if s = 0.

We have the following theorem analogous to Theorem 3.2.

Theorem 5.1. Under assumption (3.1), (Pκ) has at least one solution. Moreover, for
any local solution ū there exist ȳ, ϕ̄ ∈ H2,1(ΩT )∩C([0, T ],Y), p̄, π̄ ∈ L2(0, T ;H1(Ω))
and ζ̄ ∈ ∂j(ū) such that (3.7) and (3.8) hold, and additionally

(5.3)

∫ T

0

∫
Ω

(ϕ̄+ λū + κζ̄)(u− ū) dx dt ≥ 0 ∀u ∈ Uα,β .

Proof. The existence of a solution is proved in the same manner as in Theorem 3.2.
Let us prove the optimality conditions. First we observe that A is open and ū ∈ A,
then for every u ∈ Uα,β there exists ρu > 0 such that ū + ρ(u − ū) ∈ A for all
0 < ρ < ρu, and hence it belongs to Uad. Now, we use (3.3), the convexity of j and
the local optimality of ū as follows.

0 ≤ lim
ρ↘0

Jκ(ū + ρ(u− ū))− Jκ(ū)

ρ
≤ lim
ρ↘0

J(ū + ρ(u− ū))− J(ū)

ρ
+ κj(u)− κj(ū)

= J ′(ū)(u− ū) + κj(u)− κj(ū) =

∫
ΩT

(ϕ̄+ λū)(u− ū) dx dt+ κj(u)− κj(ū).

This implies that ū is the solution of the optimization problem

min
u∈Uα,β

∫
ΩT

(ϕ̄+ λū)u dx dt+ κj(u).

Hence, by using the subdifferential calculus for convex functions we deduce the exis-
tence of ζ̄ ∈ ∂j(ū) such that (5.3) holds.

Corollary 5.2. Suppose that the assumptions of Theorem 5.1 hold, and let (ū, ϕ̄, ζ̄)
satisfy (3.7), (3.8), and (5.3). Then, the following relations hold for 1 ≤ j ≤ 3

ūj(x, t) = Proj[αj ,βj ]

{
− 1

λ

(
ϕ̄j(x, t) + κζ̄j(x, t)

)}
(5.4)

ūj(x, t) = 0 ⇔ |ϕ̄j(x, t)| ≤ κ(5.5)

ζ̄j(x, t) = Proj[−1,+1]

(
− 1

κ
ϕ̄j(x, t)

)
.(5.6)

Moreover, from the representation formulas (5.4) and (5.6) it follows the regularity

ū, ζ̄ ∈ H1(ΩT ) ∩ C([0, T ],H1(Ω)) ∩ L2(0, T ;W1,6(Ω)) ∩ L2(0, T ;C(Ω̄)).

Finally, ζ̄ is unique for any fixed local minimum ū.

Proof. The proof of the identity (5.4) is standard and well known in control theory.
Let us prove (5.5). To this end we deduce from (5.2) and (5.4)

ūj(x, t) = 0⇒ ϕ̄j(x, t) + κζj(x, t) = 0⇒ |ϕ̄j(x, t)| ≤ κ
ūj(x, t) > 0⇒ ζj(x, t) = +1 and ϕ̄j(x, t) + κζj(x, t) < 0⇒ ϕ̄j(x, t) < −κ
ūj(x, t) < 0⇒ ζj(x, t) = −1 and ϕ̄j(x, t) + κζj(x, t) > 0⇒ ϕ̄j(x, t) > +κ
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which proves (5.5). Finally we prove (5.6). Using (5.2), (5.4) and (5.5) we obtain

ϕ̄j(x, t) > +κ⇒ ūj(x, t) < 0⇒ ζj(x, t) = −1⇒ ζj(x, t) = Proj[−1,+1]

(
− 1

κ
ϕ̄j(x, t)

)
ϕ̄j(x, t) < −κ⇒ ūj(x, t) > 0⇒ ζj(x, t) = +1⇒ ζj(x, t) = Proj[−1,+1]

(
− 1

κ
ϕ̄j(x, t)

)
|ϕ̄j(x, t)| ≤ κ⇒ ūj(x, t) = 0⇒ ϕ̄j(x, t) + κζj(x, t) = 0⇒ ζj(x, t) = − 1

κ
ϕ̄j(x, t)

and (5.6) follows.

