A DISCONTINUOUS GALERKIN TIME-STEPPING SCHEME FOR
THE VELOCITY TRACKING PROBLEM*
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Abstract. The velocity tracking problem for the evolutionary Navier-Stokes equations in 2d is
studied. The controls are of distributed type and they are submitted to bound constraints. First
and second order necessary and sufficient conditions are proved. A fully-discrete scheme based on
discontinuous (in time) Galerkin approach combined with conforming finite element subspaces in
space, is proposed and analyzed. Provided that the time and space discretization parameters, 7 and
h respectively, satisfy 7 < Ch?, then L2 error estimates of order O(h) are proved for the difference
between the locally optimal controls and their discrete approximations.
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1. Introduction. In this paper we prove some error estimates for the numerical
approximation of a distributed optimal control problem governed by the evolution
Navier—Stokes equations, with pointwise control constraints. More precisely, we con-
sider the following problem:
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where

T
s = g [ [ atte) = yato)P deat+ 3 [ ya(Ta) - ya(e) s

AT )
+ = [u(t, z)|” dadt.
2Jo Ja

Here y, denotes the solution of the 2d evolution Navier-Stokes equations

(11) {yt—uAy—F(y-V)y—FVp:f—&-uinQT:(O,T)xQ,

divy =0 inQp, y(0)=yo inQ, y=0 on 37 =(0,T) x T,
and U,q is the set of feasible controls, defined for —oo < a; < f; < +00, j = 1,2, by
Upg = {u € L*(0,T;L*(Q)) : a; < uj(t,x) < B; ae. (t,x) € Qp, j=1,2}.

The scope of the above optimal control problem is to match the velocity vector field
to a given target field, by influencing the behavior of the system through a control
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function. The control function is of distributed type and satisfies certain constraints.
This is achieved by minimizing the standard tracking type functional, while the pa-
rameter A > 0 denotes a penalty parameter, which is typically small compared to the
actual size of the data. The terminal term has been included in order to obtain more
effective approximations near the end point of the time interval. For related discussion
and references regarding the computational significance of the above optimal control
problem we refer the reader to [16].

The analysis of such optimal control problems is well understood. However, when it
comes to the approximation and to the numerical analysis of such problems the exist-
ing literature is quite limited. This is due to the fact that the regularity of solutions
of Navier-Stokes equations, within the optimal control setting is very limited, which
creates additional difficulties in analyzing suitable schemes for optimal control prob-
lems. Standard techniques developed for the numerical analysis of the uncontrolled
Navier-Stokes equations can not be directly applied in the optimal control setting. In
addition, optimal control problems constrained to nonlinear evolutionary pdes with
control constraints typically exhibit fine properties and hence require special tech-
niques involving both first and second order necessary and sufficient conditions.

Our work analyzes a numerical scheme based on the discontinuous time-stepping
Galerkin scheme for the piecewise constant time combined with standard conforming
finite element subspaces for the discretization in space. The main result of our work
is to derive space-time error estimates, under suitable regularity assumptions on the
data by utilizing ideas from [6] developed for the stationary Navier-Stokes, together
with a detailed error analysis of the uncontrolled state and adjoint equations of the
underlying scheme. To our best knowledge our estimates are new. Two parameters
are associated to the numerical discretization: 7 and h, indicating the size of the grids
in time and space, respectively. The usual assumption 7 < Ch? is needed to prove
that the discrete equation has a unique solution. The reader should observe that if
we discretize the state equation only in time, not in space, then we cannot prove
uniqueness of a solution for the resulting elliptic system. Indeed, this discrete elliptic
system is very close to the stationary Navier-Stokes system, for which there is no a
uniqueness result. Therefore, it is not surprising that the discretization parameter
7 is needed to be small compared with h if we want to prove the uniqueness of a
solution for the full discrete system. We also make use of this condition to prove error
estimates of order O(h). For some related earlier work, we refer the reader to [1], [17],
[18], [19], [20], [29], [30], [34] and the reference cited therein. A very close paper is [9].
The main differences with [9] are the non-existence of control constraints and the fact
that the state equation is not discretized in time. The absence of control constraints
allows a direct analysis of the system of state and adjoint state equations, which is
not possible under control constraints. To overcome this difficulty we need to use the
second order conditions for optimality. By using a variational discretization, in [9] the
authors can prove error estimates of order O(h?). The same estimates can be proved
when the state equations is fully discretized. The proof of error estimates of order
O(h?) for the variational discretization of the control problem (P) will be the goal of
a forthcoming paper currently in preparation.

An interesting reference for the approximation of control problems associated to
parabolic semilinear equations is [27]. They discretize the state equation in two steps,
first in time and then in space. They take advantage of the boundedness in time-space
of the states to get error estimates for the control of order O(7 + h) without the as-
sumption 7 < Ch?. However, they make a strong second order condition that we do
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not need. Their approach is not easy to be translated to the control of Navier-Stokes
systems because the non-linearity involves the gradient of the state and the bounded-
ness of the states fails. Moreover, the discretization in time of the state equation leads
to a stationary Navier-Stokes system, for which we cannot guaranty the uniqueness
of a solution.

The discontinuous Galerkin time-stepping schemes are known to perform well in a
variety of problems whose solutions satisfy low regularity properties. The discontin-
uous (in time) Galerkin framework also accommodates many different time-stepping
schemes. For example, the lowest order scheme (in time) considered here, can be
viewed as the Implicit Euler scheme, while there is close relation between higher or-
der (in time) discontinuous Galerkin schemes, and other time-stepping approaches
such as Runge-Kutta time stepping techniques, provided that suitable integration
techniques are being used to discretize related integrals (see e.g. [32]). The key differ-
ence between the analysis of the classical Implicit Euler scheme and its discontinuous
(in time) stepping approach is the use of local (in time) approximation theory tools,
instead of constructing globally (in time) approximation and interpolation tools. In
addition, the discontinuous (in time) formulation inherits stability / regularity prop-
erties of the underlying pde, due to its heavily implicit nature. As a result, it leads to
an efficient analysis of approximation of problems whose solution satisfy low regularity
properties, and in particular to problems where the time-derivative is discontinuous,
and hence it is preferable to be discretized in a completely discontinuous fashion. On
the other hand, continuous (in time) Galerkin schemes typically require much more
regularity than the one anticipated from our optimal control problem. For example
the lowest order (in time) continuous (in time) Galerkin scheme, corresponds to a
Petrov-Galerkin Crank-Nicolson scheme, which requires additional regularity proper-
ties even in case of uncontrolled linear parabolic pdes (see e.g. [32]). For earlier work
on these schemes within the context of optimal control problems we refer the reader
to [24], [25] for error estimates for an optimal control problem for the heat equation,
with and without control constraints respectively, and to [8] for a convergence re-
sult for a semilinear parabolic optimal control problem. An analysis of second order
Petrov-Galerking Crank-Nicolson scheme, for an optimal control problem for the heat
equation is analyzed in [26] where estimates of second-order (in time) are derived.
However, the regularity assumptions on the control, state and adjoint variables are
not present in the nonlinear setting of Navier-Stokes equations. For general results
related to discontinuous time step schemes for linear parabolic uncontrolled pdes, we
refer the reader to [11, 12, 13, 14, 32] (see also references within). Finally in the
recent work of [10], discontinuous time-stepping schemes of arbitrary order for the
Navier-Stokes equations in 2d and 3d where examined. Further results concerning
the analysis and numerical analysis of the uncontrolled Navier-Stokes can be found in
the classical works of [15], [21], [22], [31]. For several issues related to the analysis and
numerics of optimal control problems we refer the reader to [33] (see also references
within).

2. Assumptions and preliminary results. () is a bounded open and convex
subset in R?, T being its boundary. The outward unit normal vector to I' at a point
x € I' is denoted by n(x). Given 0 < T < 400, we denote Qp = (0,7) x  and
Y7 = (0,T) x I'. We fix the notation for Sobolev spaces: H'(Q) = H!({;R?),
H}(Q) = HY(QR?), H Q) = (H}(2)) and WP(Q) = WP(Q;R?) for 1 < p < o0



4 E. CASAS AND K. CHRYSAFINOS

and s > 0. We also consider the spaces of integrable functions

Li(Q) = {w e L*(Q) : / w(z)dx = 0};
Q
LP(Q) = LP(Q;R?) and, for a given Banach space X, LP(0,T;X) will denote the
integrable functions defined in (0,7") and taking values in X endowed with the usual
norm. Following Lions and Magenes [23, Vol. 1] we put

oy 0%y Oy

H2,1(QT) = {yE LQ(QT) : 9. Dun. Bt GLZ(QT), 1<i,j< 2}
K3 (2}

equipped with the standard norm. In [23, Vol. 1] it is proved that every element of
H?1(Qr), after a modification over a zero measure set, is a continuous function from
[0,T] — H(2). We also set H>1(Qr) = H>1(Qr) x H>Y(Qr).