Remark 5.3. Relation (5.5) shows the sparsity of the optimal controls. When κ
is increased, then the support of the control is decreased. Actually, if κ is too large,
it could happen that ū(x, t) = 0. For example, if we assume that Γ is of class C3,
y0,yΩ ∈ Y ∩ W 1,p

0 (Ω) with p > 4 and yd ∈ Lq(ΩT ) for q sufficiently large, then
‖ϕ̄‖L∞(ΩT ) ≤M with M independent of κ. Indeed, from the relation

1

8
‖ȳ − ȳd‖8L4(Ω) ≤ Jκ(ū) ≤ Jκ(0) = J(0) =

1

8
‖yd‖8L4(Ω)

and (2.5) along with the boundedness of Uad in L∞(ΩT ) we infer with Solonnikov’s
Theorem [19] that ȳ ∈ Lp(0, T ;W2,p(Ω)) ∩W1,p(ΩT ) and the estimate for ȳ in this
space is independent of κ. Now, using the adjoint state equation and [19] again, we
deduce that ϕ̄ ∈W1,p(ΩT ) ⊂ C(Ω̄T ). Moreover, ‖ϕ̄‖L∞(ΩT ) only depends on ȳ, yd
and yΩ. Hence, we get the existence of the constant M independent of κ. Therefore,
if we take κ ≥M , (5.5) implies that ū = 0 is the unique solution of (Pκ).

Next, we establish the second-order sufficient optimality conditions. To this end, first
we recall that j : L1(ΩT ) −→ R is convex and Lipschitz. Therefore, there exist the
directional derivatives, given in this case by the formula

j′(u;v) = lim
ρ↘0

j(u + ρv)− j(u)

ρ

(5.7) =

3∑
j=1

{∫
Ω+
T,j

vj dx dt−
∫

Ω−T,j

vj dx dt+

∫
Ω0
T,j

|vj | dx dt

}
, 1 ≤ j ≤ 3,

where Ω+
T,j , Ω−T,j and Ω0

T,j denote the subset s of ΩT where u take positive, negative
or zero values, respectively. Moreover, the following properties hold

(5.8) max
ζ∈∂j(u)

∫
ΩT

ζv dx dt = j′(u;v) ≤ j(u + ρv)− j(u)

ρ
≤ j(u + v)− j(u)

∀ρ ∈ (0, 1). The reader is referred to [2, §2.4.3], [3, Chapter 4] or [8, Chapter 2] for
these issues.

Now, we fix an element ū ∈ Uad satisfying the first order optimality conditions es-
tablished in Theorem 5.1. We associate to ū the cone of critical directions defined
by

(5.9) Cū = {v ∈ L2(0, T ;L2(Ω)) : v satisfies (5.10) and J ′(ū)v + κj′(ū;v) = 0}

with

(5.10)

{
vj(x, t) ≥ 0 if ūj(x, t) = αj
vj(x, t) ≤ 0 if ūj(x, t) = βj

1 ≤ j ≤ 3.
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Before stating the second order optimality conditions let us give some properties that
will be useful later.

Proposition 5.4. Let (ū, ζ̄) ∈ Uad × ∂j(ū) satisfy the optimality system (3.7), (3.8)
and (5.3) along with the state ȳ and adjoint state ϕ̄. Let v ∈ L2(0, T ;L2(Ω)) fulfill
(5.10). Then,

(5.11) J ′(ū)v + κj′(ū;v) ≥ J ′(ū)v + κ

∫
ΩT

ζ̄v dx dt ≥ 0.

Moreover, if v ∈ Cū, then

(5.12) J ′(ū)v + κ

∫
ΩT

ζ̄v dx dt = 0 and j′(ū;v) =

∫
ΩT

ζ̄v dx dt.

Proposition 5.5. The set Cū is a closed, convex cone in L2(0, T ;L2(Ω)).

The reader is referred to [6, Lemma 3.5 and Proposition 3.4] for the proof of these
propositions.

Let us define d̄(x, t) = ϕ̄(x, t)+λū(x, t)+κζ̄(x, t). From (5.3) we deduce in the usual
way for 1 ≤ j ≤ 3

(5.13)

 ūj(x, t) = αj ⇒ d̄j(x, t) ≥ 0
ūj(x, t) = βj ⇒ d̄j(x, t) ≤ 0

αj < ūj(x, t) < βj ⇒ d̄j(x, t) = 0
1 ≤ j ≤ 3,

and

(5.14)

{
d̄j(x, t) > 0 ⇒ ūj(x, t) = αj
d̄j(x, t) < 0 ⇒ ūj(x, t) = βj

1 ≤ j ≤ 3.

Now, from (5.12) we infer∫
ΩT

d̄v dx dt = J ′(ū)v + κ

∫
ΩT

ζ̄v dx dt = 0 ∀v ∈ Cū.

This identity along with (5.13) and (5.14) imply

(5.15) d̄j(x, t)vj(x, t) = |d̄j(x, t)vj(x, t)| = 0, 1 ≤ j ≤ 3, ∀v ∈ Cū.

The following theorem states the second order optimality conditions.

Theorem 5.6. The following statements hold.

(i) Let ū be a local minimum of (Pκ); then J ′′(ū)v2 ≥ 0 ∀v ∈ Cū.

(ii) Let (ū, ζ̄) ∈ Uad × ∂j(ū) satisfy (5.3). Furthermore, let us assume that

(5.16) J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0},

then there exist ε > 0 and δ > 0 such that

(5.17) Jκ(ū) +
δ

2
‖u− ū‖2L2(0,T ;L2(Ω)) ≤ Jκ(u) ∀u ∈ Bε(ū) ∩ Uα,β ,

where Bε(ū) is the L2(0, T ;L2(Ω))-ball of center ū and radius ε.
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The proof of this theorem is the same as the proofs of Theorem 3.7 and 3.9 of [6].
Indeed, it it is enough to use (5.13)-(5.15) instead the relations (3.11) and (3.12) of
[6], and select ε > 0 such that Bε(ū) ⊂ A.

Corollary 5.7. Let (ū, ζ̄) be as in the previous theorem, and assume that (5.16) is
fulfilled. Then, the following inequality holds

J ′′(ū)v2 ≥ δ‖v‖2L2(0,T ;L2(Ω)) ∀v ∈ Cū.

Proof. From (5.17) we infer that ū is a local solution of the problem{
min I(u) = Jκ(u)− δ

2‖u− ū‖2L2(0,T ;L2(Ω))

u ∈ Uad.

Hence, Theorem 5.6-(i) implies

0 ≤ I ′′(ū)v2 = J ′′(ū)v2 − δ‖v‖2L2(0,T ;L2(Ω)) ∀v ∈ Cū,

which concludes the proof.

5.1. Numerical approximation of (Pκ) and error estimates. Hereafter, we
assume that Ω is convex. Following the same scheme than for (Pσ), we define the
discrete approximation of (Pκ) by

(Pκσ)

{
minJκσ(uσ,yσ)
(uσ,yσ) ∈ Uσ,ad × Yσ satisfy (4.9)

where

Jκσ(uσ,yσ) = Jσ(uσ,yσ) + κjσ(uσ) = Jσ(uσ,yσ) + κ

3∑
j=1

∫ T

0

∫
Ωh

|uj(x, t)| dx dt.