We introduce the usual spaces of divergence-free vector fields:

Y = {y € H}(Q) : divy = 0 in Q},
H={ycL?*Q) :divy=0inQ and y-n=0onT}.

Along this paper, we will assume that f,u € L?(0,T;L?(Q2)) and yg € Y. A solution
of (1.1) will be sought in the space W(0,T) = {y € L*(0,T;Y) : y; € L*(0,T;Y*)}.
It is well known that W(0,T) C C,([0,7],H), where C,([0,T],H) is the space of
weakly continuous functions y : [0,7] — H.

Let us introduce the weak formulation of (1.1). To this end we define the bilinear and
trilinear forms a : H'(Q) x H}(Q) — R and ¢ : L*(Q2) x HY(Q) x HY(Q) — R by

2
a(y,z) = u/ (Vy:Vz)dz =v Z / 0z,Yj O, 2j dx
Q Q

ij=1

c(y,z,w) =

2
[é(yasz) - é(}’?W’Z)] with é(Y>ZaW) = Z / y; <8Z¢> W; dx.
O 8xj

3,J=1

N =

Now, we seek y € W(0,T) such that for a.e. t € (0,7,
(yt7w) + a(y,w) + C(Yava) = (f+ U,W) VweyY

(2.1)
y(0) = yo.

Above (-,-) denotes the scalar product in L2(2). This notation will be frequently
used along the paper and || - || will denote the associated norm. Any other norm will
be indicated by a subscript.

Equation (2.1) has a unique solution in W(0,7"). Once the velocity y is obtained,
then the existence of a pressure p € D(r) is proved in such a way that the first
equation of (1.1) holds in a distribution sense. Thanks to the regularity assumed on
f, yo and Q, then some extra regularity is proved for (y,p). Indeed, we have that
y € H>1(Q7)NC([0,7T],Y) and p € L2(0,T; H*(Q)), the pressure being unique up to
an additive constant; see, for instance, Ladyzhenskaya [21], Lions [22], Temam [31].

The next properties of the trilinear form ¢ will be used later. The proof can be found
in many books; see [21], [22] or [31].
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LEMMA 2.1. The trilinear form c satisfies

cly,w,z) = é(y,z,w) = —é(y,w,z) Vy €Y and Vz,w € Hj(Q),
c(y,z,w) = —c(y,w,z) Vy € L*Q) and Vz,w € H (Q),
cly,w,w) =0 Vy € LYQ) and ¥Yw € H'(Q).

Moreover, the following inequalities hold

le(y, 2, w)| < |lyllee@) I VallLzo)lWlLaq), (1/p) +(1/q) = (1/2),
le(y, 2z, w)| < |lylls@)IVZllLe @ [[WllL@)-

By using the interpolation inequality

1/2 1/2
(2.2) l2ll ooy < 241201550 IV 21140y V2 € H3(D),

(see [31, Lema 3.3, page 91]) we obtain Vy, w € H}(Q) and Vz € H(Q)

2 1/2 1/2 1/2
(2.3) (v, 2, W)| < Cllyllthioy IVY sty | V2lLe @ 1wl o) VW40, -
Returning back to the control problem (P), we will assume
(2.4) A>0, v>0, yq€ L*0,T;L3(Q)) and yq €Y.

Since the mapping G : L?(0,T; L?(Q2)) — H>1(Q7)NC([0,T); Y), associating to each
control u the corresponding state G(u) = yy solution of (2.1), is well defined and
continuous, then the cost functional J : L2(0,T;L?(Q2)) — R is also well defined and
continuous. The proof of the existence of at least one solution of (P) is standard.

3. Optimality conditions. Since the problem (P) is not convex, we will deal
herafter with global and local solutions. A control u € U,q is said a local solution
of (P) if there exists € > 0 such that J(a) < J(u) for every u € U,q N B:(1), where
B.(11) denote the open ball of L2(0,T;L?(f2)) centered at @ and radius €. In this
section, we establish first and second order optimality conditions for a local solution
of problem (P). To this end, we need the differentiability of the mapping G.

THEOREM 3.1 (Casas [4]). The mapping G is of class C*™. Moreover, for any
u,v € L?(0,T;L?(Q)), if we denote yy = G(u), zy = G'(u)v and zyy = G"(u)v?,
then z., and zy are the unique solutions of the following equations, Vw € Y

(3.1) { (Zv,taw) + a(ZVaW) + C(ZV7yU7W) + C(YU7ZV7W) = (V7W)7

ZV(O) =0,
(3 2) (Zvv7t7 W) + a/(ZVV7 W) + C(ZVVa Yu, W) + C(th ZVV7 W) + 2C(ZV7 ZV7 W) = 07
’ Zvv(0) = 0.

As a consequence of this theorem we get the differentiability of the cost functional.

THEOREM 3.2. The cost functional J : L?(0,T; L?(Q)) — R is of class C> and for
every u,v € L*(0,T;L?(2)) we have

(3.3) J (u)v = /OT /Q(cpu + Au)v dadt,
J'(w)v? = /OT /Q(|z\,|2 —2(zy - V)2zyip,)dzdt
(3.4) —&-W/Q|zv(T)|2dm+)\/oT/Q|v|2dxdt,
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where z, = G'(u)v is the solution of (3.1) and ¢, € H>*(Q7) N C([0,T],Y) is the
unique element satisfying for every w € Y

_(Qou,tv W) + a(Py, W) + (W, yu, 0y) + c(Yu, W, ¢y) = (Yu — ¥a, W),
(3:5) { ou(T) = 1(y(T) ~ ya).

Proof. First of all, let us observe that the equation (3.5) is the adjoint of (3.1). Since
(3.1) has a unique solution in H**(Q7) N C([0,7],Y) for any v € L?(0,T;L3()),
then arguing by transposition we can prove the existence and uniqueness of the so-
lution ¢,, of (3.5), as well as the regularity ¢, € H>1(Q7) N C([0,7],Y). Now,
the differentiability property of J and relations (3.3) and (3.4) are a consequence of
Theorem 3.1 and the chain rule. O

Now, we get the optimality conditions. We start with the first order conditions.
THEOREM 3.3. Let us assume that @ is a local solution of problem (P), then there
exist y and @ belonging to H>(Qr) N C([0,T),Y) such that

(ye,w) +a(y,w)+c(y,y,w)=f+u,w) YweY,
(3.6) hh

y(O) =Yo,

(37) { (@ W) + (@, W) + (W, 5, 8) + e(7. W, @) = (Ju — ya, W) Yw € Y,
e(T) =~ (T) — ya),

(3.8) /OT /Q(cfo +Au)(u—u)dzdt > 0 Yu € Uyg.

Moreover, the regularity property u € H(Qr) N C([0,T], HY(Q)) N L2(0,T; WP (Q))
holds for all 1 < p < 400.

Proof. Since Uy,q is convex, any local solution u satisfies the condition J'(@)(u—u) > 0
for every u € U,q. Then, it is enough to use the expression of the derivative given by
(3.3) and take ¥y = yg and @ = g to deduce (3.6)-(3.8). The regularity of u follows
from (3.8) as usual, we simply observe that (3.8) implies that

1
B9 ay(tn) = Proj, ) (~3000)) foraa (o) O, j=12.

To write the second order conditions we need to define the cone of critical directions.
To this end, let us introduce the function

(3.10) d=¢+ .

Now we set

(3.11) Ca = {v € L?(0,T; L*(Q)) : v satisfies (3.12) — (3.14)},
(3.12) vi(t,z) > 0if — oo < a; =a;(t,x),

(3.13) vj(t,xz) < 0if a;(t,z) = B; < +o0, j=12,
(3.14) vi(t,z) =0if d;(¢,x) # 0.

Let us notice that

J’(u)v_/OT/Q&(t,x)-v(t,a:)dxdt,

(3.15)
d(t,z) - v(t,x) =0 for a.a. (t,z) € Qr and Vv € Cy.
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We also deduce as usual from (3.8), for almost all (¢,z) € Qp and j = 1,2,

U

(ta)=a;  =d;(t,z) >0, ; _ B
(316) {  wlta) =8 = d(tx) <0, and B> 0= H G =0
- d;j(t,z) < 0= u;(t,x) = b;.

oy < ’U,j(t,l‘ ﬁj = Jj(t,x) =0,

THEOREM 3.4. Let u be a local solution of problem (P), then J"(@)v? > 0 Vv € Cq.
Conversely, let us assume that G € U,q satisfies

(3.17) J'(@)(u—1u)>0 Yu € Uy,
(3.18) J'(@)v? >0 Vv eCq )\ {0},

then there exist € > 0 and § > 0 such that
.0 _ _
(3.19) J(a) + §||u - uHiz(OyT;Lz(Q)) < J(u) Vu€U,qN B:(u),

where B.() is the L*(0,T;L2(2))-ball of center t and radius €.

The proof of the necessary condition is similar to the one made in [6] for the case
of steady-state Navier-Stokes equations. The proof of the sufficient conditions can
be obtained arguing by contradictions, analogously as made in some previous papers;
see, for instance, [2], [5], [6].

REMARK 3.5. The gap between the mecessary and sufficient optimality conditions
giwen in Theorems 3.3 and 8.4 is minimal, the same than we have in finite dimen-
sional optimization problems. This problem does not suffer from the typical two-norm
discrepancy arising usually in infinite dimensional optimization problems. This is due
to the C%-differentiability of J with respect to the L*(0,T;L%(Q)))-norm, thanks to a
certain compactness with respect to u in the first two integrals defining J and the fact
that the last one is the square of the norm of the control. On the other hand, it is well
known that the condition J"()v? > 0 for every non zero v # 0 belonging to the cone
of critical directions is not a sufficient optimality condition, in general, in infinite di-
mensional optimization problems. An inequality of type J'(a)v? > 5||V||2L2(0,T;L2(Q))
is required in the infinite dimensional case. In finite dimension, both conditions are
equivalent, but this is not the usual case for infinite dimension. However, in our prob-
lem we can prove that both conditions are also equivalent. Indeed, let us observe that
(3.19) implies that u is a local solution of the problem

. 0 _
(P.) min Js(u) = J(u) - 5”‘1 - UH%%O,T;L?(Q))
u € Uygn Bs(l_l)
Therefore, from the second order necessary conditions we obtain that Jé’(ﬁ)v2 >0 for
every v € Cq. It is enough to notice that Jj(w)v? = J"(a)v? — 6||v||%2(0’T;L2(Q)) to

conclude that (3.17)-(3.18) imply

(3.20) J'(@)v? > §|v|* Vv € Cq.
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4. Numerical approximation of the control problem. In this section we
consider the complete discretization of the control problem (P). To this end, we
consider a family of triangulations {7 }n>0 of €, defined in the standard way, e.g. in
[3, Chapter 3.3]. With each element T € Ty, we associate two parameters hy and or,
where hp denotes the diameter of the set T' and pr is the diameter of the largest ball
contained in 7. Define the size of the mesh by h = maxrc7, hr. We also assume that
the following regularity assumptions on the triangulation are satisfied.

(i) — There exist two positive constants g7 and d7 such that Z—; < o7 and % < or
VT € Tp, and Vh > 0.

(i) — Define Qp = UreT, T, and let ), and I'j, denote its interior and its boundary,
respectively. We assume that the vertices of T, placed on the boundary I'}, are points
of .

Since €2 is convex, from the last assumption we have that 2, is also convex. Moreover,
we know that

(4.1) 12\ Q] < Ch?;

see, for instance, [28, estimate (5.2.19)].

On the mesh 7j, we consider two finite dimensional spaces Z;, C H(Q) and Q; C
L3(Q2) formed by piecewise polynomials in €, and vanishing in  \ . We make the
following assumptions on these spaces.

(A1) If z € H(Q) N HE(R), then

(4.2) ing ||Z — Zh”Hs(Qh) < Chl+1_s||Z||H1+l(Q), for 0 < l < 1 and s = O, 1.
zn€Zp, )

(A2) If ¢ € HY(Q) N L3(Q), then

4.3 —— o |
- ththHq anllL2@n) < Chllglm @)

(A3) The subspaces Zj, and Qy, satisfy the inf-sup condition: 3¢ > 0 such that

b(zn, qn)
zn|la o llanllz )

(4.4) inf sup

>,
mEQh z,€Z),

where b: H'(Q) x L?(2) — R is defined by
b(z,q) = / q(z)div z(x) dz.
Q

These assumptions are satisfied by the usual finite elements considered in the dis-
cretization of Navier-Stokes equations: ”Taylor-Hood”, P1-Bubble finite element, and
some others; see [15, Chapter 2].

We also consider a subspace Yy, of Z;, defined by

Y, ={yn € Zp : b(yn,qn) =0 Vaqn € Qn}

and we set

U, = {uh S LQ(Qh) ‘Up|, =Ur S R2}
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We proceed now with the discretization in time. Let us consider a grid of points
0=ty <t1 <...<ty =T. We denote 7, = t,, — t,—1. We make the following
assumption

(4.5) Joo > 0 such that 7 =  Jnax 7y < 00T V1 <n < N, and V7 > 0.

Given a triangulation T;, of Q and a grid of points {t,,}\7, of [0, T], we set o = (7, h).
Finally, we consider the following spaces

yo’ = {yU S LQ(OaT;Yh) : yg‘(tnfptn)
Q, = {qo € L*(0,T; Q) : Qoj, oy € Qn for 1 <n <N},
Uy = {u, € L*(0,T;Up) s ug, ey €U for 1<n <N}

€Yy for 1<n< N},

ot

We have that the functions of ), Q, and U, are piecewise constant in time. We will
look for the discrete controls in the space U,. An element of this space can be written
in the form

N.

(4.6) u, =3 > wurxexr, with u,r € R
n=1T€eT,

where y,, and yr are the characteristic functions of (¢,—_1,¢,) and T, respectively.
Therefore, the dimension of U, is 2N Ny, where Ny, is the number of triangles in 7p,.
In U, we consider the convex subset

uo’,ad - uo’ ﬁZ/[acl - {uo S uo' Up,T S [aly/Bl] X [062752]}.

On the other hand, the elements of ), can be written in the form

NT
(4.7) Yo = ZYn,th with y, n € Y,

n=1
where x,, is as above. For every discrete state y, we will fix y,(¢,) = ¥n.n, so that
Yo is continuous on the left. In particular, we have y,(T) = y»(tn.) = YN, h-

To define the discrete control problem we have to consider the numerical discretization
of the state equation (1.1) or equivalently (2.1). We achieve this goal by using a
discontinuous time-stepping Galerkin method, with piecewise constants in time and
conforming finite element spaces in space. For any u € L?(0,T;L?(Q)) the discrete
state equation is given by

Forn=1,...,N,, and Vwy € Yy,

nh — Yn—1,h
(4.8) <yy1’ Wh) + a(Yn,n, Wh) + (Ynhs Ynn, Wa) = (£, +un, wy),

Tn
Yo,h = Yoh;
where
I I
(19) (Guw) = = [ €O widt, () = = [ (). waa
n Jtn_1 n Jtn 1

(4.10) yon € Y, with Hyo —thHLz(Qh) < Ch and HyOhHHl(Qh) <C Vh>0.
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The above scheme is essentially an implicit Euler in time / conforming in space scheme,
and can be easily extended to higher order polynomial in time discretizations; see e.g.
[32] and references within. For stability and error estimates under suitable regularity
assumptions for high order discontinuous time-stepping schemes we refer the reader
o [10]. Here, we focus on the lowest case of polynomial approximation in time, due
to the low regularity imposed by the nature of our optimal control problem. A key
feature of the proposed scheme is that the regularity properties of the discrete solution
mimics the continuous problem. We will prove later that for any u € L?(0, T; L?(Q)),
(4.8) has a unique solution y,(u) € V,. Then, we can define the discrete control
problem as follows

u, € Z/la' ad

/ / lyo(u,) — yal?dadt
Qn

+1/ Iyo(T)—th|2dx+f/ / g [2dadt,
2 Jo, 2Jo Ja,

(4.11) yq, € Yi with |yq — thHLz(Qh) < Ch and HthHHl(Qh) <C Vh>0.