Theorems 4.2 and 4.3 can be proved for (Pκσ) in the same manner that they were
proved in §4. From now on, ū will denote a local (or global) minimum of (Pκ), with
associated state ȳ and adjoint state ϕ̄, and ζ̄ ∈ ∂j(ū) is the unique element such
that (ū, ȳ, ϕ̄, ζ̄) satisfies the first-order optimality conditions. We also assume that ū
satisfies the second-order sufficient condition (5.16). As in §4, we take a sequence of
local or global solutions {(ūσ, ȳσ)}σ of (Pκσ) satisfying (4.15) and (4.16). Following
§4 we take σ0 > 0 and ε > 0 such that Bε(ū) ⊂ A and (4.9) has a unique solution for
every u ∈ Bε(ū), and define

Jκσ : Bε(ū) −→ R, by Jκσ(u) = Jκσ(u,yσ(u)).

Moreover, ū and ūσ are global minima of Jκ and Jκσ, respectively, in Bε(ū). In
addition, we take ε small enough so that (5.17) holds for this ε and some δ > 0.

Now, for every ūσ with |σ| < σ0, Theorem 4.4 and Corollary 4.5 hold with the only
following change: (4.25) is replaced by

(5.18)

∫ T

0

∫
Ωh

(ϕ̄σ + λūσ + κζ̄σ)(uσ − ūσ) dx dt ≥ 0 ∀uσ ∈ Uσ,ad,
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where ζ̄σ ∈ ∂jσ(ūσ). This inequality can be proved in the same way as (5.3). From
ζ̄σ ∈ ∂jσ(ūσ), jσ : Uσ −→ R, it is easy to deduce that

(5.19) ζ̄σ =

Nτ∑
n=1

∑
K∈Kh

ζ̄n,KχnχK with

 ζ̄n,K = +1 if ūn,K > 0
ζ̄n,K = −1 if ūn,K < 0

ζ̄n,K ∈ [−1,+1] if ūn,K = 0

where {ūn,K} denote the coefficients of ūσ

ūσ =

Nτ∑
n=1

∑
K∈Kh

ūn,KχnχK .

Inequality (5.18) can be written

Nτ∑
n=1

∑
K∈Kh

(∫ tn

tn−1

∫
K

ϕ̄σ(x, t) dx dt+ τn|K|
[
λūn,K + κζ̄n,K

])
(un,K − ūn,k) ≥ 0

∀un,k ∈ [α, β], or equivalently

Nτ∑
n=1

∑
K∈Kh

(
τn

∫
K

ϕ̄j,n,h(x) dx+ τn|K|
[
λūj,n,K + κζ̄j,n,K

])
(uj,n,K − ūj,n,k) ≥ 0

∀uj,n,k ∈ [αj , βj ] and 1 ≤ j ≤ 3. Now, arguing as in Corollary 5.2, we have the
following result.

Corollary 5.8. Let (ūσ, ȳσ, ϕ̄σ, ζ̄σ) satisfy the discrete optimality system for (Pκσ).
Then, the following relations hold for K ∈ Kh and for 1 ≤ j ≤ 3

ūj,n,K = Proj[αj ,βj ]

{
− 1

λ

(
1

|K|

∫
K

ϕ̄j,n,h(x) dx+ κζ̄j,n,K

)}
(5.20)

ūj,n,K = 0 ⇔
∣∣∣∣ 1

|K|

∫
K

ϕ̄j,n,h(x) dx

∣∣∣∣ ≤ κ(5.21)

ζ̄j,n,K = Proj[−1,+1]

(
− 1

κ|K|

∫
K

ϕ̄j,n,h(x) dx
)
.(5.22)

Moreover, from the representation formula (5.22) it follows that ζ̄σ is unique for any
fixed local minimum ūσ.