®.) {minJ( ”)

In the study of the control problem, first, we analyze the discrete state equation (4.8);
then we study the discrete adjoint state equation; the third step is the proof of the
convergence of (P, ); and finally we prove the error estimates for the discretization.

4.1. Analysis of the discrete state equation. By a standard argument, using
the identity c(z,w,w) = 0 Vz € L*(Q) and Vw € H!(Q) (Lemma 2.1) and the
Brower’s fixed-point theorem, we can easily prove that (4.8) has at least one solution.
In this section, we will prove that the solution is unique under some restrictions on

= (7, h). For the moment, let us denote y =y, = G(u) and y, € Y, a solution of
(4.8). We are going to prove some error estimates for y — y,. To this end, we need
to introduce some projection operators.

DEFINITION 4.1. We define the projection operator Py, : L2(2) — Y}, by
(Pry,wh) = (y,Wn) Vwp € Yp.

We also define P, : C([0,T],L%(Q)) — V5 by (Poy)nn = Pry(tn) for 1 <n < N,.

LEMMA 4.2. There exists a constant C' > 0 independent of o such that for every
y € H2Y(Q7) N C([0,T);Y) the following estimate holds

(412) |y = Poyll2omiezn)) < C{7IY l20,m2@) + P2y L2, rm20)) } -
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Proof. From Assumptions (A1)-(A3) and using (4.2) with s = 0 and [ = 1 (see also
[15, Chapter II]), the definition of P,, and the stability of P, we get

N, t 1/2
1y = Poyllzz 0.2 n) = {Z/ Iy (t) — Py (t)? dt}
n=1

t'nfl
N ., 1/2 N, 1/2
< {Z/ ||}’(t)PhY(t)||2dt} +{Z/ ||PhY(t)PhY(tn)||2dt}
n=1"tn—1 n=1"7tn-1
N 1/2 N 1/2
< Ch? {Z/ 1y ()12 0 dt} + {Z/ ly(t) Y(tn)llzdt}
n=1"7tn-1 n=1"7tn-1
N, ‘ ‘. 1/2
< CP?|lyll20,mm2()) + {Z/ (tn —t)/ ||y/(5)||2d5dt}
n=1"/tn-1 tn1

< C{P?|lyllz20.mm2()) + 71yl 220,702 } - O
DEFINITION 4.3. The operator 11, : Y — Y}, is defined by
a(llpy, wp) = a(y,wn) Vwp € Yp.

To any elementy € C([0,T];Y), we associate y, € C([0,T], Y1) byyn(t) = Hp(y(t)).
The next lemma is an immediate consequence of Assumptions (A1)—-(A3); see again
[15, Chapter II].

LEMMA 4.4. There exists a constant C > 0 independent of h such that
(413) Iy = Iy [lme@n) < CR*llyllz@) Yy € BH(Q)NY and s =0,1.

As a consequence of the previous two lemmas we have the following result.

LEMMA 4.5. There exists a constant C' > 0 independent of o such that for every
y € H*'(Qr) N C([0,T);Y)

-
(4.14) |y = Poyllzeommin)) < O3 - I1¥ 20, mw2 @) + 2y llL20, 082 0)) ¢ -
h
Proof. From Lemma 4.4 we get

lly — PJYHLQ(O,T;HI(Q;L)) <y - Yh”L?(O,T;Hl(Q;L)) +lyn — PaY||L2(0,T;H1(Q;L))
< Chllyllzz0,rm2(@) + 1y — PoyllL20,m;m1 (@4))-

Now, using the definition of P,, an inverse inequality, (4.12) and (4.13) we obtain

N, . 1/2
|yn — Poyllr20,rm1 (0,)) = {Z/ lyn(t) = Py (tn)llfr: () dt}
n=1"tn-1

N 1/2
O T tn )
S5 {Z/ [¥r(t) = Py (tn)llt2(an) dt}
n=1"Ytn-1
C
<5 {Ily = yullzz20.re2@u)) + Iy = Poyllzzorrzu)
-
<C E”yI”LQ(O,T;L%Q)) + h||yHL2(O,T;H2(Q))} .0
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Before proving the error estimates for y — y,, we need to establish the corresponding
estimates for the Stokes problem. Let us formulate this result as follows.

LEMMA 4.6. Lety € H2Y(Q7)NC([0,T],Y) be the solution of (2.1) and let §, € Vo
satisfy

Forn=1,...,N,, and Ywyp € Yy,

(4.15) (“‘thh) T G wi) = (Fwa),
n
yO,h =Yoh;

where (£,,wy) = %nftﬁil{a(y(t),wh) + (y'(t),wp)}dt. Then, (4.15) has a unique
solution y, € Ys. Moreover, the following properties hold

1-{Yo}o is bounded in L>°(0,T; H(,)).

2 - There exists a constant C' > 0 independent of o such that

1§mn%)1{\77 HY(tn) — Yo (ta)ll +[ly — S’UHLZ(O,T;Hl(Qh))

-
(4.16) <C {E”yI”LQ(O,T;L%Q)) + byl 20,082 (0)) + hHYO”Hl(Q)} :
Iy = ¥olle0,r:12 ()
T
(417) <C { <E + \ﬁ) 'l 20,7512 () + Pl L2 (0,712 () + h”yOHHl(Q)} .

Proof. The existence and uniqueness of the solution y, is easy and well known. The
boundedness of {y,}, in L>(0,7; H'(Q,)) was proved in [10, Theorem 4.10]. The
estimate (4.16) follows from (4.14) and [10, Theorem 4.6]. Finally, we prove (4.17).
Let us assume that t,,_1 < t < t,, for some 1 < N, then

[y () =y < lly(®) —yE)ll + ly(tn) = ¥o(tn)ll

The second term of the right hand side of the inequality has been estimated in (4.16).
Let us study the first term. For any w € L2(£2)

/ "y (s), w ds

< \/;Hy/HLZ(O,T;L?(Q))HWHa

hence [y (t) — y(tn)|| < V7II¥'ll22(0,7;L2(02))- This estimate and (4.16) infer (4.17). O
The discrete solution of the linear Stokes problem will subsequently play the role of
a global in time projection, which facilitates the derivation of error estimates under
the restricted regularity assumptions of the control problem (see also [10]). Finally,
we obtain the result concerning the discrete state equation (4.8).

THEOREM 4.7. Given u € L*(0,T;L?(2)), let y € H>1(Q7) N C([0,T);Y) be the
solution of (2.1) and lety, € Y, be any solution of (4.8), then there exists a constant
C > 0 independent of u, y and o such that

tfb
< / ' ()] dslw]

((y (@) = y(tn), W)l =

(Jax [y (tn) = yo(tn)ll + 11y = Yollz2 oz @)

-
(4.18) <C {EHYIHL%O,T;L?(Q)) + byl 22 0,mm2(0)) + hHYoHHl(Q)} :
ly — yJHLoc(o,T;m(Qh))

-
(4.19) <C { (g + ﬁ) 1"l 20,miL2 () + Pl L2 (0,782 (0)) + h||Y0HH1(Q)} .
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Moreover, if there exists a constant Co > 0 such that T < Coh? for every o = (1,h),
then {ys}o is bounded in L>(0,T; H'(Qy)) and (4.8) has a unique solution.

Proof. Let us definee =y —y, = (y = ¥o) + (Yo — Yo) = € + €,, where y,, is the
solution of (4.15). Then, we can proceed as in [10, Theorem 5.2] to get

1 1 1 tn
§Ilen,hll2 - §Hen71,h\|2 + §Hen,h —en_1al® + V/ IVenn | dt

tn—1

(4.20)< / " {le(@n s T enn)| + 1c(6(t), y(£), n )| + [c(Fnn (), enn)|} dt.

tn—1
It remains to estimate the last three terms. For the first we use that {§,}, is bounded
in L°°(0,T;H'(Q4)) (see Lemma 4.6) and (2.2), then

tn

tn
/ (c(€nps S np)|dt < C / lennlll[Venall dt

tn—1 th—1
Cr, v [

< el 5 [ Vel at.
v tn—1

For the second term we use that y € L>(0,7;H(2))

ty

tn v
/ c(e(t). y(t), enn)|dt < C [ V&) Vena| dt

tn71 tnfl
C tn R v tn

< 7/ Vet dt + 7/ [Ven.nll? dt.
v tn—1 4 tn—1

Finally, using again the boundedness of {y,}, in L>(0,T;H(£2;,)), we get the same
estimate as the last one for the third term. Putting all these estimates in (4.20) we
obtain

tn
v
(1= Crllennl? +lenn — enval? + 5 [ [Vensl?at
tn—1

2 A2
< llen—1ull” + Cllellzzg, b m )
Then, using the discrete Gronwall inequality and the fact that eg, = 0, we get

t’ll
14 ~
lennl+5 [ IVennl? dt < Clel g ran ey V1< < Ny,

This inequality along with (4.16) and the identity y — y, = € + e, prove (4.18).
Arguing as in the proof of (4.17), we deduce (4.19) from (4.18). The proof of the
boundedness of {y,}, in L>(0,T;H(,)) is an easy consequence of the previous
results. Indeed, first we recall that {y,}, is bounded in L>(0,T; H'(2},)) (Lemma
4.6). Now, we write

1Yo llLoe 0,11 (@0)) < 1Yo — YollLeo,mm @0)) + 1¥oll 2o 0,711 (01))-

It is enough to prove the boundedness of the first term. From an inverse inequality
[3, Section 4.5], the estimates (4.17) and (4.19), and the inequality 7 < Coh? we get

. c .
1Yo = YollLe o rm @) < EHYU = Volz~rL2(01))

C .
< - {HYJ =¥l o,z + Iy — yUHL"O(O,T;LQ(Q;L))} <C Vo.
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To conclude the proof, we have to show the uniqueness of a solution of (4.8). Let us
assume that yl, y2 € ), are two solutions of (4.8). Then we set y, = y2 — yl and
we will prove that y, = 0. Subtracting the equations (4.8) for y2 and y! and setting
Wh = Yn,h We get

(Yn,h —Yn-1,n

- ,yn,h> + a(Ynhy Ynh) = Y Yo Ynh) — (Yo s Yoo s Ynih)-
n

Since C(y%)ha}’n,h,}’n,h) = 0, then c(yi,h,yi’h,yn,h) = C(Yi,h,}’}17h,}’n,h), therefore

C(yrll,hvy:z,haywh) - C(Y%,m}’i,h»Yn,h) = _C(Yn,m}’}z,h»yn,h)'
Using this in the above identity and the boundedness of {yl}, in L°(0,T; H(Q4)),
we deduce

1 1 1

LY R PN L Y R |

= Tl Yo no Ynr) < Tl VY 1Y IVyn.n ]
YTn

2

IN

1
IVynnll® + S IVl 7yl

hence

(1- CTn)Hyn,hHQ + Hyn,h —Yn-1,n ‘2 + VTnHVYn,h”Q < ||yn—1,h||2-

Using once again the discrete Grénwall inequality and the fact that yop, = 0, we
conclude that y, = 0. O

REMARK 4.8. The estimates (4.16) and (4.18) can not be improved within our optimal
control setting. This is due to the regularity restrictions imposed by the nature of
problem. However, if y; € L2[0,T; H'(Q)] then the assumption T < Ch? can be
dropped, (see e.g. [10]) and the estimate read as O(T+h). However, it is expected that
improved estimates in the L?[0,T; L*(Q)] norms hold, using an appropriate duality
argument. We will examine this issue in a subsequent work. Finally, we remark that
discontinuous time-stepping schemes for linear problems typically exhibit nodal (in
time) superconvergence (see e.g [32] and references within), under enhanced regularity
assumptions. However, it is not clear whether such properties hold, even for the
uncontrolled Navier-Stokes equations, with smooth solutions.

Hereinafter, we will assume

(4.21) 3Co > 0 such that 7 < Coh? Vo = (1, h).

We establish a corollary of Theorem 4.7 that will be useful later.

COROLLARY 4.9. Assume that max{||u||L2(0’T;Lz(Q)), HV||L2(O,T;L2(Q))} < M. Let
yu € H2Y(Q7) N C([0,T);Y) be the solution of (2.1) and y,(v) € Y, the solution
of the discrete equation (4.8) corresponding to the control v. Then, there exists a
constant Cpr > 0 such that

1yu = Yo (V)llze 0Lz + 1Va = Yo (V) 20,780 (1)
(4.22) < Cu {h+ lu=vlr20r12(0))
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Moreover, if u, € U, for every o and u, — u weakly in L*(0,T;L2(2)), then

lyu— ya(utf)”Lz(O,T;Hl(Qh)) =0,
(4.23) [Yu = Yo (uo)llLrorrz(a.) =0 V1 <p < oo,
[yu(T) = yo(us) (D)l 2(0,1:12(00)) — O-

Proof. From (4.18) and (4.21), we get

1¥u = Yo (Wll20,rm 20)) < IYu = Yvllrzorm0)) + 1Yy — Yo (V) L2078 (1))
< [|G(u) = G(v)llz2(0, 711 () + Ch,
where C' depends on |lyallg1 () and |lyv|/a21(Q,), bounded by ||V||L2(07T;L2(Q)). On
the other hand, since G : L2(0,T;L%(Q)) — H>*(Qr) N C([0,T];Y) is of class C°,
we can apply the mean value theorem to get (4.22), with C; depending on M. Using
(4.19), we can repeat the same argument to get the estimate in L°°(0,7T;L?(Qy)).

To prove (4.23) we set yu—yo (W) = (Yu—Yu, ) +(Yu, —¥o(us)). From the well known
properties of equation (2.1) and the boundedness of {f + u,}, in L%(0,T;L2(12)),
we have that [|yy, ||a21(.) < C. Furthermore, any subsequence of {yy, }, weakly
convergent in H?!(Qr), converges to y,. This is easily proved by passing to the limit
n (2.1). Then, we have that y,, — yu weakly in H?>1(Q7). From the compactness
of the embeddings H?!(Qr) C L?(0,T; HY(Q)) and H>(Qr) C LP(0,T;L2(Q)) (1 <
p < +00) and the compactness of the trace H>1(Q7) < L2(9S27) we obtain

||Yu —Yu., HLZ(O,T;Hl(Qh)) + ||Yu —Yu., HLP(O,T;L?(Q;L)) + ||Yu(T) ~Yu, (T)“LZ(Q;J — 0.
On the other hand, from (4.18) and (4.21) we get

[yu, (T) = yo (uo)(T)]| + [Iyu, = ¥o(uo)llz20. 751 (21)) = 0
and with (4.19), |lyu, — Yo (Uo)|[ 20, 7:L2(24)) — 0, which combined with the estab-
lished convergences imply (4.23). O
We finish this section studying the differentiability of the relation u — y,(u).
THEOREM 4.10. The mapping G, : L*(0,T;L23(Q2)) — V,, defined by G,(u) =
yo(u) solution of (4.8), is of class C*. Moreover, z,(v) = GL(u)v is the unique
solution of the problem

Forn=1,...,N,, and VYw, € Yy,

Zn,h — Zn—1,h
Tn

(4.24) 7Wh) + a(2n,n Wh) + (Zn,hs Ynhy Wh)
+C(Yn,ha Zn,h,y Wh) = % ft:;1 (V(t), Wh) dt,

Zo,n = 0,
where we have set'y, =y,(u).
Proof. Let us consider the mapping F, : Y, x L*>(0, T; L?*(Q)) — V., Fy(yo, 1) = g5,
where g, is defined by
N,
(8 Wo) = Z {(ynn = Yn—1.0, Wan) + Tala(ynn, Wan) + (Yn,h, Yono Wan)]t

n=1

N- tn
- Z/ (F(t) + u(t), wnp) dt Vw, € V,.
n=1

tn—1
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Obviously, F, is of class C* and g, = gf z (Yo, u)z, is defined by

N
<ga W0‘> = {(zn,h —Zn—1,h, Wn,h) + Tna(zn,hv Wn,h)}
n=1
N~
+ Z {nlc(YnhsZnhs Wion) + €(Zn,h, Yi,n, Wan)] ), with 2o, = 0.
n=1