The following convergence properties will be used later

(5.23) lim
|σ|→0

{
‖ϕ̄σ − ϕ̄‖L2(0,T ;L2(Ωh)) + ‖ζ̄σ − ζ̄‖L2(0,T ;L2(Ωh))

}
= 0.

The convergence for the adjoint states follows from (4.26). From the representation
formulas (5.6) and (5.22) we infer the convergence for ζ̄σ − ζ̄.

We finish the paper by proving that Theorem 4.7 holds for problem (Pκ).

Theorem 5.9. Under the previous notations, and assuming that (4.12) holds and ū
satisfies the sufficient second order condition (5.16), then the error estimates (4.27)-
(4.29) remain valid. Additionally, we have the estimate

(5.24) ‖ζ̄ − ζ̄σ‖L2(0,T ;L2(Ωh)) ≤ Ch.
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Proof. We will prove (4.27). The estimates (4.28) and (4.29) are an immediate
consequence of (4.13), (4.26) and (4.27). The estimate (5.24) follows from (4.29) and
the representation formulas (5.6) and (5.22).

Let us extend ūσ to ΩT by setting ūσ(x, t) = ū(x, t) for x ∈ Ω \ Ωh. Since ūσ → ū
in L2(0, T ;L2(Ω)), then there exists σε ∈ (0, σ0) such that ūσ ∈ Bε(ū) for every
|σ| < σε. Hence, we obviously have that ūσ ∈ Uad for |σ| < σε. We proceed by
contradiction and we assume that for any constant C > 0 and any σ0 > 0 there exists
σ with |σ| < σ0 such that

‖ūσ − ū‖L2(0,T ;L2(Ωh)) > Ch.

This implies that

(5.25) lim inf
|σ|→0

h

‖ūσ − ū‖L2(0,T ;L2(Ωh))
= 0.

We denote by {ūσ}σ a sequence satisfying the above property. We will see that this
is not possible.

Let us define uσ as the L2(0, T ;L2(Ω))-projection of ū on Uσ, which is given by

uσ =

Nτ∑
n=1

∑
K∈Kh

un,KχnχK , with un,K =
1

|K|τn

∫ tn

tn−1

∫
K

ū(t, x) dx dt.

We also extend uσ to ΩT by taking uσ(x, t) = ū(x, t) for (x, t) ∈ Ω \ Ωh. From the
convergence of the projections, uσ → ū in L2(0, T ;L2(Ω)), we deduce that uσ ∈ A
for every |σ| < σε, redefining a smaller σε if necessary. Moreover, it is obvious that
uσ(x, t) ∈ [α, β] for almost all (x, t) ∈ Ωh × (0, T ), hence uσ ∈ Uσ,ad. We also have
the following properties enjoyed by uσ

‖uσ‖2L2(0,T ;L2(Ωh)) = (uσ,uσ) = (ū,uσ) ≤ ‖ū‖L2(0,T ;L2(Ωh))‖uσ‖L2(0,T ;L2(Ωh))

and hence,

(5.26) ‖uσ‖L2(0,T ;L2(Ωh)) ≤ ‖ū‖L2(0,T ;L2(Ωh)).

From the representation formula for uσ written above we infer

‖uσ‖L1(0,T ;L1(Ωh)) ≤
Nτ∑
n=1

∑
K∈Kh

|un,K |τn|K|

(5.27) =

Nτ∑
n=1

∑
K∈Kh

∣∣∣∣∣
∫ tn

tn−1

∫
K

ū(t, x) dx dt

∣∣∣∣∣ ≤ ‖ū‖L1(0,T ;L1(Ωh)).

The inequalities (5.26) and (5.27) are also valid in Ω because uσ and ū coincide outside
Ωh.

Now, using (5.18) and ζ̄σ ∈ ∂jσ(ūσ) we get

0 ≤ J ′σ(ūσ)(uσ − ūσ) + κjσ(uσ)− κjσ(ūσ)
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= J ′(ūσ)(ū− ūσ) + J ′(ūσ)(uσ − ū) + [J ′σ(ūσ)− J ′(ūσ)](uσ − ūσ) + κj(uσ)− κj(ūσ),

where we have used that ūσ(x, t) = uσ(x, t) = ū(x, t) for (x, t) ∈ (Ω \ Ωh) × (0, T ).
Inserting (5.27) in the above inequality we deduce

0 ≤ J ′(ūσ)(ū− ūσ) + J ′(ū)(uσ − ū) + [J ′(ūσ)− J ′(ū)](uσ − ū)

+[J ′σ(ūσ)− J ′(ūσ)](uσ − ūσ) + κj(ū)− κj(ūσ).

On the other hand, (5.3) implies that

0 ≤ J ′(ū)(ūσ − ū) + κj(ūσ)− κj(ū).

Adding the last two inequalities we obtain

[J ′(ūσ)− J ′(ū)](ūσ − ū) ≤

(5.28) J ′(ū)(uσ − ū) + [J ′(ūσ)− J ′(ū)](uσ − ū) + [J ′σ(ūσ)− J ′(ūσ)](uσ − ūσ).

Let us estimate the right hand side of the above inequality. From (3.3) and (5.27) it
follows

|J ′(ū)(uσ − ū)| ≤
∫ T

0

∫
Ω

|ϕ̄+ λū| |uσ − ū| dx dt

(5.29) ≤ C‖ϕ̄+ λū‖H1(ΩT )‖uσ − ū‖H1(ΩT )∗ ≤ Ch2;

see [5, Lemma 4.17] for the last inequality.

For the second term we use the mean value theorem to obtain

|[J ′(ūσ)− J ′(ū)](uσ − ū)| ≤ C‖ūσ − ū‖L2(0,T ;L2(Ωh))‖uσ − ū‖L2(0,T ;L2(Ωh))

(5.30) ≤ C‖ūσ − ū‖L2(0,T ;L2(Ωh))h.

To estimate the third term we consider the continuous and discrete adjoint states ϕ̄σ

and ϕ̄σ associated to ūσ. By (4.26) we have that

|[J ′σ(ūσ)− J ′(ūσ)](uσ − ūσ)| ≤
∫ T

0

∫
Ωh

|ϕ̄σ − ϕ̄σ| |uσ − ūσ| dx dt

≤ ‖ϕ̄σ − ϕ̄σ‖L2(0,T ;L2(Ωh))‖uσ − ūσ‖L2(0,T ;L2(Ωh))

≤ Ch
(
‖uσ − ū‖L2(0,T ;L2(Ωh)) + ‖ū− ūσ‖L2(0,T ;L2(Ωh))

)

(5.31) ≤ C(h2 + ‖ū− ūσ‖L2(0,T ;L2(Ωh))h).
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Combining the estimates (5.28)-(5.31) and the following lemma, we deduce (4.27),
which contradict (5.25) as desired.

Lemma 5.10. There exist σ0 > 0 and δ0 > 0 such that

(5.32) [J ′(ūσ)− J ′(ū)](ūσ − ū) ≥ δ0‖ūσ − ū‖2L2(0,T ;L2(Ωh)) ∀|σ| ≤ σ0.

Proof. Let us define

vσ =
ūσ − ū

‖ūσ − ū‖L2(0,T ;L2(Ω))
.

Using the mean value theorem we get

[J ′(ūσ)− J ′(ū)](ūσ − ū) = J ′′(uθ,σ)(ūσ − ū)2,

where uθ,σ = ū + θσ(ūσ − ū) with θσ ∈ (0, 1). It is immediate that {J ′′(uθ,σ)v2
σ}σ

is a bounded sequence of real numbers. Let us take a subsequence {vσ′}σ′ of {vσ}σ
such that

lim inf
σ→0

J ′′(uθ,σ)v2
σ = lim

σ′→0
J ′′(uθ,σ′)v

2
σ′ = l ∈ R.