On the other hand, F,(G,(u),u) = F,(y,(u),u) = 0 for every u € L?(0,T;L?(Q2)).
The proof is a consequence of the implicit function theorem, we need to prove that
85 2 (y,(u),u) : Y, — Y. is an isomorphism for every u. In fact, we will prove
that ’?F” (ys,u) is an isomorphism for every (y,,u) € Y, x L*(0,T;L?(2)). Since
dF

(yg, u) is a linear mapping between two spaces of the same finite dimension, it is
6F

enough to prove that it is injective. Suppose that (yc,7 u)z, = 0 for some z, € Y.

gf:" (Yo,u)z, € V., to z, and using that c(yn,h, Zn b, Zn,h) = 0, We get

N,
{(Znh = Zn—1,n,2Zn,n) + Tnla(Zn,n, Znn) + (Znh, Ynh, Znn)] ) = 0.
n=1
Hence,
N
1 1 1
> {nzn,huz — 5lzam1ll? + S lz0n = 2a-1al? + wnnwn,hnz}
n=1
N,

=T

1 N, N
< ol o @) > mallzanl® + Z Tl V2.
n=1 n:l

Again, an application of the discrete Gronwall inequality and the fact that zg, = 0
imply that z, = 0. O

4.2. Analysis of the discrete adjoint state equation. Along this section,
as well as in the rest of the paper, the condition (4.21) is assumed. As a consequence
of Theorem 4.10 and applying the chain rule, we get that .J, : L?(0,T;L?(Q2)) — R
is of class C*° and we have a first expression of its derivative as follows

Jl(u)v = / / — Ya4)Zzo dxdt
Qn

T
+7/ (yo(T) = ya)zo(T) da:+A/ / uv dzdt,
Qp o Ja,

where y, = yo(u) = G,(u) and z, = G/ (u)v is the solution of (4.24). As usual in
control theory, we have to introduce the adjoint state to simplify the expression of
this derivative. To this end we consider the discrete adjoint state equation: we look
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for ¢, € V, such that

forn=N,,...,1, and Vwy € Yy,
(Son,h - Son-i-l,h

- ,Wh) + a(‘Pn hs Wh) + C(Wh, Yn,h, (Pn,h)
n

(4.25)

+C<yn,h7whv¢n,h) = 7-171 tn "

eN. 1.0 = VYN b~ Ya,)-

(Yn,n — ya(t), wy)dt,

Observe that in the above system, first we compute @y, from @y 115 = (YN, n —
va,) and then we descend in n until n = 1. Unlike the discrete states y,, we will set
for the discrete adjoint states ¢, (t,—1) = ¢, , for every 1 <n < N.

System (4.25) corresponds to the discretization of the backward equation (3.5). Using
that {y,}, is bounded in L°(0,T;H!(Q4)) (Theorem (4.7)), then we can proceed
in the same way as we did in the proof of Theorem 4.10 to obtain the existence and
uniqueness of a solution of (4.25). Below we check that this is actually the discrete
adjoint state equation. To this end we use (4.24) and (4.25) to show that

/ / —ya)zs dzdt
Qp

tn N~
= Z/ (Ynh = ¥a(t),Zn,n) Z Prh = Prtiho Znsh)

tn—1

N,
+ Z Tn [a’(cpn,h? Z7L7h) + C(Z”,h’ Yn,hs Son,h) + C(Yﬂ,ha Zn,hs <Pn,h)]

n=1
N

:
= (Znh = Zoo1hsPr) — (PN, 1100 2N,0) + (P11 Z0.n)
n=1

N
+ Z Tn [a(zmh? (Pn,h) + C(Zn,h’ Yn,hs ('Pn,h) + C(yn,h’ Zn,h; cpn,h)]

T
_ / / v, dadt — 4 / (o (T) = yo, )20(T) da,
0 Qpn Qp

where we have used that ¢ .1, = Y(y~,.n —Ya,) =7y (T) —ya,) and zo, = 0.
From the obtained identity and the expression of J/ (u)v given above we conclude

T
(4.26) Jl(u)v = /0 /Q (¢, + Au)v dzdt.

The next theorem states the error estimates in the approximation of the adjoint state
equation.

THEOREM 4.11. Given u € L?*(0,T;L?(Q2)), let y = yu be the associated state,
solution of (2.1), ¢ the associated adjoint state, solution of (3.5), y» = yo(u) the
associated discrete state, solution of (4.8), and e, the associated discrete adjoint
state, solution of (4.25). Then, {@,}s is bounded in L°°(0,T;H'(Q,)) and there
exists a constant C' > 0 independent of o and u such that

¢ — eollreorrz@n)) + 1Y — Pollzzorm @)
(4.27) < Ch{|[ull 20,7120 + IIyollm @) + yelm @)} -
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Proof. Define the operator R, : C([0,T];L*(Q)) — V5 by (ReW)nn = Prw(tn_1)
for 1 < n < N,, with P, given in Definition 4.1. As for the discrete adjoint states, we
fix (Row)(tn—1) = (RoW)n,n. Analogously to (4.12) and (4.14), we have the estimates
for every w € H1(Q7) N C([0,T],Y)

(4.28) ||W - R0W||L2(O,T;L2(Qh)) S C {T||W/HL2(O7T;L2(Q)) + h2HWHL2(O,T;H2(Q))} s

.
(4.29) [[W — Row|| 20,711 (02,)) < C {EHW/HLZ(O,T;L?(Q)) + h”w”LQ(O,T;I‘p(Q))} :

We set € = ¢ — ¢, = (¢ — Rop) + (Ryp — ¢,) = M + €,. According to our
notation above fixed, we have n(t,) = @(tn) — (Ro)(tn) = @(tn) — (Ro@)nt+1,h =
@(tn) — Prep(ty), for 0 <n < N, — 1. Also we have €,(t,) = €p41,,, 0 <n < N, — 1.
Setting (RoW)N,+1,n = Pow(T') and recalling that ¢y 11, = Y(YN, n — ¥a,), then
the previous identities are also well defined for n = N,. Then, (3.5) and (4.25) lead
to the identities, n = N,,..., 1,

(e(tn,l)—e(tn),wh)—i—/n a(e(t), wy) dt

tn—1

+ / " ey (1), Wi, 9 () + e(wa, y (1), @(£)] dt

tn—1
tn tn

- / [T res Whs @) + (s Yoo D )] d = / (Y(8) = Yoo wa)dL.
tn—1 tn—1

Now, writing € = 1 + €, and taking into account that
(M(tn), wr) = (p(tn) — Prp(ty),wn) =0 Yw, € Yy, and for 0 <n < N,

we obtain for wj, = €, 5,

tn,
(€n,h — €Enti,h,€nh) + / a(€nh, €np)dt

tn—1

- / " W) — Yo nn) dt / " a(n(t), en ) dt

tn—1 tn—1

tn
+ / [C(Yn,h; 6n,h7 meh) + C(en,ha Yn,h7 Qon,h)} dt

tn—1

- / " ey (8): €np 0(1)) + clenny (1), (t))] dt,

tn—1

hence

|2dt

1 1 1 tn
slenl® = Slensial + Sllenn = encrall +v [ [Vens

tn—l

tn
dew [ 1900l at

tn—1

< / "y ®) = yo @)l

tn—1

b [ e nn o) — ey (0. e ple))] de

tn—1

(430) + / " (lenm Yo Gan) — clEnn y (1), @(£))] L.

tn—1
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Let us estimate the right hand side of (4.30).

tn tn
/ 19(8) = Yo ()| €nnll dt + v / V00| Ve dt

tn—1 tn—1

1 [t 9 Tn 9
<5 [ Iy - ye P de+ Elenl

tn—1

% dt.

tn tn
v [ wn@Pas g [ Ve
tn—1 8 1

n—

Now we proceed with the second term

/ " s € P — cly(t), €np p(£))]

tn—1

/ " elo &) = Y nn @) — (Yo t), e e(®))] dt

tn—1

/ " elo () — 3 (0)s enn 9() — (Yo (), €nn ()] dt

tn—1

tn
< ”‘PHLOO(O,T;Hl(Q))/ 1y (t) = ¥o ()l ) I Vennl dt
tn—1

tn
1Yol o (o.sets () / m6) s oy [ Ve
1

n—

tn v [in
¢ [ (O = ya®lna, + IO, de+ 5 [ 1TennlP e
tn—1

th—1
For the last term of (4.30), we first observe that

C(en,ha Yn,h, San,h) - C(en,ha Y(t)7 So(t))
= _[C(emh’ Y(t) - yU(t)’ QD(LL)) + c(en,fu YU(t)a ﬂ(t)) + c(en,ha Yo (t)7 en,h)]'