We will prove that l > 0. To this end, we take a new subsequence of {vσ′}σ′ , {vσ′′}σ′′ ,
such that vσ′′ ⇀ v in L2(0, T ;L2(Ω)). In the sequel, we simplify the notation by
denoting this sequence simply by {vσ}σ. Then, we have

(5.33) lim
σ→0

J ′′(uθ,σ)v2
σ = l, ‖vσ‖L2(0,T ;L2(Ω)) = 1 and vσ ⇀ v in L2(0, T ;L2(Ω)).

We will distinguish two cases.

Case I: v = 0. According to (3.5), J ′′(uθ,σ)v2
σ = “something converging to 0 ” + λ,

hence l = λ.

Case II: v 6= 0. In this case, we prove that v belongs to the critical cone Cū, and then
with Corollary 5.7 we deduce again that l > 0. First, we pass to the limit in j′(ū;vσ).
To this end we follow (5.7). The weak convergence vσ ⇀ v in L2(0, T ;L2(Ω)) implies
for 1 ≤ j ≤ 3

lim
|σ|→0

∫
Ω+
T,j

vj,σ dx dt =

∫
Ω+
T,j

vj dx dt and lim
|σ|→0

∫
Ω−T,j

vj,σ dx dt =

∫
Ω−T,j

vj dx dt.

On the other hand, using (5.19), (5.23), (5.2) and the equalities

sign(vj,σ(x, t))=sign(ūj,σ(x, t))=sign(ζ̄j,σ(x, t)) for (x, t) ∈ Ω0
T,j ,

we obtain∫
Ω0
T,j

|vj | dx dt ≤ lim inf
|σ|→0

∫
Ω0
T,j

|vj,σ| dx dt ≤ lim sup
|σ|→0

∫
Ω0
T,j

|vj,σ| dx dt

= lim sup
|σ|→0

∫
Ω0
T,j

ζ̄j,σvj,σ dx dt =

∫
Ω0
T,j

ζ̄jvj dx dt ≤
∫

Ω0
T,j

|vj | dx dt,
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which implies

lim
|σ|→0

∫
Ω0
T,j

|vj,σ| dx dt =

∫
Ω0
T,j

|vj | dx dt =

∫
Ω0
T,j

ζ̄jvj dx dt.

All together proves that

lim
|σ|→0

j′(ū;vσ) = j′(ū;v) =

∫
ΩT

ζv dx dt.

Since v satisfies (5.10) because every vσ does it, then the above identity and (5.11)
implies

(5.34) J ′(ū)v + κj′(ū;v) =

∫
ΩT

(ϕ̄+ λū + κζ̄)v dx dt ≥ 0.

To conclude that v ∈ Cū we prove the opposite inequality. Let us take uσ as above.
Then, from (5.18) we obtain∫ T

0

∫
Ωh

(ϕ̄σ + λūσ + κζ̄σ)(uσ − ūσ) dx dt ≥ 0.

From here we get∫ T

0

∫
Ωh

(ϕ̄σ +λūσ +κζ̄σ)(ū− ūσ) dx dt+

∫ T

0

∫
Ωh

(ϕ̄σ +λūσ +κζ̄σ)(uσ− ū) dx dt ≥ 0.

Dividing by ‖ūσ − ū‖L2(0,T ;L2(Ω)) we infer

−
∫ T

0

∫
Ωh

(ϕ̄σ + λūσ + κζ̄σ)vσ dx dt

(5.35) +

∫ T

0

∫
Ωh

(ϕ̄σ + λūσ + κζ̄σ)
uσ − ū

‖ūσ − ū‖L2(0,T ;L2(Ω))
dx dt ≥ 0.

Now, using (5.25) and the estimate

‖uσ − ū‖L2(0,T ;L2(Ω)) ≤ Ch,

see [5, Lemma 4.17], as well as (5.23) we deduce∫ T

0

∫
Ωh

(ϕ̄+ λū + κζ̄)v dx dt = lim
|σ|→0

∫ T

0

∫
Ωh

(ϕ̄σ + λūσ + κζ̄σ)vσ dx dt

≤ lim
|σ|→0

‖ϕ̄σ + λūσ + κζ̄σ‖L2(0,T ;L2(Ωh))

‖uσ − ū‖L2(0,T ;L2(Ω))

‖ūσ − ū‖L2(0,T ;L2(Ω))

≤ C lim
|σ|→0

h

‖ūσ − ū‖L2(0,T ;L2(Ω))
= 0.
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This completes the proof of v ∈ Cū. Then Corollary (5.7) and the fact that v 6= 0
lead to

J ′′(ū)v2 ≥ δ‖v‖2L2(0,T ;L2(Ω)) = δ1 > 0.

Therefore, with (5.33) we get

δ1 ≤ lim inf
|σ|→0

J ′′(ū)v2
σ ≤ lim

|σ|→0
J ′′(uθ)v

2
σ + lim

|σ|→0
[J ′′(ū)− J ′′(uθ)]v2

σ = l.

Hence, we have that l ≥ min{λ, δ1}. Now, from (5.33) we deduce the existence of
σ0 > 0 such that

J ′′(uθ,σ)v2
σ ≥

l

2
∀|σ| ≤ σ0,

or equivalently

J ′′(uθ,σ)(ūσ − ū)2 ≥ l

2
‖ūσ − ū‖2L2(0,T ;L2(Ω)) ∀|σ| ≤ σ0.

Thus, (5.32) holds with δ0 = min{λ, δ1}/2.

6. Concluding remarks. In this paper, we have considered an alternative for-
mulation to the classical tracking control problem for three-dimensional flows, which
assures that the optimal states are strong solutions of the Navier-Stokes system. As
a consequence, we have been able to carry out a complete theoretical and numerical
analysis of the optimal control problem. In particular, error estimates for the numer-
ical discretization of the same order of the two-dimensional case have been obtained.
We emphasize that our analysis is applicable without assuming any smallness assump-
tion on the data of our problem, and it can be also used to deal with sparse control
problems.

The classical formulation of the control problem uses the L2 norm of y − yd. It is
easy to prove the existence of at least one solution (ū, ȳ) for this formulation. If we
make the assumption that ȳ is a strong solution of the Navier-Stokes system, then
we can can follow the approach described in this paper to obtain the same results.
Hence, our formulation can be regarded as a way to guaranteee that ȳ is indeed a
strong solution.
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[7] E. Casas and F. Tröltzsch, Second-order and stability analysis for state-constrained ellip-
tic optimal control problems with sparse controls, SIAM J. Control Optim., 52 (2014),
pp. 1010–1033.

[8] F. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, Toronto, 1983.
[9] K. Deckelnick and M. Hinze, Semidiscretization and error estimates for distributed control

of the instationary Navier-Stokes equations, Numer. Math., 97 (2004), pp. 297–320.
[10] P. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory

and Algorithms, Springer-Verlag, Berlin, Heidelberg, New York, Tokio, 1986.
[11] M. Gunzburger and S. Manservisi, The velocity tracking problem for navier-stokes flows

with bounded distributed control, SIAM J. Control Optim., 37 (1999), pp. 1913–1945.
[12] , Analysis and approximation of the velocity tracking problem for Navier-Stokes flows

with distributed control, SIAM J. Numer. Anal., 37 (2000), pp. 1481–1512.
[13] R. Herzog, G. Stadler, and G. Wachsmuth, Directional sparsity in optimal control of partial

differential equations, SIAM J. Control Optim., 50 (2012), pp. 943–963.
[14] M. Hinze and K. Kunisch, Second order methods for optimal control of time-dependent fluid

flow, SIAM J. Control Optim., 40 (2001), pp. 925–946.
[15] O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and

Breach, New York, second edition ed., 1969. English translation.
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