The first two terms can be estimated in a similar way to the previous one. For the
last we get

tn
/ (Ens Yo l), enn) dt

tn—1

tTI,
<VElylioraman | lennllVensldt
1

tn—

tn

v

<Crllennl?+ % [ IVens
1

n—

Collecting all the estimates, we infer from (4.30)

tn
14
(1= Cr)lennl® + llenn — enrinll® + 5 | [Vennl2dt
4

tn—1

tn tn
< ewmall 0 { [ a0l [ 150 -soonarl.

tn—1 tn—1
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To conclude the proof it is enough to use the discrete Gronwall inequality along
with (4.11), (4.18), (4.21), (4.29) and the fact that the H*!(Qr) norm of ¢ can be
estimated by the L?(0,7;L?(Q)) norm of y —y, and the H!(Q2) norm of ygq, and the
L?(0,T;L?(Q)) norm of y is estimated by the L?(0,7;L?(£2)) norm of u. O

As a consequence of the previous theorem we have the following result analogous to
Corollary 4.9.

COROLLARY 4.12. Assume that max{||ul|z2(0,;L2(0)), IVIz20,m20)) ) < M. Let
w, € H>Y(Qr) N C([0,T);Y) be the solution of (3.5) and ¢, (v) € Y, the solution
of the discrete equation (4.25) corresponding to the control v. Then, there exists a
constant Cpy > 0 such that

lew = o (Wl 0,120 + [P0 = 2o (V20730 (20))
(4.31) < Cur {h+ lu =2 0020 f

Proof. First we observe that (4.27) implies

||<Pu - LPU(V)HLQ(O,T;Hl(Qh)) < Hsau - 90v||L2(0,T;H1(Qh)) + Oh7
where C' depends on [|uf|z2(0,7;12(0))- We proceed analogously to get the estimate
for ||y — @ (V)L (0,7:12(0,))- Now, we estimate ¢, — ¢, in L?(0,T; H*(Q2)) and

L>(0,T;L2(R)), respectively. Let us set ¢ = ¢, — ., then subtracting the equations
satisfied by ¢, and ¢,,, we get

(e, W) +ale, W) = (Yu — yv, W)
+C(W7 Yv, Sov) + C(yV7 W, Sov) - C(Wa Yu, Sou) - C(yua w, Sou)

Taking w = ¢ and using the identities

C(‘Pa Yvs (Pv) - C(SD’ Yu, Sou) = C((P, Yv = Yu, ('Pv) - C(‘P? Yu, (P)7
c(Yv, 0, 0y) = c(Yu, P, Pu) = c(Yv — Yu, . 0y);

we deduce by integration in the interval (¢,7) and the equality @(T) = ¢, (T) —
@y (T) =7(yu(T) = yv(T))

T
1 =42 L Iyu(D) — vy @)+ v / IVeo(s)]? ds
T

< / 1¥a(s) — yo ()l 0(s)]] ds

T
e / {1219 (s) 219 (5) — Tya(l oy () ex i } ds

T
e / IV Vyull ds
e / 174(5) = Yau(&)llexs @ [70(8) |00 () 110y ds.

Since yu,p, € L>=(0,T;H'(Q)), with norms estimated by a constant depending on



The Velocity Tracking Problem 21

M, we infer from the above inequality
1 2 21 2 g 2
Sle®I” =75 lyua(T) = yv (DI +v t IVe(s)” ds
1T ) 1T )
<o [ ) —ye)Pds+ 5 [ ) ds
t t
g 2 2 v [T 2
40 [ {IeE + 1929 = vl } ds + 5 [ 19(s)12as
On the other hand, we have

||yu - YVHH?J(QT) = ||G(u) — G(V)||H2,1(QT)

S IG"(u+ p(v —w))[[l[a = vlrz20r120) < Cllu—vlL20,r1200))
Sp>

where C' depends on M. The last two inequalities lead to
T
eI+ [ IVe(s)?as
T
<C { 1ya(T) = 3w (D + lyu =y ll7200mm ) +/t () dS}
T
€ Iy =¥olmscan + [ (o)l ds

T
SC{IHVZLz(o,T;Lz(mﬁ/ IISO(S)IIQdS} vt € [0,T].
t

IA

Now the Gronwall inequality implies
le®l < Cllu—=vllz20,m;12(0)) Vt € [0,T],

which also implies with the aid of the previous estimates

T
v [ 190 ()P ds < Cllu = s s,
which concludes the proof. O

4.3. Convergence of the discrete control problem. In this section we an-
alyze the convergence of the solutions of control problems (P,) towards solutions of
the continuous problem (P). Since these problems are not convex, we will also ad-
dress the issue of the approximation of local solutions of problem (P). It is clear that
every problem (P,) has at least one solution because it consists of the minimization
of a continuous and coercive function on a nonempty closed subset of a finite dimen-
sional space. The next theorem proves the convergence of these discrete solutions to
solutions of problem (P).

THEOREM 4.13. For every o = (1,h) let u, be a global solution of problem (P,),
then the sequence {1, }, is bounded in L*(0,T;L%(Q))) and there exist subsequences,
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denoted in the same way, converging to a point @ weakly in L*(0,T;L?(Q)). Any of
these limit points is a solution of problem (P). Moreover, we have

(4.32) CPLI%) |la — ﬁoHLQ(O,T;L2(Qh)) =0 and ;IL% Jo(0y) = J().

REMARK 4.14. Strictly speaking, it is not correct to claim that sequence {0y}, is
bounded in L*(0,T;L2(2)) because G, is only defined in (0,T) x Qp, with Q, C 2, for
o = (1,h). We will prove that ||us| r2(0,7;L2(0,)) < C for some constant independent
of o. Now, if we take any element v € L*(0,T;L*(Q)) and we extend every u, to
(0,T) xQ by setting Uy (t,x) = v(t,x) for every (t,z) € (0,T) x (Q2\Q4), then we have
that these extensions constitute a sequence of bounded functions in L?(0,T;L2(Q)) and
every weak limit point is a solution of (P), it does not matter the choice of v. This is
a consequence of the property (4.1). The theorem should be understood in this sense.

Proof. Let @ be a solution of problem (P) and let us take u, € U, defined by

(4.33) Z Z Up, TXnXT, With u, = / (t,z) dzdt.
n=1TeT, T"|T| o1

Then, u, is the L?(0,T;L%(Q,)) projection of @ on Y,. From our assumptions (A1)-
(A3), we have that ||& — u,||z2(0,7;L2(0,)) — 0 when ¢ — 0. Using Corollary 4.9,
we deduce easily that J,(u,) — J(@). On the other hand, it is immediate that
U, € Uy qq for every o, then the optimality of G, and the definition of J, lead to

%HﬁgHQ < J,(8,) < Jy(u,) < C Vo

Therefore, we deduce the existence of subsequences weakly convergent. Let u be one
of these limit points. Obviously the property u € U,q holds. Moreover, using again
Corollary 4.9 and the convexity of the cost functional in the third term involving the
control, we have

inf (P) < J(u) <liminf J,(a,) < limsup J,(@,) < limsup J,(u,) = J(a) = inf (P)

o—0 o—0 o—0

which implies that @ is a solution of (P) as well as the convergence J,(4,) — J(u).
From this convergence along with the convergence properties of yg, — ya given
in Corollary 4.9, we get ||[Us|/z2(0,7512(0,)) — [0llz2(0,7512(0))- Invoking once again
(4.1), we obtain the strong convergence of {G,}, to @ stated in (4.32). O

The next theorem is important from a practical point of view because it states that
every strict local minimum of problem (P) can be approximated by local minima of
problems (P,).

THEOREM 4.15. Let u be a strict local minimum of (P), then there exists a sequence
{8, }s of local minima of problems (P,) such that (4.32) holds.

Proof. Let u be a strict local minimum of (P), then there exists € > 0 such that u is
the unique solution of

(P.) min  J(u).
UEU4aN B (1)
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Let us extend all the elements of U, to (0,T) x Q by taking u, (¢, z) = u(t, z) for any
(t,x) € (0,T) x (2\ Q). Now, we consider the discrete problems

(Pes) min _ Jy(uy).

Us, eua,adea (ﬁ)

For every o sufficiently small, the problem (P.,) has at least one solution. Indeed,
the only delicate point is to check that Uy qq N Bg(ﬁ) is not empty. To this end, we
define u, € Uy 4q as in (4.33), with @ replaced by a. Then, |[0—us|[2(0,7;L2(0)) — 0,
therefore u, € U, qqN B. (1) for any o sufficiently small. Let @i, be a solution of (P.).
Then we can argue as in the proof of Theorem 4.13 to deduce that any subsequence of
{l, }, converges strongly in L?(0,T;L?(Q2)) to a solution of (P.). Since this problem
has a unique solution, we have [ — Us|[22(0,;L2(0)) — 0 for the whole sequence as
o — 0. This implies that the constraint u, € Bc(u) is not active for o small, and
hence u, is a local solution of (P,) and (4.32) is fulfilled. O

4.4. Error estimates. We still assume that (4.21) holds. In this section @ will
denote a local solution of problem (P) and for every o, u, denotes a local solution of
(P5) such that [|G — s || £2(0,7512(0,)) — 0; see Theorems 4.13 and 4.15. Hereinafter,
all the elements u € U, are extended to (0,7) x © by setting u(t,z) = a(t,x) for
(t,z) € (0,T) x (2\ Q). We will also denote by y and ¢ the state and adjoint
state associated to u, and y, and ¢, will denote the discrete state and adjoint state
associated to u,. The goal of this section is to prove the following theorem.

THEOREM 4.16. Suppose that (3.18) holds. Then, there exists a constant C > 0
independent of o such that

(4.34) [ = 8sllz2(0,rm2(00)) < Ch,
(4.35) Hy _ yUHLOO(O,T;LQ(Qh)) + HS' - yUHL2(0,T;H1(Qh)) < Ch;
(4.36) 19 = @ollz=(0,rs12(0m) + 1€ = ollr2 0,782 (1)) < Ch.

The estimates (4.35) and (4.36) are an immediate consequence of (4.34), (4.22) and
(4.31). We only have to prove (4.34). To this end, we proceed by contradiction and
we assume that it is false. This implies that

. .
lim sup EH“ — U || 2 (0,112 (0,)) = +00,
o—0
therefore, there exists a sequence of ¢ such that
N S

(4.37) (113%) E”u — U || L2(0,7L2(0,)) = +00-
We will obtain a contradiction for this sequence. We need some lemmas. The first one
is concerned with the projection of  on U, given by the formulas (4.33) and denoted

in the sequel by u,. Let us recall that according to Theorem 3.3, the regularity
a € H'(Q7) holds for any local minimum.

LEMMA 4.17. There exists a constant C > 0 independent of o such that

(4.38) 10— o llar (@) + PIT = ollz2 0,200y < CPPl0llE (@r),

where Qrp = (0,T) x Q.
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Proof. The estimate in the L2(0,T;L?(€,)) norm is well know. Let us check the
estimate in the H(Q74)* norm. Let v € H'(Q7y,) be any element and take v, as the
projection according to the expression (4.33). From the definition of the projection
we have

/OT/Q}LV(I_I—ua)dtde/OT/Q}L(V—VU)(ﬁ_uU)dtdx

< IV = vellz2 o,z @ It — ol L2002 @0y < CRP Ul @) IVIIE (00

which proves the lemma. O

Since 0, is a local minimum of (P,) , J, is a C°° mapping and u, € U, 44, then
J! (4y)(u, —@,) > 0. This inequality can be rewritten in the form

J' () (0 — 1) + [T () — J'(8,)](0 - 15)
+[']z/7(ﬁo) - J/(ﬁ)](uo - ﬁ) + J/(ﬁ)(ua - ﬁ) > 0.

On the other hand, since @, € Uy, then J'(71)(0, — @) > 0. Adding this inequality
to the last one, we obtain

(4.39) +[J5(05) = J'(@))(uy —a) + J'(0)(us — ).

This inequality is crucial in the proof. First, we get an estimate from below for the
left hand side, then we estimate from above the three terms of the right hand side.

LEMMA 4.18. Suppose that {Q,}, satisfies (4.37) and let 6 > 0 be given by Remark
3.5. Then, there exists oy such that

1 . _ _ B - .
(4.40) 5 min{d, AT = 630, re 2, < [/ (80) = J'(@)(8 — @) if o] < [oo].

Proof. In this proof, we follow the steps of [7, Lemma 7.2]. Applying the mean value
theorem we get for some 4, = u + 0, (u, — 1)

(4.41) [J(0,) — J'(0)](0, — 1) = J"(0,)(0, —1)%

Set po = |0y — Ullz2(0,7:12(0,)) and Vo = p%(ﬁg — u). Taking a subsequence,
we can assume that v, — v in L?((0,7;L2()). Let us prove that v belongs
to the critical cone Cy defined in (3.11). First, remark that every v, satisfies the
sign conditions (3.12)-(3.13), hence v also does. Now, we show that v;(t,z) = 0
if dj(t,x) # 0, d being defined by (3.10). Denote d, = J.(Gi,) = @, + A,; see
(4.26). Observe that [0 — Us|[z2(0,712(0,)) — 0 and (4.31) imply the convergence
ld — dollz2(0,7:L2(02,)) — 0. Now, we have

T T
/ / dv dzdt = lim / / d, v, dzdt
o Ja o=0Jo Ja,
1 T - T -
lim — / / d,(u, —u)dzdt + / / d,(t, — uy) dxdt} .
o—0 pU { 0 Qh 0 Qh
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From (4.37), (4.38) and the inequality J! (0,)(u, — @s) > 0 we conclude that

/ / dvdzdt < lim —/ / —u)dzdt
o—=0 po’ Qp

< lim =
o—0 ||u0 — u||L2((O T L2(Qh))

Since v satisfies the sign conditions (3.12)-(3.13), then d,;(¢,z)v;(t,z) > 0; hence
the above inequality implies that (3.14) holds as well, then v € Cg. Now, from the
definition of v,, (3.4) and (3.20) we get

hm J'(0,) (0, — u)?

T
= lim / /(|zvc,\2 — 2(zy, .V)zvgcpﬁa)dxdt—i—'y/ |y, (T)|? dz + A
o—0 0 Q Q
- / [l =20, Vyz@)dadt - [ [au(T)P d 4 A
0 Q Q

= J"(@)v? + A (1 - HV||2L2((0,T;L2(Q))) > A+ (8 = NIVIIZ2o.rLe@)-
Taking into account that ||v||z2((0,r;12()) < 1, these inequalities lead to
lin% J" (,)v2 > min{s,\} > 0,
o—

which proves the existence of o such that J”(0,)vZ > 1 min{§, A} V|o| < |og|. From

this inequality, the definition of v, and (4.41) we deduce (4.40). O
With (4.39) and (4.40) we obtain

S {5 A I, — 00 e,y < 2 (00) — 7 (8,)](8 1)
(4.42) +[J (,) — J'(@)](uy — 10,) + J'(0)(u, — @).

Let us estimate the three terms of the right hand sided. From (3.3) and (4.26) along
with the fact that @ = @, in (0,7) x (2\ Q) we have

|[75(0) = J' (W)} (0 — o) < llpn, — @o 202 (@u) 10— Uoll20102(20))-

Taking u = v = 0, in (4.31), the previous inequality leads to

(4.43) 75 (00) = J'(85)](0 — )| < Chlla — 0ol L20,7:L2(21))-

For the second term of (4.42) we use again (4.31) with u = @ and v = 4, and (4.38)
[75(00) — J' (W) (uy — 15)|
<Alle, — @llr20,riL2@n)) + 8o — ll200,mm200)) } 100 — Ul 22007512000 ))

(4.44) < C{h+ |t — 0,200,120 } h-

Last, we estimate the third term using again (4.38)

(445) (@) — @) < 16+ Az @ 00— i op,)- < CH2

Finally (4.34) follows from (4.42)-(4.45) with the help of Young’s inequality, which
contradicts (4.37).
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